WO2015104947A1 - 半導体装置、メモリ回路、および半導体装置の製造方法 - Google Patents

半導体装置、メモリ回路、および半導体装置の製造方法 Download PDF

Info

Publication number
WO2015104947A1
WO2015104947A1 PCT/JP2014/082871 JP2014082871W WO2015104947A1 WO 2015104947 A1 WO2015104947 A1 WO 2015104947A1 JP 2014082871 W JP2014082871 W JP 2014082871W WO 2015104947 A1 WO2015104947 A1 WO 2015104947A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
diffusion
semiconductor layer
semiconductor device
stress
Prior art date
Application number
PCT/JP2014/082871
Other languages
English (en)
French (fr)
Inventor
孝司 横山
梅林 拓
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2015556744A priority Critical patent/JP6439705B2/ja
Priority to US15/107,977 priority patent/US10269867B2/en
Priority to CN201480071921.5A priority patent/CN105874578B/zh
Publication of WO2015104947A1 publication Critical patent/WO2015104947A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823406Combination of charge coupled devices, i.e. CCD, or BBD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42396Gate electrodes for field effect devices for charge coupled devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • H10B63/34Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors of the vertical channel field-effect transistor type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Definitions

  • the present technology relates to a semiconductor device in which a channel of a transistor is formed in a normal direction of a substrate surface and a memory circuit including the semiconductor device.
  • the present technology also relates to a method for manufacturing the semiconductor device.
  • Patent Document 1 proposes to provide a transistor channel in a direction perpendicular to the substrate surface.
  • a semiconductor device includes a first diffusion section, a second diffusion section, a channel section, a gate section, a first electrode section, a second electrode section, a third electrode section, and a stress application section.
  • the first diffusion portion is formed at or near the bottom of the groove in the semiconductor layer having the groove.
  • the second diffusion part is formed in the upper end part of the groove part in the semiconductor layer.
  • the channel part is formed between the first diffusion part and the second diffusion part in the semiconductor layer.
  • the gate portion is embedded in the groove portion and at a position facing the channel portion.
  • the first electrode part is electrically connected to the first diffusion part and is provided on the back side of the semiconductor layer.
  • the second electrode part is electrically connected to the second diffusion part and is provided on the upper surface side of the semiconductor layer.
  • the third electrode portion is electrically connected to the gate portion and is provided on the upper surface side of the semiconductor layer.
  • the stress applying unit applies a compressive stress or a tensor stress to the channel portion in the normal direction of the semiconductor layer.
  • a memory circuit includes a nonvolatile element or a volatile element, and a switch element that controls a current flowing through the nonvolatile element or the volatile element.
  • the switch element has the same components as the semiconductor device described above.
  • a method for manufacturing a semiconductor device includes the following four procedures. (1) In the semiconductor layer having a groove portion, a first diffusion portion is formed at the bottom portion of the groove portion via the groove portion, and a second diffusion portion is formed at the upper end portion of the groove portion, whereby the first diffusion portion and the first diffusion portion are formed. (2) After forming a gate insulating film with a high-k material having a relative dielectric constant higher than that of silicon oxide on the entire surface including the inner surface of the groove portion, the channel portion is formed between the two diffusion portions. Forming a gate portion made of a metal material inside at a position facing the channel portion, and further removing a portion of the gate insulating film protruding from the groove portion.
  • the semiconductor layer Forming a stress applying portion for applying compressive stress or tensor stress in the normal direction of the first electrode portion; and (4) a first electrode portion electrically connected to the first diffusion portion on the back side of the semiconductor layer.
  • the semiconductor layer A second electrode portion which is connected to the second diffusion portion and electrically to the side, forming a third electrode portion which is the gate portion electrically connected to the upper surface of the semiconductor layer
  • the first diffusion portion, the channel portion, and the second diffusion portion are arranged side by side in the normal direction of the semiconductor layer, and the gate portion is A buried gate type vertical transistor buried in the groove is provided in the semiconductor layer.
  • transistor characteristics can be improved as compared with a transistor in which all electrodes are provided on the upper surface side of the semiconductor layer.
  • a stress application unit that applies a compressive stress or a tensor stress in the normal direction of the semiconductor layer to the channel unit is provided. Thereby, transistor characteristics can be further improved.
  • a second electrode portion electrically connected to the second diffusion portion and a third electrode portion electrically connected to the gate portion are provided on the upper surface side of the semiconductor layer, and are electrically connected to the first diffusion portion.
  • the 1st electrode part connected to is provided in the back surface side of a semiconductor layer. Accordingly, the occupation area can be reduced as compared with a transistor in which all the electrodes are provided on the upper surface side of the semiconductor layer.
