WO2015105167A1 - リチウムイオン二次電池用負極活物質 - Google Patents

リチウムイオン二次電池用負極活物質 Download PDF

Info

Publication number
WO2015105167A1
WO2015105167A1 PCT/JP2015/050444 JP2015050444W WO2015105167A1 WO 2015105167 A1 WO2015105167 A1 WO 2015105167A1 JP 2015050444 W JP2015050444 W JP 2015050444W WO 2015105167 A1 WO2015105167 A1 WO 2015105167A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
containing particles
carbon
mass
negative electrode
Prior art date
Application number
PCT/JP2015/050444
Other languages
English (en)
French (fr)
Inventor
宮本 大輔
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201580004059.0A priority Critical patent/CN105900269B/zh
Priority to KR1020167014755A priority patent/KR101835445B1/ko
Priority to EP15735193.3A priority patent/EP3093910B1/en
Priority to JP2015556841A priority patent/JP6442419B2/ja
Priority to PL15735193T priority patent/PL3093910T3/pl
Publication of WO2015105167A1 publication Critical patent/WO2015105167A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery. More specifically, the present invention relates to a negative electrode active material capable of obtaining a lithium ion secondary battery having a high initial capacity and a high capacity retention rate.
  • Lithium ion secondary batteries are used as power sources for electronic devices.
  • Graphite is generally used as a negative electrode material for lithium ion secondary batteries.
  • the theoretical capacity of graphite is 372 mAh / g. Since the theoretical capacity of Si and Sn is higher than that of graphite, a high capacity lithium ion secondary battery can be provided if Si or Sn can be used as the negative electrode material.
  • particles containing Si and Sn are inherently low in conductivity, and the volume change accompanying the insertion and desorption of lithium ions is large, so that the particles are crushed and the conduction path is interrupted to increase the internal resistance. cause.
  • Patent Document 1 discloses a composite material in which a metallic material, a graphite material, and amorphous carbon are combined.
  • Patent Document 2 discloses a composite material in which a composite made of a material containing an Si element and a conductive material is coated with carbon and has voids inside.
  • Patent Document 3 discloses a coated composite material in which a fibrous graphite carbon material is entangled with Si particles to sandwich Si particles, and the outer surface of the composite material having a structure in which voids exist is coated with the carbonaceous carbon material. Disclosure.
  • the composite materials disclosed in Patent Documents 1 to 3 lower the electrical resistance of the electrode of the lithium ion secondary battery than when the Si particles are used as they are as the negative electrode material, but the initial capacity and the capacity retention rate are still low. Low.
  • the composite material disclosed in Patent Document 2 or 3 has a low electrode density due to voids.
  • the objective of this invention is providing the negative electrode active material which can obtain a lithium ion secondary battery with a high initial capacity and a high capacity
  • the peak area (I D ) in the range of 1300 to 1400 cm ⁇ 1 and the peak area in the range of 1580 to 1620 cm ⁇ 1 in the Raman spectroscopic spectrum observed when the particle end face is measured with a micro Raman spectrophotometer ( I G ) ratio I G / I D (G value) is 5.2 or more and 100 or less, Optically measured by a polarizing microscope in a rectangular field of 480 ⁇ m ⁇ 540 ⁇ m of the cross section of the molded body made of the graphitic carbon material (A) having an average interplanar spacing (d 002 ) of (002) plane of 0.337 nm or less by X-ray diffraction method The structure is observed, and the area S
  • Graphite carbon material (A) is 20 to 96% by mass and carbon nanotube (b1) is 1 to 20 with respect to the total mass of components (A), (b1), (b2) and (C)
  • the manufacturing method of the negative electrode active material for lithium ion secondary batteries as described in [1] or [2] which has.
  • the negative electrode active material for a lithium ion secondary battery of the present invention can provide a lithium ion secondary battery in which the electrical resistance of the electrode is greatly reduced and the initial capacity and capacity retention rate are greatly improved.
  • the carbonaceous carbon material (C) coated on the surface of the silicon-containing particles (b2) and the carbonaceous carbon material (C) by the composite Presumed to be because the conductive network formed by the carbon nanotubes (b1) in contact alleviates the volume change accompanying the insertion and desorption of lithium ions in the silicon-containing particles (b2) and suppresses the collapse of the conductive path To do.
  • FIG. 3 is a diagram showing a scanning electron micrograph of the negative electrode active material produced in Example 1.
  • the negative electrode active material for a lithium ion secondary battery is composed of a graphitic carbon material (A), a composite material (B), and a carbonaceous carbon material (C).
  • the graphitic carbon material (A) used in one embodiment of the present invention is a carbon material in which crystals formed by carbon atoms are greatly developed.
  • Graphite carbon materials are usually slippery, soft and have low scratch strength compared to carbonaceous carbon materials.
  • the graphite carbon material (A) moves flexibly with the pressing during electrode production, and thus contributes to an improvement in electrode density.
  • Examples of the graphitic carbon material include artificial graphite and natural graphite.
  • the graphitic carbon material (A) is preferably composed of scaly particles.
  • the graphitic carbon material (A) has a 50% diameter (D 50 ) in a volume-based cumulative particle size distribution of preferably 1 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 35 ⁇ m, and even more preferably 10 ⁇ m to 25 ⁇ m.
  • the 50% diameter is 1 ⁇ m or more, side reactions are unlikely to occur during charge and discharge, and when the 50% diameter is 50 ⁇ m or less, diffusion of lithium ions in the negative electrode material is accelerated, and the charge / discharge rate tends to be improved. is there.
  • the 50% diameter is preferably 25 ⁇ m or less.
  • the 50% diameter (D 50 ) is measured using a laser diffraction particle size distribution analyzer, for example, Mastersizer (registered trademark) manufactured by Malvern.
  • the graphitic carbon material (A) used in one embodiment of the present invention has a G value of 5.2 to 100, preferably 7.0 to 80, more preferably 10 to 60.
  • the G value is in the range of the peak area (I D ) in the range of 1300 to 1400 cm ⁇ 1 and the range of 1580 to 1620 cm ⁇ 1 in the Raman spectroscopic spectrum observed when the particle end face is measured with a microscopic Raman spectrometer. It is the ratio I G / ID with respect to the peak area (I G ).
  • the G value is in the above numerical range, self-discharge and deterioration of the battery are suppressed.
  • G value is too small, there exists a tendency for a side reaction to arise at the time of charging / discharging by presence of many defects.
  • the Raman spectrum of the particle end surface is not a smooth portion (Baisal surface) but an end surface using, for example, a laser Raman spectrophotometer (NRS-5100, manufactured by JASCO Corporation) and an attached microscope. It is possible to measure by selectively observing the part.
  • a peak in the range of 1300 to 1400 cm ⁇ 1 is a peak derived from sp3 bonds
  • a peak in the range of 1580 to 1620 cm ⁇ 1 is a peak derived from sp2 bonds. This suggests that the larger the G value, the greater the proportion of sp2 bonds.
  • the graphitic carbon material (A) used in an embodiment of the present invention has an average interplanar spacing (d 002 ) of the (002) plane of 0.337 nm or less as determined by X-ray diffraction. As d 002 is smaller, the amount of insertion and desorption per mass of lithium ions increases, which contributes to an improvement in weight energy density. If d 002 is 0.337 nm or less, most of the optical structure observed with a polarizing microscope is an optically anisotropic structure.
  • the graphitic carbon material (A) used in the present invention preferably has a thickness (Lc) in the crystal C-axis direction by an X-ray diffraction method of 50 nm or more and 1000 nm or less from the viewpoint of weight energy density and crushability. is there.
  • D 002 and Lc can be measured using a powder X-ray diffraction (XRD) method (Noda Inayoshi, Inagaki Michio, Japan Society for the Promotion of Science, 117th Committee Sample, 117-71-A-1 ( 1963), Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee Sample, 117-121-C-5 (1972), Michio Inagaki, “Carbon”, 1963, No. 36, pages 25-34).
  • XRD powder X-ray diffraction
  • the aspect ratio A OP of the optical texture is 1.5 or more and 6 or less, preferably 2.0 or more and 4.0 or less.
  • the aspect ratio A OP is equal to or higher than the lower limit value, it is easy to slip between the optical structures, and the electrode density is easily increased.
  • the aspect ratio A OP is less than or equal to the upper limit value, the energy required for synthesizing the raw materials can be reduced.
  • the ratio of the equivalent major axis D L [ ⁇ m] of the optical structure to the 50% diameter D 50 [ ⁇ m] is 0.2 or more, preferably 0.8. 25 or more, more preferably 0.28 or more, and still more preferably 0.35 or more. Further, the ratio of the equivalent major axis D L to the 50% diameter D 50 is less than 2, preferably 1 or less. Tends to amount of lithium ions which can hold about equivalent diameter D L of the optical tissues is greater increases.
  • the equivalent major axis D L of the optical structure is a value defined by (S OP ⁇ A OP ) 1/2 .
  • D L / D 50 is small, it indicates that many optical structures are present in the graphitic carbon material.
  • the equivalent minor axis D S of the optical structure can be represented by D L / A OP .
  • a OP is the aspect ratio of the optical structure when the frequency is accumulated from the small aspect ratio side in the frequency distribution of the aspect ratio of the optical structure to 60% of the total.
  • S OP is the area [ ⁇ m 2 ] of the optical structure when the area is accumulated from the smaller area side in the frequency distribution of the area of the optical structure to be 60% of the entire area.
  • D 50 is a 50% diameter [ ⁇ m] in the volume-based cumulative particle size distribution of the graphitic carbon material (A) measured by a laser diffraction method. The optical structure is observed by a polarizing microscope in a rectangular field of view of 480 ⁇ m ⁇ 540 ⁇ m in the cross section of the molded body made of the graphitic carbon material (A).
  • the optical structure in the carbon material is often strip-shaped. A substantially rectangular optical structure is observed in the cross section of the molded body made of the carbon material.
  • polarizing microscope observation method for example, “Latest carbon material experimental technique (analysis / analysis bias)”, Carbon Materials Society of Japan (2001), published by: Sipec Corporation, pages 1 to 8 can be referred to.
  • preparation of a cross section of a molded body made of a graphitic carbon material and observation of an optical structure are performed as follows.
  • a double-sided adhesive tape is affixed to the bottom of a plastic container having an internal volume of 30 cm 3 , and two spatula cups (about 2 g) of the observation sample are placed thereon.
  • Cold embedding resin (trade name: cold embedding resin # 105, manufacturing company: Japan Composite Co., Ltd., sales company: Marumoto Struers Co., Ltd.)
  • curing agent trade name: curing agent (M agent), Manufacturing company: Nippon Oil & Fat Co., Ltd., sales company: Marumoto Struers Co., Ltd.) is added and kneaded for 30 seconds.
  • the obtained kneaded material (about 5 ml) is slowly poured into the container until the height is about 1 cm. Allow to stand for 1 day to solidify the kneaded product. Remove the solidified product from the container. Remove the double-sided tape attached to the bottom of the solidified material. The bottom surface of the solidified product is polished at a polishing plate rotation speed of 1000 rpm using a polishing plate rotating type polishing machine. The polishing plates are replaced in the order of # 500, # 1000, and # 2000 depending on the degree of polishing. Finally, mirror polishing is performed using alumina (trade name: Baikalox (registered trademark) type 0.3CR, particle size 0.3 ⁇ m, manufacturer: Baikowski, sales company: Baikowski Japan).
  • alumina trade name: Baikalox (registered trademark) type 0.3CR, particle size 0.3 ⁇ m, manufacturer: Baikowski, sales company: Baikowski Japan).
  • the polished solidified product is fixed with clay on a preparation, and the polished surface is observed at 200 times using a polarizing microscope (OLYMPAS, BX51). Connect an OLYMPUS CAMEDIA C-5050 ZOOM digital camera to the polarizing microscope with an attachment and take a polarizing microscope image at a shutter time of 1.6 seconds.
  • An image of 1200 pixels ⁇ 1600 pixels is an analysis target. This corresponds to a field of view of 480 ⁇ m ⁇ 540 ⁇ m.
  • the image analysis uses ImageJ (manufactured by the National Institutes of Health) to determine the blue portion, yellow portion, red portion, and black portion. The parameters of the blue part, yellow part, red part, and black part in ImageJ are as shown in Table 1.
  • Statistic processing for the detected organization is performed using an external macro. Since the black portion is a portion corresponding to the resin portion, it is excluded from the object of statistical processing.
  • the blue part, the yellow part and the red part are parts corresponding to the optical texture. The area and aspect ratio of the blue part, yellow part and red part are measured.
  • the intensity ratio of the peak derived from the rhombohedral is preferably 5% or less, more preferably 1% or less.
  • the graphitic carbon material (A) used in an embodiment of the present invention preferably has a BET specific surface area of 0.4 m 2 / g or more and 5 m 2 / g or less, more preferably 0.5 m 2 / g or more and 3. 5 m 2 / g or less, more preferably 0.5 m 2 / g or more and 3.0 m 2 / g or less.
  • the BET specific surface area is calculated from the nitrogen gas adsorption amount. Examples of the measuring device include NOVA-1200 manufactured by Yuasa Ionics.
  • the graphitic carbon material (A) used in one embodiment of the present invention has a loose bulk density (0 times tapping) of preferably 0.7 g / cm 3 or more, and a powder when tapped 400 times.
  • the density (tap density) is preferably 0.8 g / cm 3 or more and 1.6 g / cm 3 or less, more preferably 0.9 g / cm 3 or more and 1.6 g / cm 3 or less, and even more preferably 1.1 g / cm. It is 3 or more and 1.6 g / cm 3 or less.
  • the loose bulk density is a density obtained by dropping 100 g of a sample from a height of 20 cm onto a measuring cylinder and measuring the volume and mass without applying vibration.
  • the tap density is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a cantachrome auto tap. These are measurement methods based on ASTM B527 and JIS K5101-12-2. The drop height of the auto tap in the tap density measurement was 5 mm.
  • the electrode density before pressing tends to be increased when applied to the electrode. From this value, it can be predicted whether or not a sufficient electrode density can be obtained with a single roll press.
  • the electrode density reached during pressing can be easily set to a desired height.
  • the graphitic carbon material (A) used in the present invention is not particularly limited by the production method. For example, it can be produced with reference to the method disclosed in WO2014 / 003135A.
  • the amount of the graphitic carbon material (A) is preferably 20 to 96% by mass with respect to the total mass of the constituent components (A), (b1), (b2) and (C) of the negative electrode active material of the present invention, More preferably, it is 40 to 92% by mass.
  • Composite material (B) The composite material (B) used in the present invention contains carbon nanotubes (b1) and silicon-containing particles (b2).
  • the carbon nanotube (b1) used in the present invention preferably has a graphene surface extending substantially parallel to the fiber long axis and having a cavity at the center of the fiber.
  • substantially parallel means that the inclination of the graphene layer with respect to the fiber long axis is within about ⁇ 15 degrees.
  • the hollow portion may be continuous in the fiber longitudinal direction or may be discontinuous.
  • the number of graphene layers may be one or two or more, but is preferably two or more, more preferably three or more, from the viewpoint of dispersibility and conductivity imparting effect.
  • the average fiber diameter of the carbon nanotubes (b1) is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 20 nm or less.
  • thicker carbon nanotubes have higher dispersibility.
