WO2015109916A1 - 一种制备石墨烯的方法 - Google Patents

一种制备石墨烯的方法 Download PDF

Info

Publication number
WO2015109916A1
WO2015109916A1 PCT/CN2014/095109 CN2014095109W WO2015109916A1 WO 2015109916 A1 WO2015109916 A1 WO 2015109916A1 CN 2014095109 W CN2014095109 W CN 2014095109W WO 2015109916 A1 WO2015109916 A1 WO 2015109916A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
deionized water
preparing graphene
graphite
hours
Prior art date
Application number
PCT/CN2014/095109
Other languages
English (en)
French (fr)
Inventor
薄拯
岑可法
严建华
王智化
池涌
帅骁睿
Original Assignee
智慧城市系统服务(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智慧城市系统服务(中国)有限公司 filed Critical 智慧城市系统服务(中国)有限公司
Publication of WO2015109916A1 publication Critical patent/WO2015109916A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides

Definitions

  • the invention relates to the technical field of nano materials, and in particular to a method for preparing graphene.
  • Graphene is a novel carbon material with a single layer of sheet-like structure composed of carbon atoms.
  • the atoms are arranged in a two-dimensional honeycomb shape under ideal conditions, and are the thinnest materials known in the world. Since its first discovery in 2004, graphene has attracted great research interest from researchers. In recent years, it has become one of the hot topics in the fields of materials, physics and chemistry. Due to its unique morphological structure, graphene has excellent physical, chemical, thermal and mechanical properties, which makes it have broad application prospects in new composite materials, energy storage, catalysis and sensors. At the same time, the development and research of large-scale, low-cost graphene preparation processes is the key to driving these applications.
  • methods for preparing graphene mainly include mechanical stripping method, epitaxial growth method, arc discharge method, chemical vapor deposition method, thermal reduction method and chemical reduction method.
  • mechanical stripping method, arc discharge method, epitaxial growth method and chemical vapor deposition method have high production cost and low yield, so it is not suitable for large-scale production of graphene, and thermal reduction method usually needs to be above 1000 °C. It is carried out at high temperature, and the energy consumption is high and the conditions required for the reaction are complicated.
  • the chemical reduction method is widely considered to have great potential for large-scale and low-cost production of graphene-related materials due to low production cost, simple process, and mild reaction conditions.
  • the basic principle of the preparation of graphene by the chemical reduction method is that the graphite is first oxidized and stripped by a strong oxidizing agent to obtain graphene oxide, and then the oxygen-containing functional group of the graphene oxide is removed by a reducing agent, thereby obtaining a graphene material.
  • widely used reducing agents include hydrazines, sodium borohydride and para-benzene. Diphenols and the like can obtain graphene having a high degree of reduction and good performance.
  • these reducing agents have large toxicity or flammable and explosive problems, which may cause environmental pollution and harm to human health; at the same time, some reducing agents easily introduce impurities into the products during use, thereby seriously affecting the prepared graphite. The purity and quality of the olefin.
  • the technical problem to be solved by the present invention is to provide a green non-toxic method for preparing graphene, which overcomes environmental pollution caused by large toxicity or flammable and explosive problems of the reducing agent and endangers human health; At the same time, it also overcomes the problem that part of the reducing agent easily introduces impurities into the product during use, which seriously affects the quality of graphene.
  • the present invention provides a method for preparing graphene comprising:
  • Step of preparing graphene oxide adding graphite oxide powder to deionized water, and obtaining a graphene oxide dispersion of graphene oxide in deionized water by ultrasonic vibration; wherein the ratio of graphite oxide powder to deionized water is 0.1 mg: 1 ml to 1 mg: 1 ml;
  • Step of preparing graphene adding caffeic acid powder to the graphene oxide dispersion, wherein the mass ratio of the caffeic acid powder and the graphite oxide powder is 10:1 to 50:1; and the obtained mixture oil bath is heated to 85 ° C.
  • the mixture was continuously stirred at 95 ° C for 2 hours to 24 hours to obtain a graphene solution, which was then filtered with a microporous membrane to collect the product, and finally the product was vacuum dried to obtain graphene.
  • the method further comprises the steps of preparing graphite oxide:
  • the natural graphite and the concentrated sulfuric acid having a mass concentration of 98% are uniformly mixed at room temperature, potassium permanganate is added in batches at an ice bath temperature and stirring is continued, and the obtained mixture is heated to 35 ° C in a water bath and stirred uniformly.
  • the ice bath temperature means 0 °C.
  • the potassium permanganate is added in batches, including: potassium permanganate is added in 6 portions in 1 hour to 2 hours, and the interval between each addition is 10 minutes to 20 minutes.
  • the agitation comprises: using magnetic stirring.
  • repeatedly washing the obtained solution with hydrochloric acid and deionized water further comprises:
  • the ultrasonic oscillation comprises: sonicating the graphite oxide powder and the deionized water mixture at a power of 300 W for 2 hours.
  • the microporous membrane comprises a polyvinylidene fluoride microporous membrane having a pore size of 0.22 ⁇ m.
  • continuous agitation comprises: continuous agitation using a magnetic force.
  • vacuum drying comprises drying in a vacuum oven at 35 ° C for 24 hours.
  • the method for preparing graphene provided by the embodiment of the invention adopts caffeic acid widely used in various plants as a reducing agent, is green and non-toxic, has simple preparation process, mild reaction conditions, does not cause environmental pollution and endangers human health; Caffeic acid has strong reducing ability, does not introduce impurity elements or functional groups in the reduction product, and the prepared graphene has high purity and high quality, is suitable for large-scale industrial production of graphene, and is beneficial to the wide application of graphene related materials.
  • Example 1 is a graph of a transmission electron microscope (TEM) of a graphene obtained in Example 3 of the present invention.
  • TEM transmission electron microscope
  • Example 2 is a graph showing the X-ray diffraction (XRD) of graphene oxide and graphene obtained in Example 3.
  • Example 3 is an X-ray photoelectron (XPS) spectrum of graphene oxide and graphene obtained in Example 3 of the present invention.
  • XPS X-ray photoelectron
  • UV-vis ultraviolet-visible
  • Fig. 5 is a graph showing the thermogravimetric (TGA) characteristics of the graphene obtained in the fifth embodiment, the graphene obtained in the fourth embodiment, and the graphene obtained in the third embodiment.
  • TGA thermogravimetric
  • the preparation step of graphene adding caffeic acid powder to the graphene oxide dispersion liquid, wherein the mass ratio of the caffeic acid powder and the graphite oxide powder is 10:1 to 50:1; and the obtained mixture oil bath is heated to 85 °C ⁇ 95 ° C and continuous stirring, through 2 hours ⁇ 24 hours reduction reaction to obtain a graphene solution, and then filtered with a microporous membrane and collect the product, and finally vacuum dried product to obtain graphene.
  • the oil bath means that the oil is used as a medium, the oil is heated, the mixture is placed in a beaker, and the beaker is heated with oil.
  • ultrasonic oscillation comprises sonicating the graphite oxide powder and the deionized water mixture for 2 hours at a power of 300 W.
  • the microporous membrane comprises a polyvinylidene fluoride microporous membrane having a pore size of 0.22 ⁇ m.
  • continuous agitation includes: continuous agitation using a magnetic force.
  • vacuum drying comprises drying in a vacuum oven at 35 ° C for 24 hours.
  • the chemical reduction method based on caffeic acid has low energy consumption and device requirements, simple process and high yield, and is suitable for carrying out Large scale preparation of graphene.
  • caffeic acid is a green non-toxic reducing agent widely present in a variety of plants.
  • caffeic acid the ortho-hydroxy group and the highly conjugated acrylic side chain on the benzene ring
  • the green non-toxic reducing agent such as gallic acid, tea polyphenol and methanol. Achieve higher C/O ratios and reductions in the final product.
  • the caffeic acid element has a simple composition and does not introduce other impurity elements or functional groups during the reduction process, thereby ensuring product purity and quality level.
  • natural graphite and concentrated sulfuric acid having a mass concentration of 98% are uniformly mixed at room temperature, wherein the ratio of concentrated sulfuric acid to natural graphite is 25 ml: 1 g, that is, 25 ml of concentrated sulfuric acid is added per 1 g of natural graphite; Adding potassium permanganate in batches at the bath temperature and stirring continuously, wherein the ice bath temperature means 0 ° C, and the mass ratio of potassium permanganate to natural graphite is 3.5:1 to 5.5:1, preferably 3.5:1; The obtained mixture was heated to 35 ° C in a water bath and stirred uniformly.
