WO2015105027A1 - 発光デバイス、及び発光デバイスの製造方法 - Google Patents

発光デバイス、及び発光デバイスの製造方法 Download PDF

Info

Publication number
WO2015105027A1
WO2015105027A1 PCT/JP2014/084549 JP2014084549W WO2015105027A1 WO 2015105027 A1 WO2015105027 A1 WO 2015105027A1 JP 2014084549 W JP2014084549 W JP 2014084549W WO 2015105027 A1 WO2015105027 A1 WO 2015105027A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
light emitting
quantum dots
emitting device
layer
Prior art date
Application number
PCT/JP2014/084549
Other languages
English (en)
French (fr)
Inventor
村山 浩二
晴哉 宮田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201480072569.7A priority Critical patent/CN105900529B/zh
Priority to JP2015556777A priority patent/JP6168372B2/ja
Publication of WO2015105027A1 publication Critical patent/WO2015105027A1/ja
Priority to US15/140,788 priority patent/US20160240730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the present invention relates to a light-emitting device and a method for manufacturing the light-emitting device, and more specifically, light emission from an EL element (EL: Electro-Luminescence) that emits light by injecting current into a light-emitting layer having a large number of quantum dots made of nanoparticle materials.
  • EL Electro-Luminescence
  • the present invention relates to a device and a manufacturing method thereof.
  • Quantum dots which are nanoparticles with a particle size of 10 nm or less, have excellent carrier (electron, hole) confinement properties, and can easily generate excitons by electron-hole recombination. Therefore, light emission from free excitons can be expected, and light emission with high emission efficiency and sharp emission spectrum can be realized. Further, since quantum dots can be controlled in a wide wavelength range using the quantum size effect, they are attracting attention for application to light emitting devices such as EL elements, light emitting diodes (LEDs), and semiconductor lasers.
  • LEDs light emitting diodes
  • quantum dots nanoparticles
  • a self-assembly method for producing quantum dots by a dry process is known.
  • the self-assembly method is a method in which a semiconductor layer is vapor-phase epitaxially grown under a specific condition that causes lattice mismatch, and a three-dimensional quantum dot is self-formed.
  • a semiconductor layer is vapor-phase epitaxially grown under a specific condition that causes lattice mismatch, and a three-dimensional quantum dot is self-formed.
  • an n-type semiconductor substrate and a p-type semiconductor substrate are used.
  • quantum dots are formed at the locations where the strain is generated.
  • quantum dots are discretely distributed on the n-type semiconductor substrate, so that gaps are generated between adjacent quantum dots. Therefore, holes transported from the p-type semiconductor substrate are transported to the n-type semiconductor substrate side without being injected into the quantum dots, or electrons transported from the n-type semiconductor substrate are not injected into the quantum dots. May be transported to a p-type semiconductor substrate, which may cause a decrease in light emission efficiency.
  • carriers that are not injected into the quantum dots may recombine outside the quantum dots to emit light. If the carriers recombine outside the quantum dots and emit light in this way, the emission color purity may be lowered.
  • carriers that are not injected into the quantum dot may not emit light even if they are recombined outside the quantum dot and become a so-called non-radiative recombination center. In such a case, electrical energy is converted into light energy. Without being released as thermal energy, the luminous efficiency may be further reduced.
  • Patent Document 1 a substrate having a main surface made of a first semiconductor, a plurality of quantum dots distributed discretely on the main surface, and a surface on which the quantum dots are distributed is formed.
  • a semiconductor device having a third semiconductor having a large band gap or a barrier layer formed of an insulating material has been proposed.
  • the substrate 101 is formed using n-type GaAs (first semiconductor) and the covering layer 102 is formed using p-type GaAs (second semiconductor). Is forming. Further, the quantum dots 103 made of InGaAs are discretely distributed on the substrate 101 by using the self-assembly method, and further, AlAs (third semiconductor) having a larger band gap energy than GaAs by using the molecular beam epitaxy method. ) Is epitaxially grown on the substrate 101, and then the AlAs is oxidized to form an insulating barrier layer 104.
  • Patent Document 1 by filling the gap between the quantum dots 103 with the insulating barrier layer 104, carriers can be easily injected into the quantum dots 103, and the electron-holes in the quantum dots 103 can be easily injected. Recombination is promoted, thereby improving luminous efficiency.
  • Patent Document 2 and Patent Document 3 are known as techniques for producing colloidal quantum dots by a wet process.
  • Patent Document 2 discloses a light emitting layer that is formed of quantum dots and emits light by recombination of electrons and holes, an n-type inorganic semiconductor layer that transports the electrons to the light emitting layer, and the holes that are transported to the light emitting layer.
  • a light-emitting device comprising:
  • an n-type semiconductor layer 111 and a p-type semiconductor layer 112 are formed of an inorganic material having a band structure with good carrier transportability, and the n-type semiconductor layer 111 and the p-type semiconductor layer are formed.
  • a quantum dot layer 113 serving as a light emitting layer is interposed between the semiconductor layer 112 and the semiconductor layer 112.
  • the quantum barrier layer 113 is injected into the quantum dot layer 113 through a potential barrier between the layer 112) and the carrier injection efficiency into the quantum dot layer 113.
  • a quantum dot layer is interposed between a first electrode and a second electrode, and the quantum dot layer includes a first surfactant having a hole transporting property on the surface.
  • a photoelectric conversion device formed of a nanoparticle material coated with a second surfactant having electron transport properties has been proposed.
  • a hole transport layer 123 is formed on an anode (first electrode) 122 formed on a substrate 121, and light is emitted on the hole transport layer 123.
  • Layer 124 is formed.
  • an electron transport layer 125 is formed on the light emitting layer (quantum dot layer) 124, and a cathode (second electrode) 126 is formed on the electron transport layer 125.
  • the light emitting layer 124 is formed of an aggregate of core-shell structured quantum dots (nanoparticle material) 129 having a core portion 127 and a shell portion 128, and the surface of the quantum dot 129 has a hole transporting property.
  • One surfactant 131 and a second surfactant 132 having an electron transporting property are coated.
  • a quantum dot dispersion solution in which quantum dots are dispersed in a nonpolar solvent is prepared, and a first surfactant 131 is injected into the quantum dot dispersion solution so that the surface of the quantum dots is the first.
  • a dispersion solution with a hole transporting property is prepared.
  • coating this dispersion solution on the positive hole transport layer 123 and forming a quantum dot layer with a positive hole transport property it is immersed in the substitution solution containing the 2nd surfactant 132, thereby 1st A part of the surfactant 131 is replaced with the second surfactant 132 so that two kinds of surfactants having a hole transporting property and an electron transporting property coexist.
  • JP 2002-184970 A (Claim 1, FIG. 1) JP 2006-185985 (Claim 1, FIG. 1) International Publication No. 2010/0665814 (Claims 1 and 7, paragraph numbers [0034], [0035], [0089] to [0103], [0123], etc.)
  • Patent Document 1 (FIG. 13) is formed by epitaxially growing InGaAs constituting the quantum dots 103, although there are few crystal surface defects, InGaAs is obtained by substituting part of In with Ga. Therefore, there is no large difference in band gap energy from GaAs forming the substrate 101 and the coating layer 102, and the carrier confinement performance is inferior.
  • quantum dots when quantum dots are used in the light emitting layer of a light emitting device, holes and electrons are effectively confined in the quantum dots 103, and the holes and electrons are recombined in the quantum dots 103 to emit excitons. There is a need.
  • Patent Document 1 there is a small difference in band gap energy between InGaAs forming the quantum dots 103 and GaAs forming the substrate 101 and the coating layer 102. Therefore, the holes transported from the hole transport layer and Electrons transported from the electron transport layer do not recombine in the quantum dots 103, and holes are transported to the electron transport layer side, and electrons may be transported to the hole transport layer side. The performance of confining carriers in 103 was inferior.
  • Patent Document 2 (FIG. 14) uses the tunnel effect to improve the efficiency of carrier injection into the quantum dot layer 113, but it is difficult to effectively confine carriers in the quantum dot layer 113. Therefore, there is a problem that the recombination probability of carriers is inferior and sufficient luminous efficiency cannot be obtained.
  • Patent Document 3 discloses that the first type of surfactant (first and second surfactants 131 and 132) having a hole transporting property and an electron transporting property coexist. A part of the surfactant 131 is replaced with the second surfactant 132, so that an immersion step or the like is required, which may cause the manufacturing process to become complicated.
  • the present invention has been made in view of such circumstances, can improve the recombination probability in the quantum dots at low cost, has good luminous efficiency and luminescent color purity, and low driving voltage. It is an object of the present invention to provide a light emitting device capable of performing the above and a method for manufacturing the light emitting device.
  • the carrier balance between electrons injected from the electron transport layer into the quantum dots and holes injected from the hole transport layer into the quantum dots is improved, and a good recombination probability It is desirable to obtain
  • the hole transport layer and the electron transport layer are usually formed of different materials, the hole mobility and the electron mobility passing through the hole transport layer and the electron transport layer are different.
  • the electron mobility in the electron transport layer is larger than the hole mobility in the hole transport layer, the amount of holes injected into the quantum dot is smaller than the amount of electrons injected, which is good Such a carrier balance cannot be obtained, and the probability of recombination of electrons and holes may be reduced.
  • the emission color purity may be reduced.
  • the present inventors conducted extensive research to improve the carrier balance, and as a result, out of the two types of carrier transport layers having different carrier mobility, the same carrier transport property as that of the carrier transport layer having a low carrier mobility was obtained.
  • the carrier transporting material By allowing the carrier transporting material to be dispersed between the quantum dots, the efficiency of injecting the carriers with low carrier mobility into the quantum dots can be improved, thereby improving the carrier balance and improving the inside of the quantum dots. It has been found that a light-emitting device with improved recombination probability, good emission efficiency and emission color purity, and a low drive voltage can be obtained.
  • a light-emitting device includes a first carrier transport layer and a second carrier having a carrier mobility higher than that of the first carrier transport layer.
  • a light-emitting device that includes a transport layer, a light-emitting layer sandwiched between the first carrier transport layer and the second carrier transport layer, and emits light when current is injected into the light-emitting layer.
  • a number of quantum dots made of a particulate material are dispersed, and a carrier transporting material having the same carrier transportability as that of the first carrier transporting layer is present in a dispersed manner in the gaps of the quantum dots. It is a feature.
  • the first carrier transport layer is a hole transport layer
  • the second carrier transport layer is an electron transport layer
  • the carrier transport material is a hole transport layer. It is preferable that the material be a functional material.
  • the holes are transferred to the quantum dots via the hole transport material present in the light emitting layer. Injection is promoted, and the injection efficiency of holes into the quantum dots is improved. As a result, the probability of electron-hole recombination within the quantum dot is improved, and a light-emitting device capable of reducing the drive voltage with good emission efficiency and emission color purity can be obtained.
  • the carrier transporting material is made of a low molecular compound.
  • the surface of the quantum dot is coated with a surfactant.
  • the hole-electron pair can be easily formed even when a bulky surfactant such as a long-chain amine having a surfactant that does not have carrier transport properties and has inactive surface defects and good dispersibility is used. It can be injected into the quantum dot.
  • a bulky surfactant such as a long-chain amine having a surfactant that does not have carrier transport properties and has inactive surface defects and good dispersibility
  • the carrier transporting material is present between the quantum dots without being coordinated on the surface of the quantum dots.
  • the quantum dots have a core-shell structure including a core portion and a shell portion.
  • the light-emitting device produces a carrier transport solution containing a quantum dot dispersion solution in which quantum dots are dispersed and a soluble carrier transport material having a carrier transport property soluble in the quantum dot dispersion solution. It can be manufactured by applying a transporting solution on a substrate to form a carrier transporting coating film, and then applying a quantum dot dispersion solution on the carrier transporting coating film.
  • the method for producing a light-emitting device includes a dispersion solution preparation step of preparing a quantum dot dispersion solution in which quantum dots made of nanoparticle materials are dispersed, a carrier transportability, and the quantum dot dispersion solution.
  • a carrier transportable solution preparation step for preparing a carrier transportable solution containing a soluble soluble carrier transportable material, and applying the carrier transportable solution on a substrate to form a carrier transportable coating film;
  • the quantum dot dispersion solution is applied onto the conductive coating film, and at least a part of the soluble carrier transport material is dispersed in the quantum dot dispersion solution so that the carrier transport material exists in a dispersed state in the gaps of the quantum dots.