  • the average fiber diameter of the carbon nanotube (b1) is preferably 2 nm or more, and more preferably 4 nm or more. In consideration of dispersibility and conductivity imparting effect, the average fiber diameter is preferably 2 to 20 nm, and most preferably 4 to 20 nm.
  • the carbon nanotube (b1) is not particularly limited in the ratio (d 0 / d) between the fiber diameter d and the cavity inner diameter d 0 , but is preferably 0.1 to 0.9, more preferably 0.3 to 0.9. preferable.
  • the fiber length of the carbon nanotube (b1) is not particularly limited, but if the fiber length is too short, the conductivity imparting effect tends to be small, and if the fiber length is too long, the dispersibility tends to be low. Accordingly, the preferred fiber length is usually 0.5 ⁇ m to 100 ⁇ m, preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m, although it depends on the thickness of the fiber. Further, when the aspect ratio (ratio of fiber length to fiber diameter) is 100 to 1000, the silicon-containing particles are easily arranged inside the aggregate of carbon nanotubes.
  • the carbon nanotube itself may be linear or may be curved and twisted.
  • the twisted and curved carbon nanotubes have better contact efficiency with the silicon-containing particles (b2) and the aggregates in the composite material, they are easily compounded uniformly with the silicon-containing particles (b2) even in a small amount.
  • twisted and curved carbon nanotubes are more able to follow the volume change of silicon-containing particles (b2), so even when lithium ions are inserted and desorbed, they are in contact with the silicon-containing particles (b2) and between fibers. The network between them is thought to be maintained.
  • the lower limit of the BET specific surface area of the carbon nanotube (b1) is preferably 20 m 2 / g, more preferably 30 m 2 / g, still more preferably 40 m 2 / g, and particularly preferably 50 m 2 / g.
  • the upper limit of the BET specific surface area is not particularly limited, but is preferably 400 m 2 / g, more preferably 350 m 2 / g, and further preferably 300 m 2 / g.
  • the carbon nanotube (b1) has an R value of preferably 0.1 or more, more preferably 0.2 to 2.0, and still more preferably 0.5 to 1.5.
  • the R value is an intensity ratio I between the peak intensity (I D ) in the range of 1300 to 1400 cm ⁇ 1 and the peak intensity (I G ) in the range of 1580 to 1620 cm ⁇ 1 as measured by Raman spectroscopy. a D / I G. A larger R value indicates lower crystallinity.
  • the consolidation specific resistance value of the carbon nanotube (b1) is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, and 1.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm to 9.9 ⁇ at a density of 1.0 g / cm 3 . 10 ⁇ 3 ⁇ ⁇ cm is more preferable.
  • the carbon nanotube (b1) used in the present invention is not particularly limited by the production method.
  • it can be produced by a method disclosed in Japanese Patent Application Laid-Open No. 2008-174442.
  • the amount of the carbon nanotube (b1) is preferably 1 to 20% by mass, more preferably based on the total mass of the constituent components (A), (b1), (b2) and (C) of the negative electrode active material of the present invention. Is 2 to 15% by mass.
  • the silicon-containing particles (b2) used in one embodiment of the present invention have a surface layer made of SiO x (0 ⁇ x ⁇ 2).
  • the portion (core) other than the surface layer may be made of elemental silicon or SiO x (0 ⁇ x ⁇ 2).
  • the average thickness of the surface layer is preferably 0.5 nm or more and 10 nm or less. When the average thickness of the surface layer is 0.5 nm or more, oxidation by air or an oxidizing gas can be suppressed. Moreover, the increase in the irreversible capacity
  • the silicon-containing particles (b2) used in the present invention preferably have an oxygen element content of 1 to 18% by mass, more preferably 2 to 10% by mass, based on the mass of the particles (b2). It is as follows.
  • the oxygen content can be quantified by, for example, ICP (inductively coupled plasma).
  • the silicon-containing particles (b2) 90% or more (number basis) of the silicon-containing particles (b2) has a primary particle diameter of 200 nm or less.
  • the primary particle diameter can be measured by observation with a microscope such as SEM or TEM.
  • the silicon-containing particles (b2) have a diameter D av defined by the following formula, preferably 30 nm or more and 150 nm or less, more preferably 30 nm or more and 120 nm or less.
  • D av 6 / ( ⁇ ⁇ S sa )
  • D av Diameter when the particle is assumed to be a dense sphere
  • S sa BET specific surface area (m 2 / g)
  • True density of silicon (theoretical value 2.33 g / cm 3 )
  • the primary particle size of the silicon-containing particles (b2) in the composite material (B) is to analyze the image of spherical particles observed with a transmission electron microscope at a magnification of 100,000 times in the surface coat layer of the composite material. Can be calculated.
  • the silicon-containing particles (b2) can contain, in addition to silicon, an element M selected from other metal elements and metalloid elements (such as carbon elements).
  • M include nickel, copper, iron, tin, aluminum, and cobalt.
  • the content of the element M is not particularly limited as long as it does not significantly inhibit the action of silicon.
  • the silicon-containing particles (b2) used in the present invention are not particularly limited by the production method. For example, it can be produced with reference to the method disclosed in WO2012 / 000858A.
  • the amount of the silicon-containing particles (b2) is preferably 1 to 20% by mass based on the total mass of the constituent components (A), (b1), (b2) and (C) of the negative electrode active material of the present invention. Preferably, the content is 2 to 15% by mass.
  • the amount of the silicon-containing particles (b2) is small, the effect of improving the battery capacity by adding the particles is poor.
  • the amount of the silicon-containing particles (b2) is large, the volume change accompanying the insertion and desorption of lithium ions becomes large, so that it is necessary to increase the amount of the carbon nanotubes (b1) for buffering it. If it becomes so, a negative electrode active material will become bulky and the density of a negative electrode will fall.
  • the silicon-containing particles (b2) are in contact with the surface of the carbon nanotubes (b1), and the carbon nanotubes (b1) are entangled with each other to contact each other. Is made.
  • silicon-containing particles (b2) are dispersed and arranged in an aggregate of carbon nanotubes (b1). A part of the surface of the silicon-containing particles (b2) is coated with a carbonaceous carbon material (C) described later. Therefore, the silicon-containing particles (b2) may come into contact with the surface of the carbon nanotubes (b1) through the carbonaceous carbon material (C).
  • the carbonaceous carbon material (C) used in the present invention is a carbon material with low growth of crystals formed by carbon atoms.
  • the carbonaceous carbon material (C) can be produced, for example, by carbonizing the carbon precursor (c).
  • the carbon precursor (c) is not particularly limited, it is generated during hot-oil heavy oil, pyrolysis oil, straight asphalt, blown asphalt, petroleum-derived substances such as tar or petroleum pitch produced during ethylene production, and coal dry distillation.
  • Coal tar, heavy components obtained by distilling off low-boiling components of coal tar, and coal-derived substances such as coal tar pitch (coal pitch) are preferable, and petroleum-based pitch or coal-based pitch is particularly preferable.
  • the pitch is a mixture of a plurality of polycyclic aromatic compounds. When pitch is used, it is possible to produce a carbonaceous carbon material with a high carbonization rate and few impurities. Since pitch has a low oxygen content, silicon-containing particles are not easily oxidized when silicon-containing particles are coated with a carbonaceous carbon material.
  • the pitch softening point is preferably 80 ° C or higher and 300 ° C or lower.
  • a pitch having a softening point that is too low has a low average molecular weight and a high volatile content of the polycyclic aromatic compound constituting the pitch, resulting in a low carbonization rate, an increased production cost, and a large number of pores. It is easy to obtain a carbonaceous carbon material having a large specific surface area. Pitches having a softening point that is too high tend to be difficult to mix uniformly with silicon-containing particles because of their high viscosity.
  • the pitch softening point can be measured by the Mettler method described in ASTM-D3104-77.
  • the remaining carbon ratio of the pitch is preferably 20% by mass or more and 70% by mass or less, and more preferably 30% by mass or more and 60% by mass or less.
  • a pitch with a low residual carbon ratio When a pitch with a low residual carbon ratio is used, the manufacturing cost increases and a carbonaceous carbon material having a large specific surface area is easily obtained.
  • a pitch having a high residual carbon ratio generally has a high viscosity, and therefore, it tends to be difficult to uniformly mix the silicon-containing particles.
  • the remaining coal rate is determined by the following method.
  • the solid pitch is pulverized with a mortar or the like, and the pulverized product is subjected to mass thermal analysis under a nitrogen gas flow.
  • the ratio of the mass at 1100 ° C. to the charged mass is defined as the residual carbon ratio.
  • the residual carbon ratio corresponds to the amount of fixed carbon measured at a carbonization temperature of 1100 ° C. in JIS K2425.
  • the pitch used in the present invention has a QI (quinoline insoluble content) content of preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 2% by mass or less.
  • the QI content of the pitch is a value proportional to the amount of free carbon.
  • the pitch used in the present invention has a TI (toluene insoluble content) content of preferably 10% by mass or more and 70% by mass or less.
  • a pitch with a low TI content has a low average molecular weight of the polycyclic aromatic compound constituting it and a large amount of volatile matter, resulting in a low carbonization rate, an increase in production cost, and a large specific surface area containing many pores. It is easy to obtain a carbonaceous carbon material.
  • a pitch with a high TI content has a high carbonization rate because the average molecular weight of the polycyclic aromatic compound constituting it is high, but a pitch with a high TI content has a high viscosity and is difficult to mix uniformly with silicon-containing particles. Tend. When the TI content is in the above range, a pitch and other components can be mixed uniformly, and a composite material exhibiting characteristics suitable as a battery active material can be obtained.
  • the QI content and TI content of the pitch can be measured by the method described in JIS K2425 or a method according thereto.
  • the amount of the carbonaceous carbon material (C) is preferably 2 to 40% by mass with respect to the total mass of the constituent components (A), (b1), (b2) and (C) of the negative electrode active material of the present invention, More preferably, it is 4 to 30% by mass.
  • an agglomerate is formed by a large amount of fibrous carbon fibers with the intention of providing a large volume of voids inside the composite.
  • the fibrous carbon fiber used for the negative electrode generally has a high specific surface area. Even if an aggregate composed of fibrous carbon fibers is to be coated with the carbonaceous carbon material, only the surface of the aggregate is coated with the carbonaceous carbon material, and the carbonaceous carbon material does not reach the internal voids sufficiently.
  • the surface of the silicon-containing particles (b2) is coated with the carbonaceous carbon material (C) before being dispersed inside the aggregate of carbon nanotubes, and a large volume of voids is formed inside the aggregate of carbon nanotubes. It is not intended to be provided.
  • the carbonaceous carbon material (C) coated on the surface of the silicon-containing particles (b2) mainly contributes to imparting conductivity.
  • the carbon nanotube (b1) in the composite material contributes somewhat to imparting electrical conductivity, but rather the buffer for expansion and contraction of the silicon-containing particles (b2) during lithium ion storage / release, that is, composite
  • the role of maintaining the form of material (B) is large.
  • the added amount of the carbon nanotubes (b1) can play a role in a small amount.
  • the carbon nanotube material (C) has been coated on the surface of carbon nanotubes (b1) with a high specific surface area, the amount of carbonaceous carbon material (C) required for coating increases and becomes irreversible.
  • the carbonaceous carbon material (C) also contributes to the improvement of the capacity maintenance ratio in that it can be suppressed to a small amount.
  • the method for producing a negative electrode active material includes a step of obtaining precursor-coated silicon-containing particles by mixing silicon-containing particles (b2) and a carbon precursor (c), precursor-coated silicon-containing particles Heat treating at a temperature equal to or higher than the softening point of the carbon precursor (c), crushing the heat-treated precursor-coated silicon-containing particles, crushed precursor-coated silicon-containing particles, and carbon nanotubes (b1 ) To obtain a composite material (B), a step of pulverizing the composite material (B), a step of mixing the pulverized composite material (B) and the graphitic carbon material (A) to obtain a mixture And heat-treating the mixture at a temperature equal to or higher than the carbonization temperature of the carbon precursor (c).
  • the mixing of the silicon-containing particles (b2) and the carbon precursor (c) is not particularly limited in the method.
  • it can be mixed with a blender, a kneader, an extruder or the like.
  • a solvent When a solvent is used, pores are easily formed in the carbonaceous carbon material.
  • the heat treatment of the precursor-coated silicon-containing particles is performed at a temperature equal to or higher than the softening point of the carbon precursor (c). The upper limit of the temperature in the heat treatment is not particularly limited.
  • the heat treatment should be kept in a state where the carbon precursor (c) can be remelted.
  • the upper limit of the temperature in the heat treatment is preferably the softening point + 100 ° C, more preferably the softening point + 50 ° C.
  • the heat treatment may be performed by leaving or flowing the precursor-coated silicon-containing particles in a heating furnace or the like, while mixing the silicon-containing particles (b2) and the carbon precursor (c) with a kneader or an extruder. You may go.
  • mixing and heat treatment are performed simultaneously, it is preferable to pre-mix before adding to the heating and mixing apparatus in order to improve the uniformity of the material.
  • the precursor-coated silicon-containing particles may agglomerate due to the heat treatment. Therefore, it is preferable to disintegrate the heat-treated precursor-coated silicon-containing particles as necessary.
  • the 50% diameter (D 50 ) of the precursor-coated silicon-containing particles is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and more preferably 10 ⁇ m. The following are most preferred.
  • a pulverizer using an impact force such as a hammer, a jet mill using collision between objects to be crushed, and the like are preferable.
  • treatment in an inert gas atmosphere is preferable so that the composition of the material does not change.
  • the composite method is not particularly limited as long as the precursor-coated silicon-containing particles can be dispersed and arranged in the aggregate of carbon nanotubes (b1).
  • dry mixing or wet mixing is employed.
  • the In dry mixing for example, a pulverizer using an impact force such as a hammer, a jet mill using collision between objects to be crushed, or the like can be used.
  • wet mixing for example, ultrasonic dispersion treatment or jet mill treatment can be used.
  • drying is performed thereafter. Drying is not particularly limited as long as the used liquid medium is sufficiently removed.
  • vacuum drying or the like can be performed as necessary.
  • the granulation treatment include dry granulation such as rolling granulation and wet granulation such as spray granulation.
  • an agglomerated composite material (b) may be obtained in the composite treatment. Therefore, it is preferable to pulverize the composite material (B) obtained by the composite treatment as necessary. Considering the uniformity during mixing with the graphitic carbon material (A) and lithium diffusibility, the 50% diameter (D 50 ) of the composite material (B) is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and more preferably 10 ⁇ m. The following are most preferred.
  • a pulverizer using an impact force such as a hammer or a jet mill using collision between objects to be crushed is preferable.