  • deionized water After reacting for 2 hours, deionized water was added, wherein the ratio of deionized water to natural graphite was 100 ml: 1 g, that is, 100 ml of deionized water was added per 1 g of natural graphite; Adding hydrogen peroxide with a concentration of 30%, wherein the ratio of hydrogen peroxide to natural graphite is 8 ml: 1 g, that is, adding 8 ml of hydrogen peroxide per 1 g of natural graphite; the obtained solution is repeatedly washed with hydrochloric acid and deionized water, and finally dried by vacuum to obtain oxidation.
  • Graphite powder After reacting for 2 hours, deionized water was added, wherein the ratio of deionized water to natural graphite was 100 ml: 1 g, that is, 100 ml of deionized water was added per 1 g of natural graphite; Adding hydrogen peroxide with a concentration of 30%, wherein the ratio of hydrogen per
  • the ratio of the above concentrated sulfuric acid, potassium permanganate, deionized water, and hydrogen peroxide to natural graphite is 98% by mass of concentrated sulfuric acid and 30% by mass of hydrogen peroxide.
  • the mass concentration of concentrated sulfuric acid and the mass concentration of hydrogen peroxide can be configured as needed.
  • concentrated sulfuric acid, Potassium permanganate, deionized water, and the ratio of hydrogen peroxide to natural graphite should also be adjusted accordingly.
  • the manner in which the graphite oxide is prepared can also be carried out in other ways, and is not limited to the manner described in this step.
  • the potassium permanganate is added in batches, including: potassium permanganate is added in 6 portions in 1 hour to 2 hours, and the interval between each addition is 10 minutes to 20 minutes.
  • the agitation comprises: using magnetic stirring.
  • the repeated washing of the obtained solution with hydrochloric acid and deionized water further comprises: firstly using a diluted hydrochloric acid having a volume fraction of 10% for centrifugal washing for 15 minutes; and then performing centrifugal washing for 15 minutes using deionized water; The centrifugal speed was 8000 rpm.
  • vacuum drying comprises drying in a vacuum oven at 35 ° C for 24 hours.
  • the graphite oxide powder obtained in step S10 is added to deionized water, wherein the ratio of the amount of the graphite oxide powder to the deionized water is 0.1 mg: 1 ml to 1 mg: 1 ml; and the graphene oxide is obtained by ultrasonic vibration in deionized water.
  • a graphene oxide dispersion is obtained.
  • a caffeic acid powder is added to the graphene oxide dispersion obtained in the step S20, wherein the mass ratio of the caffeic acid powder and the graphite oxide powder is 10:1 to 50:1, preferably 50:1;
  • the oil bath is heated to 85 ° C to 95 ° C and stirring is continued, and the graphene solution is obtained by a reduction reaction for 2 hours to 24 hours, and then the product is collected by a microporous membrane filtration, and finally dried under vacuum to obtain graphene.
  • the method for preparing graphene provided by the invention uses natural graphite as a raw material, obtains graphene oxide powder by a strong oxidant, obtains a dispersion of graphene oxide in deionized water under ultrasonic vibration, and uses green non-toxic reducing agent coffee.
  • the acid realizes the reduction of graphene oxide, and finally obtains graphene by filtration, collection and vacuum drying, and is suitable for large-scale industrial production of graphene, which is beneficial to the wide application of graphene related materials.
  • the natural graphite and the concentrated sulfuric acid having a mass concentration of 98% are uniformly mixed at room temperature, wherein the ratio of the concentrated sulfuric acid to the natural graphite is 25 ml: 1 g; and the high manganese is added in an ice bath temperature (0 ° C) 6 times in 2 hours. Potassium acid was continuously stirred, and the time interval between each addition was 20 min, and the mass ratio of potassium permanganate to natural graphite was 3.5:1. The resulting mixture was heated to 35 ° C in a water bath and stirred by a magnetic stirrer.
  • deionized water was added, wherein the ratio of deionized water to natural graphite was 100 ml: 1 g, and then hydrogen peroxide was added in a mass concentration of 30%, wherein the ratio of hydrogen peroxide to natural graphite was 8 ml: 1 g, which was obtained.
  • the solution was washed repeatedly with hydrochloric acid and deionized water.
  • the diluted hydrochloric acid with a volume fraction of 10% was firstly centrifuged for 15 minutes, and the same method was used for 4 times, and then centrifuged and washed with deionized water for 15 minutes, and the same method was used for 4 times, wherein the centrifugal speed was 8000 rpm.
  • the sample was placed in a vacuum drying oven and dried at 35 ° C for 24 hours to obtain graphite oxide powder.
  • the obtained graphite oxide powder is added to deionized water, wherein the ratio of the graphite oxide powder to the deionized water is 0.1 mg: 1 ml, and the graphite oxide powder and the deionized water mixture are subjected to ultrasonic treatment at 300 W for 2 hours for oxidation.
  • the graphite was peeled off to obtain a dispersion of graphene oxide in deionized water.
  • the obtained mixture oil bath is heated to 95 ° C and continuously stirred by a magnetic stirrer. After 24 hours reduction reaction, a graphene solution was obtained, and then filtered with a polyvinylidene fluoride microporous membrane having a pore size of 0.22 ⁇ m, and the product was collected. Finally, the sample was placed in a vacuum drying oven and dried at 35 ° C for 24 hours to obtain graphene. .
  • FIG. 1 A graphene transmission electron microscope (TEM) image obtained in the third embodiment is shown in FIG. It can be observed from the TEM image that the obtained graphene is thin and transparent, and the peripheral edges are slightly wrinkled, conforming to the general morphology characteristics of graphene.
  • TEM transmission electron microscope
  • (a) is an initial natural graphite
  • (b) is a graphene oxide obtained in the third embodiment
  • (c) a graphene X-ray diffraction (XRD) spectrum obtained in the third embodiment.
  • XRD graphene X-ray diffraction
  • the broad diffraction characteristic peaks, corresponding to the layer spacing of 0.359 nm, are slightly larger than the layer spacing of natural graphite, but much smaller than the layer spacing of graphene oxide, which confirms that the reduction of coffee oxides and the stripping of graphene oxide are achieved.
  • Fig. 3 is a view showing the X-ray photoelectron (XPS) spectrum of (a) graphene oxide and (b) graphene obtained in the third embodiment.
  • XPS X-ray photoelectron
  • This embodiment differs from the above-described third embodiment only in that the reduction reaction time is 12 hours. Other technical features are the same and will not be repeated here.
  • This embodiment differs from the above-described third embodiment only in that the reduction reaction time is 2 hours.
  • (a) is graphene oxide
  • (b) is graphene obtained in the fifth embodiment
  • (c) is graphene obtained in the fourth embodiment
  • (d) is obtained in the third embodiment.
  • Ultraviolet-visible (UV-vis) spectrum of graphene It can be seen from the figure that as the reduction reaction time increases, the absorption peak gradually red shifts from 230 nm of the most oxidized graphene, after 2 hours (Example 5), 12 hours (Example 4) and 24 hours (Example) After the caffeic acid reduction reaction of c), the positions of the UV-vis absorption peaks were shifted to 262 nm, 265 nm and 270 nm, respectively. This indicates that as the reduction reaction time prolongs, the graphene structure The gradual recovery of the two-dimensional electron conjugated structure confirmed the reduction of graphene oxide by caffeic acid.
  • (a) is graphene oxide
  • (b) is graphene obtained in the fifth embodiment
  • (c) is graphene obtained in the fourth embodiment
  • (d) is obtained in the third embodiment.
  • TGA Thermogravimetric
  • the graphene oxide weight loss ratio is about 10%, which is caused by the evaporation of moisture inside the graphene oxide.
  • the temperature is further increased, a large amount of oxygen-containing functional groups in the graphene oxide are gradually decomposed, and the proportion of weight loss is increasing.
  • the graphene prepared by the present invention is more stable under the action of temperature, and the stability of graphene is getting better as the reaction time increases, which confirms the reduction of graphene oxide by caffeic acid.
  • the difference between this embodiment and the above third embodiment is only that the ratio of the amount of the graphite oxide powder and the deionized water is 1 mg: 1 ml, and the potassium permanganate is homogeneously added in 6 hours in one hour, and the time of each addition is twice. The interval is 10 min.
  • This example differs from the above-described third embodiment only in that the mass ratio of the caffeic acid powder to the graphite oxide powder is 10:1, and the mixture oil bath is heated to 85 °C.
  • the method for preparing graphene provided by the embodiment of the invention adopts caffeic acid widely used in various plants as a reducing agent, is green and non-toxic, has simple preparation process, mild reaction conditions, does not cause environmental pollution and endangers human health;
  • the caffeic acid has a strong reducing ability and does not introduce an impurity element or a functional group into the reduced product, and the prepared graphene has high purity and quality.
  • This method can promote the large-scale green non-toxic production and industrial application of graphene, a high-quality nano material, in energy, Potential applications in areas such as catalysis and sensors can have huge economic effects.