  • the stress applying unit is provided for the embedded gate type vertical transistor, and the electrode of the vertical transistor is formed on the semiconductor layer. Since it is provided on the upper surface side and the back surface side, it is possible to cope with the design shrink while improving the transistor characteristics.
  • the effect of the present technology is not necessarily limited to the effect described herein, and may be any effect described in the present specification.
  • FIG. 1 is a perspective configuration diagram of a semiconductor device according to a first embodiment of the present technology.
  • FIG. 2 is a cross-sectional configuration view taken along line A-A ′ of the semiconductor device of FIG. 1.
  • FIG. 2 is a cross-sectional configuration view taken along line B-B ′ of the semiconductor device of FIG. 1.
  • FIG. 3 is a cross-sectional configuration view taken along line C-C ′ of the semiconductor device of FIG. 2.
  • FIG. 2 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line A-A ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 1.
  • FIG. 2 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line B-B ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 1. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG.
  • FIG. 14 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 13. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG.
  • FIG. 20 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 19. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG.
  • FIG. 2 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line A-A ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 1.
  • FIG. 24 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 23.
  • FIG. 25 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 24.
  • FIG. 26 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 25.
  • FIG. 27 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 26.
  • FIG. 2 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line A-A ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 1.
  • FIG. 29 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 28.
  • FIG. 30 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 29.
  • FIG. 2 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line A-A ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 1.
  • FIG. 32 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 31.
  • FIG. 33 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 32.
  • FIG. 34 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 33.
  • FIG. 35 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 34.
  • FIG. 36 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 35.
  • FIG. 2 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line A-A ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 1.
  • FIG. 38 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 37.
  • FIG. 37 is a diagram illustrating a modification of the semiconductor device in FIG. 36.
  • FIG. 40 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line A-A ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 39. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG. It is a figure showing an example of the cross-sectional structure in the manufacturing process following FIG.
  • FIG. 43 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 42.
  • FIG. 40 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line A-A ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 39.
  • FIG. 40 is a diagram illustrating an example of a cross-sectional configuration at a position corresponding to the line A-A ′ of FIG. 1 in a semiconductor substrate used for manufacturing the semiconductor device of FIG. 39.
  • FIG. 45 is a diagram illustrating an example of a cross-sectional configuration in a manufacturing process subsequent to FIG. 44.
  • FIG. 40 is a diagram illustrating a modification of the semiconductor device in FIG. 39.
  • FIG. 47 is a diagram illustrating a modification of the semiconductor device in FIG. 46.
  • FIG. 4 is a diagram illustrating a modification of the semiconductor device in FIG. 3.
  • FIG. 6 is a diagram illustrating a modification of the semiconductor device in FIG. 4.
  • FIG. 6 is a diagram illustrating a modification of the semiconductor device in FIG. 4.
  • FIG. 5 is a diagram illustrating a modification of the semiconductor device in FIG. 2.
  • FIG. 37 is a diagram illustrating a modification of the semiconductor device in FIG. 36.
  • FIG. 40 is a diagram illustrating a modification of the semiconductor device in FIG. 39.
  • FIG. 47 is a diagram illustrating a modification of the semiconductor device in FIG. 46.
  • FIG. 5 is a diagram illustrating a modification of the semiconductor device in FIG. 2.
  • FIG. 37 is a diagram illustrating a modification of the semiconductor device in FIG. 36.
  • FIG. 40 is a diagram illustrating a modification of the semiconductor device in FIG. 39.
  • FIG. 47 is a diagram illustrating a modification of the semiconductor device in FIG. 46.
  • FIG. 5 is a diagram illustrating a modification of the semiconductor device in FIG. 2.
  • FIG. 37 is a diagram illustrating a modification of the semiconductor device in FIG. 36.
  • FIG. 40 is a diagram illustrating a modification of the semiconductor device in FIG. 39.
  • FIG. 47 is a diagram illustrating a modification of the semiconductor device in FIG. 46.
  • FIG. 5 is a diagram illustrating a modification of the semiconductor device in FIG. 2.
  • FIG. 37 is a diagram illustrating a modification of the semiconductor device in FIG. 36.
  • FIG. 40 is
  • FIG. 10 is a diagram illustrating a modification of the semiconductor device in FIG. 1.
  • FIG. 5 is a diagram illustrating a modification of the semiconductor device in FIG. 2.
  • FIG. 6 is a diagram illustrating a modification of the semiconductor device in FIG. 4. It is a figure showing an example of circuit composition of a memory circuit concerning a 2nd embodiment of this art.