  • treatment in an inert gas atmosphere is preferable so that the composition of the material does not change.
  • treatment in a non-aqueous solvent such as alcohols is preferable.
  • the graphitic carbon material (A) is mixed with the composite material (B) obtained as described above and heat-treated.
  • the mixing method and the heat treatment method are not particularly limited.
  • the composite material (B) and the graphitic carbon material (A) can be mixed with a blender or the like, and then heat-treated by being left standing or flowing in a heating furnace or the like.
  • the heat treatment is performed at a temperature equal to or higher than the temperature at which the carbon precursor (c) is carbonized.
  • a carbonaceous carbon material (C) is formed by carbonization of the carbon precursor (c).
  • the heat treatment temperature varies depending on the type of carbon precursor, it is preferably 500 ° C.
  • the heat treatment temperature is too low, carbonization is not sufficiently completed, and hydrogen and oxygen remain in the carbon material layer covering the surface of the silicon-containing particles, which may affect battery characteristics.
  • the heat treatment temperature is too high, crystallization of the carbon material layer covering the surface of the silicon-containing particles proceeds too much, and the metal fine particles are combined with carbon and become inactive to Li, resulting in deterioration of charge / discharge characteristics. is there. After heat treatment, it is preferable to crush as necessary.
  • the crushing method a pulverizer using an impact force such as a hammer, a jet mill using collision between objects to be crushed, and the like are preferable.
  • the 50% diameter (D 50 ) of the negative electrode active material is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • treatment in an inert gas atmosphere is preferable so that the composition of the material does not change.
  • the negative electrode paste according to an embodiment of the present invention includes the negative electrode active material, a binder, a solvent, and a conductive aid as necessary.
  • This negative electrode paste can be obtained, for example, by kneading the negative electrode active material, a binder, a solvent, and a conductive aid as required.
  • the negative electrode paste can be formed into a sheet shape or a pellet shape.
  • binder examples include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, acrylic rubber, and a polymer compound having high ionic conductivity.
  • the polymer compound having a high ionic conductivity examples include polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like.
  • the amount of the binder is preferably 0.5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the negative electrode active material.
  • the conductive auxiliary agent is not particularly limited as long as it has a function of imparting conductivity and electrode stability to the electrode (buffering action against volume change in insertion / extraction of lithium ions).
  • vapor grown carbon fiber for example, “VGCF (registered trademark)” manufactured by Showa Denko KK
  • conductive carbon for example, “Denka Black (registered trademark)” manufactured by Denki Kagaku Kogyo Co., Ltd., “Super C65” manufactured by TIMCAL , “Super C45” manufactured by TIMCAL, “KS6L” manufactured by TIMCAL, and the like.
  • the amount of the conductive auxiliary is preferably 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the negative electrode active material.
  • the solvent is not particularly limited and includes N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, water and the like.
  • a thickener it is preferable to use a thickener together. The amount of the solvent is adjusted so that the viscosity of the paste can be easily applied to the current collector.
  • a negative electrode sheet according to an embodiment of the present invention includes a current collector and an electrode layer that covers the current collector.
  • the current collector include nickel foil, copper foil, nickel mesh, or copper mesh.
  • the electrode layer contains a binder and the negative electrode active material.
  • the electrode layer can be obtained, for example, by applying the paste and drying it.
  • the method for applying the paste is not particularly limited.
  • the thickness of the electrode layer is usually 50 to 200 ⁇ m. If the thickness of the electrode layer becomes too large, the negative electrode sheet may not be accommodated in a standardized battery container.
  • the thickness of the electrode layer can be adjusted by the amount of paste applied. It can also be adjusted by drying the paste and then press molding. Examples of the pressure molding method include molding methods such as roll pressing and press pressing.
  • the pressure during press molding is preferably about 1 to 5 ton / cm 2 .
  • the electrode density of the negative electrode sheet can be calculated as follows. That is, the negative electrode sheet after pressing is punched into a circular shape having a diameter of 16 mm, and the weight thereof is measured. In addition, the thickness of the electrode is measured. The weight and thickness of the electrode layer can be determined by subtracting the weight and thickness of the current collector separately measured from there, and the electrode density is calculated based on the value.
  • the lithium ion battery which concerns on one Embodiment of this invention contains the negative electrode active material for lithium ion secondary batteries which concerns on one Embodiment of this invention.
  • the negative electrode active material for a lithium ion secondary battery is usually contained in a negative electrode sheet as described above.
  • the lithium ion battery usually further includes an electrolyte and a positive electrode sheet.
  • the positive electrode sheet used in the present invention those conventionally used for lithium ion batteries, specifically, a sheet containing a positive electrode active material can be used.
  • the positive electrode active material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , and LiFePO 4 .
  • the electrolyte is preferably at least one selected from the group consisting of a non-aqueous electrolyte solution and a non-aqueous polymer electrolyte.
  • the non-aqueous electrolyte and non-aqueous polymer electrolyte used for the lithium ion battery are not particularly limited.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, CF 3 SO 3 Li can be converted into ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene.
  • Organic electrolytes dissolved in non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, and ⁇ -butyrolactone; polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, etc.
  • non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, and ⁇ -butyrolactone
  • polyethylene oxide polyacrylonitrile
  • polyvinylidene fluoride polymethyl methacrylate
  • a small amount of a substance that causes a decomposition reaction when the lithium ion battery is initially charged may be added to the electrolytic solution.
  • the substance include vinylene carbonate (VC), biphenyl, propane sultone (PS), fluoroethylene carbonate (FEC), ethylene sultone (ES), and the like.
  • VC vinylene carbonate
  • PS propane sultone
  • FEC fluoroethylene carbonate
  • ES ethylene sultone
  • 0.01 mass% or more and 50 mass% or less are preferable.
  • a separator can be provided between the positive electrode sheet and the negative electrode sheet.
  • the separator include non-woven fabrics, cloths, microporous films, or a combination thereof, mainly composed of polyolefins such as polyethylene and polypropylene.
  • the ratio of the negative electrode sheet capacity (Q A ) to the positive electrode sheet capacity (Q C ) (positive / negative electrode capacity ratio) is preferably adjusted to 1.0 to 1.8. If the capacity of the negative electrode on the side receiving lithium ions is too small, excess Li is deposited on the negative electrode side, causing cycle deterioration. Conversely, if the capacity of the negative electrode is too large, charging / discharging is performed under a small load energy. Although the density is lowered, the cycle characteristics are improved.
  • Graphite carbon material (A) Petroleum coke was pulverized and heat-treated at 3000 ° C. in an Atchison furnace. The 10% particle size (D 10 ) was 7.8 ⁇ m, the BET specific surface area was 1.9 m 2 / g, and d 002 was 0. 3359 nm, Lc of 154 nm, 50% particle size (D 50 ) of 22.1 ⁇ m, 90% particle size (D 90 ) of 46.1 ⁇ m, and I G / I D (G value) of 16.3.
  • a scaly graphite carbon material (A) 7 was obtained.
  • the graphitic carbon material (A) had an S OP of 13.4 ⁇ m 2 and an A OP of 2.14.
  • D av 6 / ( ⁇ ⁇ S sa )
  • D av Diameter when the particle is assumed to be a dense sphere
  • S sa BET specific surface area (m 2 / g) ⁇ : True density of silicon (theoretical value 2.33 g / cm 3 )
  • Carbon precursor (c) A petroleum pitch having a residual carbon ratio of 52%, a QI content of 0.5% by mass, a TI content of 50% by mass, and a softening point of 220 ° C. as measured by thermal analysis under nitrogen gas flow.
  • BET specific surface area [S sa ] Measurement was performed by a BET multipoint method with a relative pressure of 0.1, 0.2, and 0.3 using a nitrogen gas as a probe by a Surface Area & Pore Size Analyzer / NOVA 4200e manufactured by Quantachrome.
  • the sheet was pressed with a uniaxial press at a pressure of 3 ton / cm 2 to obtain a negative electrode sheet.
  • the amount of discharge per active material weight was evaluated in a half-cell of the counter electrode Li, and the capacity of the negative electrode sheet was reduced so that the ratio of the capacity (Q A ) of the negative electrode sheet to the capacity (Q C ) of the positive electrode sheet was 1.2. It was adjusted.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • Example 1 The silicon-containing particles (b2) and the carbon precursor (c) are mixed with a fiber mixer (MX) in a nitrogen atmosphere so that the mass ratio of the carbonaceous carbon material (C) to the silicon-containing particles (b2) is 1/1. -X57) for 1 minute.
  • the mixture was placed on an alumina boat and heat-treated in a horizontal firing furnace by raising the temperature to 250 ° C. at a nitrogen flow rate of 300 ml / min and a heating rate of 10 ° C./min.
  • the heat-treated product was pulverized with a fiber mixer for 1 minute in a nitrogen atmosphere to obtain carbon precursor-coated silicon-containing particles.
  • the carbon precursor-coated silicon-containing particles and the carbon nanotubes (b1) are placed in ethanol so that the mass ratio of the silicon-containing particles (b2) to the carbon nanotubes (b1) is 1 / 0.3, and ultrasonic homogenization is performed.
  • Dispersion-combination treatment was performed with a generator (UH-50 manufactured by SMT) for 60 minutes.
  • the treated product was dried in a dryer at 80 ° C. for 12 hours.
  • the mixture was pulverized for 1 minute with a fiber mixer (MX-X57) under a nitrogen atmosphere to obtain a composite material (B).
  • the composite material (B) and the graphitic carbon material (A) were mixed with a fiber mixer for 1 minute in a nitrogen atmosphere.
  • the mixture was placed on an alumina boat and heat-treated in a horizontal firing furnace by raising the temperature to 1100 ° C. at a nitrogen flow rate of 300 ml / min and a heating rate of 10 ° C./min.
  • the carbon precursor (c) in the composite material (B) was converted to a carbonaceous carbon material (C).
  • the negative electrode active material (I) was obtained by pulverizing and sieving with a 45 ⁇ m sieve.
  • the negative electrode active material (I) is composed of 77% by mass of the graphitic carbon material (A) and carbon nanotubes (b1) with respect to the total mass of the components (A), (b1), (b2) and (C). 3% by mass, silicon-containing particles (b2) were 10% by mass, and carbonaceous carbon material (C) was 10% by mass.
  • An SEM image of the negative electrode active material (I) is shown in FIG.
  • the silicon-containing particles (b2) coated with the carbonaceous carbon material (C) are in contact with the surface of the carbon nanotubes (b1), and the carbon nanotubes (b1) are in contact with each other. It forms an aggregate.
  • silicon-containing particles (b2) coated with a carbonaceous carbon material (C) are dispersed and arranged in an aggregate of carbon nanotubes (b1).
  • Table 2 shows the results of the charge / discharge cycle test of the negative electrode active material (I).
  • Comparative Example 1 A negative electrode active material (II) was produced in the same manner as in Example 1 except that the carbon nanotube (b1) was not added.
  • the negative electrode active material (II) is 80% by mass of the graphitic carbon material (A) and 10% by mass of the silicon-containing particles (b2) with respect to the total mass of the constituent components (A), (b2) and (C).
  • the carbonaceous carbon material (C) is 10% by mass.
  • Table 2 shows the results of the charge / discharge cycle test of the negative electrode active material (II).
  • the negative electrode active was carried out in the same manner as in Example 1, except that the carbon nanotube (b1) was changed to vapor grown carbon fiber (b3) (“VGCF (registered trademark)” manufactured by Showa Denko KK: fiber diameter 150 nm, aspect ratio 40).
  • Material (III) was prepared.
  • the negative electrode active material (III) is composed of 77% by mass of the graphitic carbon material (A) with respect to the total mass of the components (A), (b2), (b3) and (C), 3% by mass of b3), 10% by mass of silicon-containing particles (b2), and 10% by mass of carbonaceous carbon material (C).
  • Table 2 shows the results of the charge / discharge cycle test of the negative electrode active material (III).
  • Comparative Example 3 The silicon-containing particles and the carbon nanotubes (b1) are placed in ethanol so that the mass ratio of the silicon-containing particles (b2) to the carbon nanotubes (b1) is 1 / 0.3, and an ultrasonic homogenizer (UH manufactured by SMT) is used. -50) for 60 minutes. The treated product was dried in a dryer at 80 ° C. for 12 hours. Next, the mixture was pulverized with a fiber mixer (MX-X57) for 1 minute under a nitrogen atmosphere to obtain a composite material (B ′). Next, the composite material (B ′) and the carbon precursor (c) are fibered in a nitrogen atmosphere so that the mass ratio of the carbonaceous carbon material (C) to the silicon-containing particles (b2) is 1/1.
  • UH manufactured by SMT ultrasonic homogenizer
  • the mixture was mixed with a mixer (MX-X57) for 1 minute.
  • the mixture was placed on an alumina boat and heat-treated in a horizontal firing furnace by raising the temperature to 250 ° C. at a nitrogen flow rate of 300 ml / min and a heating rate of 10 ° C./min.
  • the heat-treated product was pulverized with a fiber mixer for 1 minute under a nitrogen atmosphere to obtain a composite material (B ′′).
  • the composite material (B ′′) and the graphitic carbon material (A) were mixed with a fiber mixer for 1 minute in a nitrogen atmosphere.
  • the mixture was placed on an alumina boat and a nitrogen type flow rate of 300 ml / min in a horizontal firing furnace. Then, the temperature was raised to 1100 ° C. at a rate of temperature rise of 10 ° C./min, and heat treatment was performed.
  • the carbon precursor (c) in the composite material (B ′′) was converted to a carbonaceous carbon material (C). Then, the negative electrode active material (IV) was obtained by pulverizing and sieving with a 45 ⁇ m sieve.
  • the negative electrode active material (IV) is composed of 77% by mass of the graphitic carbon material (A) and carbon nanotubes (b1) with respect to the total mass of the components (A), (b1), (b2) and (C). 3% by mass, silicon-containing particles (b2) were 10% by mass, and carbonaceous carbon material (C) was 10% by mass.
  • the negative electrode active material (IV) was observed by SEM, but the carbon nanotube (b1) could not be clearly confirmed.
  • Table 2 shows the results of the charge / discharge cycle test of the negative electrode active material (IV).
  • the negative electrode active material according to the present invention maintains a high initial discharge capacity comparable to the negative electrode active material obtained in Comparative Example 1 despite the addition of carbon nanotubes with a large irreversible capacity. Moreover, the negative electrode active material according to the present invention has a 50 cycle capacity retention rate higher than any negative electrode active material obtained in the comparative example.
  • the negative electrode active material (Comparative Example 3) formed by combining the silicon-containing particles (b2) and the carbon nanotubes (b1) and then coating with the carbonaceous carbon material (C) has a low initial discharge capacity. This is presumably because the carbonaceous carbon material (C) does not spread all over the surface of the silicon-containing particles (b2), and all the silicon-containing particles (b2) used are not utilized as active materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