Abstract

提供一种制备石墨烯的方法。该方法包括:将氧化石墨粉末加入去离子水中,通过超声波震荡得到氧化石墨烯在去离子水中的氧化石墨烯分散液;在氧化石墨烯分散液中加入咖啡酸粉末还原反应得到石墨烯溶液,最后通过微孔滤膜过滤、收集和真空干燥得到石墨烯。该方法所采用的还原剂咖啡酸绿色无毒,制备工艺简单,反应条件温和,且不会在还原产物中引入杂质元素或官能团。

Description

一种制备石墨烯的方法
本申请要求在2014年01月22日提交中国专利局、申请号为201410030357.4、发明名称为“一种制备石墨烯的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及纳米材料技术领域,尤其涉及一种制备石墨烯的方法。
背景技术
石墨烯是一种由碳原子构成的单层片状结构新型碳材料,原子在理想状态下呈二维蜂窝状排列,是目前世界上已知的最薄的材料。石墨烯自从2004年首次发现以来,引起了广大科研工作者的极大研究兴趣,近年来已经成为材料、物理和化学等学科领域研究热门之一。由于其独特的形貌结构,石墨烯具有非常优良的物理、化学、热学和力学等性能,使得其在新型复合材料、储能、催化和传感器等领域具有广阔的应用前景。与此同时,大规模低成本的石墨烯制备工艺的开发和研究是推动上述应用的关键。
目前,用于石墨烯制备的方法主要有机械剥离法、外延生长法、电弧放电法、化学气相沉积法、热还原法和化学还原法等。其中,机械剥离法、电弧放电法、外延生长法和化学气相沉积法生产成本高且产率较低,因此不适合在大规模化生产石墨烯的使用,热还原法通常需要在1000℃以上的高温下进行,能耗较高且反应所需条件复杂。与之相比,化学还原法由于生产成本较低,工艺简单,反应条件温和,被广泛认为具有大规模低成本制备石墨烯相关材料的巨大潜力。
化学还原法制备石墨烯的基本原理是,首先通过强氧化剂对石墨进行氧化剥离,获得氧化石墨烯,然后通过还原剂消除氧化石墨烯的含氧官能团,进而获得石墨烯材料。目前,广泛采用的还原剂包括肼类、硼氢化钠和对苯 二酚等,可获得还原程度较高、性能较好的石墨烯。然而这些还原剂具有较大的毒性或存在易燃易爆等问题,因此会造成环境污染和危害人体健康;同时,部分还原剂在使用过程中容易在产物中引入杂质,进而严重影响制备的石墨烯的纯度和质量。
发明内容
有鉴于此,本发明要解决的技术问题是提供一种绿色无毒制备石墨烯的方法,以克服还原剂具有较大的毒性或存在易燃易爆问题而造成的环境污染和危害人体健康;同时还克服部分还原剂在使用过程中容易在产物中引入杂质而严重影响石墨烯质量的问题。
本发明为解决上述技术问题,提供的一种制备石墨烯的方法包括:
氧化石墨烯的制备步骤:将氧化石墨粉末加入去离子水中,通过超声波震荡得到氧化石墨烯在去离子水中的氧化石墨烯分散液;其中,氧化石墨粉末和去离子水的用量比例为0.1毫克:1毫升~1毫克:1毫升;
石墨烯的制备步骤:在氧化石墨烯分散液中加入咖啡酸粉末,其中,咖啡酸粉末和氧化石墨粉末的质量比为10:1~50:1;将得到的混合物油浴加热至85℃~95℃并持续搅拌,通过2小时~24小时还原反应得到石墨烯溶液,然后用微孔滤膜过滤并收集产物,最后真空干燥产物得到石墨烯。
优选的,该方法之前还包括氧化石墨的制备步骤:
将天然石墨和质量浓度为98%的浓硫酸在室温下均匀混合,在冰浴温度下分批次加入高锰酸钾并持续搅拌,将得到的混合物水浴加热至35℃并搅拌均匀,反应2小时后加入去离子水,然后加入质量浓度为30%的双氧水,将得到的溶液用盐酸和去离子水反复清洗,最后真空干燥得到氧化石墨粉末;其中,浓硫酸和天然石墨的用量比例为25毫升:1克,高锰酸钾和天然石墨的质量比为3.5:1~5.5:1,去离子水和天然石墨的用量比例为100毫升:1克,双氧水和天然石墨的用量比例为8毫升:1克。
优选的,冰浴温度是指0℃。
优选的,分批次加入高锰酸钾包括:1小时~2小时内分6次均质加入高锰酸钾,每两次加入的时间间隔为10min~20min。
优选的,搅拌包括:采用磁力搅拌。
优选的,将得到的溶液用盐酸和去离子水反复清洗进一步包括:
先采用体积分数为10%的稀盐酸进行15min离心洗涤,然后采用去离子水进行15min离心洗涤;其中,离心转速为8000转/分钟。
优选的,超声波震荡包括:将氧化石墨粉末和去离子水混合物在300W功率下超声处理2小时。
优选的,微孔滤膜包括:孔径为0.22μm的聚偏氟乙烯微孔滤膜。
优选的,持续搅拌包括:采用磁力持续搅拌。
优选的,真空干燥包括:在真空干燥箱内在35℃下干燥24小时。
本发明实施例提供的制备石墨烯的方法,采用广泛存在于多种植物的咖啡酸作为还原剂,绿色无毒,制备工艺简单,反应条件温和,不会造成环境污染和危害人体健康;且由于咖啡酸具有强还原能力,不会在还原产物中引入杂质元素或官能团,制备的石墨烯纯度和质量高,适合于石墨烯的规模化工业生产,有利于石墨烯相关材料的广泛应用。
附图说明
图1为本发明实施例三所得到的石墨烯透射电子显微镜(TEM)图。
图2为实施例三所得到的氧化石墨烯和石墨烯X射线衍射(XRD)谱图。
图3为本发明实施例三所得到的氧化石墨烯和石墨烯的X光电子能(XPS)谱图。
图4为本实施例五所得到的石墨烯、实施例四所得到的石墨烯、实施例三所得到的石墨烯的紫外-可见光(UV-vis)谱图。