  • a carrier transport layer / light emitting layer manufacturing step of simultaneously preparing a carrier transport layer and a light emitting layer.
  • the soluble carrier transporting material can be dissolved in the quantum dot dispersion solution and dispersed between the quantum dots, so that it exists in the dispersed state between the thinned carrier transporting layer and the quantum dots.
  • a light-emitting layer including a carrier transporting material can be manufactured at the same time, and a light-emitting device with favorable emission efficiency and emission color purity can be manufactured at low cost.
  • the soluble carrier transporting material is preferably a low molecular compound.
  • the soluble carrier transporting material can be easily dissolved in the quantum dot dispersion solution and can be dispersed in the gaps of the quantum dots.
  • the soluble carrier transporting material is preferably a soluble hole transporting material.
  • the surface of the quantum dot is coated with a surfactant, and the soluble carrier transporting material is dispersed in the gap of the quantum dot without being coordinated to the surface of the quantum dot. It is preferable to exist in the form.
  • the carrier-transporting solution has a content of the soluble carrier-transporting material based on the total amount of the carrier-transporting materials of 50 wt% or more, and in particular, the carrier
  • the content of the transportable material is preferably 75 to 90 wt%.
  • the carrier transporting solution contains a polymer carrier transporting material other than the soluble carrier transporting material
  • the polymer carrier transporting material forms a carrier transport layer by forming a bridge
  • the soluble carrier transporting material is dissolved in the quantum dot dispersion solution and becomes a part of the light emitting layer. Since the efficiency of carrier injection into the quantum dots is improved and the recombination probability is improved, a light-emitting device having good light emission efficiency and light emission color purity and capable of lowering the drive voltage can be obtained. .
  • the first carrier transport layer, the second carrier transport layer having higher carrier mobility than the first carrier transport layer, the first carrier transport layer, and the second carrier transport layer.
  • a light emitting device that emits light by injecting a current into the light emitting layer the light emitting layer includes a large number of quantum dots made of a nanoparticle material dispersed therein, and Since the carrier transporting material having the same carrier transportability as that of the first carrier transporting layer is present in a dispersed manner in the gaps of the quantum dots, it is possible to improve the transportability of carriers having a low carrier mobility. This improves the transportability of carriers into the quantum dots, improves the recombination probability, has good light emission efficiency and light emission color purity, and allows driving voltage to be lowered. It is possible to obtain a device.
  • a dispersion solution preparation step of preparing a quantum dot dispersion solution in which quantum dots made of nanoparticle materials are dispersed, a carrier transportability and the quantum dot dispersion solution A carrier transportable solution preparation step for preparing a carrier transportable solution containing a soluble soluble carrier transportable material, and applying the carrier transportable solution on a substrate to form a carrier transportable coating film; The quantum dot dispersion solution is applied onto a transportable coating film, and at least a part of the soluble carrier transportable material is dispersed in the quantum dot so that the carrier transportable material is dispersed in the gaps of the quantum dots.
  • soluble carrier transport Since it includes a carrier transport layer and a light emitting layer preparation step in which a carrier transport layer and a light emitting layer are simultaneously prepared by dissolving in a solution, soluble carrier transport The material is dissolved in a quantum dot dispersion solution can be present in dispersed form in between the quantum dots, it is possible thereby to produce the desired emission layer together with the carrier transport layer.
  • FIG. 1 is a diagram showing emission spectra of sample numbers 1 to 4.
  • FIG. 6 is a diagram showing current density characteristics of sample numbers 1 to 4;
  • FIG. 6 is a graph showing emission spectra of sample numbers 5 to 8.
  • FIG. 6 is a diagram showing current density characteristics of sample numbers 5 to 8; It is sectional drawing for demonstrating the prior art described in patent document 1.
  • FIG. It is sectional drawing for demonstrating the prior art described in patent document 2.
  • FIG. It is sectional drawing for demonstrating the prior art described in patent document 3.
  • FIG. 1 is a cross-sectional view schematically showing an EL element as a light emitting device according to the present invention.
  • an anode 2 is formed on a transparent substrate 1 such as a glass substrate, and a hole injection layer 3 and a hole transport layer 4 made of a hole transporting material are sequentially formed on the surface of the anode 2, A light emitting layer 5 is formed on the surface of the hole transport layer 4. Further, an electron transport layer 6 made of an electron transport material is formed on the surface of the light emitting layer 5, and a cathode 7 is formed on the surface of the electron transport layer 6.
  • the light-emitting layer 5 includes a large number of quantum dots 8 made of a nanoparticle material, and a hole transporting material (carrier transporting material) 9 that exists in a uniform or substantially uniform manner between the quantum dots 8. ing.
  • the quantum dots 8 have a core-shell structure having a core portion 10 and a shell portion 11 that protects the core portion 10, and the surface of the shell portion 11 is covered with a surfactant 12. .
  • the core material for forming the core portion 10 is not particularly limited as long as it is a material that emits light in the visible light region.
  • CdZnS, CdS, CdTe, ZnSe, ZnTe, InP, InAs, GaP, GaAs, ZnS: CuInS ZnS: CuInGaS, Si, Ge, or the like can be used.
  • the shell portion 11 is formed mainly for inactivating the surface defects of the core portion 10. Therefore, as the shell material forming the shell portion 11, the band gap energy Eg is larger than that of the core material, and the energy level VB1 of the valence band based on the vacuum level is the energy level of the valence band of the core material. It is preferable to use a material that is lower than the position VB2.
  • Such a shell material examples include sulfides such as ZnS and CdS, oxides such as ZnO, SiO 2 , TiO 2 , and Al 2 O 3 , nitrides such as GaN and AlN, and selenides such as ZnSe and CdSe. Can be appropriately selected and used.
  • the surfactant 12 is an organic compound having a bulky polar group such as hexadecylamine (hereinafter referred to as “HDA”) from the viewpoint of dispersibility and inactivating the surface defects of the core portion 10 more efficiently.
  • HDA hexadecylamine
  • surfactants in which polar groups are bonded to alkyl groups such as long-chain amines such as octadecylamine, trioctylphosphine, trioctylphosphine oxide, oleic acid, and myristic acid.
  • the surface of the shell portion 11 is coated with the surfactant 12 having a low-volume ligand, it is difficult to obtain sufficient dispersibility. Moreover, since the molecular weight of the surfactant 12 is small, the melting point and boiling point are low, and many are liquid at room temperature. The surfactant 12 which is liquid at normal temperature has a strong molecular motion, and the probability of inactivating the surface defects of the core portion 10 is reduced.
  • the surfactant 12 it is preferable to use a surfactant having a bulky polar group such as the above-mentioned HDA, and such a polar group is coordinated to the surface of the shell portion 11 as a ligand. preferable.
  • the light emitting layer 5 is illustrated with the surfactant 12 omitted.
  • the hole transportable material 9 exists in the gap
  • this EL element when a voltage is applied between the anode 2 and the cathode 7, holes injected into the anode 2 are injected into the quantum dots 8 through the hole injection layer 3 and the hole transport layer 4. Is done. On the other hand, the electrons injected into the cathode 7 are injected into the quantum dots 8 through the electron transport layer 6. And in the core part 10 of the quantum dot 8, a hole and an electron recombine and, thereby, exciton light emission.
  • the desired sufficient luminous efficiency is obtained. It cannot be obtained, and there is a possibility that the emission color purity is further lowered.
  • the core portion 10 lacks holes, so that electrons are wasted and the luminous efficiency may be reduced.
  • electrons may pass through the outside of the quantum dots 8 without being injected into the quantum dots 8, reach the hole transport layer 4 and recombine with holes in the hole transport layer 4, and emit light color purity. There is a risk of lowering.
  • the gap between the quantum dots 8 becomes large, so that electrons are not supplied into the quantum dots 8 and the quantum dots 8 are not supplied. Passing through the gaps between them, the carriers may recombine in the hole transport layer 4 and the luminescent color purity may be reduced.
  • the carrier balance is improved so that the injection amount of electrons injected into the core portion 10 and the injection amount of holes are as equal as possible. There is a need.
  • electrons are efficiently injected into the quantum dots 8 by using an electron transport layer material whose electron mobility is larger than the hole mobility, and the hole transport material 9 is replaced with the quantum dots 8.
  • the holes are dispersed in the gaps to promote the injection of holes into the quantum dots 8, thereby improving the carrier balance and improving the light emission efficiency. Since a large amount of holes are injected into the quantum dots 8 in this way, the energy barrier is lowered and the drive voltage can be lowered.
  • the hole transporting material 9 exists in a dispersed state in the gaps of the quantum dots 8, even when a bulky surfactant 12 such as HDA is used, electrons pass outside the quantum dots 8. It is suppressed and the electrons are efficiently injected into the quantum dots 8. Then, the holes injected through the hole transporting material 9 are effectively recombined in the quantum dots 8, thereby improving the emission color purity.
  • the material for the electron transport layer used in the present embodiment is not particularly limited as long as electrons can be transported from the cathode 7 to the light emitting layer 5 at a high speed.
  • the electron mobility is 10 ⁇ 3 to
  • a material for an electron transport layer of 10 ⁇ 6 cm 2 / V ⁇ s can be preferably used.
  • examples of the material for the electron transport layer include KLET-03 manufactured by Chemipro Kasei Co., Ltd. and 2,2 ′, 2 ′′-(1,3,5-benzonitrile) represented by the chemical formula (1).
  • -Tris (1-phenyl-1-H-benzimidazole hereinafter referred to as “TPBi”), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (hereinafter referred to as “TPBi”) , “BCP”), 2,5-bis (2 ′, 2 ′′ -bipyridin-6-yl) -1,1-dimethyl, 3,4-diphenylsilacyclopentadiene represented by the chemical formula (3)
  • PyPySPyPy triazine-acetylene compounds represented by the chemical formula (4).
  • the hole transporting material 9 present in the light emitting layer 5 at least a part of the hole transporting material is soluble in a quantum dot dispersion solution described later (hereinafter referred to as “soluble hole transporting property”). It is preferred to use "materials").
  • Examples of such a soluble hole transporting material include N, N′-dicarbazoyl-4,4′-biphenyl represented by the chemical formula (5) (hereinafter referred to as “CBP”), a chemical formula ( 6) N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (hereinafter referred to as “TPD”), chemical formula 4,4′-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl represented by (7) (hereinafter referred to as “ ⁇ -NPD”), a low molecular weight compound represented by chemical formula (8) And polyvinylcarbazole (hereinafter referred to as “PVK”).
  • CBP chemical formula
  • TPD N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′
  • the hole transport layer 4 only needs to contain at least the above-described soluble hole transport material, and may contain other polymer-based hole transport materials such as poly-TPD.
  • poly-TPD polymer-based hole transport materials
  • the hole injection layer 3 is not particularly limited, but it is preferable that the hole injection layer 3 is not mixed with the material used for the hole transport layer 4.
  • the hole transport layer 4 poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) is used for the hole injection layer 3. ) (Hereinafter referred to as “PEDOT: PSS”) or the like, it is preferable to use a material that is dispersed in a polar solvent (for example, pure water).
  • the anode 2 and the cathode 7 are not particularly limited.
  • ITO indium tin oxide
  • Al indium tin oxide
  • it can also be set as the double layer structure of LiF / Al.
  • This EL device is prepared with a quantum dot dispersion solution in which quantum dots are dispersed and a hole transporting solution containing a soluble hole transporting material, and a hole transporting solution is applied onto the hole injection layer 3. And after making it dry and forming a positive hole transport coating film, it can manufacture by apply
  • the present EL device when the present EL device is produced, even if a dispersion solution in which a hole transport material and quantum dots are simply mixed is applied on the hole transport layer 4, the solubility of the hole transport material in the dispersion solution is improved. Therefore, it is difficult to make the hole transporting material 9 exist in a dispersed state in the gap between the quantum dots 8 and 8.
  • a quantum dot dispersion solution in which quantum dots are dispersed and a hole transport solution in which a soluble hole transport material is contained in the quantum dot dispersion solution are separately prepared, and the positive After the hole transporting solution is applied onto the substrate to form a hole transporting coating film, the quantum dot dispersion solution is applied onto the hole transporting coating film. That is, by applying the quantum dot dispersion solution on the hole transporting coating film, the soluble hole transporting material in the hole transporting coating film is dissolved in the quantum dot dispersion solution.
  • the hole transporting material 9 can be present in a dispersed state in the gap with the quantum dots 8, and the hole transporting layer 4 and the light emitting layer 5 can be formed simultaneously.
  • a predetermined amount of cadmium oxide and zinc acetate are mixed in oleic acid and dissolved while heating to a predetermined temperature (for example, 150 ° C.) under reduced pressure.
  • a predetermined temperature for example, 150 ° C.
  • this solution is poured into octadecene and heated to a predetermined temperature (for example, 300 ° C.) under a reducing atmosphere to prepare a cadmium oxide-zinc acetate mixed solution.