G/ID(G値)が5.2以上100以下で、光学組織の面積およびアスペクト比が50%径D50[μm]に対して1.5≦AOP≦6 および 0.2×D50≦(SOP×AOP1/2<2×D50の関係を満たしている、鱗片状の黒鉛質炭素材料(A)と、 表層がSiOx(0<x≦2)からなり、 酸素含有率が1質量%以上18質量%以下で、 且つ90%以上(数基準)が一次粒子径200nm以下であるケイ素含有粒子(b2)を、アスペクト比が100~1000のカーボンナノチューブ(b1)の集合体内部に分散させて配置してなる複合材料(B)と、 ケイ素含有粒子(b2)の表面の少なくとも一部を被覆している炭素質炭素材料(C)とからなるリチウムイオン二次電池用負極活物質。

Description

リチウムイオン二次電池用負極活物質
 本発明はリチウムイオン二次電池用負極活物質に関する。より詳細に、本発明は、初期容量および容量維持率が高いリチウムイオン二次電池を得ることができる負極活物質に関する。
 リチウムイオン二次電池は、電子機器などの電源として使用されている。リチウムイオン二次電池の負極材料として、黒鉛が一般に用いられている。黒鉛の理論容量は372mAh/gである。SiやSnの理論容量は黒鉛のそれよりも高いので、SiやSnを負極材料として使用することができれば、高容量のリチウムイオン二次電池を提供できる。ところが、SiやSnを含有する粒子は、元来、導電性が低いうえに、リチウムイオンの挿入および脱離に伴う体積変化が大きいために粒子が砕け、導電パスが途絶えて内部抵抗の上昇を来たす。
 そこで、Si粒子を炭素材料と複合化して成る材料が各種提案されている。特許文献1は、金属質物と黒鉛質物および非晶質炭素を組み合わせた複合材を開示している。特許文献2は、Si元素を含む材料と導電性材料とからなる複合体を炭素で被覆し、内部に空隙を有する複合材を開示している。特許文献3は、繊維状黒鉛質炭素材料がSi粒子に絡んでSi粒子を挟持し、かつ空隙が存在する構造を有する複合材料の外表面が炭素質炭素材料で被覆されている被覆複合材料を開示している。
特許第3369589号公報 特許第3897709号公報 特許第4809617号公報
 特許文献1~3に開示されている複合材料は、Si粒子をそのまま負極材として用いた場合よりは、リチウムイオン二次電池の電極の電気抵抗を低下させるが、初期容量や容量維持率が未だ低い。特に特許文献2または3に開示されている複合材料は、空隙のために電極密度が低い。
 本発明の目的は、初期容量および容量維持率が高いリチウムイオン二次電池を得ることができる負極活物質を提供することである。
 上記目的を達成するために検討した結果、以下の態様を包含する本発明を完成するに至った。
〔1〕 黒鉛質炭素材料(A)と、
 カーボンナノチューブ(b1)およびケイ素含有粒子(b2)を含む複合材料(B)と、
 炭素質炭素材料(C)とからなり、
黒鉛質炭素材料(A)は、
 鱗片状粒子から成り、
 顕微ラマン分光測定器で粒子端面を測定した際に観測されるラマン分光スペクトルにおいて1300~1400cm-1の範囲にあるピークの面積(ID)と1580~1620cm-1の範囲にあるピークの面積(IG)との比IG/ID(G値)が5.2以上100以下で、
 X線回折法による(002)面の平均面間隔(d002)が0.337nm以下で、且つ
 黒鉛質炭素材料(A)からなる成形体断面の480μm×540μmの矩形の視野において偏光顕微鏡により光学組織を観察し、該光学組織の面積の度数分布において小さい面積側から累積して面積が全体の60%になるときの光学組織の面積SOP[μm2]と、前記光学組織のアスペクト比の度数分布において小さいアスペクト比側から累積して度数が全体の60%になるときの光学組織のアスペクト比AOP、およびレーザー回析法によって測定された黒鉛質炭素材料(A)の体積基準累積粒径分布における50%径D50[μm]が、
 1.5≦AOP≦6 および 0.2×D50≦(SOP×AOP1/2<2×D50 の関係を満たしており、
複合材料(B)は、
 ケイ素含有粒子(b2)がカーボンナノチューブ(b1)の集合体内部に分散して配置されていて、
 カーボンナノチューブ(b1)のアスペクト比が100~1000であり、
 ケイ素含有粒子(b2)は、表層がSiOx(0<x≦2)からなり、 酸素含有率が1質量%以上18質量%以下で、 且つケイ素含有粒子(b2)の90%以上(数基準)が一次粒子径200nm以下であり、
炭素質炭素材料(C)は、
 ケイ素含有粒子(b2)の表面の少なくとも一部を被覆している、
リチウムイオン二次電池用負極活物質。
〔2〕 構成成分(A)、(b1)、(b2)および(C)の合計質量に対して、黒鉛質炭素材料(A)が20~96質量%、カーボンナノチューブ(b1)が1~20質量%、ケイ素含有粒子(b2)が1~20質量%、炭素質炭素材料(C)が2~40質量%である〔1〕に記載のリチウムイオン二次電池用負極活物質。
〔3〕 ケイ素含有粒子(b2)と炭素前駆体(c)とを混合して前駆体被覆ケイ素含有粒子を得る工程、
 前記前駆体被覆ケイ素含有粒子を前記炭素前駆体(c)の軟化点以上の温度で熱処理する工程、
 前記熱処理された前駆体被覆ケイ素含有粒子を解砕する工程、
 前記解砕された前駆体被覆ケイ素含有粒子と、カーボンナノチューブ(b1)とを複合化して複合材料(B)を得る工程、
 前記複合材料(B)を粉砕する工程、
 前記粉砕された複合材料(B)と黒鉛質炭素材料(A)とを混合して混合物を得る工程、および
 前記混合物を前記炭素前駆体(c)の炭素化温度以上の温度で熱処理する工程
を有する〔1〕または〔2〕に記載のリチウムイオン二次電池用負極活物質の製造方法。
〔4〕 前記〔1〕または〔2〕に記載のリチウムイオン二次電池用負極活物質を含有するリチウムイオン二次電池。
 本発明のリチウムイオン二次電池用負極活物質は、電極の電気抵抗を大幅に低減し、初期容量や容量維持率を大幅に改善したリチウムイオン二次電池を提供できる。
 本発明によって、このような効果を奏する理由は、定かでないが、ケイ素含有粒子(b2)の表面に被覆されている炭素質炭素材料(C)と、複合化によって炭素質炭素材料(C)と接触するカーボンナノチューブ(b1)とによって形成される導電ネットワークが、ケイ素含有粒子(b2)のリチウムイオンの挿入および脱離に伴う体積変化を緩和し、導電パスの崩壊を抑制するからであると推測する。
実施例1で製造した負極活物質の走査型電子顕微鏡写真を示す図である。
 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質は、黒鉛質炭素材料(A)と、 複合材料(B)と、 炭素質炭素材料(C)とからなるものである。
「黒鉛質炭素材料(A)」
 本発明の一実施形態に用いられる黒鉛質炭素材料(A)は、炭素原子により形成される結晶が大きく発達した炭素材料である。黒鉛質炭素材料は、炭素質炭素材料に比べて、通常、滑りやすく、柔らかく、引っ掻き強度が低い。電極作製時のプレスに伴って、黒鉛質炭素材料(A)は、柔軟に移動するので電極密度の向上に寄与する。黒鉛質炭素材料としては、人造黒鉛、天然黒鉛などが挙げられる。
 黒鉛質炭素材料(A)は、鱗片状粒子から成ることが好ましい。黒鉛質炭素材料(A)は、体積基準累積粒度分布における50%径(D50)が、好ましくは1μm以上50μm以下、より好ましくは5μm以上35μm以下、さらに好ましくは10μm以上25μm以下である。50%径が1μm以上であると、充放電時に副反応が生じにくく、50%径が50μm以下であると、負極材中でのリチウムイオンの拡散が早くなり、充放電速度が向上する傾向がある。大電流発生が求められる自動車等の駆動電源の用途に用いる場合には50%径は25μm以下であることが好ましい。50%径(D50)は、レーザー回折式粒度分布計、例えば、マルバーン製マスターサイザー(Mastersizer;登録商標)等を使用して測定する。
 本発明の一実施形態に用いられる黒鉛質炭素材料(A)は、G値が、5.2以上100以下、好ましくは7.0以上80以下、より好ましくは10以上60以下である。G値は、顕微ラマン分光測定器で粒子端面を測定した際に観測されるラマン分光スペクトルにおける1300~1400cm-1の範囲にあるピークの面積(ID)と1580~1620cm-1の範囲にあるピークの面積(IG)との比IG/IDである。G値が上記数値範囲にあると、電池の自己放電ならびに劣化が抑制される。なお、G値が小さすぎると、多くの欠陥の存在により充放電時に副反応が生じる傾向がある。
 なお、粒子端面のラマン分光スペクトルは、例えば、レーザーラマン分光光度計(NRS-5100、日本分光社製)と、付属の顕微鏡とを用いて、平滑部(ベイサル面)ではなく、端面となっている部分を選択的に観察することによって、測定することが可能である。粒子端面のラマン分光スペクトルにおいて、1300~1400cm-1の範囲にあるピークはsp3結合に由来するピークであり、1580~1620cm-1の範囲にあるピークはsp2結合に由来するピークである。G値が大きいほどsp2結合の割合が多いことを示唆する。
 本発明の一実施形態に用いられる黒鉛質炭素材料(A)は、X線回折法による(002)面の平均面間隔(d002)が、0.337nm以下である。d002が小さいほど、リチウムイオンの質量当たりの挿入および脱離量が増えるので、重量エネルギー密度の向上に寄与する。なお、d002が0.337nm以下であると、偏光顕微鏡にて観察される光学組織の大部分が光学異方性の組織となる。
 また、本発明に用いられる黒鉛質炭素材料(A)は、重量エネルギー密度やつぶれ性の観点から、X線回折法による結晶C軸方向の厚さ(Lc)が、好ましくは50nm以上1000nm以下である。
 なお、d002及びLcは、粉末X線回折(XRD)法を用いて測定することができる(野田稲吉、稲垣道夫、日本学術振興会、第117委員会試料、117-71-A-1(1963)、稲垣道夫他、日本学術振興会、第117委員会試料、117-121-C-5(1972)、稲垣道夫、「炭素」、1963、No.36、25-34頁参照)。
 本発明の一実施形態に用いられる黒鉛質炭素材料(A)は、光学組織のアスペクト比AOPが、1.5以上6以下、好ましくは2.0以上4.0以下である。アスペクト比AOPが下限値以上にあると、光学組織間が滑りやすく、電極密度を高めやすくなる。アスペクト比AOPが上限値以下にあると、原料を合成するために必要なエネルギーを減らすことができる。
 本発明の一実施形態に用いられる黒鉛質炭素材料(A)は、50%径D50[μm]に対する光学組織の相当長径DL[μm]の割合が、0.2以上、好ましくは0.25以上、より好ましくは0.28以上、さらに好ましくは0.35以上である。また、50%径D50に対する相当長径DLの割合は、2未満、好ましくは1以下である。光学組織の相当長径DLが大きいほど保持できるリチウムイオンの量が多くなる傾向がある。なお、光学組織の相当長径DLは、(SOP×AOP1/2で定義される値である。黒鉛質炭素材料中の光学組織の数割合は、50%径D50に対する相当長径DL(=(SOP×AOP1/2)の割合(DL/D50)を以て代表させることができる。DL/D50が小さい場合は黒鉛質炭素材料中に光学組織が多数存在することを示している。なお、光学組織の相当短径DSは、DL/AOP で代表させることができる。
 なお、AOPは、光学組織のアスペクト比の度数分布において小さいアスペクト比側から累積して度数が全体の60%になるときの光学組織のアスペクト比である。
 SOPは、光学組織の面積の度数分布において小さい面積側から累積して面積が全体の60%になるときの光学組織の面積[μm2]である。
 D50は、レーザー回析法によって測定された黒鉛質炭素材料(A)の体積基準累積粒径分布における50%径[μm]である。
 前記光学組織は、黒鉛質炭素材料(A)からなる成形体の断面の480μm×540μmの矩形の視野において偏光顕微鏡により観察されるものである。炭素材料中の光学組織は帯状をしていることが多い。炭素材料からなる成形体の断面には、概ね矩形の光学組織が観察される。偏光顕微鏡観察法については、例えば、「最新の炭素材料実験技術(分析・解析偏)」炭素材料学会偏(2001年),出版:サイペック株式会社,1~8頁等を参照することができる。
 本発明においては、黒鉛質炭素材料からなる成形体断面の調製および光学組織の観察は次のようにして行う。
 内容積30cm3のプラスチック製容器内の底に両面粘着テープを貼り、その上にスパチュラ2杯(約2g)の観察試料を載せる。
 冷間埋込樹脂(商品名:冷間埋込樹脂#105、製造会社:ジャパンコンポジット(株)、販売会社:丸本ストルアス(株))に硬化剤(商品名:硬化剤(M剤)、製造会社:日本油脂(株)、販売会社:丸本ストルアス(株))を加え、30秒間練る。得られた混練物(5ml程度)を前記容器に高さ約1cmになるまでゆっくりと流し入れる。1日静置して混練物を固化させる。固化物を容器から取り出す。固化物の底面に貼り付いている両面テープを剥がす。研磨板回転式の研磨機を用いて固化物の底面を研磨板回転数1000rpmで研磨する。研磨板は、研磨度合に応じて、#500、#1000、#2000の順に交換する。最後に、アルミナ(商品名:バイカロックス(Baikalox;登録商標) タイプ0.3CR、粒子径0.3μm、製造会社:バイコウスキー、販売会社:バイコウスキージャパン)を用いて鏡面研磨する。
 研磨された固化物をプレパラート上に粘土で固定し、研磨面を偏光顕微鏡(OLYMPAS社製、BX51)を用いて200倍にて観察する。OLYMPUS製CAMEDIA C-5050 ZOOMデジタルカメラをアタッチメントで偏光顕微鏡に接続し、偏光顕微鏡像をシャッタータイム1.6秒で撮影する。1200ピクセル×1600ピクセルの画像を解析対象とする。これは480μm×540μmの視野に相当する。画像解析はImageJ(アメリカ国立衛生研究所製)を用いて、青色部、黄色部、赤色部、および黒色部を判定する。ImageJにおける青色部、黄色部、赤色部、および黒色部のパラメーターは表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 検出された組織に対する統計処理は外部マクロを使って行う。黒色部は樹脂部分に相当する部分なので、統計処理の対象から除外する。青色部、黄色部および赤色部が光学組織に相当する部分である。青色部、黄色部および赤色部の面積およびアスペクト比を計測する。
 本発明に用いられる黒鉛質炭素材料(A)は、菱面体に由来するピークの強度割合が好ましくは5%以下、さらに好ましくは1%以下である。菱面体に由来するピークの強度割合(rh[%])は、六方晶構造(100)面に由来するピークの強度(P1)と菱面体晶構造の(101)面に由来するピークの強度(P2)に基づいて、式: rh=P2/(P1+P2)×100 [%] にて算出する。菱面体に由来するピークの強度割合が、上記の数値範囲にあると、リチウムイオンとの層間化合物の形成が円滑になるので、急速充放電特性の向上に寄与する。
 本発明の一実施形態に用いられる黒鉛質炭素材料(A)は、BET比表面積が、好ましくは0.4m2/g以上5m2/g以下、より好ましくは0.5m2/g以上3.5m2/g以下、さらに好ましくは0.5m2/g以上3.0m2/g以下である。BET比表面積がこの範囲にあることにより、バインダーを過剰に使用することなく、かつ電解液と接触する面積を大きく確保でき、リチウムイオンが円滑に挿入脱離され、電池の反応抵抗を小さくすることができる。なお、BET比表面積は窒素ガス吸着量から算出する。測定装置としては、例えば、ユアサアイオニクス社製NOVA-1200などが挙げられる。
 本発明の一実施形態に用いられる黒鉛質炭素材料(A)は、ゆるめ嵩密度(0回タッピング)が、好ましくは0.7g/cm3以上であり、400回タッピングを行った際の粉体密度(タップ密度)が、好ましくは0.8g/cm3以上1.6g/cm3以下、より好ましくは0.9g/cm3以上1.6g/cm3以下、さらに好ましくは1.1g/cm3以上1.6g/cm3以下である。
 ゆるめ嵩密度は、高さ20cmから試料100gをメスシリンダーに落下させ、振動を加えずに体積と質量を測定して得られる密度である。タップ密度は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。これらはASTM B527及びJIS K5101-12-2に準拠した測定方法である。タップ密度測定におけるオートタップの落下高さは5mmとした。
 ゆるめ嵩密度が0.7g/cm3以上であると、電極へ塗工した際の、プレス前の電極密度を高める傾向がある。この値により、ロールプレス一回で十分な電極密度を得ることが可能かどうかを予測できる。また、タップ密度が上記範囲内にあることによりプレス時に到達する電極密度を所望の高さにし易い。
 本発明に用いられる黒鉛質炭素材料(A)は、製法によって特に制限されない。例えば、WO2014/003135Aに開示されている方法を参考にして製造することができる。
 黒鉛質炭素材料(A)の量は、本発明の負極活物質の構成成分(A)、(b1)、(b2)および(C)の合計質量に対して、好ましくは20~96質量%、より好ましくは40~92質量%である。
「複合材料(B)」
 本発明に用いられる複合材料(B)は、カーボンナノチューブ(b1)およびケイ素含有粒子(b2)を含むものである。
 本発明に用いられるカーボンナノチューブ(b1)は、グラフェン面が繊維長軸に対して略平行に広がっていて、繊維の中心部に空洞を有するものが好ましい。なお、略平行とは、繊維長軸に対するグラフェン層の傾きが約±15度以内のことをいう。空洞部分は繊維長手方向に連続していてもよいし、不連続になっていてもよい。グラフェン層の層数は、1層でも2層以上でもよいが、分散性や導電性付与効果の観点から、好ましくは2層以上、より好ましくは3層以上である。