图5为本实施例五所得到的石墨烯、实施例四所得到的石墨烯、和实施例三所得到的石墨烯的热重(TGA)特性图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
本发明实施例提供的一种制备石墨烯的方法包括以下步骤:
S20、氧化石墨烯的制备步骤:将氧化石墨粉末加入去离子水中,通过超声波震荡得到氧化石墨烯在去离子水中的氧化石墨烯分散液;其中,氧化石墨粉末和去离子水的用量比例为0.1mg:1ml~1mg:1ml,即每毫升去离子水中加入0.1毫克~1毫克氧化石墨粉末。
S30、石墨烯的制备步骤:在氧化石墨烯分散液中加入咖啡酸粉末,其中,咖啡酸粉末和氧化石墨粉末的质量比为10:1~50:1;将得到的混合物油浴加热至85℃~95℃并持续搅拌,通过2小时~24小时还原反应得到石墨烯溶液,然后用微孔滤膜过滤并收集产物,最后真空干燥产物得到石墨烯。
其中,油浴是指以油为介质,加热油,混合物放入烧杯,用油加热烧杯。
作为一种优选实施例,超声波震荡包括:将氧化石墨粉末和去离子水混合物在300W功率下超声处理2小时。
作为另一种优选实施例,微孔滤膜包括:孔径为0.22μm的聚偏氟乙烯微孔滤膜。
作为另一种优选实施例,持续搅拌包括:采用磁力持续搅拌。
作为另一种优选实施例,真空干燥包括:在真空干燥箱内在35℃下干燥24小时。
本发明提供的制备石墨烯的方法,与现有技术相比具有的有益效果:
1)和热还原法、机械剥离法、电弧放电法、外延生长法和化学气相沉积法等相比,基于咖啡酸的化学还原方法能耗和装置要求低,过程简单且产率高,适合进行石墨烯的大规模制备。
2)和传统的基于肼类、硼氢化钠和对苯二酚等还原氧化石墨烯的制备方法相比,咖啡酸是一种绿色无毒还原剂,广泛存在于多种植物。
3)由于咖啡酸独特的结构特点(苯环上具有邻位羟基及高度共轭丙烯酸侧链),因此具有较之没食子酸、茶多酚和甲醇等绿色无毒还原剂具有更强的还原能力,在最终产物中实现更高的C/O比和还原效果。
4)相比于部分还原剂在使用过程中的特殊环境需求(如糖和多巴胺作为还原剂时需要在碱性环境下进行,天然纤维素作为还原剂时需要离子液体),采用咖啡酸作为还原剂时无需添加任何稳定剂或分散剂,制备过程工艺简单,反应条件温和。
5)相比于采用金属还原剂时容易在最终产物中引入杂质元素,咖啡酸元素组成简单,不会在还原过程中引入其它杂质元素或者官能团,可保证产物纯度和质量水平。
实施例二
本发明优选实施例提供的一种制备石墨烯的方法包括以下步骤:
S10、氧化石墨的制备步骤。
具体来说,将天然石墨和质量浓度为98%的浓硫酸在室温下均匀混合,其中浓硫酸和天然石墨的用量比例为25ml:1g,即每1克天然石墨加入25毫升浓硫酸;在冰浴温度下分批次加入高锰酸钾并持续搅拌,其中,冰浴温度是指0℃,高锰酸钾和天然石墨的质量比为3.5:1~5.5:1,优选3.5:1;将得到的混合物水浴加热至35℃并搅拌均匀,反应2小时后加入去离子水,其中去离子水和天然石墨的用量比例为100ml:1g,即每1克天然石墨加入100毫升去离子水;然后加入质量浓度为30%的双氧水,其中双氧水和天然石墨的比例为8ml:1g,即每1克天然石墨加入8毫升双氧水;将得到的溶液用盐酸和去离子水反复清洗,最后真空干燥得到氧化石墨粉末。
需要说明地是,上述浓硫酸、高锰酸钾、去离子水以及双氧水与天然石墨的用量比例是在举例浓硫酸的质量浓度为98%,双氧水的质量浓度为30% 的前提下的一种优选实施例,而实际应用中,浓硫酸的质量浓度和双氧水的质量浓度可以根据需要进行配置,当浓硫酸的质量浓度或双氧水的质量浓度发生变化时,则浓硫酸、高锰酸钾、去离子水以及双氧水与天然石墨的用量比例也要随之进行调整。此外,氧化石墨的制备方式还完全可以采用其他方式进行,并不限于本步骤中描述的方式。
作为另一种优选实施例,分批次加入高锰酸钾包括:1小时~2小时内分6次均质加入高锰酸钾,每两次加入的时间间隔为10min~20min。
作为另一种优选实施例,搅拌包括:采用磁力搅拌。
作为另一种优选实施例,将得到的溶液用盐酸和去离子水反复清洗进一步包括:先采用体积分数为10%的稀盐酸进行15min离心洗涤;然后采用去离子水进行15min离心洗涤;其中,离心转速为8000转/分钟。
作为另一种优选实施例,真空干燥包括:在真空干燥箱内在35℃下干燥24小时。
S20、氧化石墨烯的制备步骤。
具体来说,将步骤S10所得到的氧化石墨粉末加入去离子水中,其中氧化石墨粉末和去离子水的用量比例为0.1mg:1ml~1mg:1ml;通过超声波震荡得到氧化石墨烯在去离子水中的氧化石墨烯分散液。
S30、石墨烯的制备步骤。
具体来说,在步骤S20所得到的氧化石墨烯分散液中加入咖啡酸粉末,其中咖啡酸粉末和氧化石墨粉末的质量比为10:1~50:1,优选50:1;将得到的混合物油浴加热至85℃~95℃并持续搅拌,通过2小时~24小时还原反应得到石墨烯溶液,然后用微孔滤膜过滤并收集产物,最后真空干燥得到石墨烯。
本发明提供的制备石墨烯的方法,以天然石墨为原材料,通过强氧化剂获得氧化石墨烯粉末,在超声波震荡作用下获得氧化石墨烯在去离子水中的分散液,利用绿色无毒的还原剂咖啡酸实现氧化石墨烯的还原,最后通过过滤、收集和真空干燥得到石墨烯,适合于石墨烯的规模化工业生产,有利于石墨烯相关材料的广泛应用。
实施例三