  • a sulfur solution in which sulfur is dissolved in octadecene is prepared, the sulfur solution is injected into the heated cadmium oxide-zinc acetate mixed solution, and further, at a predetermined temperature (for example, 310 ° C.) for a predetermined time (for example, 8 And heating, thereby obtaining a quantum dot having a core-shell structure in which the core portion 10 is CdZnS and the shell portion 11 is ZnS.
  • the quantum dots are precipitated using acetone, chloroform, or the like, and a supernatant is removed from the solution by centrifugation.
  • the same operation is repeated several times, and the precipitate is separated by centrifugation, and then dispersed in a nonpolar solvent such as toluene while adding a surfactant such as HDA, whereby a quantum dot dispersion solution Is made.
  • a hole transporting material containing at least a soluble hole transporting material that dissolves in the quantum dot dispersion solution is dissolved in a nonpolar solvent, thereby preparing a hole transporting solution.
  • This hole transporting solution only needs to contain a soluble hole transporting material as described above, and may contain a polymeric hole transporting material in addition to the soluble hole transporting material. .
  • the content of the soluble hole transporting material relative to the total amount of the hole transporting material is 50 wt% from the viewpoint of obtaining good luminous efficiency. From the viewpoint of reducing the drive voltage, 75 wt% or more is preferable.
  • the upper limit of the content of the soluble hole transporting material relative to the total amount of the hole transporting material may be 100 wt%, that is, the whole amount may be a soluble hole transporting material, but considering the hole injection efficiency A mixture with a polymeric hole transport material is desirable, and the upper limit of the content is preferably about 90 wt%.
  • the content of the soluble hole transporting material relative to the total amount of the hole transporting material is not particularly limited, but is preferably 50 wt% or more, and more preferably 75 to 90 wt%.
  • 3 and 4 are manufacturing process diagrams showing the method for manufacturing the EL element.
  • a conductive transparent material such as ITO is formed on a transparent substrate 1 such as a glass substrate, and UV ozone treatment is performed.
  • An anode 2 having a thickness of 100 nm to 150 nm is formed.
  • a hole injection layer solution is prepared, and the hole injection layer solution is applied onto the anode 2 using a spin coating method or the like and dried. As shown in FIG. 3B, the film thickness is 20 nm to 30 nm. The hole injection layer 3 is formed.
  • the hole transporting solution described above is prepared, and the hole transporting solution is applied onto the positive electrode injection layer 3 using a spin coating method or the like and dried. As shown in FIG. A hole transporting coating film 14 having a thickness of 60 nm to 70 nm is formed.
  • the quantum dot dispersion solution is applied onto the hole transporting coating film 14 and dried in a reducing atmosphere.
  • the soluble hole transporting material in the hole transporting coating film 14 is dissolved in the quantum dot dispersion solution, and the hole transporting coating film 14 is thinned to about 40 to 50 nm to form the hole transporting layer 4.
  • the soluble hole transporting material is dispersed in the gaps of the quantum dots, and as a result, the hole transporting layer 4 and the light emitting layer 5 are simultaneously formed as shown in FIG.
  • an electron transporting material having a high electron mobility such as KELT-03 (manufactured by Chemipro Kasei Co., Ltd.) is used, and light emission is performed using a thin film forming method such as a vacuum evaporation method as shown in FIG.
  • An electron transport layer 6 having a thickness of 50 nm to 70 nm is formed on the surface of the layer 5.
  • LiF, Al or the like is used to form a cathode 7 having a film thickness of 100 nm to 300 nm by a thin film forming method such as a vacuum deposition method, whereby an EL element is manufactured.
  • a dispersion solution preparing step of preparing a quantum dot dispersion solution in which quantum dots 8 made of a nanoparticle material are dispersed, and the quantum dot dispersion solution having hole transportability A hole transporting solution preparation step for preparing a hole transporting solution containing a soluble hole transporting material soluble in a material, and applying the hole transporting solution to the hole injection layer 3 to form a hole transporting solution. After forming the coating film 14, the quantum dot dispersion solution is applied onto the hole transporting coating film 14, so that the hole transporting material 9 exists in a dispersed state in the gaps of the quantum dots 8.
  • the soluble hole transporting material does not coordinate on the surface of the quantum dots 8 and exists in a dispersed state in the gaps of the quantum dots 8, there is no need to use a surfactant having hole transporting properties, Accordingly, the synthesis process of the organic compound for introducing the hole transporting ligand is not required, and thus a highly efficient light-emitting device can be obtained at low cost.
  • the present invention is not limited to the above embodiment.
  • an electron transporting material and a hole transporting material whose electron mobility is larger than the hole mobility are used, and the hole transporting material is present in a dispersed manner in the gaps of the quantum dots.
  • a hole-transporting material and an electron-transporting material that have a higher hole mobility than the electron mobility may be used, and the electron-transporting material may be dispersed in the gaps of the quantum dots.
  • Alq3 tris (8-hydroquinoline) aluminum
  • Alq3 tris (8-hydroquinoline) aluminum
  • a combination of a transport material and a hole transport material having a high hole mobility is also possible.
  • a compound semiconductor composed of CdZnS / ZnS is used as each quantum dot, but the same applies to other compound semiconductors, oxides, and single semiconductors.
  • the hole transport layer 4 and the electron transport layer 6 are formed of an organic compound.
  • the hole transport layer 4 and the electron transport layer 6 may be formed of an inorganic compound and have high recombination probability in the quantum dots.
  • the light emitting device can be manufactured at low cost and with high efficiency.
  • the quantum dot having the core-shell structure has been described.
  • the present invention can be similarly applied to a case where the shell part has a two-layer core-shell structure or a shell part. Not too long.
  • the present invention can be used for various light emitting devices such as light emitting diodes, semiconductor lasers and various display devices in addition to EL elements.
  • the electron transport layer 6 is produced by a dry process using a vacuum deposition method, but may be produced by a wet process such as a spin coat method. However, in this case, it is necessary to use a dispersion solvent having the same polarity as the dispersion solution used in the dipping process.
  • sample preparation (Sample numbers 1 to 4)
  • the core part is formed of CdZnS (LUMO level: 4.4 eV, HOMO level: 7.2 eV)
  • the shell part is formed of ZnS (LUMO level: 3.9 eV, HOMO level: 7.4 eV)
  • a quantum dot dispersion solution in which quantum dots having a core-shell structure, the surface of which was coated with HDA, was dispersed in toluene (nonpolar solvent) was prepared.
  • CBP (LUMO level: 2.9 eV, HOMO level: 6.0 eV) as a soluble hole transporting material
  • poly-TPD (LUMO level: 3.1 eV) as a polymer-based hole transporting material, HOMO level: 5.4 eV) was prepared. Then, these CBP and poly-TPD were weighed in chlorobenzene (nonpolar solvent) so that the content of CBP with respect to the total amount of CBP and poly-TPD was 0 wt%, 25 wt%, 50 wt%, and 75 wt%. Sample No. 1 (CBP content: 0 wt%), Sample No. 2 (CBP content: 25 wt%), Sample No. 3 (CBP content: 50 wt%), and Sample No. 4 (CBP content: 75 wt%) %) Of each hole-transporting solution.
  • a glass substrate having a length of 25 mm and a width of 25 mm is prepared, an ITO film (work function: 4.8 eV) is formed on the glass substrate by sputtering, UV ozone treatment is performed, and an anode having a film thickness of 120 nm is formed. Produced.
  • a hole injection layer solution in which PEDOT: PSS (LUMO level: 3.1 eV, HOMO level: 5.2 eV) was dissolved in pure water as a polar solvent was prepared. Then, using a spin coating method, the hole injection layer solution was applied onto the anode and dried to form a 20 nm thick hole injection layer.
  • the hole transporting solution described above was applied onto the hole injection layer and dried to form a hole transporting coating film having a film thickness of 65 nm.
  • the quantum dot dispersion solution was applied onto the hole transporting coating film and dried. Specifically, 0.1 mL of the above quantum dot dispersion solution was dropped on the hole transporting coating film, rotated at 3000 rpm for 60 seconds, heated to 100 ° C. in a nitrogen atmosphere, and dried. As a result, the CBP in the hole-transporting coating film is dissolved in the quantum dot dispersion solution and is dispersed in the gaps between the quantum dots, and the hole transport layer is thinned to a thickness of 45 nm. And a light emitting layer having a film thickness of 60 nm were fabricated simultaneously.
  • a KLET-03 (LUMO level: 3.0 eV, HOMO level: 6.7 eV) manufactured by Chemipro Kasei Co., Ltd. was formed on the surface of the light emitting layer using a vacuum deposition method, and an electron transport layer having a thickness of 50 nm was formed. Formed.
  • LiF / Al (work function: 4.3 eV) was formed by using a vacuum evaporation method to form a cathode having a thickness of 100 nm, thereby preparing samples Nos. 1 to 4.
  • Sample evaluation A sample cross section was observed with a TEM (transmission electron microscope) for Sample No. 1 containing no CBP and Sample No. 4 having a CBP content of 75 wt%.
  • FIG. 5 shows a TEM image of sample number 1
  • FIG. 6 is an enlarged TEM image of the sample.
  • FIG. 7 shows a TEM image of sample number 4
  • FIG. 8 is an enlarged TEM image of the sample.
  • Sample No. 4 containing CBP in the hole transporting solution contains CBP in the hole transporting solution. It can be seen that a light-emitting layer having a thin film thickness and a large film thickness is obtained as compared with Sample No. 1 having no film thickness.
  • the CBP in the hole transporting coating film is dissolved in toluene in the quantum dot dispersion solution, and as a result, the hole transporting material is dispersed in the gaps of the quantum dots. It seems that the thickness of the light emitting layer is increased while the thickness of the transport layer is decreased.
  • each sample is placed in an integrating sphere, a constant current power source (2400 manufactured by Keithley Instruments Inc.) is used, a DC voltage is applied to cause the sample to emit light at a luminance of 100 cd / m 2 , and the emitted light was condensed with an integrating sphere, and the emission spectrum was measured with a multichannel detector (PMA-11 manufactured by Hamamatsu Photophonics).
  • a constant current power source 2400 manufactured by Keithley Instruments Inc.
  • FIG. 9 is a diagram showing emission spectra of sample numbers 1 to 4, where the horizontal axis represents wavelength (nm) and the vertical axis represents emission intensity (a.u.). The emission spectra are shown by normalizing the measurement results between 0 and 1.
  • the emission spectrum has a gentle curve extending from the intensity peak position near 400 to 450 nm, which is the absorption wavelength region of poly-TPD, to around 600 nm. This is because a part of the electrons transported from the cathode through the electron transport layer is transported to the hole transport layer without being injected into the quantum dots, and the holes and electrons are recombined in the hole transport layer, and the exciton This is thought to be due to light emission. That is, it can be seen that Sample No. 1 emits light not only in the range of 400 to 450 nm but also in the vicinity of 600 nm, and the emission color purity is lowered.
  • Sample Nos. 2 to 4 have a steep emission spectrum near 400 to 450 nm and a small half-value width of the intensity peak compared to Sample No. 1, and the emission intensity around 600 nm is also suppressed. .
  • Sample No. 2 (CBP content: 25%) has a slightly smaller half-value width of the intensity peak around 400 to 450 nm than Sample No. 1, and the emission intensity around 600 nm is also somewhat smaller. It is suppressed.
  • Sample No. 4 (CBP content: 75%) has a sharp emission spectrum in the vicinity of 400 to 450 nm, and the half-width of the intensity peak is clearly smaller than that of Sample No. 1, and hardly emits light in the vicinity of 600 nm. .
  • the emission spectrum near 400 to 450 nm becomes steep, the half width of the intensity peak becomes small, and light emission near 600 nm is suppressed. be able to.
  • good emission color purity is obtained when the CBP content is preferably 50% or more, more preferably 75% or more.
  • FIG. 10 is a diagram showing the relationship between applied voltage and current density, where the horizontal axis represents voltage (V) and the vertical axis represents current density (mA / cm 2 ).
  • indicates sample number 1 (CBP content: 0 wt%)
  • indicates sample number 2 (CBP content: 25 wt%)
  • indicates sample number 3 (CBP content: 50 wt%)
  • ⁇ mark Indicates Sample No. 4 (CBP content: 75 wt%).
  • sample No. 4 having a CBP content of 75 wt%, which is a soluble hole transporting material, can significantly reduce the driving voltage compared to Sample No. 1 not containing CBP. did it.
  • the content of the soluble hole transporting material with respect to the total amount of the hole transporting material is preferably 75 wt% or more.
  • Samples Nos. 5 to 8 were prepared by the same method and procedure.
  • FIG. 11 is a diagram showing emission spectra of sample numbers 5 to 8, where the horizontal axis represents wavelength (nm) and the vertical axis represents emission intensity (a.u.). This emission spectrum shows the measurement results normalized between 0 and 1.
  • the light emitting layer is formed by containing CBP in the quantum dot dispersion solution
  • the light emission spectrum is almost the same as when CBP is not contained in the quantum dot dispersion solution.
  • FIG. 12 is a diagram showing the relationship between applied voltage and current density, where the horizontal axis represents voltage (V) and the vertical axis represents current density (mA / cm 2 ).
  • indicates sample number 5 (CBP content: 0 mmol / L)
  • indicates sample number 6 (CBP content: 0.01 mmol / L)
  • indicates sample number 7 (CBP content: 0. 1 mmol / L)
  • indicates sample number 8 (CBP content: 1 mmol / L).
  • the efficiency of injection of holes and electrons into quantum dots is improved to improve the light emission efficiency and light emission color purity, and it is possible to realize a light emitting device such as an EL element that can be driven at a low voltage.