 細いカーボンナノチューブほど導電性付与効果が高い。導電性付与効果の観点から、カーボンナノチューブ(b1)の平均繊維径は、100nm以下が好ましく、50nm以下がより好ましく、20nm以下がさらに好ましい。一方、太いカーボンナノチューブほど分散性が高い。分散性の観点から、カーボンナノチューブ(b1)の平均繊維径は、2nm以上が好ましく、4nm以上がより好ましい。分散性と導電性付与効果を考慮した場合、平均繊維径は2~20nmが好ましく、4~20nmが最も好ましい。
 カーボンナノチューブ(b1)は、繊維径dと空洞部内径d0との比(d0/d)において特に限定されないが、0.1~0.9が好ましく、0.3~0.9がさらに好ましい。
 カーボンナノチューブ(b1)の繊維長は特に限定されないが、繊維長が短すぎると導電性付与効果が小さくなる傾向があり、繊維長が長すぎると分散性が低くなる傾向がある。したがって、好ましい繊維長は、その繊維の太さにもよるが、通常は0.5μm~100μm、好ましくは0.5μm~10μm、更に好ましくは0.5μm~5μmである。また、アスペクト比(繊維径に対する繊維長の比)が100~1000であると、ケイ素含有粒子がカーボンナノチューブの集合体内部に配置されやすい。
 カーボンナノチューブ自体は直線的であっても、くねくねと湾曲していても良い。ただし、くねくねと湾曲したカーボンナノチューブの方が、複合材料におけるケイ素含有粒子(b2)およびその凝集体との接触効率が良いので、少量にてもケイ素含有粒子(b2)と均一に複合化しやすい。また、くねくねと湾曲したカーボンナノチューブの方が、ケイ素含有粒子(b2)の体積変化への追従性が高いので、リチウムイオンの挿入脱離時にも、ケイ素含有粒子(b2)との接触および繊維どうし間のネットワークが維持されると考えられる。
 カーボンナノチューブ(b1)のBET比表面積の下限は、好ましくは20m2/g、より好ましくは30m2/g、さらに好ましくは40m2/g、特に好ましくは50m2/gである。BET比表面積の上限は、特段無いが、好ましくは400m2/g、より好ましくは350m2/g、さらに好ましくは300m2/gである。
 カーボンナノチューブ(b1)は、R値が、好ましくは0.1以上、より好ましくは0.2~2.0、さらに好ましくは0.5~1.5である。R値は、ラマン分光スペクトルで測定される、1300~1400cm-1の範囲にあるピークの強度(ID)と1580~1620cm-1の範囲にあるピークの強度(IG)との強度比ID/IGである。大きいR値ほど結晶性が低いことを示す。
 カーボンナノチューブ(b1)の圧密比抵抗値は、密度1.0g/cm3において、1.0×10-2Ω・cm以下が好ましく、1.0×10-3Ω・cm~9.9×10-3Ω・cmがより好ましい。
 本発明に用いられるカーボンナノチューブ(b1)は、製法によって特に制限されない。例えば、特開2008-174442号公報に開示されている方法などによって製造することができる。
 カーボンナノチューブ(b1)の量は、本発明の負極活物質の構成成分(A)、(b1)、(b2)および(C)の合計質量に対して、好ましくは1~20質量%、より好ましくは2~15質量%である。
 本発明の一実施形態に用いられるケイ素含有粒子(b2)は、表層がSiOx(0<x≦2)からなるものである。表層以外の部分(コア)は、元素状ケイ素からなっていてもよいし、SiOx(0<x≦2)からなっていてもよい。表層の平均厚さは0.5nm以上10nm以下が好ましい。表層の平均厚さが0.5nm以上であると、空気や酸化性ガスによる酸化を抑制することができる。また、表層の平均厚さが10nm以下であると、初期サイクル時の不可逆容量の増加を抑制することができる。この平均厚さはTEM写真により測定することができる。
 本発明に用いられるケイ素含有粒子(b2)は、酸素元素含有率が、粒子(b2)の質量に対して、好ましくは1質量%以上18質量%以下、より好ましくは2質量%以上10質量%以下である。酸素含有率は、例えばICP(誘導結合プラズマ)により定量することができる。
 ケイ素含有粒子(b2)は、それの90%以上(数基準)が一次粒子径200nm以下である。一次粒子径はSEMやTEM等の顕微鏡による観察で測定することができる。
 また、ケイ素含有粒子(b2)は、下式によって定義される直径Davが、好ましくは30nm以上150nm以下、より好ましくは30nm以上120nm以下である。
    Dav=6/(ρ×Ssa
  Dav:粒子が稠密な球であると仮定したときの直径
  Ssa:BET比表面積(m2/g)
  ρ:ケイ素の真密度(理論値としての2.33g/cm3
 直径Davがこの範囲にあることにより、Si結晶相へのLiの挿入に伴う体積歪を緩和することができ、Siを負極活物質に用いたときの最大の欠点である充放電に伴う膨張収縮を抑制することができる。
 なお、複合材料(B)中のケイ素含有粒子(b2)の一次粒子径は、複合材料の表面コート層を倍率10万倍の透過電子顕微鏡にて観察される球状粒子の像を画像解析することによって算出できる。
 ケイ素含有粒子(b2)は、ケイ素以外に、他の金属元素および半金属元素(炭素元素など)から選択される元素Mを粒子中に含むことができる。具体的なMとしては、例えば、ニッケル、銅、鉄、スズ、アルミニウム、コバルト等が挙げられる。元素Mの含有量は、ケイ素の作用を大きく阻害しない範囲であれば特に制限はなく、例えばケイ素原子1モルに対して1モル以下である。
 本発明に用いられるケイ素含有粒子(b2)は、その製法によって特に制限されない。例えば、WO2012/000858Aに開示されている方法を参考にして製造することができる。
 ケイ素含有粒子(b2)の量は、本発明の負極活物質の構成成分(A)、(b1)、(b2)および(C)の合計質量に対して、好ましくは1~20質量%、より好ましくは2~15質量%である。
 ケイ素含有粒子(b2)の量が少ない場合は、当該粒子を添加することによる電池容量の向上の効果が乏しい。ケイ素含有粒子(b2)の量が多い場合は、リチウムイオンの挿入、脱離に伴う体積変化が大きくなるので、それを緩衝するためのカーボンナノチューブ(b1)の量を多くする必要が生じる。そうなると、負極活物質が嵩高くなり、負極の密度が下がる。
 本発明の一実施形態に用いられる複合材料(B)は、ケイ素含有粒子(b2)がカーボンナノチューブ(b1)の表面に接触し、且つカーボンナノチューブ(b1)どうしが絡まって相互に接触し集合体を成している。また、カーボンナノチューブ(b1)の集合体の中にケイ素含有粒子(b2)が分散して配置されている。ケイ素含有粒子(b2)は、その表面の一部が、後述する炭素質炭素材料(C)で被覆されている。よって、ケイ素含有粒子(b2)は、炭素質炭素材料(C)を介してカーボンナノチューブ(b1)の表面に接触することもある。
「炭素質炭素材料(C)」
 本発明に用いられる炭素質炭素材料(C)は、炭素原子により形成される結晶の発達が低い炭素材料である。 炭素質炭素材料(C)は、例えば、炭素前駆体(c)を炭素化することによって製造することができる。前記炭素前駆体(c)は、特に限定されないが、熱重質油、熱分解油、ストレートアスファルト、ブローンアスファルト、エチレン製造時に副生するタールまたは石油ピッチなどの石油由来物質、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分、コールタールピッチ(石炭ピッチ)などの石炭由来物質が好ましく、特に石油系ピッチまたは石炭系ピッチが好ましい。ピッチは複数の多環芳香族化合物の混合物である。ピッチを用いると、高い炭素化率で、不純物の少ない炭素質炭素材料を製造できる。ピッチは酸素含有量が少ないので、ケイ素含有粒子を炭素質炭素材料で被覆する際に、ケイ素含有粒子が酸化されにくい。
 ピッチの軟化点は80℃以上300℃以下が好ましい。低すぎる軟化点を有するピッチは、それを構成する多環芳香族化合物の平均分子量が小さく且つ揮発分が多いので、炭素化率が低くなったり、製造コストが上がったりし、さらに細孔を多く含んだ比表面積の大きい炭素質炭素材料が得られやすい。高すぎる軟化点を有するピッチは、粘度が高いので、ケイ素含有粒子と均一に混ぜ合わせ難い傾向がある。ピッチの軟化点はASTM-D3104-77に記載のメトラー法で測定することができる。
 ピッチの残炭率は20質量%以上70質量%以下が好ましく、30質量%以上60質量%以下がより好ましい。残炭率の低いピッチを用いると、製造コストが上がり、比表面積の大きい炭素質炭素材料が得られやすい。残炭率の高いピッチは、一般に粘度が高いので、ケイ素含有粒子とを均一に混合させ難い傾向がある。
 残炭率は以下の方法で決定される。固体状のピッチを乳鉢等で粉砕し、粉砕物を窒素ガス流通下で質量熱分析する。1100℃における質量の仕込み質量に対する割合を残炭率と定義する。残炭率はJIS K2425において炭化温度1100℃にて測定される固定炭素量に相当する。
 本発明に用いられるピッチは、QI(キノリン不溶分)含量が、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは2質量%以下である。ピッチのQI含量はフリーカーボン量に比例する値である。フリーカーボンを多く含むピッチを熱処理すると、メソフェーズ球体が出現してくる過程で、フリーカーボンが球体表面に付着し三次元ネットワークを形成して、球体の成長を妨げるため、モザイク状の組織となりやすい。一方、フリーカーボンが少ないピッチを熱処理すると、メソフェーズ球体が大きく成長してニードルコークスを生成しやすい。QI含量が上記の範囲にあることにより、電極特性が一層良好になる。
 また、本発明に用いられるピッチは、TI(トルエン不溶分)含量が、好ましくは10質量%以上70質量%以下である。TI含量が低いピッチは、それを構成する多環芳香族化合物の平均分子量が小さく、揮発分が多いので、炭素化率が低くなり製造コストが上昇し、細孔を多く含んだ比表面積が大きい炭素質炭素材料が得られやすい。TI含量が高いピッチは、それを構成する多環芳香族化合物の平均分子量が大きいので炭素化率が高くなるが、TI含量の高いピッチは粘度が高いので、ケイ素含有粒子と均一に混合させ難い傾向がある。TI含量が上記範囲にあることによりピッチとその他の成分とを均一に混合でき、かつ、電池用活物質として好適な特性を示す複合材を得ることができる。
 ピッチのQI含量及びTI含量はJIS K2425に記載されている方法またはそれに準じた方法により測定することができる。
 炭素質炭素材料(C)の量は、本発明の負極活物質の構成成分(A)、(b1)、(b2)および(C)の合計質量に対して、好ましくは2~40質量%、より好ましくは4~30質量%である。
 従来技術においては、複合体内部に大容積の空隙を設けることを意図して多量の繊維状炭素繊維により凝集体を形成させている。負極に用いられる繊維状炭素繊維は一般的に高い比表面積を有する。繊維状炭素繊維からなる凝集体を炭素質炭素材料で被覆しようとしても、該凝集体の表面のみが炭素質炭素材料で被覆されて、内部の空隙に炭素質炭素材料が十分に行き届かない。
 本発明においては、カーボンナノチューブの集合体内部に分散させる前に、ケイ素含有粒子(b2)の表面を炭素質炭素材料(C)で被覆し、かつカーボンナノチューブの集合体内部に大容積の空隙を設けないことを意図している。本発明においては、ケイ素含有粒子(b2)表面に被覆された炭素質炭素材料(C)が導電性付与に主に寄与している。複合材料中のカーボンナノチューブ(b1)は、導電性付与にも多少なりとも貢献しているが、むしろリチウムイオンの吸蔵・放出時におけるケイ素含有粒子(b2)の膨張・収縮の緩衝剤、つまり複合材料(B)の形態維持の役割が大きい。
 従来技術のように、ケイ素含有粒子(b2)個々に作用させることを目的としていないために、カーボンナノチューブ(b1)の添加量は少量においてその役割を果たすことができる。また、従来は高比表面積のカーボンナノチューブ(b1)の表面にまで炭素質炭素材料(C)で被覆処理をしていたために、被覆に必要な炭素質炭素材料(C)の量が多くなり不可逆容量が多くなっていたが、本願においては炭素質炭素材料(C)についても少量に抑えられる点で容量維持率の改善に寄与している。
「製造方法」
 本発明の一実施形態に係る負極活物質の製造方法は、ケイ素含有粒子(b2)と炭素前駆体(c)とを混合して前駆体被覆ケイ素含有粒子を得る工程、 前駆体被覆ケイ素含有粒子を前記炭素前駆体(c)の軟化点以上の温度で熱処理する工程、 熱処理された前駆体被覆ケイ素含有粒子を解砕する工程、 解砕された前駆体被覆ケイ素含有粒子と、カーボンナノチューブ(b1)とを複合化して複合材料(B)を得る工程、 複合材料(B)を粉砕する工程、 粉砕された複合材料(B)と黒鉛質炭素材料(A)とを混合して混合物を得る工程、および 前記混合物を前記炭素前駆体(c)の炭素化温度以上の温度で熱処理する工程を有する。
 ケイ素含有粒子(b2)と炭素前駆体(c)との混合は、その方法において特に限定されない。例えば、ブレンダー、ニーダー、押し出し機などで混ぜ合わせることができる。ケイ素含有粒子(b2)と炭素前駆体(c)との混合においては溶媒を用いないことが好ましい。溶媒を用いると炭素質炭素材料に細孔が形成されやすくなる。前駆体被覆ケイ素含有粒子の熱処理は、炭素前駆体(c)の軟化点以上の温度で行う。該熱処理における温度の上限は、特に制限されない。ただ、後に行う炭素化のための熱処理において黒鉛質炭素材料(A)との複合化を円滑に進めるために、炭素前駆体(c)が再融解可能な状態で、当該熱処理を留めておくことが好ましい。よって、該熱処理における温度の上限は、軟化点+100℃が好ましく、軟化点+50℃がより好ましい。熱処理は、加熱炉などにおいて前駆体被覆ケイ素含有粒子を静置もしくは流動させて行ってもよいし、ニーダーや押出機などでケイ素含有粒子(b2)と炭素前駆体(c)とを混合しながら行ってもよい。ただし、混合および熱処理を同時に実施する場合は、材料の均一性を高める上で、加熱混合装置に投入前に事前混合することが好ましい。
 熱処理によって前駆体被覆ケイ素含有粒子は凝集することがある。そこで、熱処理された前駆体被覆ケイ素含有粒子を必要に応じて解砕することが好ましい。カーボンナノチューブ(b1)との複合化の際の均一性およびリチウム拡散性を考慮すると、前駆体被覆ケイ素含有粒子の50%径(D50)は、50μm以下が好ましく、30μm以下がさらに好ましく、10μm以下が最も好ましい。解砕方法としては、ハンマーなどの衝撃力を利用したパルベライザー、被解砕物同士の衝突を利用したジェットミルなどが好ましい。いずれの処理においても、材料の組成が変化しないように、不活性ガス雰囲気下での処理が好ましい。
 次いで、解砕された前駆体被覆ケイ素含有粒子とカーボンナノチューブ(b1)を複合化する。複合化方法は、カーボンナノチューブ(b1)の集合体の中に前駆体被覆ケイ素含有粒子を分散して配置させることができる方法であれば特に限定されず、例えば乾式混合や、湿式混合が採用される。乾式混合においては、例えば、ハンマーなどの衝撃力を利用したパルベライザー、被解砕物同士の衝突を利用したジェットミルなどを使用することができる。湿式混合においては、例えば、超音波分散処理やジェットミル処理などを使用することができる。湿式混合においては、その後、乾燥が行われる。乾燥は、使用した液媒体が十分に除去される条件であれば特に限定されない。乾燥時にカーボンナノチューブ(b1)の集合度合を調整するために、必要に応じて真空乾燥などを行うことができる。
 複合材料(B)において、カーボンナノチューブ(b1)の集合度合が低い場合、適宜造粒処理をすることが好ましい。造粒処理としては、転動造粒などの乾式造粒や、噴霧造粒などの湿式造粒が挙げられる。
 複合化処理において凝集した複合材料(b)が得られることがある。そこで、複合化処理で得られた複合材料(B)を必要に応じて粉砕することが好ましい。黒鉛質炭素材料(A)との混合の際の均一性およびリチウム拡散性を考慮すると、複合材料(B)の50%径(D50)は、50μm以下が好ましく、30μm以下がさらに好ましく、10μm以下が最も好ましい。粉砕方法としては、ハンマーなどの衝撃力を利用したパルベライザー、被解砕物同士の衝突を利用したジェットミルなどが好ましい。いずれの処理においても、材料の組成が変化しないように、不活性ガス雰囲気下での処理が好ましい。湿式混合処理においては、アルコール類などの非水系溶媒中での処理が好ましい。
 次に、上記により得られた複合材料(B)に、黒鉛質炭素材料(A)を混合し、熱処理する。混合方法および熱処理の方法は特に限定されない。例えば、ブレンダー等で複合材料(B)と黒鉛質炭素材料(A)を混合し、その後に加熱炉などで静置もしくは流動させて熱処理することができる。当該熱処理は、炭素前駆体(c)が炭素化する温度以上の温度で行う。炭素前駆体(c)の炭素化によって炭素質炭素材料(C)を形成させる。炭素前駆体の種類によって熱処理温度は異なるが、好ましくは500℃以上1300℃未満、より好ましくは600~1300℃未満、さらに好ましくは800℃以上1300℃未満である。熱処理温度が低すぎると炭素化が十分に終了せずケイ素含有粒子の表面を被覆する炭素材料層に水素や酸素が残留し、それらが電池特性に影響を及ぼすことがある。逆に熱処理温度が高すぎるとケイ素含有粒子の表面を被覆する炭素材料層の結晶化が進みすぎて、金属微粒子が炭素と結合してLiに対し不活性となり、充放電特性が低下することがある。熱処理後、必要に応じて解砕することが好ましい。解砕方法としては、ハンマーなどの衝撃力を利用したパルベライザー、被解砕物同士の衝突を利用したジェットミルなどが好ましい。リチウム拡散性および電極厚さ等を考慮すると、負極活物質の50%径(D50)は50μm以下が好ましく、30μm以下がさらに好ましい。いずれの処理においても、材料の組成が変化しないように、不活性ガス雰囲気下での処理が好ましい。
(負極用ペースト)
 本発明の一実施形態に係る負極用ペーストは、前記負極活物質とバインダーと溶媒と必要に応じて導電助剤などを含むものである。この負極用ペーストは、例えば、前記負極活物質とバインダーと溶媒と必要に応じて導電助剤などとを混練することによって得られる。負極用ペーストは、シート状、ペレット状などの形状に成形することができる。