将天然石墨和质量浓度为98%的浓硫酸在室温下均匀混合,其中浓硫酸和天然石墨的用量比例为25ml:1g;2小时内分6次在冰浴温度(0℃)下加入高锰酸钾并持续搅拌,每两次加入的时间间隔为20min,高锰酸钾和天然石墨的质量比为3.5:1。将得到的混合物水浴加热至35℃,并通过磁力搅拌器进行搅拌。反应2小时后加入去离子水,其中去离子水和天然石墨的用量比例为100ml:1g,然后加入质量浓度为30%的双氧水,其中双氧水和天然石墨的用量比例为8ml:1g,将得到的溶液用盐酸和去离子水反复清洗。清洗过程中,先采用体积分数为10%的稀盐酸进行15min离心洗涤,同法操作4次,然后采用去离子水进行15min离心洗涤,同法操作4次,其中离心转速为8000转/分钟。最后将样品置于真空干燥箱内,在35℃下干燥24小时,得到氧化石墨粉末。将所得到的氧化石墨粉末加入去离子水中,其中氧化石墨粉末和去离子水的用量比例为0.1mg:1ml,将氧化石墨粉末和去离子水混合物在300W功率下进行2小时超声处理,进行氧化石墨剥离,得到氧化石墨烯在去离子水中的分散液。在所得到的氧化石墨烯分散液中加入咖啡酸粉末,其中咖啡酸粉末和氧化石墨粉末的质量比为50:1,将得到的混合物油浴加热至95℃并通过磁力搅拌器持续搅拌,通过24小时还原反应后得到石墨烯溶液,然后用孔径为0.22μm的聚偏氟乙烯微孔滤膜过滤并收集产物,最后将样品置于真空干燥箱内,在35℃下干燥24小时得到石墨烯。
如图1所示为本实施例三所得到的石墨烯透射电子显微镜(TEM)图。由TEM图可以观测到,所得到的石墨烯薄而透明,四周边缘略带褶皱,符合石墨烯的一般形貌特性。
如图2所示,(a)为初始天然石墨、(b)为本实施例三所得到的氧化石墨烯和(c)本实施例三所得到的石墨烯X射线衍射(XRD)谱图。由XRD谱图可知,天然石墨的XRD的(002)衍射特征峰位于2θ=26.6°,对应的层间距为0.335nm;氧化石墨烯的XRD谱图中位于26.6°的特征峰消失,在 2θ=10.02°处形成(001)衍射特征峰,对应的层间距增大至0.880nm;而通过本实施例制备的石墨烯(001)衍射特征峰消失,同时在2θ=24.79°处形成一较宽的衍射特征峰,对应层间距为0.359nm,比天然石墨的层间距略大,但远小于氧化石墨烯的层间距,这证实了咖啡酸还原实现了氧化石墨烯的还原和剥离。
图3所示为实施例三所得到的(a)氧化石墨烯和(b)石墨烯的X光电子能(XPS)谱图。通过C1s谱图的拟合,可以解析出4个特征峰分别对应不同的官能团,即:284.6(碳碳双键/单键:C=C/C-C)、286.5(羟基:C-OH)、287.6(羰基:C=O)和289.1eV(羧基:O=C-OH)。由图3可以明显看出,通过本发明的实施例三,石墨烯的各含氧官能团特征峰强度都有不同程度的降低,这证实在化学还原的过程中,发生了碳氧键的断裂。通过计算,发现制备获得的石墨烯C/O比为7.15,显著高于氧化石墨烯的C/O比2.46,充分证实了咖啡酸对氧化石墨烯的高质量还原。
实施例四
本实施例与上述实施例三的不同之处仅在于:还原反应时间为12小时。其他技术特征相同,这里不再重述。
实施例五
本实施例与上述实施例三的不同之处仅在于:还原反应时间为2小时。
如图4所示,(a)为氧化石墨烯、(b)为本实施例五所得到的石墨烯、(c)为实施例四所得到的石墨烯、(d)为实施例三所得到的石墨烯的紫外-可见光(UV-vis)谱图。从图中可以看出,随着还原反应时间的增加,吸收峰由最氧化石墨烯的230nm逐渐红移,经过2小时(实施例五)、12小时(实施例四)和24小时(实施例三)的咖啡酸还原反应后,UV-vis吸收峰的位置分别移至262nm、265nm和270nm。这说明随着还原反应时间的延长,石墨烯结构中的 二维电子共轭结构逐步得到的恢复,证实了咖啡酸对氧化石墨烯的还原。
如图5所示,(a)为氧化石墨烯、(b)为本实施例五所得到的石墨烯、(c)为实施例四所得到的石墨烯、(d)为实施例三所得到的石墨烯的热重(TGA)特性图。如图所示,在100℃左右,氧化石墨烯失重比例大约为10%,这是由氧化石墨烯内部所含水分的蒸发导致。当温度进一步升高,氧化石墨烯中大量的含氧官能团开始逐步分解,失重比例越来越大。与之相比,通过本发明制备的石墨烯在温度作用下更为稳定,同时随着反应时间的增加,石墨烯的稳定性越来越好,这证实了咖啡酸对氧化石墨烯的还原。
实施例六
本实施例与上述实施例三的不同之处仅在于:高锰酸钾和天然石墨的质量比为5.5:1,稀盐酸和去离子水离心洗涤的次数均为8次。
实施例七
本实施例与上述实施例三的不同之处仅在于:氧化石墨粉末和去离子水的用量比例为1mg:1ml,1小时内分6次均质加入高锰酸钾,每两次加入的时间间隔为10min。
实施例八
本实施例与上述实施例三的不同之处仅在于:咖啡酸粉末和氧化石墨粉末的质量比为10:1,混合物油浴加热至85℃。
本发明实施例提供的制备石墨烯的方法,采用广泛存在于多种植物的咖啡酸作为还原剂,绿色无毒,制备工艺简单,反应条件温和,不会造成环境污染和危害人体健康;且由于咖啡酸具有强还原能力,不会在还原产物中引入杂质元素或官能团,制备的石墨烯纯度和质量高。通过此方法可以更快地推动石墨烯这种优质纳米材料的大规模绿色无毒生产及工业应用,在能源、 催化和传感器等领域有潜在利用前景,并能产生巨大的经济效应。
以上参照附图说明了本发明的优选实施例,并非因此局限本发明的权利范围。本领域技术人员不脱离本发明的范围和实质内所作的任何修改、等同替换和改进,均应在本发明的权利范围之内。