Abstract

 透明基板1上に陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、及び陰極7が形成されている。発光層5は、多数の量子ドット8が分散されてなり、正孔輸送性材料9が量子ドット8の間隙に分散状に存在している。量子ドット8を分散させた量子ドット分散溶液と、該量子ドット分散溶液に可溶な正孔輸送性を有する可溶性正孔輸送性材料を含有した正孔輸送性溶液を作製し、正孔輸送性溶液を正孔注入層3上に塗布して正孔輸送性塗布膜を形成した後、該正孔輸送性塗布膜上に量子ドット分散溶液を塗布し、可溶性正孔輸送性材料を量子ドット分散溶液に溶解させ、正孔輸送層4と発光層5とを同時に作製する。これにより低コストで量子ドット内での再結合確率を向上させることができ、発光効率や発光色純度が良好でかつ駆動電圧の低電圧化が可能な発光デバイスとその製造方法を実現する。

Description

発光デバイス、及び発光デバイスの製造方法
 本発明は、発光デバイス、及び発光デバイスの製造方法に関し、より詳しくはナノ粒子材料からなる多数の量子ドットを有する発光層に電流を注入し、発光させるEL素子(EL:Electro Luminescence)等の発光デバイスとその製造方法に関する。
 粒径が10nm以下のナノ粒子である量子ドットは、キャリア(電子、正孔)の閉じ込め性に優れていることから、電子-正孔の再結合により励起子を容易に生成することができる。このため自由励起子からの発光が期待でき、発光効率が高く発光スペクトルの鋭い発光を実現することが可能である。また、量子ドットは、量子サイズ効果を利用した広い波長範囲での制御が可能であることから、EL素子、発光ダイオード(LED)、半導体レーザ等の発光デバイスへの応用が注目されている。
 この種の発光デバイスでは、キャリアを高効率で量子ドット(ナノ粒子)内に閉じ込めて再結合させ、発光効率を高めるのが重要とされている。そして、量子ドットを作製する方法としては、ドライプロセスで量子ドットを作製するセルフアセンブル(自己組織化)法が知られている。
 セルフアセンブル法は、格子不整合となるような特定の条件下で半導体層を気相エピタキシャル成長させ、三次元的な量子ドットを自己形成させる方法であり、例えば、n型半導体基板とp型半導体基板との間の格子定数の差から歪みを生じさせ、エピタキシャル成長ができなくなると歪みが生じた箇所に量子ドットが形成される。
 しかしながら、上記セルフアセンブル法では、量子ドットがn型半導体基板上で離散的に分布することから、隣接する量子ドット間に隙間が生じる。このため、p型半導体基板から輸送されてきた正孔は量子ドットに注入されずにn型半導体基板側に輸送されたり、或いはn型半導体基板から輸送されてきた電子は量子ドットに注入されずにp型半導体基板に輸送されるおそれがあり、発光効率の低下を招くおそれがある。
 さらに、上記セルフアセンンブル法では、量子ドットに注入されなかったキャリアが量子ドットの外部で再結合して発光するおそれもある。そして、このようにキャリアが量子ドットの外部で再結合して発光すると発光色純度の低下を招くおそれがある。また、量子ドット内に注入されなかったキャリアが量子ドット外で再結合しても発光せずにいわゆる非発光再結合中心となる場合もあり、斯かる場合は、電気エネルギーが光エネルギーに変換されずに熱エネルギーとして放出されることから、発光効率の更なる低下を招くおそれがある。
 そこで、特許文献1では、第1の半導体からなる主表面を有する基板と、前記主表面の上に離散的に分布する複数の量子ドットと、前記量子ドットの分布する面の上に形成された第2の半導体からなる被覆層と、前記量子ドットの分布する面内のうち、前記量子ドットの配置されていない領域の少なくとも一部に配置され、前記第1及び第2の半導体のバンドギャップよりも大きなバンドギャップを有する第3の半導体もしくは絶縁材料で形成された障壁層とを有する半導体装置が提案されている。
 すなわち、特許文献1では、図13に示すように、n型GaAs(第1の半導体)を使用して基板101を形成すると共に、p型GaAs(第2の半導体)を使用して被覆層102を形成している。また、セルフアセンブル法を使用してInGaAsからなる量子ドット103を基板101上に離散的に分布させ、さらに分子線エピタキシ法を使用し、GaAsよりも大きなバンドギャップエネルギーを有するAlAs(第3の半導体)を基板101上にエピタキシャル成長させ、その後、該AlAsを酸化させて絶縁性を有する障壁層104を形成している。
 このように特許文献1では、絶縁性を有する障壁層104で量子ドット103間の隙間を充填することにより、キャリアを量子ドット103に注入し易くし、量子ドット103内での電子-正孔の再結合を促進し、これにより発光効率の向上を図っている。
 一方、ウェットプロセスでコロイダル量子ドットを作製した技術としては、特許文献2や特許文献3が知られている。
 特許文献2には、量子ドットでなり、電子と正孔の再結合によって発光する発光層と、前記発光層へ前記電子を輸送するn型の無機半導体層と、前記発光層へ前記ホールを輸送するp型の無機半導体層と、前記n型の無機半導体層に前記電子を注入するための第1の電極と、前記p型の無機半導体層に前記ホールを注入するための第2の電極とを具備した発光デバイスが提案されている。
 この特許文献2では、図14に示すように、n型半導体層111及びp型半導体層112をキャリア輸送性の良好なバンド構造を有する無機材料で形成し、これらn型半導体層111とp型半導体層112との間に発光層となる量子ドット層113が介装されている。
 そして、n型半導体層111から輸送されてきた電子、及びp型半導体層112から輸送されてきた正孔は、トンネル効果により量子ドット層113とキャリア輸送層(n型半導体層111及びp型半導体層112)との間のポテンシャル障壁を通過して量子ドット層113に注入され、これによりキャリアの量子ドット層113への注入効率を向上させている。
 また、特許文献3には、第1の電極と第2の電極との間に量子ドット層が介装され、前記量子ドット層は、表面が正孔輸送性を有する第1の界面活性剤と電子輸送性を有する第2の界面活性剤とで被覆されたナノ粒子材料で形成された光電変換デバイスが提案されている。
 すなわち、この特許文献3は、図15に示すように、基板121上に形成された陽極(第1の電極)122上に正孔輸送層123が形成され、該正孔輸送層123上に発光層124が形成されている。さらに、発光層(量子ドット層)124上に電子輸送層125が形成され、該電子輸送層125上に陰極(第2の電極)126が形成されている。
 また、発光層124は、コア部127とシェル部128とを有するコアーシェル構造の量子ドット(ナノ粒子材料)129の集合体で形成されており、量子ドット129の表面は正孔輸送性を有する第1の界面活性剤131と電子輸送性を有する第2の界面活性剤132とで被覆されている。
 そして、この特許文献3では、電圧の印加により陽極122及び陰極126にキャリアが注入されると、注入されたキャリアのうち、正孔はバルクへテロ的なネットワークを形成した第1の面活性剤131を介して量子ドット129に注入される。一方、電子も同様、バルクへテロ的なネットワークを形成した第2の面活性剤132を介して量子ドット129に注入される。すなわち、第1の界面活性剤131は正孔のみを輸送し、第2の界面活性剤132は電子のみを輸送することができることから、界面活性剤中で正孔と電子が再結合することもなく、電圧印加により陽極122及び陰極126に注入されたキャリアは効率良く量子ドット129内に注入され、正孔と電子とは量子ドット129内で再結合して高効率に発光させようとしている。
 また、この特許文献3では、量子ドットを非極性溶媒中に分散させた量子ドット分散溶液を作製し、量子ドット分散溶液に第1の界面活性剤131を注入して量子ドットの表面を第1の界面活性剤131で被覆し、これにより正孔輸送性付き分散溶液を作製している。そして、この分散溶液を正孔輸送層123上に塗布して正孔輸送性付き量子ドット層を成膜した後、第2の界面活性剤132を含有した置換溶液に浸漬し、これにより第1の界面活性剤131の一部を第2の界面活性剤132で置換し、正孔輸送性及び電子輸送性を有する2種類の界面活性剤が併存するようにしている。
特開2002-184970号公報(請求項1、図1) 特開2006-185985号公報(請求項1、図1) 国際公開2010/065814号(請求項1、7、段落番号〔0034〕、〔0035〕、〔0089〕~〔0103〕、〔0123〕等)
 しかしながら、特許文献1(図13)は、量子ドット103を構成するInGaAsをエピタキシャル成長させて形成しているため、結晶の表面欠陥は少ないものの、InGaAsは、Inの一部をGaで置換したものであり、したがって基板101や被覆層102を形成するGaAsとバンドギャップエネルギーに大差がなく、キャリアの閉じ込め性能に劣っていた。
 すなわち、量子ドットを発光デバイスの発光層に使用した場合、正孔及び電子を量子ドット103内に効果的に閉じ込めて、正孔と電子とを量子ドット103内で再結合させて励起子発光させる必要がある。
 しかしながら、特許文献1では、量子ドット103を形成するInGaAsと基板101及び被覆層102を形成するGaAsとではバンドギャップエネルギーの差が小さく、このため、正孔輸送層から輸送されてきた正孔及び電子輸送層から輸送されてきた電子が量子ドット103内で再結合することなく、正孔は電子輸送層側に輸送され、また電子は正孔輸送層側に輸送されるおそれがあり、量子ドット103内へのキャリアの閉じ込め性能に劣っていた。
 また、特許文献2(図14)は、トンネル効果を利用することにより量子ドット層113へのキャリアの注入効率を向上させているものの、キャリアを量子ドット層113に効果的に閉じ込めるのが困難であり、したがってキャリアの再結合確率に劣り、十分な発光効率を得ることができないという問題があった。
 また、特許文献3(図15)は、正孔輸送性及び電子輸送性を有する2種類の界面活性剤(第1及び第2の界面活性剤131、132)を併存させるために、第1の界面活性剤131の一部を第2の界面活性剤132で置換しており、このため浸漬工程等が必要となり、製造工程の煩雑化を招くおそれがある。
 しかも、特許文献3では、第1及び第2の界面活性剤を得るために、正孔輸送性材料及び電子輸送性材料にチオール基やアミノ基等の配位子を導入しなければならず、したがって、煩雑で特殊な有機化合物の合成工程が必要となり、高コスト化を招くおそれがある。
 本発明はこのような事情に鑑みなされたものであって、低コストで量子ドット内での再結合確率を向上させることができ、発光効率や発光色純度が良好でかつ駆動電圧の低電圧化が可能な発光デバイス、及び発光デバイスの製造方法を提供することを目的とする。
 発光デバイスの発光効率を向上させるためには、電子輸送層から量子ドットに注入される電子と正孔輸送層から量子ドットに注入される正孔とのキャリアバランスを改善し、良好な再結合確率を得るのが望ましい。
 すなわち、正孔輸送層及び電子輸送層は、通常、異なる材料で形成されることから、正孔輸送層及び電子輸送層をそれぞれ通過する正孔移動度及び電子移動度が異なる。例えば、電子輸送層中の電子移動度が正孔輸送層中の正孔移動度よりも大きい場合は、量子ドットへの正孔の注入量が電子の注入量に比べて少なくなることから、良好なキャリアバランスを得ることできず、電子と正孔との再結合確率の低下を招くおそれがある。また、電子と正孔との移動度の差異に起因して量子ドットの外部で正孔と電子とが再結合すると、発光色純度の低下を招くおそれがある。