 バインダーとしては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、アクリルゴム、イオン伝導率の大きい高分子化合物などが挙げられる。イオン伝導率の大きい高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリルなどが挙げられる。バインダーの量は、負極活物質100質量部に対して、好ましくは0.5質量部以上100質量部以下である。
 導電助剤は電極に対し導電性及び電極安定性(リチウムイオンの挿入・脱離における体積変化に対する緩衝作用)を付与する役目を果たすものであれば特に限定されない。例えば、気相法炭素繊維(例えば、「VGCF(登録商標)」昭和電工社製)、導電性カーボン(例えば、「デンカブラック(登録商標)」電気化学工業社製、「Super C65」TIMCAL社製、「Super C45」TIMCAL社製、「KS6L」TIMCAL社製)などが挙げられる。導電助剤の量は、負極活物質100質量部に対して、好ましくは10質量部以上100質量部以下である。
 溶媒は、特に制限はなく、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量はペーストが集電体に塗布しやすいような粘度となるように調整される。
(負極シート)
 本発明の一実施形態に係る負極シートは、集電体と、該集電体を被覆する電極層とを有するものである。
 集電体としては、例えば、ニッケル箔、銅箔、ニッケルメッシュまたは銅メッシュなどが挙げられる。
 電極層は、バインダーと前記の負極活物質とを含有するものである。電極層は、例えば、前記のペーストを塗布し乾燥させることによって得ることができる。ペーストの塗布方法は特に制限されない。電極層の厚さは、通常、50~200μmである。電極層の厚さが大きくなりすぎると、規格化された電池容器に負極シートを収容できなくなることがある。電極層の厚さは、ペーストの塗布量によって調整できる。また、ペーストを乾燥させた後、加圧成形することによっても調整することができる。加圧成形法としては、ロール加圧、プレス加圧などの成形法が挙げられる。プレス成形するときの圧力は、好ましくは1~5ton/cm2程度である。
 負極シートの電極密度は次のようにして計算することができる。すなわち、プレス後の負極シートを直径16mmの円形状に打ち抜き、その重量を測定する。また、電極の厚さを測定する。そこから別途測定しておいた集電体の重量と厚さを引き算すれば電極層の重量と厚さを知ることができ、その値を元に電極密度を計算する。
(リチウムイオン電池)
 本発明の一実施形態に係るリチウムイオン電池は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質を含有するものである。該リチウムイオン二次電池用負極活物質は、前述したように、通常、負極シートに含有させる。また、リチウムイオン電池は、通常、電解質と、正極シートとをさらに有する。
 本発明に用いられる正極シートには、リチウムイオン電池に従来から使われていたもの、具体的には正極活物質を含んでなるシートを用いることができる。正極活物質としては、LiNiO2、LiCoO2、LiMn24、LiNi0.34Mn0.33Co0.332、LiFePO4などが挙げられる。
 電解質は非水系電解液及び非水系ポリマー電解質からなる群から選ばれる少なくとも一つであることが好ましい。リチウムイオン電池に用いられる非水系電解液及び非水系ポリマー電解質は特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Liなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピロニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液や;ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビリニデン、及びポリメチルメタクリレートなどを含有するゲル状のポリマー電解質や;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。
 また、電解液には、リチウムイオン電池の初回充電時に分解反応が起きる物質を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート(VC)、ビフェニール、プロパンスルトン(PS)、フルオロエチレンカーボネート(FEC)、エチレンサルトン(ES)などが挙げられる。添加量としては0.01質量%以上50質量%以下が好ましい。
 本発明のリチウムイオン電池には正極シートと負極シートとの間にセパレータを設けることができる。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものなどが挙げられる。
 本発明のリチウムイオン電池においては、正極シートの容量(QC)に対する負極シートの容量(QA)の比(正負極容量比)を、1.0~1.8に調整することが好ましい。リチウムイオンを受け入れる側の負極の容量が少な過ぎれば過剰なLiが負極側に析出してサイクル劣化の原因となり、逆に負極の容量が多過ぎれば負荷の小さい状態での充放電となるためエネルギー密度は低下するもののサイクル特性は向上する。
 以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 本実施例で使用した材料は以下の通りである。
(1)黒鉛質炭素材料(A)
 石油系コークスを粉砕し、これをアチソン炉にて3000℃で熱処理して、10%粒子径(D10)が7.8μmで、BET比表面積が1.9m2/gで、d002が0.3359nmで、Lcが154nmで、50%粒子径(D50)が22.1μmで、90%粒子径(D90)が46.1μmで、かつIG/ID(G値)が16.7である鱗片状の黒鉛質炭素材料(A)を得た。黒鉛質炭素材料(A)は、SOPが13.4μm2、AOPが2.14であった。
(2)カーボンナノチューブ(b1)
 「VGCF(登録商標)-X」昭和電工社製:繊維径15nm、アスペクト比220、ラマンR値1.1、BET比表面積260m2/g、圧密比抵抗(密度1.0g/cm3)1.2×10-3Ω・cm。
(3)ケイ素含有粒子(b2)
 ICP(誘導結合プラズマ)により定量した粒子に含まれる酸素含有率が5.8質量%で、一次粒子径200nm以下の割合が全体の90%以上(数基準)で、下式によって定義される直径Davが50nmであるSi粒子。
    Dav=6/(ρ×Ssa
  Dav:粒子が稠密な球であると仮定したときの直径
  Ssa:BET比表面積(m2/g)
  ρ:ケイ素の真密度(理論値としての2.33g/cm3
(4)炭素前駆体(c)
 窒素ガス流通下の熱分析により測定された1100℃における残炭率が52%で、QI含量が0.5質量%で、TI含量が50質量%で、軟化点が220℃である石油ピッチ。
 本実施例においては以下の方法で各種の物性を測定した。
(粒子径)
 粉体を極小型スパーテル2杯分、及び非イオン性界面活性剤(TRITON(登録商標)-X;Roche Applied Science製)2滴を水50mlに添加し、3分間超音波分散させた。この分散液をセイシン企業社製レーザー回折式粒度分布測定器(LMS-2000e)に投入し、体積基準累積粒度分布を測定した。
(ラマンG値)
 日本分光株式会社製レーザーラマン分光測定装置(NRS-3100)を用いて、励起波長532nm、入射スリット幅200μm、露光時間15秒、積算回数2回、回折格子600本/mmの条件で測定を行った。測定されたスペクトルから1360cm-1付近のピークの強度ID(非晶質成分由来)と1580cm-1付近のピークの強度IG(黒鉛成分由来)の比(IG/ID)を算出した。それをG値として黒鉛化度合いの指標とした。
(ラマンR値)
 日本分光株式会社製レーザーラマン分光測定装置(NRS-3100)を用いて、励起波長532nm、入射スリット幅200μm、露光時間15秒、積算回数2回、回折格子600本/mmの条件で測定を行った。測定されたスペクトルから1360cm-1付近のピークの強度ID(非晶質成分由来)と1580cm-1付近のピークの強度IG(黒鉛成分由来)の比(ID/IG)を算出した。それをR値としてカーボンナノチューブの結晶性の指標とした。
(d002、LC
 粉末X線回折における002回折線から、(002)面の平均面間隔d002及び結晶c軸方向の大きさLCを求めた。
(BET比表面積〔Ssa〕)
 Quantachrome製Surface Area & Pore Size Analyzer/NOVA 4200eにより、窒素ガスをプローブとして相対圧0.1、0.2、及び0.3のBET多点法により測定した。
(正極シートの製造)
 LiCoO2を90g、カーボンブラック(TIMCAL社製)5g、およびポリフッ化ビニリデン(PVdF)5gに、N-メチル-ピロリドンを加えながら攪拌・混合し、スラリー状の正極用ペーストを得た。
 正極用ペーストを厚さ20μmのアルミ箔上にロールコーターにより塗布し、乾燥させてシートを得た。該シートをロールプレスにより電極密度3.6g/cm3に調整して正極シートを得た。
(負極シートの製造)
 バインダーとしてポリアクリル酸(PAA)及びカルボキシメチルセルロース(CMC)を用意した。PAAの白色粉末を精製水に溶解し、PAA溶液を得た。また、CMCの白色粉末を精製水と混合し、スターラーで一昼夜攪拌して、CMC溶液を得た。
 導電助剤としてカーボンブラック及び気相成長法炭素繊維(VGCF(登録商標)-H、昭和電工株式会社製)を用意し、両者を3:2(質量比)で混合したものを混合導電助剤とした。
 実施例及び比較例で製造した負極活物質90質量部、混合導電助剤5質量部、固形分が2.5質量部のCMC溶液、および固形分が2.5質量部のPAA溶液を混合し、これに粘度調整のための水を適量加え、自転・公転ミキサーにて混練し負極用ペーストを得た。
 負極用ペーストを厚さ20μmの銅箔上にドクターブレードを用いて厚さ150μmとなるよう均一に塗布し、ホットプレートにて乾燥させ、次いで真空乾燥させてシートを得た。該シートを一軸プレス機により3ton/cm2の圧力にてプレスして負極シートを得た。
 対極Liのハーフセルにて活物質重量当たりの放電量を評価し、正極シートの容量(QC)に対する負極シートの容量(QA)の比が1.2となるように負極シートの容量を微調整した。
(評価用電池の作製)
 露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の操作を実施した。
 上記負極シート及び正極シートを打ち抜いて面積20cm2の負極片及び正極片を得た。正極片のAl箔にAlタブを、負極片のCu箔にNiタブをそれぞれ取り付けた。ポリプロピレン製マイクロポーラスフィルムを負極片と正極片との間に挟み入れ、その状態でアルミラミネートにパックした。そして、それに電解液を注入した。その後、アルミラミネートの口を熱融着によって封止して評価用の電池を作製した。なお、電解液として、エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートが体積比で3:5:2の割合で混合された溶媒に、ビニレンカーボネート(VC)を1質量%、フルオロエチレンカーボネート(FEC)を30質量%、およびLiPF6を1mol/Lの濃度で溶解させて成る液を用いた。
(充放電サイクル試験)
 0.2Cの電流値で5回の充放電を繰り返した(エージング処理)。
 次いで、次の方法で充放電サイクル試験を行った。
 充電は、上限電圧4.2V、電流値1CのCC(コンスタントカレント)モード及びカットオフ電流0.05CのCV(コンスタントボルテージ)モードで行った。
 放電は、下限電圧2.8V、電流値1CのCCモードで行った。
 この充放電操作1サイクルを、50回繰り返した。Nサイクル放電量維持率を次式で定義して計算した。
   (Nサイクル放電量維持率(%))=
         (Nサイクル時放電容量)/(初回放電容量)×100
実施例1
 炭素質炭素材料(C)のケイ素含有粒子(b2)に対する質量比が1/1となるように、ケイ素含有粒子(b2)と炭素前駆体(c)とを、窒素雰囲気下においてファイバーミキサー(MX-X57)にて1分間混合した。該混合物をアルミナボート上にのせて横型焼成炉にて、窒素流量300ml/min、昇温速度10℃/minにて250℃まで昇温して熱処理した。該熱処理物を窒素雰囲気下においてファイバーミキサーにて1分間解砕して、炭素前駆体被覆ケイ素含有粒子を得た。
 次いで、ケイ素含有粒子(b2)のカーボンナノチューブ(b1)に対する質量比が1/0.3となるように、炭素前駆体被覆ケイ素含有粒子とカーボンナノチューブ(b1)とをエタノールに入れ、超音波ホモジェナイザー(SMT製 UH-50)にて60分間分散複合化処理を行った。該処理物を乾燥器にて80℃、12時間乾燥させた。次いで窒素雰囲気下においてファイバーミキサー(MX-X57)にて1分間解砕して、複合材料(B)を得た。
 複合材料(B)と黒鉛質炭素材料(A)とを、窒素雰囲気下においてファイバーミキサーにて1分間混合した。該混合物をアルミナボート上にのせて横型焼成炉にて、窒素流量300ml/min、昇温速度10℃/minにて1100℃まで昇温して熱処理した。複合材料(B)中の炭素前駆体(c)が炭素質炭素材料(C)に転化された。その後、解砕処理および45μmの篩にて篩分けして、負極活物質(I)を得た。
 負極活物質(I)は、構成成分(A)、(b1)、(b2)および(C)の合計質量に対して、黒鉛質炭素材料(A)が77質量%、カーボンナノチューブ(b1)が3質量%、ケイ素含有粒子(b2)が10質量%、炭素質炭素材料(C)が10質量%であった。
 負極活物質(I)のSEM像を図1に示す。負極活物質(I)は、炭素質炭素材料(C)で被覆されたケイ素含有粒子(b2)がカーボンナノチューブ(b1)の表面に接触し、且つカーボンナノチューブ(b1)どうしが絡まって相互に接触し集合体を成している。また、カーボンナノチューブ(b1)の集合体の中に炭素質炭素材料(C)で被覆されたケイ素含有粒子(b2)が分散して配置されている。負極活物質(I)の充放電サイクル試験の結果を表2に示す。
比較例1
 カーボンナノチューブ(b1)を添加しなかった以外は実施例1と同じ方法にて負極活物質(II)を作製した。
 負極活物質(II)は、構成成分(A)、(b2)および(C)の合計質量に対して、黒鉛質炭素材料(A)が80質量%、ケイ素含有粒子(b2)が10質量%、炭素質炭素材料(C)が10質量%である。負極活物質(II)の充放電サイクル試験の結果を表2に示す。
比較例2
 カーボンナノチューブ(b1)を気相成長炭素繊維(b3)(「VGCF(登録商標)」昭和電工社製:繊維径150nm、アスペクト比40)に変更した以外は実施例1と同じ方法にて負極活物質(III)を作製した。
 負極活物質(III)は、構成成分(A)、(b2)、(b3)および(C)の合計質量に対して、黒鉛質炭素材料(A)が77質量%、気相成長炭素繊維(b3)が3質量%、ケイ素含有粒子(b2)が10質量%、炭素質炭素材料(C)が10質量%である。負極活物質(III)の充放電サイクル試験の結果を表2に示す。
比較例3
 ケイ素含有粒子(b2)のカーボンナノチューブ(b1)に対する質量比が1/0.3となるように、ケイ素含有粒子とカーボンナノチューブ(b1)とをエタノールに入れ、超音波ホモジェナイザー(SMT製 UH-50)にて60分間分散複合化処理を行った。該処理物を乾燥器にて80℃、12時間乾燥させた。次いで窒素雰囲気下においてファイバーミキサー(MX-X57)にて1分間解砕して、複合材料(B’)を得た。
 次に、炭素質炭素材料(C)のケイ素含有粒子(b2)に対する質量比が1/1となるように、複合材料(B')と炭素前駆体(c)とを、窒素雰囲気下においてファイバーミキサー(MX-X57)にて1分間混合した。該混合物をアルミナボート上にのせて横型焼成炉にて、窒素流量300ml/min、昇温速度10℃/minにて250℃まで昇温して熱処理した。該熱処理物を窒素雰囲気下においてファイバーミキサーにて1分間解砕して、複合材料(B”)を得た。
 複合材料(B”)と黒鉛質炭素材料(A)とを、窒素雰囲気下においてファイバーミキサーにて1分間混合した。該混合物をアルミナボート上にのせて横型焼成炉にて、窒素流量300ml/min、昇温速度10℃/minにて1100℃まで昇温して熱処理した。複合材料(B”)中の炭素前駆体(c)が炭素質炭素材料(C)に転化された。その後、解砕処理および45μmの篩にて篩分けして、負極活物質(IV)を得た。
 負極活物質(IV)は、構成成分(A)、(b1)、(b2)および(C)の合計質量に対して、黒鉛質炭素材料(A)が77質量%、カーボンナノチューブ(b1)が3質量%、ケイ素含有粒子(b2)が10質量%、炭素質炭素材料(C)が10質量%であった。負極活物質(IV)をSEMで観察したが、カーボンナノチューブ(b1)を明確に確認することができなかった。負極活物質(IV)の充放電サイクル試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2が示すとおり、本発明に係る負極活物質は、不可逆容量の多いカーボンナノチューブの添加にも拘らず、比較例1で得られる負極活物質に匹敵する高い初期放電容量を維持している。また、本発明に係る負極活物質は、50サイクル容量維持率が、比較例で得られるいずれの負極活物質よりも高い。
 ケイ素含有粒子(b2)とカーボンナノチューブ(b1)とを複合化した後に炭素質炭素材料(C)で被覆して成る負極活物質(比較例3)は、初期放電容量の低い。これは、ケイ素含有粒子(b2)の表面全てに炭素質炭素材料(C)が行き渡らず、使用したケイ素含有粒子(b2)の全てを活物質として活かせていないからであろうと推測する。