Claims (10)

  1. 一种制备石墨烯的方法,其特征在于,该方法包括:
    氧化石墨烯的制备步骤:将氧化石墨粉末加入去离子水中,通过超声波震荡得到氧化石墨烯在去离子水中的氧化石墨烯分散液;其中,氧化石墨粉末和去离子水的用量比例为0.1毫克:1毫升~1毫克:1毫升;
    石墨烯的制备步骤:在所述氧化石墨烯分散液中加入咖啡酸粉末,其中,咖啡酸粉末和氧化石墨粉末的质量比为10:1~50:1;将得到的混合物油浴加热至85℃~95℃并持续搅拌,通过2小时~24小时还原反应得到石墨烯溶液,然后用微孔滤膜过滤并收集产物,最后真空干燥所述产物得到石墨烯。
  2. 根据权利要求1所述的制备石墨烯的方法,其特征在于,该方法之前还包括氧化石墨的制备步骤:
    将天然石墨和质量浓度为98%的浓硫酸在室温下均匀混合,在冰浴温度下分批次加入高锰酸钾并持续搅拌,将得到的混合物水浴加热至35℃并搅拌均匀,反应2小时后加入去离子水,然后加入质量浓度为30%的双氧水,将得到的溶液用盐酸和去离子水反复清洗,最后真空干燥得到氧化石墨粉末;其中,浓硫酸和天然石墨的用量比例为25毫升:1克,高锰酸钾和天然石墨的质量比为3.5:1~5.5:1,去离子水和天然石墨的用量比例为100毫升:1克,双氧水和天然石墨的用量比例为8毫升:1克。
  3. 根据权利要求2所述的制备石墨烯的方法,其特征在于,所述冰浴温度是指0℃。
  4. 根据权利要求2所述的制备石墨烯的方法,其特征在于,所述分批次加入高锰酸钾包括:1小时~2小时内分6次均质加入高锰酸钾,每两次加入的时间间隔为10min~20min。
  5. 根据权利要求2所述的制备石墨烯的方法,其特征在于,所述搅拌包括:采用磁力搅拌。
  6. 根据权利要求2所述的制备石墨烯的方法,其特征在于,所述将得到 的溶液用盐酸和去离子水反复清洗进一步包括:
    先采用体积分数为10%的稀盐酸进行15min离心洗涤,然后采用去离子水进行15min离心洗涤;其中,离心转速为8000转/分钟。
  7. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述超声波震荡包括:将氧化石墨粉末和去离子水混合物在300W功率下超声处理2小时。
  8. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述微孔滤膜包括:孔径为0.22μm的聚偏氟乙烯微孔滤膜。
  9. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述持续搅拌包括:采用磁力持续搅拌。
  10. 根据权利要求1所述的制备石墨烯的方法,其特征在于,所述真空干燥包括:在真空干燥箱内在35℃下干燥24小时。
PCT/CN2014/095109 2014-01-22 2014-12-26 一种制备石墨烯的方法 WO2015109916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410030357.4A CN103803537A (zh) 2014-01-22 2014-01-22 一种制备石墨烯的方法
CN201410030357.4 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015109916A1 true WO2015109916A1 (zh) 2015-07-30