 そこで、本発明者らは、キャリアバランスを改善すべく鋭意研究を行ったところ、キャリア移動度の異なる2種類のキャリア輸送層のうち、キャリア移動度の小さいキャリア輸送層と同一のキャリア輸送性を有するキャリア輸送性材料を量子ドット間に分散状に存在させることにより、前記キャリア移動度が小さいキャリアの量子ドットへの注入効率を向上させることができ、これによりキャリアバランスが改善されて量子ドット内での再結合確率が向上し、発光効率や発光色純度が良好でかつ駆動電圧の低電圧化が可能な発光デバイスを得ることができるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係る発光デバイスは、第1のキャリア輸送層と、該第1のキャリア輸送層よりもキャリア移動度の大きい第2のキャリア輸送層と、前記第1のキャリア輸送層と前記第2のキャリア輸送層に挟持された発光層とを備え、前記発光層に電流が注入されて発光する発光デバイスにおいて、前記発光層は、ナノ粒子材料からなる多数の量子ドットが分散されてなると共に、前記第1のキャリア輸送層と同一のキャリア輸送性を有するキャリア輸送性材料が前記量子ドットの間隙に分散状に存在していることを特徴としている。
 また、本発明の発光デバイスは、前記第1のキャリア輸送層は、正孔輸送層であり、前記第2のキャリア輸送層は、電子輸送層であり、前記キャリア輸送性材料は、正孔輸送性材料であるのが好ましい。
 これにより正孔輸送層での正孔の移動度が電子輸送層での電子の移動度より小さくても、正孔は、発光層中に存在する正孔輸送性材料を介して量子ドットへの注入が促進され、正孔の量子ドット内への注入効率が向上する。そしてその結果、量子ドット内での電子-正孔の再結合確率が向上し、発光効率や発光色純度が良好で駆動電圧の低電圧化が可能な発光デバイスを得ることができる。
 また、本発明の発光デバイスは、前記キャリア輸送性材料が、低分子化合物からなるのが好ましい。
 また、本発明の発光デバイスは、前記量子ドットは、表面が界面活性剤で被覆されているのが好ましい。
 すなわち、界面活性剤がキャリア輸送性を有さず、表面欠陥の不活性化や分散性が良好な長鎖アミン等の嵩高い界面活性剤を使用しても、正孔-電子対を容易に量子ドット内に注入することができる。
 また、本発明の発光デバイスは、前記キャリア輸送性材料が、前記量子ドットの表面に配位することなく、前記量子ドット間に存在するのが好ましい。
 さらに、本発明の発光デバイスは、前記量子ドットが、コア部とシェル部とを備えたコアーシェル構造を有しているのが好ましい。
 そして、上記発光デバイスは、量子ドットを分散させた量子ドット分散溶液と、該量子ドット分散溶液に可溶なキャリア輸送性を有する可溶性キャリア輸送性材料を含有したキャリア輸送性溶液を作製し、キャリア輸送性溶液を基板上に塗布してキャリア輸送性塗布膜を形成した後、該キャリア輸送性塗布膜上に量子ドット分散溶液を塗布することにより製造することができる。
 すなわち、本発明に係る発光デバイスの製造方法は、ナノ粒子材料からなる量子ドットが分散した量子ドット分散溶液を作製する分散溶液作製工程と、キャリア輸送性を有しかつ前記量子ドット分散溶液に可溶な可溶性キャリア輸送性材料を含有したキャリア輸送性溶液を作製するキャリア輸送性溶液作製工程と、前記キャリア輸送性溶液を基板上に塗布してキャリア輸送性塗布膜を形成した後、該キャリア輸送性塗布膜上に前記量子ドット分散溶液を塗布し、前記キャリア輸送性材料が前記量子ドットの間隙に分散状に存在するように、前記可溶性キャリア輸送性材料の少なくとも一部を前記量子ドット分散溶液に溶解させ、キャリア輸送層及び発光層を同時に作製するキャリア輸送層・発光層作製工程とを含むことを特徴としている。
 これにより、可溶性キャリア輸送性材料が量子ドット分散溶液に溶解して量子ドット間に分散状に存在させることができることから、薄層化されたキャリア輸送層と、量子ドットの間隙に分散状に存在するキャリア輸送性材料を備えた発光層を同時に作製することができ、低コストで発光効率や発光色純度の良好な発光デバイスを製造することができる。
 また、本発明の発光デバイスの製造方法は、前記可溶性キャリア輸送性材料を低分子化合物であるのが好ましい。
 これにより可溶性キャリア輸送性材料は、量子ドット分散溶液に容易に溶解して量子ドットの間隙に分散状に存在させることができる。
 さらに、本発明の発光デバイスの製造方法は、前記可溶性キャリア輸送性材料が可溶性正孔輸送性材料であるのが好ましい。
 また、本発明の発光デバイスの製造方法は、前記量子ドットの表面を界面活性剤で被覆し、前記可溶性キャリア輸送性材料が前記量子ドットの表面に配位せずに該量子ドットの間隙に分散状に存在するのが好ましい。
 これにより量子ドットの表面にキャリア輸送性を有する界面活性剤が配位しないことから、界面活性剤にキャリア輸送性配位子を導入する合成工程も不要となる。さらに輸送性の異なる複数種の界面活性剤を併存させるための置換工程等も不要となり、置換工程に伴う配位子の界面活性剤からの脱離が生じることもない。したがって、界面活性剤の表面被覆率が低下することもなく、表面欠陥の不活性化を維持することができ、膜質が変質することもない。
 また、本発明の発光デバイスの製造方法は、前記キャリア輸送性溶液は、キャリア輸送性材料の総計に対する前記可溶性キャリア輸送性材料の含有量が、50wt%以上であるのが好ましく、特に、前記キャリア輸送性材料の含有量は、75~90wt%であるのが好ましい。
 これによりキャリア輸送性溶液中に可溶性キャリア輸送性材料以外の高分子系キャリア輸送性材料が含有されていても、高分子系キャリア輸送性材料は架橋を形成してキャリア輸送層を形成する一方、可溶性キャリア輸送性材料は量子ドット分散溶液に溶解して発光層の一部となる。そして、量子ドットへのキャリアの注入効率が向上して再結合確率が良好となることから、発光効率や発光色純度が良好でかつ駆動電圧の低電圧化が可能な発光デバイスを得ることができる。
 本発明の発光デバイスによれば、第1のキャリア輸送層と、該第1のキャリア輸送層よりもキャリア移動度の大きい第2のキャリア輸送層と、前記第1のキャリア輸送層と前記第2のキャリア輸送層に挟持された発光層とを備え、前記発光層に電流が注入されて発光する発光デバイスにおいて、前記発光層は、ナノ粒子材料からなる多数の量子ドットが分散されてなると共に、前記第1のキャリア輸送層と同一のキャリア輸送性を有するキャリア輸送性材料が前記量子ドットの間隙に分散状に存在しているので、キャリア移動度の小さいキャリアの輸送性を向上させることができ、これによりキャリアの量子ドット内への輸送性が改善されて再結合確率が向上し、良好な発光効率及び発光色純度を有しかつ駆動電圧の低電圧化が可能な発光デバイスを得ることができる。
 また、本発明の発光デバイスの製造方法によれば、ナノ粒子材料からなる量子ドットが分散した量子ドット分散溶液を作製する分散溶液作製工程と、キャリア輸送性を有しかつ前記量子ドット分散溶液に可溶な可溶性キャリア輸送性材料を含有したキャリア輸送性溶液を作製するキャリア輸送性溶液作製工程と、前記キャリア輸送性溶液を基板上に塗布してキャリア輸送性塗布膜を形成した後、該キャリア輸送性塗布膜上に前記量子ドット分散溶液を塗布し、前記キャリア輸送性材料が前記量子ドットの間隙に分散状に存在するように、前記可溶性キャリア輸送性材料の少なくとも一部を前記量子ドット分散溶液に溶解させ、キャリア輸送層及び発光層を同時に作製するキャリア輸送層・発光層作製工程とを含むので、可溶性キャリア輸送性材料を量子ドット分散溶液に溶解させて量子ドット間に分散状に存在させることができ、これによりキャリア輸送層と共に所望の発光層を作製することが可能となる。
 しかも、特許文献3のようにキャリア輸送性の異なる2種類の界面活性剤を併存させる必要もなく、したがって、界面活性剤の一部を置換するための浸漬処理等も不要となり、製造工程の簡略化を図ることができる。
 また、キャリア輸送性を有する界面活性剤を使用する必要がないことから、キャリア輸送性配位子を導入するための有機化合物の合成過程が不要となり、したがって、低コストで高効率な発光デバイスを得ることができる。
本発明に係る発光デバイスとしてのEL素子の一実施の形態を模式的に示す断面図である。 発光層に含有される量子ドットを模式的に示した断面図である。 上記EL素子の製造方法を示す製造工程図(1/2)である。 上記EL素子の製造方法を示す製造工程図(2/2)である。 試料番号1のTEM画像である。 試料番号1の拡大TEM画像である。 試料番号4のTEM画像である。 試料番号4の拡大TEM画像である。 試料番号1~4の発光スペクトルを示す図である。 試料番号1~4の電流密度特性を示す図である。 試料番号5~8の発光スペクトルを示す図である。 試料番号5~8の電流密度特性を示す図である。 特許文献1に記載された先行技術を説明するための断面図である。 特許文献2に記載された先行技術を説明するための断面図である。 特許文献3に記載された先行技術を説明するための断面図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係る発光デバイスとしてのEL素子を模式的に示す断面図である。
 このEL素子は、ガラス基板等の透明基板1上に陽極2が形成され、該陽極2の表面に正孔輸送性材料からなる正孔注入層3及び正孔輸送層4が順次形成され、該正孔輸送層4の表面には発光層5が形成されている。さらに、発光層5の表面には電子輸送性材料からなる電子輸送層6が形成され、該電子輸送層6の表面には陰極7が形成されている。
 そして、上記発光層5は、ナノ粒子材料からなる多数の量子ドット8と、量子ドット8間に均一乃至略均一に分散して存在する正孔輸送性材料(キャリア輸送性材料)9とを備えている。
 量子ドット8は、図2に示すように、コア部10と該コア部10を保護するシェル部11とを有するコアーシェル構造からなり、該シェル部11の表面が界面活性剤12で被覆されている。
 コア部10を形成するコア材料としては、可視光領域で発光する材料であれば特に限定されるものではなく、CdZnS,CdS、CdTe、ZnSe、ZnTe、InP、InAs、GaP、GaAs、ZnS:CuInS、ZnS:CuInGaS、Si、Ge等を使用することができる。
 また、シェル部11は、コア部10の表面欠陥を不活性化することを主目的として形成される。このためシェル部11を形成するシェル材料としては、コア材料よりもバンドギャップエネルギーEgが大きく、真空準位を基準とした価電子帯のエネルギー準位VB1が、コア材料の価電子帯のエネルギー準位VB2よりも低位にある材料を使用するのが好ましい。
 このようなシェル材料としては、例えば、ZnSやCdS等の硫化物、ZnO、SiO、TiO、Al等の酸化物、GaNやAlN等の窒化物、ZnSeやCdSe等のセレン化物を適宜選択して使用することができる。
 また、界面活性剤12としては、分散性やコア部10の表面欠陥をより一層効率良く不活性化する観点から、嵩高い極性基を有する有機化合物、例えば、ヘキサデシルアミン(以下、「HDA」という。)やオクタデシルアミン等の長鎖アミン、トリオクチルホスフィン、トリオクチルホスフィンオキシド、オレイン酸、ミリスチン酸等のアルキル基に極性基が結合した界面活性剤を好んで使用することができる。
 すなわち、嵩の低い配位子を有する界面活性剤12でシェル部11の表面を被覆すると、十分な分散性を得るのが困難である。しかも、界面活性剤12の分子量も小さくなることから、融点や沸点が低く、常温で液体のものが多い。そして、常温で液体の界面活性剤12は、分子運動が激しく、コア部10の表面欠陥を不活性化する確率が小さくなる。
 したがって、界面活性剤12としては、上述したHDA等の嵩高い極性基を有する界面活性剤を使用するのが好ましく、斯かる極性基を配位子としてシェル部11の表面に配位させるのが好ましい。
 尚、図1では、発光層5は、界面活性剤12を省略して図示している。