Claims (4)

  1.  黒鉛質炭素材料(A)と、
     カーボンナノチューブ(b1)およびケイ素含有粒子(b2)を含む複合材料(B)と、
     炭素質炭素材料(C)とからなり、

    黒鉛質炭素材料(A)は、
     鱗片状粒子から成り、
     顕微ラマン分光測定器で粒子端面を測定した際に観測されるラマン分光スペクトルにおいて1300~1400cm-1の範囲にあるピークの面積(ID)と1580~1620cm-1の範囲にあるピークの面積(IG)との比IG/ID(G値)が5.2以上100以下で、
     X線回折法による(002)面の平均面間隔(d002)が0.337nm以下で、且つ
     黒鉛質炭素材料(A)からなる成形体断面の480μm×540μmの矩形の視野において偏光顕微鏡により光学組織を観察し、該光学組織の面積の度数分布において小さい面積側から累積して面積が全体の60%になるときの光学組織の面積SOP[μm2]、前記光学組織のアスペクト比の度数分布において小さいアスペクト比側から累積して度数が全体の60%になるときの光学組織のアスペクト比AOP、およびレーザー回析法によって測定された黒鉛質炭素材料(A)の体積基準累積粒径分布における50%径D50[μm]が、
     1.5≦AOP≦6 および 0.2×D50≦(SOP×AOP1/2<2×D50 の関係を満たしており、

    複合材料(B)は、
     ケイ素含有粒子(b2)がカーボンナノチューブ(b1)の集合体内部に分散して配置されていて、
     カーボンナノチューブ(b1)のアスペクト比が100~1000であり、
     ケイ素含有粒子(b2)は、表層がSiOx(0<x≦2)からなり、 酸素含有率が1質量%以上18質量%以下で、 且つケイ素含有粒子(b2)の90%以上(数基準)が一次粒子径200nm以下であり、