Family

ID=50700989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095109 WO2015109916A1 (zh) 2014-01-22 2014-12-26 一种制备石墨烯的方法

Country Status (2)

Country Link
CN (1) CN103803537A (zh)
WO (1) WO2015109916A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117002A (zh) * 2018-02-06 2019-08-13 山东欧铂新材料有限公司 一种高分散少层石墨烯的制备方法
CN110237420A (zh) * 2019-05-05 2019-09-17 浙江诺尔康神经电子科技股份有限公司 一种包含氧化石墨烯的听性脑干刺激电极及其制作方法
EP3375755A4 (en) * 2015-11-11 2019-10-02 Nippon Shokubai Co., Ltd. PROCESS FOR THE PREPARATION OF GRAPHITE OXIDE
CN110963488A (zh) * 2018-09-30 2020-04-07 山东欧铂新材料有限公司 一种小尺寸氧化石墨烯的制备方法
CN112162021A (zh) * 2020-08-26 2021-01-01 中芯维康医疗科技(重庆)有限责任公司 一种修饰电极材料及制备方法、修饰电极和应用
CN112250063A (zh) * 2020-10-14 2021-01-22 西安工程大学 一种低温促进木质生物碳石墨化的方法
CN112441580A (zh) * 2019-08-28 2021-03-05 东丽先端材料研究开发(中国)有限公司 石墨的氧化物粉末、其制备方法及其应用
CN112844344A (zh) * 2020-12-28 2021-05-28 陕西合元沐梵环保科技有限公司 一种甲醛吸收材料的制备方法
CN113692211A (zh) * 2021-08-09 2021-11-23 中国人民解放军陆军工程大学 一种基于MXene-rGO的复合薄膜电磁防护材料的制备方法
CN114805925A (zh) * 2022-04-25 2022-07-29 西安理工大学 h-BN/HQ/GO导热复合材料的制备方法
CN115010123A (zh) * 2022-06-14 2022-09-06 中北大学 一种磺化还原氧化石墨烯及其激光制备方法
CN115465860A (zh) * 2022-07-06 2022-12-13 山东海科创新研究院有限公司 一种低氧、高剥离氧化石墨烯的制备方法及所得产品的应用
CN117383549A (zh) * 2023-02-19 2024-01-12 烯源科技无锡有限公司 一种物理方法制备的低缺陷纳米级石墨烯方法
CN117457260A (zh) * 2023-12-26 2024-01-26 深圳市绚图新材科技有限公司 一种新型导电炭黑-改性石墨烯复合浆料及其制备方法
CN117383549B (zh) * 2023-02-19 2024-04-26 烯源科技无锡有限公司 一种物理方法制备的低缺陷纳米级石墨烯方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103803537A (zh) * 2014-01-22 2014-05-21 深圳市智慧低碳技术有限公司 一种制备石墨烯的方法
CN105000554A (zh) * 2015-08-22 2015-10-28 赵兵 一种氧化石墨烯的还原方法
CN105129782A (zh) * 2015-08-22 2015-12-09 钱景 一种还原氧化石墨烯的方法
CN105197918A (zh) * 2015-10-12 2015-12-30 湖北工业大学 一种高质量石墨烯及其快速制备方法
JP6618777B2 (ja) * 2015-11-11 2019-12-11 株式会社日本触媒 酸化黒鉛の製造方法
CN106941130A (zh) * 2016-01-05 2017-07-11 江苏科技大学 柔性场效应晶体管及其制备方法
CN105502373B (zh) * 2016-01-27 2017-10-31 吉林大学 一种石墨烯的绿色制备方法
CN105838115B (zh) * 2016-04-27 2018-03-06 中国科学院上海硅酸盐研究所 一种石墨烯基导电珠光颜料的制备方法
CN106248605B (zh) * 2016-08-05 2019-08-16 常州第六元素材料科技股份有限公司 氧化石墨烯氧化程度标准曲线的建设及定量检测方法
CN106654225A (zh) * 2017-01-17 2017-05-10 杉杉能源(宁夏)有限公司 一种表面包覆的锂离子正极材料的制备方法
CN107604462A (zh) * 2017-06-13 2018-01-19 绍兴标点纺织科技有限公司 一种石墨烯复合pbt纤维及制备方法
CN107475802A (zh) * 2017-06-13 2017-12-15 绍兴标点纺织科技有限公司 一种石墨烯复合pet纤维及制备方法
CN107934941A (zh) * 2017-11-23 2018-04-20 安徽百特新材料科技有限公司 一种石墨烯的制备方法
CN110577757A (zh) * 2018-06-07 2019-12-17 山东欧铂新材料有限公司 一种高分散石墨烯的制备方法
CN110562965A (zh) * 2019-10-30 2019-12-13 武汉低维材料研究院有限公司 一种石墨烯粉体的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275908A (zh) * 2011-07-07 2011-12-14 中南大学 一种石墨烯材料的制备方法
CN102530927A (zh) * 2010-12-24 2012-07-04 中国科学院兰州化学物理研究所 石墨烯的制备方法
CN103466602A (zh) * 2012-06-06 2013-12-25 东丽先端材料研究开发(中国)有限公司 一种石墨烯粉末的制备方法及其在锂离子电池中的应用
CN103803537A (zh) * 2014-01-22 2014-05-21 深圳市智慧低碳技术有限公司 一种制备石墨烯的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502612B (zh) * 2011-11-21 2014-04-09 南京工业大学 一种氧化还原制备石墨烯的方法
CN102530931B (zh) * 2011-12-14 2014-04-02 天津大学 基于石墨烯的纳米复合材料及其制备方法
CN102534643B (zh) * 2012-01-16 2014-07-02 清华大学深圳研究生院 一种废旧电池碳棒再生为石墨烯的方法
CN102634106B (zh) * 2012-04-12 2014-02-19 上海交通大学 一种氧化石墨烯纳米带/极性橡胶复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530927A (zh) * 2010-12-24 2012-07-04 中国科学院兰州化学物理研究所 石墨烯的制备方法
CN102275908A (zh) * 2011-07-07 2011-12-14 中南大学 一种石墨烯材料的制备方法
CN103466602A (zh) * 2012-06-06 2013-12-25 东丽先端材料研究开发(中国)有限公司 一种石墨烯粉末的制备方法及其在锂离子电池中的应用
CN103803537A (zh) * 2014-01-22 2014-05-21 深圳市智慧低碳技术有限公司 一种制备石墨烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, BO ET AL.: "Green Preparation of Reduced Graphene Oxide for Sensing and Energy Storage Applications", SCIENTIFIC REPORTS, 15 April 2014 (2014-04-15), pages 1 - 8, XP055214421 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375755A4 (en) * 2015-11-11 2019-10-02 Nippon Shokubai Co., Ltd. PROCESS FOR THE PREPARATION OF GRAPHITE OXIDE
US11286166B2 (en) 2015-11-11 2022-03-29 Nippon Shokubai Co., Ltd. Method for producing graphite oxide
CN110117002A (zh) * 2018-02-06 2019-08-13 山东欧铂新材料有限公司 一种高分散少层石墨烯的制备方法
CN110963488A (zh) * 2018-09-30 2020-04-07 山东欧铂新材料有限公司 一种小尺寸氧化石墨烯的制备方法
CN110237420A (zh) * 2019-05-05 2019-09-17 浙江诺尔康神经电子科技股份有限公司 一种包含氧化石墨烯的听性脑干刺激电极及其制作方法
CN112441580B (zh) * 2019-08-28 2023-07-04 东丽先端材料研究开发(中国)有限公司 石墨的氧化物粉末、其制备方法及其应用
CN112441580A (zh) * 2019-08-28 2021-03-05 东丽先端材料研究开发(中国)有限公司 石墨的氧化物粉末、其制备方法及其应用
CN112162021A (zh) * 2020-08-26 2021-01-01 中芯维康医疗科技(重庆)有限责任公司 一种修饰电极材料及制备方法、修饰电极和应用
CN112250063A (zh) * 2020-10-14 2021-01-22 西安工程大学 一种低温促进木质生物碳石墨化的方法
CN112844344A (zh) * 2020-12-28 2021-05-28 陕西合元沐梵环保科技有限公司 一种甲醛吸收材料的制备方法
CN113692211A (zh) * 2021-08-09 2021-11-23 中国人民解放军陆军工程大学 一种基于MXene-rGO的复合薄膜电磁防护材料的制备方法
CN113692211B (zh) * 2021-08-09 2024-02-20 中国人民解放军陆军工程大学 一种基于MXene-rGO的复合薄膜电磁防护材料的制备方法
CN114805925A (zh) * 2022-04-25 2022-07-29 西安理工大学 h-BN/HQ/GO导热复合材料的制备方法
CN115010123A (zh) * 2022-06-14 2022-09-06 中北大学 一种磺化还原氧化石墨烯及其激光制备方法
CN115465860B (zh) * 2022-07-06 2023-06-16 山东海科创新研究院有限公司 一种低氧、高剥离氧化石墨烯的制备方法及所得产品的应用
CN115465860A (zh) * 2022-07-06 2022-12-13 山东海科创新研究院有限公司 一种低氧、高剥离氧化石墨烯的制备方法及所得产品的应用
CN117383549A (zh) * 2023-02-19 2024-01-12 烯源科技无锡有限公司 一种物理方法制备的低缺陷纳米级石墨烯方法
CN117383549B (zh) * 2023-02-19 2024-04-26 烯源科技无锡有限公司 一种物理方法制备的低缺陷纳米级石墨烯方法
CN117457260A (zh) * 2023-12-26 2024-01-26 深圳市绚图新材科技有限公司 一种新型导电炭黑-改性石墨烯复合浆料及其制备方法
CN117457260B (zh) * 2023-12-26 2024-04-12 深圳市绚图新材科技有限公司 一种新型导电炭黑-改性石墨烯复合浆料及其制备方法