 そして、本実施の形態では、上述したように量子ドット8の間隙に正孔輸送性材料9が分散状に存在している。
 すなわち、本EL素子では、陽極2及び陰極7間に電圧が印加されると、陽極2に注入された正孔は、正孔注入層3及び正孔輸送層4を介して量子ドット8に注入される。一方、陰極7に注入された電子は、電子輸送層6を介して量子ドット8に注入される。そして、量子ドット8のコア部10内では、正孔と電子とが再結合し、これにより励起子発光する。
 ところが、この場合、電子輸送層6を通過する電子移動度と、正孔注入層3及び正孔輸送層4を通過する正孔移動度とに差がある場合は、所望の十分な発光効率を得ることができず、更には発光色純度の低下を招くおそれがある。例えば、電子移動度が正孔移動度よりも大きい場合、コア部10内には正孔が不足することから電子が無駄に消費され、発光効率の低下を招くおそれがある。また、電子が量子ドット8に注入されずに量子ドット8の外部を通過し、正孔輸送層4に到達して該正孔輸送層4で正孔と再結合するおそれがあり、発光色純度の低下を招くおそれがある。特に、界面活性剤12が、上述したようにHDA等の嵩高い極性基を有する場合は、量子ドット8同士の間隙が大きくなり、このため電子が量子ドット8内に供給されずに量子ドット8同士の間隙を通過し、正孔輸送層4でキャリアが再結合し、発光色純度が低下するおそれがある。
 したがって、発光効率及び発光色純度が良好なEL素子を得るためには、コア部10に注入される電子の注入量と正孔の注入量とが極力等量となるようにキャリアバランスを改善する必要がある。
 そこで、本実施の形態では、電子移動度が正孔移動度よりも大きな電子輸送層用材料を使用して電子を効率良く量子ドット8に注入すると共に、正孔輸送性材料9を量子ドット8の間隙に分散状に存在させて正孔の量子ドット8への注入を促進させ、これによりキャリアバランスを改善し、発光効率の向上を図っている。このようにして大量の正孔が量子ドット8に注入されることから、エネルギー障壁も低くなり、駆動電圧を低下させることが可能となる。さらに、量子ドット8の間隙に正孔輸送性材料9が分散状に存在することから、HDA等の嵩高い界面活性剤12を使用しても、電子が量子ドット8の外部を通過するのが抑制され、該電子は量子ドット8内に効率良く注入される。そして、正孔輸送性材料9を介して注入された正孔と量子ドット8内で効果的に再結合し、これにより発光色純度が向上する。
 本実施の形態で使用される電子輸送層用材料としては、電子を高速で陰極7から発光層5に輸送できるのであれば特に限定されるものではなく、例えば、電子移動度が10-3~10-6cm/V・sの電子輸送層用材料を好んで使用することができる。
 具体的には、電子輸送層用材料としては、例えば、ケミプロ化成社製KLET-03や、化学式(1)で表される2,2′,2″-(1,3,5-ベンジニトリル)-トリス(1-フェニル-1-H-ベンゾイミダゾール(以下、「TPBi」という。)、化学式(2)で表される2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(以下、「BCP」という。)、化学式(3)で表される2,5-ビス(2′,2″-ビピリジン-6-イル)-1,1-ジメチル、3,4-ジフェニルシラシクロペンタジエン(以下、「PyPySPyPy」という。)、化学式(4)で表わされるトリアジン-アセチレン化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 また、発光層5中に存在する正孔輸送性材料9としては、少なくとも一部が後述する量子ドット分散溶液に可溶な低分子系の正孔輸送性材料(以下、「可溶性正孔輸送性材料」という。)を使用するのが好ましい。
 そして、このような可溶性正孔輸送性材料としては、例えば、化学式(5)で表されるN,N′-ジカルバゾイル-4,4′-ビフェニル、(以下、「CBP」という。)、化学式(6)で表されるN,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-1,1′-ビフェニル-4,4′-ジアミン(以下、「TPD」という。)、化学式(7)で表わされる4,4′-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル(以下、「α-NPD」という。)、化学式(8)で表わされる低分子のポリビニルカルバゾール(以下「PVK」という。)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 正孔輸送層4は、少なくとも上述した可溶性正孔輸送性材料を含有していればよく、他の高分子系の正孔輸送性材料、例えば、ポリ-TPD等を含有していてもよい。ただし、2種以上の正孔輸送性材料を使用する場合は、両者が混じり合う必要があることから、例えば、正孔輸送性材料として、クロロベンゼン等の非極性溶媒に溶解するCBPを使用した場合は、高分子系正孔輸送性材料についても、ポリ-TPD等の非極性溶媒に分散する正孔輸送性材料を使用する必要がある。
 また、正孔注入層3は、特に限定されるものではないが、正孔輸送層4に使用した材料と混ざり合わないようにするのが好ましい。例えば、正孔輸送層4として非極性溶媒に分散するCBPやポリ-TPDを使用した場合は、正孔注入層3にはポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルフォネート)(以下、「PEDOT:PSS」という。)等の極性溶媒(例えば、純水)に分散する材料を使用するのが好ましい。
 尚、陽極2や陰極7についても特に限定されるものではなく、陽極2には、例えばITO(酸化インジウムスズ)を使用することができ、陰極7には、例えばAlを使用することができ、また、LiF/Alの二層構造とすることもできる。
 そして、本EL素子は、量子ドットを分散させた量子ドット分散溶液と可溶性正孔輸送性材料を含有した正孔輸送性溶液と用意し、正孔注入層3上に正孔輸送性溶液を塗布し、乾燥させて正孔輸送性塗布膜を形成した後、量子ドット分散溶液を塗布し、乾燥させることによって製造することができる。
 すなわち、本EL素子を作製する場合、単に正孔輸送性材料と量子ドットとを混合させた分散溶液を正孔輸送層4上に塗布しても、正孔輸送性材料の分散溶液への可溶性を十分に確保できないことから、量子ドット8と量子ドット8の間隙に正孔輸送性材料9を分散状に存在させるのが困難である。
 このため本実施の形態では、量子ドットを分散させた量子ドット分散溶液と、可溶性正孔輸送性材料が量子ドット分散溶液に含有された正孔輸送性溶液とをそれぞれ別個に作製し、該正孔輸送性溶液を基板上に塗布して正孔輸送性塗布膜を形成した後、該正孔輸送性塗布膜上に量子ドット分散溶液を塗布している。すなわち、正孔輸送性塗布膜上に量子ドット分散溶液を塗布することにより、正孔輸送性塗布膜中の可溶性正孔輸送性材料が前記量子ドット分散溶液に溶解し、これにより量子ドット8と量子ドット8との間隙に正孔輸送性材料9を分散状に存在させることができ、かつ正孔輸送層4と発光層5とを同時に作製することが可能となる。
 以下、上記EL素子の製造方法について詳述する。
 まず、量子ドット分散溶液を作製する。
 量子ドット8としては、上述したように種々の材料を使用することができるが、本実施の形態では、コア部10にCdZnS、シェル部11にZnSを使用した場合を例に説明する。
 すなわち、まず、所定量の酸化カドミウム、酢酸亜鉛をオレイン酸中で混合し、減圧下、所定温度(例えば、150℃)に加熱しながら溶解させる。次いで、この溶液をオクタデセンに注入し,還元雰囲気下,所定温度(例えば、300℃)に加熱し、酸化カドミウム-酢酸亜鉛混合溶液を作製する。一方、イオウをオクタデセンに溶解させたイオウ溶液を用意し、該イオウ溶液を加熱中の前記酸化カドミウム-酢酸亜鉛混合溶液に注入し、更に所定温度(例えば、310℃)で所定時間(例えば、8分)加熱し、これによりコア部10をCdZnS、シェル部11をZnSとしたコアーシェル構造の量子ドットを得る。
 次いで、この量子ドットをアセトンやクロロホルム等を使用して沈殿させ、遠心分離操作を行って溶液中の上澄液を除去する。同様の操作を複数回繰り返し、遠心分離操作を行って沈殿物を分離し、その後、HDA等の界面活性剤を添加しつつ、非極性溶媒、例えばトルエン中に分散させ、これにより量子ドット分散溶液を作製する。
 次に、正孔輸送性溶液を作製する。
 すなわち、少なくとも量子ドット分散溶液に溶解する可溶性正孔輸送性材料を含有した正孔輸送性材料を非極性溶媒に溶解させ、これにより正孔輸送性溶液を作製する。
 この正孔輸送性溶液は、上述したように可溶性正孔輸送性材料を含有していればよく、可溶性正孔輸送性材料の他、高分子系正孔輸送性材料を含有していてもよい。
 ただし、正孔輸送性材料の総量(可溶性正孔輸送性材料+高分子系正孔輸送性材料)に対する可溶性正孔輸送性材料の含有量は、良好な発光効率を得る観点からは、50wt%以上が好ましく、駆動電圧の低電圧化を図る観点からは75wt%以上が好ましい。
 また、正孔輸送性材料の総量に対する可溶性正孔輸送性材料の含有量の上限は、100wt%、すなわち全量が可溶性正孔輸送性材料であってもよいが、正孔の注入効率を考慮すると、高分子系正孔輸送材料との混合物が望ましく、含有量の上限は90wt%程度が好ましい。
 すなわち、正孔輸送性材料の総量に対する可溶性正孔輸送性材料の含有量は、特に限定されるものではないが、50wt%以上が好ましく、75~90wt%がより好ましい。
 図3及び図4は上記EL素子の製造方法を示す製造工程図である。
 まず、図3(a)に示すように、スパッタ法等の薄膜形成法を使用し、ガラス基板等の透明基板1上にITO等の導電性透明材料を成膜し、UVオゾン処理を行い、膜厚100nm~150nmの陽極2を形成する。
 次に、正孔注入層溶液を用意し、スピンコート法等を使用して正孔注入層溶液を陽極2上に塗布し乾燥させ、図3(b)に示すように、膜厚20nm~30nmの正孔注入層3を形成する。
 次に、上述した正孔輸送性溶液を用意し、スピンコート法等を使用して正孔輸送性溶液を正極注入層3上に塗布し乾燥させ、図3(c)に示すように、膜厚60nm~70nmの正孔輸送性塗布膜14を形成する。
 次に、上述した量子ドット分散溶液を用意する。
 そして、スピンコート法等を使用し、量子ドット分散溶液を正孔輸送性塗布膜14上に塗布し、還元雰囲気下、乾燥させる。このとき正孔輸送性塗布膜14中の可溶性正孔輸送性材料が量子ドット分散溶液に溶解して正孔輸送性塗布膜14は40~50nm程度に薄層化して正孔輸送層4を形成する。そしてこれと同時に、可溶性正孔輸送性材料が量子ドットの間隙に分散状に存在することとなり、これにより図4(d)に示すように、正孔輸送層4及び発光層5が同時に作製される。
 次に、KELT-03(ケミプロ化成社製)等の電子移動度の大きな電子輸送性材料を使用し、図4(e)に示すように、真空蒸着法等の薄膜形成法を使用し、発光層5の表面に膜厚50nm~70nmの電子輸送層6を形成する。
 そして、図4(f)に示すように、LiF、Al等を使用し、真空蒸着法等の薄膜形成法で膜厚100nm~300nmの陰極7を形成し、これによりEL素子が作製される。
 このように本EL素子の製造方法によれば、ナノ粒子材料からなる量子ドット8が分散した量子ドット分散溶液を作製する分散溶液作製工程と、正孔輸送性を有しかつ前記量子ドット分散溶液に可溶な可溶性正孔輸送性材料を含有した正孔輸送性溶液を作製する正孔輸送性溶液作製工程と、前記正孔輸送性溶液を正孔注入層3に塗布して正孔輸送性塗布膜14を形成した後、該正孔輸送性塗布膜14上に前記量子ドット分散溶液を塗布し、前記正孔輸送性材料9が量子ドット8の間隙に分散状に存在するように、可溶性正孔輸送性材料の少なくとも一部を前記量子ドット分散溶液に溶解させ、正孔輸送層4及び発光層5を同時に作製する正孔輸送層・発光層作製工程とを含むので、可溶性正孔輸送性材料を量子ドット分散溶液に溶解させて量子ドット間に分散状に存在させることができ、これにより正孔輸送層と共に所望の発光層を作製することが可能となる。