    炭素質炭素材料(C)は、
     ケイ素含有粒子(b2)の表面の少なくとも一部を被覆している、

    リチウムイオン二次電池用負極活物質。
  2.  構成成分(A)、(b1)、(b2)および(C)の合計質量に対して、黒鉛質炭素材料(A)が20~96質量%、カーボンナノチューブ(b1)が1~20質量%、ケイ素含有粒子(b2)が1~20質量%、炭素質炭素材料(C)が2~40質量%である請求項1に記載のリチウムイオン二次電池用負極活物質。
  3.  ケイ素含有粒子(b2)と炭素前駆体(c)とを混合して前駆体被覆ケイ素含有粒子を得る工程、
     前記前駆体被覆ケイ素含有粒子を前記炭素前駆体(c)の軟化点以上の温度で熱処理する工程、
     前記熱処理された前駆体被覆ケイ素含有粒子を解砕する工程、
     前記解砕された前駆体被覆ケイ素含有粒子と、カーボンナノチューブ(b1)とを複合化して複合材料(B)を得る工程、
     前記複合材料(B)を粉砕する工程、
     前記粉砕された複合材料(B)と黒鉛質炭素材料(A)とを混合して混合物を得る工程、および
     前記混合物を前記炭素前駆体(c)の炭素化温度以上の温度で熱処理する工程
    を有する請求項1または2に記載のリチウムイオン二次電池用負極活物質の製造方法。
  4.  請求項1または2に記載のリチウムイオン二次電池用負極活物質を含有するリチウムイオン二次電池。
PCT/JP2015/050444 2014-01-09 2015-01-09 リチウムイオン二次電池用負極活物質 WO2015105167A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580004059.0A CN105900269B (zh) 2014-01-09 2015-01-09 锂离子二次电池用负极活性物质
KR1020167014755A KR101835445B1 (ko) 2014-01-09 2015-01-09 리튬 이온 2차 전지용 부극 활물질
EP15735193.3A EP3093910B1 (en) 2014-01-09 2015-01-09 Negative electrode active material for lithium-ion secondary cell
JP2015556841A JP6442419B2 (ja) 2014-01-09 2015-01-09 リチウムイオン二次電池用負極活物質
PL15735193T PL3093910T3 (pl) 2014-01-09 2015-01-09 Materiał aktywny ujemnej elektrody do litowo-jonowego ogniwa wtórnego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-002175 2014-01-09
JP2014002175 2014-01-09

Publications (1)

Publication Number Publication Date
WO2015105167A1 true WO2015105167A1 (ja) 2015-07-16

Family

ID=53523991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050444 WO2015105167A1 (ja) 2014-01-09 2015-01-09 リチウムイオン二次電池用負極活物質

Country Status (8)

Country Link
EP (1) EP3093910B1 (ja)
JP (1) JP6442419B2 (ja)
KR (1) KR101835445B1 (ja)
CN (1) CN105900269B (ja)
HU (1) HUE046248T2 (ja)
PL (1) PL3093910T3 (ja)
TW (1) TWI668901B (ja)
WO (1) WO2015105167A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017074124A1 (ko) * 2015-10-28 2017-05-04 주식회사 엘지화학 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
KR20170049459A (ko) * 2015-10-28 2017-05-10 주식회사 엘지화학 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
WO2017104848A1 (ja) * 2015-12-18 2017-06-22 日産化学工業株式会社 疎水性クラスター及び粘土鉱物を含む組成物
JPWO2017007013A1 (ja) * 2015-07-09 2018-04-19 日本電気株式会社 リチウムイオン二次電池
WO2020027000A1 (ja) * 2018-07-31 2020-02-06 株式会社大阪ソーダ カーボンナノチューブの製造方法
JP2020040862A (ja) * 2018-09-12 2020-03-19 大陽日酸株式会社 炭素緻密化微粒子の製造方法、及び炭素緻密化微粒子
CN111668466A (zh) * 2020-06-16 2020-09-15 清华大学深圳国际研究生院 可控硅包覆重量的硅碳负极材料及其制造方法
WO2021192575A1 (ja) * 2020-03-26 2021-09-30 パナソニックIpマネジメント株式会社 二次電池用負極および二次電池
WO2023145603A1 (ja) * 2022-01-28 2023-08-03 パナソニックエナジ-株式会社 非水電解液二次電池用負極及び非水電解液二次電池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
JP2015510666A (ja) 2012-01-30 2015-04-09 ネクソン リミテッドNexeon Limited Si/C電気活性材料組成物
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR101550781B1 (ko) 2014-07-23 2015-09-08 (주)오렌지파워 2 차 전지용 실리콘계 활물질 입자의 제조 방법
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
JP6445956B2 (ja) * 2015-11-17 2018-12-26 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池
DE102017211086A1 (de) * 2017-06-29 2019-01-03 Sgl Carbon Se Neuartiges Kompositmaterial
KR102191190B1 (ko) * 2017-10-05 2020-12-16 쇼와 덴코 가부시키가이샤 리튬 이온 2차전지용 부극재료, 그 제조 방법, 부극용 페이스트, 부극 시트 및 리튬 이온 2차전지
US11502290B2 (en) * 2018-01-15 2022-11-15 Umicore Composite powder for use in the negative electrode of a battery and a battery comprising such a composite powder
EP3751647A4 (en) * 2018-02-09 2021-10-06 Sekisui Chemical Co., Ltd. CARBON MATERIAL, ELECTRODE FOR ELECTRICITY STORAGE DEVICES, ELECTRICITY STORAGE DEVICE, AND SECONDARY BATTERY WITH AN ANYHERIC ELECTROLYTE
CN109360962B (zh) * 2018-10-24 2021-02-12 郑州中科新兴产业技术研究院 一种锂电池用高稳定性硅碳负极材料及其制备方法
ES2953152T3 (es) * 2018-10-24 2023-11-08 Lg Energy Solution Ltd Anodo que incluye material a base de grafito y silicio que tiene diferentes diámetros y batería secundaria de litio que incluye el mismo
CN109860538B (zh) * 2018-12-20 2022-07-29 天津市捷威动力工业有限公司 一种锂电池硅碳负极浆料及其制备方法、锂离子电池
CN109980199B (zh) * 2019-03-20 2020-09-29 宁德新能源科技有限公司 负极活性材料及其制备方法及使用该负极活性材料的装置
WO2021134195A1 (zh) * 2019-12-30 2021-07-08 上海杉杉科技有限公司 硅基储锂材料及其制备方法
JP7261868B2 (ja) 2020-01-02 2023-04-20 寧徳新能源科技有限公司 負極及び当該負極を含む電気化学装置
WO2021166359A1 (ja) * 2020-02-19 2021-08-26 Jfeケミカル株式会社 リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
KR20230094464A (ko) * 2021-12-21 2023-06-28 포스코홀딩스 주식회사 리튬 이차전지용 음극 활물질 전구체, 이를 포함하는 음극 활물질, 및 이의 제조방법
CN117935995B (zh) * 2024-03-21 2024-06-11 江苏众钠能源科技有限公司 用于离子电池的硬碳材料筛选方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369589B2 (ja) 1992-04-07 2003-01-20 三菱化学株式会社 電極材料
JP2005019399A (ja) * 2003-06-06 2005-01-20 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2005310760A (ja) * 2004-03-22 2005-11-04 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP3897709B2 (ja) 2002-02-07 2007-03-28 日立マクセル株式会社 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2008174442A (ja) 2006-12-21 2008-07-31 Showa Denko Kk 炭素繊維および炭素繊維製造用触媒
WO2012000858A1 (en) 2010-06-29 2012-01-05 Umicore Submicron sized silicon powder with low oxygen content
JP2012084519A (ja) * 2010-09-16 2012-04-26 Mitsubishi Chemicals Corp 非水電解液二次電池用負極材及びこれを用いた負極並びに非水電解液二次電池
WO2014003135A1 (ja) 2012-06-29 2014-01-03 昭和電工株式会社 炭素材料、電池電極用炭素材料、及び電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049473A2 (en) * 2002-11-26 2004-06-10 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
CN1319195C (zh) * 2003-09-26 2007-05-30 杰富意化学株式会社 复合粒子、使用该复合粒子的锂离子二次电池的负极材料、负极以及锂离子二次电池
KR100818263B1 (ko) * 2006-12-19 2008-03-31 삼성에스디아이 주식회사 다공성 음극 활물질, 그 제조 방법 및 이를 채용한 음극과리튬 전지
JP5081335B1 (ja) * 2011-04-21 2012-11-28 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池
JP2015510666A (ja) * 2012-01-30 2015-04-09 ネクソン リミテッドNexeon Limited Si/C電気活性材料組成物
JP6183361B2 (ja) * 2012-06-06 2017-08-23 日本電気株式会社 負極活物質及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369589B2 (ja) 1992-04-07 2003-01-20 三菱化学株式会社 電極材料
JP3897709B2 (ja) 2002-02-07 2007-03-28 日立マクセル株式会社 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2005019399A (ja) * 2003-06-06 2005-01-20 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2005310760A (ja) * 2004-03-22 2005-11-04 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4809617B2 (ja) 2004-03-22 2011-11-09 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2008174442A (ja) 2006-12-21 2008-07-31 Showa Denko Kk 炭素繊維および炭素繊維製造用触媒
WO2012000858A1 (en) 2010-06-29 2012-01-05 Umicore Submicron sized silicon powder with low oxygen content
JP2013534899A (ja) * 2010-06-29 2013-09-09 ユミコア 低酸素含量のサブミクロンサイズのシリコン粉末
JP2012084519A (ja) * 2010-09-16 2012-04-26 Mitsubishi Chemicals Corp 非水電解液二次電池用負極材及びこれを用いた負極並びに非水電解液二次電池
WO2014003135A1 (ja) 2012-06-29 2014-01-03 昭和電工株式会社 炭素材料、電池電極用炭素材料、及び電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Modern Carbon Material Experimental Technology (Analysis part", 2001, SIPEC CO., LTD., pages: 1 - 8
INAGAKI MICHIO, 117TH COMMITTEE MATERIALS, 1972, pages 117 - 121,C-5
INAYOSHI NODA; MICHIO INAGAKI, 117TH COMMITTEE MATERIALS, 1963, pages 117 - 71,A- 1
MICHIO INAGAKI, CARBON, 1963, pages 25 - 34

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017007013A1 (ja) * 2015-07-09 2018-04-19 日本電気株式会社 リチウムイオン二次電池
CN107851801B (zh) * 2015-10-28 2020-12-08 株式会社Lg化学 导电材料分散液和使用其制造的锂二次电池
KR20170049459A (ko) * 2015-10-28 2017-05-10 주식회사 엘지화학 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
CN107851801A (zh) * 2015-10-28 2018-03-27 株式会社Lg化学 导电材料分散液和使用其制造的锂二次电池
JP2018534747A (ja) * 2015-10-28 2018-11-22 エルジー・ケム・リミテッド 導電材分散液およびこれを用いて製造したリチウム二次電池
KR101954430B1 (ko) * 2015-10-28 2019-03-05 주식회사 엘지화학 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
WO2017074124A1 (ko) * 2015-10-28 2017-05-04 주식회사 엘지화학 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
US11050061B2 (en) 2015-10-28 2021-06-29 Lg Chem, Ltd. Conductive material dispersed liquid and lithium secondary battery manufactured using the same
WO2017104848A1 (ja) * 2015-12-18 2017-06-22 日産化学工業株式会社 疎水性クラスター及び粘土鉱物を含む組成物
JPWO2020027000A1 (ja) * 2018-07-31 2021-08-12 株式会社大阪ソーダ カーボンナノチューブの製造方法
WO2020027000A1 (ja) * 2018-07-31 2020-02-06 株式会社大阪ソーダ カーボンナノチューブの製造方法
US11697592B2 (en) 2018-07-31 2023-07-11 Osaka Soda Co., Ltd. Method for producing carbon nanotubes
JP7360133B2 (ja) 2018-07-31 2023-10-12 株式会社大阪ソーダ カーボンナノチューブの製造方法
JP2020040862A (ja) * 2018-09-12 2020-03-19 大陽日酸株式会社 炭素緻密化微粒子の製造方法、及び炭素緻密化微粒子
JP7118828B2 (ja) 2018-09-12 2022-08-16 大陽日酸株式会社 炭素緻密化微粒子の製造方法、及び炭素緻密化微粒子
WO2021192575A1 (ja) * 2020-03-26 2021-09-30 パナソニックIpマネジメント株式会社 二次電池用負極および二次電池
CN111668466A (zh) * 2020-06-16 2020-09-15 清华大学深圳国际研究生院 可控硅包覆重量的硅碳负极材料及其制造方法
WO2023145603A1 (ja) * 2022-01-28 2023-08-03 パナソニックエナジ-株式会社 非水電解液二次電池用負極及び非水電解液二次電池

Also Published As

Publication number Publication date
JPWO2015105167A1 (ja) 2017-03-23
HUE046248T2 (hu) 2020-02-28
CN105900269B (zh) 2019-03-29
KR20160081969A (ko) 2016-07-08
EP3093910B1 (en) 2019-06-19
TWI668901B (zh) 2019-08-11
JP6442419B2 (ja) 2018-12-19
EP3093910A4 (en) 2017-08-16
CN105900269A (zh) 2016-08-24
KR101835445B1 (ko) 2018-03-08
TW201532336A (zh) 2015-08-16
EP3093910A1 (en) 2016-11-16
PL3093910T3 (pl) 2019-11-29

Similar Documents

Publication Publication Date Title
JP6442419B2 (ja) リチウムイオン二次電池用負極活物質
JP6664040B2 (ja) リチウムイオン電池用負極材及びその用途
KR102132618B1 (ko) 리튬 이온 전지용 부극재 및 그 용도
JP5956690B2 (ja) リチウムイオン電池用負極材及びその用途
US10522821B2 (en) Graphite power for negative electrode active material of lithium-ion secondary battery
US10144646B2 (en) Carbon material, material for a battery electrode, and battery
WO2015019993A1 (ja) 複合体の製造方法及びリチウムイオン電池用負極材
US20190363348A1 (en) Negative electrode material for lithium ion secondary cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556841

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167014755

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015735193

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015735193

Country of ref document: EP