Also Published As

Publication number Publication date
CN103803537A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2015109916A1 (zh) 一种制备石墨烯的方法
CN102275908B (zh) 一种石墨烯材料的制备方法
US10472243B2 (en) Industrial method for preparing large-sized graphene
CN106882796B (zh) 一种三维石墨烯结构体/高质量石墨烯的制备方法
CN104386677B (zh) 一种微氧化石墨烯及其制备方法
CN103539108A (zh) 一种制备氧化石墨烯的方法
CN104961131A (zh) 一种磺化二维碳化钛纳米片的制备方法
CN101786620B (zh) 一种化学合成石墨烯的方法
CN104386679A (zh) 氧化石墨烯及石墨烯的制备方法
CN104445167A (zh) 一种水溶性石墨烯的制备方法
CN101941694A (zh) 一种高分散性石墨烯的制备方法
CN103253659A (zh) 一种超声波剥离石墨制备石墨烯的方法
CN105347331B (zh) 一种规模化制备石墨烯的方法
CN105129764B (zh) 通过醛类化合物快速、高产制备碳量子点的方法
CN103058176A (zh) 一种高效制备石墨烯的方法
CN103332684B (zh) 一种石墨烯的制备方法
CN102992309A (zh) 一种快速大规模制备高质量氧化石墨烯固体的方法
CN103991868A (zh) 一种石墨烯的制备方法
CN103253661A (zh) 一种大规模制备石墨烯粉体的方法
CN104071777A (zh) 一种石墨烯的制备方法
CN105314623A (zh) 一种石墨烯的合成方法
Fathy et al. Synthesis of transparent amorphous carbon thin films from cellulose powder in rice straw
CN103130214A (zh) 一种通过化学还原法制备石墨烯的方法
CN106751263A (zh) 氧化石墨烯纳米片层增强聚乙烯醇复合材料的制备方法
CN114455577B (zh) 一种高效环保羧基功能化石墨烯量子点及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.01.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14879967

Country of ref document: EP

Kind code of ref document: A1