 しかも、特許文献3のようにキャリア輸送性の異なる2種類の界面活性剤を併存させる必要もなく、したがって、界面活性剤の一部を置換するための浸漬処理等も不要となり、製造工程の簡略化を図ることができる。
 また、可溶性正孔輸送性材料が量子ドット8の表面に配位せず該量子ドット8の間隙に分散状に存在することから、正孔輸送性を有する界面活性剤を使用する必要がなく、したがって正孔輸送性配位子を導入するための有機化合物の合成過程が不要となり、したがって、低コストで高効率な発光デバイスを得ることができる。
 さらに、ドライプロセスのような複数の煩雑な成膜プロセスを要することなく、安価で効率良く製造することができる。
 尚、本発明は上記実施の形態に限定されるものでない。上記実施の形態では、電子移動度が正孔移動度よりも大きな電子輸送性材料及び正孔輸送性材料を使用し、量子ドットの間隙に分散状に正孔輸送性材料を存在させたが、正孔移動度が電子移動度よりも大きな正孔輸送性材料及び電子輸送性材料を使用し、量子ドットの間隙に分散状に電子輸送性材料を存在させてもよい。例えば、電子輸送性材料として広く知られているAlq3(トリス(8-ヒドロキキノリン)アルミニウム)は電子移動度が10-7cm/V・Sと小さいが、このような電子移動度の小さい電子輸送性材料と正孔移動度の大きな正孔輸送性材料との組み合わせも可能である。
 また、上記実施の形態では、各量子ドットとしてCdZnS/ZnSからなる化合物半導体を使用したが、その他の化合物半導体や、酸化物、単体半導体でも同様である。
 また、上記実施の形態では、正孔輸送層4や電子輸送層6を有機化合物で形成しているが、無機化合物で形成してもよく、量子ドット内での再結合確率が良好な高品質の発光デバイスを安価かつ高効率で製造することができる。
 また、上記実施の形態では、コアーシェル構造の量子ドットについて説明したが、シェル部が二層構造のコアーシェルーシェル構造や、シェル部を有さない場合にも同様に適用することができるのはいうまでもない。
 また、本発明は、EL素子の他、発光ダイオード、半導体レーザや各種表示装置等の各種発光デバイスに使用できるのはいうまでもない。
 また、上記実施の形態では、電子輸送層6は真空蒸着法を使用したドライプロセスで作製しているが、スピンコート法等のウェットプロセスで作製してもよい。ただし、この場合は、浸漬工程で使用した分散溶液と同じ極性の分散溶媒を使用する必要がある。
 次に、本発明の実施例を具体的に説明する。
〔試料の作製〕
(試料番号1~4)
 コア部がCdZnS(LUMO準位:4.4eV、HOMO準位:7.2eV)、シェル部がZnS(LUMO準位:3.9eV、HOMO準位:7.4eV)でそれぞれ形成され、かつシェル部の表面をHDAで被覆したコアーシェル構造の量子ドットをトルエン(非極性溶媒)に分散させた量子ドット分散溶液を用意した。
 また、可溶性正孔輸送性材料としてCBP(LUMO準位:2.9eV、HOMO準位:6.0eV)、及び高分子系正孔輸送請材料としてポリ-TPD(LUMO準位:3.1eV、HOMO準位:5.4eV)をそれぞれ用意した。そいて、CBP及びポリ-TPDの総量に対するCBPの含有量が0wt%、25wt%、50wt%、及び75wt%となるように、これらCBP及びポリ-TPDを秤量してクロロベンゼン(非極性溶媒)中に溶解させ、試料番号1(CBP含有量:0wt%)、試料番号2(CBP含有量:25wt%)、試料番号3(CBP含有量:50wt%)、及び試料番号4(CBP含有量:75wt%)の各々正孔輸送性溶液を作製した。
 次いで、縦:25mm、横:25mmのガラス基板を用意し、スパッタ法によりガラス基板上にITO膜(仕事関数:4.8eV)を成膜し、UVオゾン処理を行い、膜厚120nmの陽極を作製した。
 次に、極性溶媒としての純水中にPEDOT:PSS(LUMO準位:3.1eV、HOMO準位:5.2eV)を溶解させた正孔注入層溶液を作製した。そしてスピンコート法を使用し、陽極上に正孔注入層溶液を塗布し、乾燥させて膜厚20nmの正孔注入層を形成した。
 この後、スピンコート法を使用し、上述した正孔輸送性溶液を正孔注入層上に塗布し、乾燥させて膜厚65nmの正孔輸送性塗布膜を形成した。
 次に、スピンコート法を使用し、上記量子ドット分散溶液を正孔輸送性塗布膜上に塗布し、乾燥させた。具体的には、正孔輸送性塗布膜上に上記量子ドット分散溶液を0.1mL滴下し、回転数:3000rpmで60秒間回転させ、窒素雰囲気中、100℃に加熱して乾燥させた。そしてこれにより、正孔輸送性塗布膜中のCBPは量子ドット分散溶液に溶解して量子ドットの間隙に分散状に存在するようになり、膜厚が45nmに薄層化された正孔輸送層と膜厚60nmの発光層が同時を作製した。
 次いで、真空蒸着法を使用して発光層の表面にケミプロ化成社製KLET-03(LUMO準位:3.0eV、HOMO準位:6.7eV)を成膜し、膜厚50nmの電子輸送層を形成した。
 最後に、真空蒸着法を使用してLiF/Al(仕事関数:4.3eV)を成膜し、膜厚100nmの陰極を形成し、これにより試料番号1~4の試料を作製した。
(試料の評価)
 CBPを含有していない試料番号1とCBP含有量が75wt%の試料番号4について、TEM(透過型電子顕微鏡)で試料断面を観察した。
 図5は試料番号1のTEM画像を示し、図6は同試料の拡大TEM画像である。
 また、図7は試料番号4のTEM画像を示し、図8は同試料の拡大TEM画像である。
 この図5及び図6と、図7及び図8との対比から明らかなように、正孔輸送性溶液中にCBPを含有した試料番号4は、正孔輸送性溶液中にCBPを含有していない試料番号1に比べ、正孔輸送層の膜厚が薄く、膜厚の厚い発光層が得られていることが分かる。これは試料番号4では、正孔輸送性塗布膜中のCBPが量子ドット分散溶液中のトルエンに溶解し、その結果、正孔輸送性材料が量子ドットの間隙に分散状に存在し、正孔輸送層の膜厚が薄くなる一方で、発光層の膜厚が厚くなったものと思われる。
 次に、試料番号1~4の各試料について、以下の方法で発光スペクトルを測定した。
 すなわち、各試料を積分球内に配し、定電流電源(ケースレー・インスツルメント社製2400)を使用し、直流電圧を印加して試料を100cd/mの輝度で発光させ、発光した光を積分球で集光し、マルチチャンネル検出器(浜松ホトホニックス社製PMA-11)で発光スペクトルを測定した。
 図9は、試料番号1~4の発光スペクトルを示す図であり、横軸が波長(nm)、縦軸が発光強度(a.u.)である。尚、この発光スペクトルは、いずれも測定結果を0~1の間で正規化して示している。
 試料番号1では、発光スペクトルはポリ-TPDの吸収波長域である400~450nm付近の強度ピーク位置から600nm付近に架けて緩やかな曲線を描いている。これは電子輸送層を介して陰極から輸送されてきた電子の一部が量子ドットに注入されずに正孔輸送層に輸送され、正孔輸送層でも正孔と電子が再結合して励起子発光したためと考えられる。すなわち、試料番号1では、400~450nmのみならず600nm付近でも発光し、発光色純度が低下していることが分かる。
 これに対し試料番号2~4は、試料番号1に比べ、400~450nm付近での発光スペクトルが急峻で強度ピークの半値幅が小さくなっており、かつ600nm付近での発光強度も抑制されている。
 すなわち、試料番号2(CBP含有量:25%)は、試料番号1に比べ、400~450nm付近での強度ピークの半値幅が若干小さくなっており、その分、600nm付近での発光強度も若干抑制されている。
 試料番号3(CBP含有量:50%)は、試料番号1に比べ、400~450nm付近での強度ピークの半値幅が更に小さくなっており、その分、600nm付近での発光強度も更に抑制されている。
 試料番号4(CBP含有量:75%)は、試料番号1に比べ、400~450nm付近の発光スペクトルが急峻で強度ピークの半値幅も明らかに小さくなっており、600nm付近では殆ど発光していない。
 このように正孔輸送性材料中のCBP含有量が増加するのに伴い、400~450nm付近での発光スペクトルが急峻となって強度ピークの半値幅も小さくなり、600nm付近での発光を抑制することができる。特に、CBPの含有量が、好ましくは50%以上、より好ましくは75%以上で良好な発光色純度が得られることが分かる。
 次に、試料番号1~4の各試料について、上記マルチチャンネル検出器を使用し、直流電圧をステップ状に印加し、電流密度を測定した。
 図10は、印加電圧と電流密度との関係を示す図であり、横軸は電圧(V)、縦軸は電流密度(mA/cm)である。図中、◆印は試料番号1(CBP含有量:0wt%)、●印は試料番号2(CBP含有量:25wt%)、△印は試料番号3(CBP含有量:50wt%)、〇印は試料番号4(CBP含有量:75wt%)を示している。
 この図10から明らかなように、可溶性正孔輸送性材料であるCBP含有量が75wt%の試料番号4は、CBPを含有していない試料番号1に比べ、駆動電圧を顕著に低下させることができた。
 すなわち、駆動電圧の低電圧化を図る観点からは、正孔輸送性材料の総量に対する可溶性正孔輸送性材料の含有量は75wt%以上が好ましいことが確認された。
比較例
 量子ドット分散溶液中に0mmol/L、0.01mmol/L、0.1mmol/L、及び1mmol/LのCBPを含有させ、正孔輸送層溶液にCBPを含有させなかった以外は、上記試料と同様の方法・手順で、試料番号5~8の試料を作製した。
 次に、試料番号5~8の各試料について、上述と同様の方法・手順で発光スペクトルを測定した。
 図11は、試料番号5~8の発光スペクトルを示す図であり、横軸が波長(nm)、縦軸が発光強度(a.u.)である。尚、この発光スペクトルは、測定結果を0~1の間で正規化して示している。
 この図11から明らかなように、量子ドット分散溶液にCBPを含有させて発光層を形成した場合は、量子ドット分散溶液中にCBPを含有させなかった場合と略同様の発光スペクトルを有しており、いずれもポリ-TPDの吸収波長域である400~450nm及び600nm付近で発光している。すなわち、正孔と電子は正孔輸送層でも再結合して励起子発光し、発光色純度が低下することが分かった。
 以上より量子ドット分散溶液中にCBPを含有しても、発光効率や発光色純度は改善されず、上述した実施例のように、正孔輸送性溶液中にCBPを含有させることにより、発光効率や発光色純度が改善されることが確認された。
 次に、試料番号5~8の各試料について、上述と同様の方法・手順で電流密度を測定した。
 図12は、印加電圧と電流密度との関係を示す図であり、横軸は電圧(V)、縦軸は電流密度(mA/cm)である。図中、◆印は試料番号5(CBP含有量:0mmol/L)、●印は試料番号6(CBP含有量:0.01mmol/L)、△印は試料番号7(CBP含有量:0.1mmol/L)、〇印は試料番号8(CBP含有量:1mmol/L)を示している。
 この図12から明らかなように、量子ドット分散溶液にCBPを含有させて発光層を形成した場合は、量子ドット分散溶液中にCBPを含有させなかった場合に比べても駆動電圧は殆ど変らないことが確認された。
 正孔及び電子の量子ドットへの注入効率を向上させて発光効率や発光色純度の向上し、低電圧駆動が可能なEL素子等の発光デバイスの実現を可能とする。
4  正孔輸送層(第1のキャリア輸送層)
5  発光層
8  量子ドット
9  正孔輸送性材料(キャリア輸送性材料)
10 コア部
11 シェル部
12 界面活性剤
14 正孔輸送性塗布膜(キャリア輸送性塗布膜)

Claims (12)

  1.  第1のキャリア輸送層と、該第1のキャリア輸送層よりもキャリア移動度の大きい第2のキャリア輸送層と、前記第1のキャリア輸送層と前記第2のキャリア輸送層に挟持された発光層とを備え、前記発光層に電流が注入されて発光する発光デバイスにおいて、
     前記発光層は、ナノ粒子材料からなる多数の量子ドットが分散されてなると共に、前記第1のキャリア輸送層と同一のキャリア輸送性を有するキャリア輸送性材料が前記量子ドットの間隙に分散状に存在していることを特徴とする発光デバイス。
  2.  前記第1のキャリア輸送層は、正孔輸送層であり、前記第2のキャリア輸送層は、電子輸送層であり、
     前記キャリア輸送性材料は、正孔輸送性材料であることを特徴とする請求項1記載の発光デバイス。
  3.  前記キャリア輸送性材料は、低分子化合物からなることを特徴とする請求項1又は請求項2記載の発光デバイス。
  4.  前記量子ドットは、表面が界面活性剤で被覆されていることを特徴とする請求項1乃至請求項3のいずれかに記載の発光デバイス。
  5.  前記キャリア輸送性材料は、前記量子ドットの表面に配位することなく、前記量子ドット間に存在することを特徴とする請求項1乃至請求項4のいずれかに記載の発光デバイス。
  6.  前記量子ドットは、コア部とシェル部とを備えたコアーシェル構造を有していることを特徴とする請求項1乃至請求項5のいずれかに記載の発光デバイス。
  7.  ナノ粒子材料からなる量子ドットが分散した量子ドット分散溶液を作製する分散溶液作製工程と、
     キャリア輸送性を有しかつ前記量子ドット分散溶液に可溶な可溶性キャリア輸送性材料を含有したキャリア輸送性溶液を作製するキャリア輸送性溶液作製工程と、
     前記キャリア輸送性溶液を基板上に塗布してキャリア輸送性塗布膜を形成した後、該キャリア輸送性塗布膜上に前記量子ドット分散溶液を塗布し、前記キャリア輸送性材料が前記量子ドットの間隙に分散状に存在するように、前記可溶性キャリア輸送性材料の少なくとも一部を前記量子ドット分散溶液に溶解させ、キャリア輸送層及び発光層を同時に作製するキャリア輸送層・発光層作製工程とを含むことを特徴とする発光デバイスの製造方法。
  8.  前記可溶性キャリア輸送性材料は低分子化合物であることを特徴とする請求項7記載の発光デバイスの製造方法。
  9.  前記可溶性キャリア輸送性材料は可溶性正孔輸送性材料であることを特徴とする請求項7又は請求項8記載の発光デバイスの製造方法。
  10.  前記量子ドットの表面を界面活性剤で被覆し、前記可溶性キャリア輸送性材料が前記量子ドットの表面に配位せずに該量子ドットの間隙に分散状に存在することを特徴とする請求項7乃至請求項9のいずれかに記載の発光デバイスの製造方法。
  11.  前記キャリア輸送性溶液は、キャリア輸送性材料の総計に対する前記可溶性キャリア輸送性材料の含有量が、50wt%以上であることを特徴とする請求項7乃至請求項10のいずれかに記載の発光デバイスの製造方法。
  12.  前記キャリア輸送性材料の含有量は、75~90wt%であることを特徴とする請求項11記載の発光デバイスの製造方法。
PCT/JP2014/084549 2014-01-09 2014-12-26 発光デバイス、及び発光デバイスの製造方法 WO2015105027A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480072569.7A CN105900529B (zh) 2014-01-09 2014-12-26 发光器件及发光器件的制造方法
JP2015556777A JP6168372B2 (ja) 2014-01-09 2014-12-26 発光デバイス、及び発光デバイスの製造方法
US15/140,788 US20160240730A1 (en) 2014-01-09 2016-04-28 Light-emitting device and method for manufacturing light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-002392 2014-01-09
JP2014002392 2014-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/140,788 Continuation US20160240730A1 (en) 2014-01-09 2016-04-28 Light-emitting device and method for manufacturing light-emitting device

Publications (1)

Publication Number Publication Date
WO2015105027A1 true WO2015105027A1 (ja) 2015-07-16

Family

ID=53523860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084549 WO2015105027A1 (ja) 2014-01-09 2014-12-26 発光デバイス、及び発光デバイスの製造方法

Country Status (4)

Country Link
US (1) US20160240730A1 (ja)
JP (1) JP6168372B2 (ja)
CN (1) CN105900529B (ja)
WO (1) WO2015105027A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200083925A (ko) 2018-12-28 2020-07-09 삼성전자주식회사 퀀텀닷 일렉트로루미네선스 소자
US11631815B2 (en) 2018-12-28 2023-04-18 Samsung Electronics Co., Ltd. Quantum dot electroluminescence device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784343B (zh) * 2015-11-19 2018-10-09 乐金显示有限公司 有机发光显示装置
KR102574052B1 (ko) * 2015-11-19 2023-09-04 엘지디스플레이 주식회사 유기발광 표시장치
CN106384767B (zh) * 2016-11-18 2019-07-09 Tcl集团股份有限公司 量子点发光二极管及其制备方法与发光模组、显示装置
CN106935719A (zh) * 2017-02-24 2017-07-07 深圳市华星光电技术有限公司 一种量子点电致发光器件及其制作方法
CN109119541A (zh) * 2017-06-26 2019-01-01 东丽先端材料研究开发(中国)有限公司 量子点发光元件
CN107359264B (zh) * 2017-08-03 2019-12-31 青岛海信电器股份有限公司 一种qled、制备方法及显示装置
KR102405260B1 (ko) * 2017-11-21 2022-06-02 삼성전자주식회사 양자점 소자 및 전자 장치
CN108447998A (zh) * 2018-03-19 2018-08-24 京东方科技集团股份有限公司 量子点发光器件及制备方法、量子点发光显示装置
US11532789B2 (en) 2018-05-29 2022-12-20 Samsung Electronics Co., Ltd. Organic thin film including semiconducting polymer and elastomer configured to be dynamic intermolecular bonded with a metal-coordination bond and organic sensor and electronic device including the same
US11038136B2 (en) 2018-09-07 2021-06-15 Samsung Electronics Co., Ltd. Electroluminescent device, and display device comprising thereof
KR20200028657A (ko) 2018-09-07 2020-03-17 삼성전자주식회사 전계 발광 소자 및 이를 포함하는 표시 장치
KR20200059723A (ko) 2018-11-21 2020-05-29 삼성전자주식회사 전계 발광 소자 및 이를 포함하는 표시 장치
CN109801951B (zh) * 2019-02-13 2022-07-12 京东方科技集团股份有限公司 阵列基板、电致发光显示面板及显示装置
US20220115613A1 (en) * 2019-04-12 2022-04-14 Sharp Kabushiki Kaisha Light-emitting element, display device, and method of manufacturing light-emitting element
CN112018249A (zh) * 2019-05-30 2020-12-01 云谷(固安)科技有限公司 发光器件及其制造方法、显示装置
CN110289364B (zh) * 2019-06-28 2021-11-30 京东方科技集团股份有限公司 量子点杂化纳米材料及其制备方法和发光二极管
CN110571359A (zh) * 2019-07-31 2019-12-13 合肥工业大学 一种改善CdSe/ZnS量子点QLED器件性能的有机分子掺杂的制备方法
CN114342102A (zh) * 2019-09-02 2022-04-12 夏普株式会社 元件以及电子设备
KR20210034355A (ko) 2019-09-20 2021-03-30 삼성전자주식회사 전계 발광 소자 및 이를 포함하는 표시 장치
CN113046056B (zh) * 2019-12-28 2023-06-16 Tcl科技集团股份有限公司 量子点材料及其制备方法、量子点发光二极管和发光装置
CN113823756A (zh) * 2020-06-19 2021-12-21 北京小米移动软件有限公司 显示模组、显示面板及电子设备
CN112670424A (zh) * 2020-12-21 2021-04-16 广东聚华印刷显示技术有限公司 发光器件及其制备方法、以及显示装置
CN113097423B (zh) * 2021-04-08 2023-05-23 深圳扑浪创新科技有限公司 一种量子点发光层的制备方法
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087744A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd 発光素子
JP2009099563A (ja) * 2007-09-28 2009-05-07 Dainippon Printing Co Ltd 発光デバイス
JP2009099967A (ja) * 2007-09-27 2009-05-07 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、および電子機器
WO2012053398A1 (ja) * 2010-10-22 2012-04-26 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
WO2012128173A1 (ja) * 2011-03-24 2012-09-27 株式会社 村田製作所 発光デバイス、及び該発光デバイスの製造方法
JP2013157180A (ja) * 2012-01-30 2013-08-15 Murata Mfg Co Ltd 量子ドット膜の製造方法、及び光電変換デバイス

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502176A (ja) * 2001-09-04 2005-01-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 量子ドットを有するエレクトロルミネセント装置
JP5407242B2 (ja) * 2007-09-28 2014-02-05 大日本印刷株式会社 エレクトロルミネッセンス素子
WO2009123763A2 (en) * 2008-04-03 2009-10-08 Qd Vision, Inc. Light-emitting device including quantum dots
KR101557498B1 (ko) * 2008-11-05 2015-10-07 삼성전자주식회사 양자점 발광소자 및 그 제조방법
JP2010225563A (ja) * 2009-03-25 2010-10-07 Panasonic Electric Works Co Ltd 有機el素子
WO2011074550A1 (ja) * 2009-12-15 2011-06-23 三菱化学株式会社 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
WO2011074492A1 (ja) * 2009-12-18 2011-06-23 株式会社 村田製作所 薄膜形成方法、及び量子ドットデバイス
CN101937975A (zh) * 2010-08-20 2011-01-05 电子科技大学 一种有机/无机复合发光二极管及其制备方法
JP6168050B2 (ja) * 2012-04-20 2017-07-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
US9972802B2 (en) * 2012-04-20 2018-05-15 Konica Minolta, Inc. Organic electroluminescent element
CN103441220A (zh) * 2013-09-16 2013-12-11 东南大学 一种白光量子点发光二极管及其制备方法
CN103730584A (zh) * 2013-12-27 2014-04-16 北京京东方光电科技有限公司 一种显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099967A (ja) * 2007-09-27 2009-05-07 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、および電子機器
JP2009087744A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd 発光素子
JP2009099563A (ja) * 2007-09-28 2009-05-07 Dainippon Printing Co Ltd 発光デバイス
WO2012053398A1 (ja) * 2010-10-22 2012-04-26 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
WO2012128173A1 (ja) * 2011-03-24 2012-09-27 株式会社 村田製作所 発光デバイス、及び該発光デバイスの製造方法
JP2013157180A (ja) * 2012-01-30 2013-08-15 Murata Mfg Co Ltd 量子ドット膜の製造方法、及び光電変換デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200083925A (ko) 2018-12-28 2020-07-09 삼성전자주식회사 퀀텀닷 일렉트로루미네선스 소자
US11631815B2 (en) 2018-12-28 2023-04-18 Samsung Electronics Co., Ltd. Quantum dot electroluminescence device

Also Published As

Publication number Publication date
CN105900529A (zh) 2016-08-24
JP6168372B2 (ja) 2017-07-26
CN105900529B (zh) 2018-07-06
JPWO2015105027A1 (ja) 2017-03-23
US20160240730A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6168372B2 (ja) 発光デバイス、及び発光デバイスの製造方法
JP6233417B2 (ja) 発光デバイス
US9595625B2 (en) Nanoparticle material and light-emitting device
US10439155B2 (en) Quantum dot light-emitting diode and quantum dot light-emitting device having the same
JP5828340B2 (ja) 発光デバイス、及び該発光デバイスの製造方法
JP5370702B2 (ja) 薄膜形成方法
JP5218927B2 (ja) ナノ粒子材料及び光電変換デバイス
US9093657B2 (en) White light emitting devices
US11050033B2 (en) Light-emitting film, production method thereof, and a light emitting device including the same
JP5200296B2 (ja) ナノ粒子材料の製造方法
US20120292594A1 (en) Device including quantum dots and method for making same
US9722133B2 (en) Methods for processing quantum dots and devices including quantum dots
EP3540807A1 (en) Electroluminescent device, manufacturing method thereof, and display device comprising the same
KR20200063221A (ko) 다층 양자점 led 및 이를 제조하는 방법
WO2014097878A1 (ja) 発光デバイス、及び該発光デバイスの製造方法
KR20230054099A (ko) 전계발광소자 및 이를 포함하는 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877725

Country of ref document: EP

Kind code of ref document: A1