  • FIG. 67 is a diagram illustrating an example of a cross-sectional configuration of the memory circuit in FIG. 66.
  • FIG. 67 is a diagram illustrating an example of a cross-sectional configuration of the memory circuit in FIG. 66.
  • FIG. 67 is a diagram illustrating a modification of the circuit configuration of the memory circuit in FIG. 66.
  • FIG. 67 is a diagram illustrating a modification of the circuit configuration of the memory circuit in FIG. 66.
  • FIG. 70 is a diagram illustrating a modification of the circuit configuration of the memory circuit in FIG. 69.
  • FIG. 1 illustrates a perspective configuration of a semiconductor device 1 according to the first embodiment of the present technology.
  • FIG. 2 illustrates an example of a cross-sectional configuration along the line AA ′ of the semiconductor device 1 of FIG.
  • FIG. 3 illustrates an example of a cross-sectional configuration taken along the line BB ′ of the semiconductor device 1 of FIG.
  • FIG. 4 illustrates an example of a cross-sectional configuration along the line CC ′ of the semiconductor device 1 of FIG.
  • the semiconductor device 1 includes a semiconductor layer 10 and a transistor 20 formed in the semiconductor layer 10.
  • the transistor 20 is a buried gate type vertical transistor.
  • the transistor 20 is a p-type MOS transistor or an n-type MOS transistor.
  • the transistor 20 includes two source / drain portions 21, a source / drain portion 22, a channel portion 23, a gate portion 24, an electrode portion 25, an electrode portion 26, an electrode portion 27, and a gate insulating film 28.
  • the source / drain part 21 corresponds to a specific example of “second diffusion part” of the present technology.
  • the source / drain part 22 corresponds to a specific example of “first diffusion part” of the present technology.
  • the channel unit 23 corresponds to a specific example of a “channel unit” of the present technology.
  • the gate unit 24 corresponds to a specific example of a “gate unit” of the present technology.
  • the electrode unit 25 corresponds to a specific example of “second electrode unit” of the present technology.
  • the electrode unit 26 corresponds to a specific example of “first electrode unit” of the present technology.
  • the electrode unit 27 corresponds to a specific example of “third electrode unit” of the present technology.
  • the semiconductor layer 10 is a silicon layer.
  • the semiconductor layer 10 is an n-type silicon layer.
  • the semiconductor layer 10 is a p-type silicon layer.
  • the semiconductor layer 10 may be a bulk silicon substrate, or may be a silicon layer separated from an SOI (Silicon-on-Insulator) substrate. In the following description, it is assumed that the semiconductor layer 10 is obtained by separating the silicon layer in the SOI substrate, but the semiconductor layer 10 is not limited to the one obtained by separating the silicon layer in the SOI substrate.
  • the semiconductor layer 10 has a groove 10A on the upper surface side.
  • the groove portion 10 ⁇ / b> A is formed by etching the semiconductor layer 10.
  • the groove 10 ⁇ / b> A has a depth that does not penetrate the semiconductor layer 10, and a predetermined gap exists between the bottom surface of the groove 10 ⁇ / b> A and the back surface of the semiconductor layer 10.
  • the gate insulating film 28 is formed on the inner surface of the groove 10A, and is formed on two side surfaces facing each other on the inner surface of the groove 10A.
  • the gate insulating film 28 is formed at a position facing the channel portion 23 on the side surface of the trench 10A.
  • the gate insulating film 28 is made of, for example, silicon oxide, and is made of, for example, SiO 2 or SiON.
  • the gate insulating film 28 may be formed of, for example, a high-k material having a relative dielectric constant higher than that of silicon oxide.
  • the high-k material is an insulating material having a high dielectric constant such as HfO 2 or ZrO 2 .
  • the gate leakage current can be reduced while increasing the insulating film capacitance (that is, reducing the thickness of the gate insulating film 28).
  • the source / drain portion 22 is formed at the bottom of the groove 10 ⁇ / b> A, and is formed between the bottom surface of the groove 10 ⁇ / b> A and the back surface of the semiconductor layer 10.
  • the source / drain portion 22 is a p-type semiconductor region.
  • the source / drain portion 22 is an n-type semiconductor region.
  • the two source / drain portions 21 are formed at the upper end portions (the upper end portions of the groove portion 10A) of the two side surfaces of the semiconductor layer 10 facing each other on the inner surface of the groove portion 10A.
  • the transistor 20 is a p-type MOS transistor
  • the two source / drain portions 21 are p-type semiconductor regions.
  • the transistor 20 is an n-type MOS transistor
  • the two source / drain portions 21 are n-type semiconductor regions.
  • the channel portion 23 is formed on the two side surfaces described above in the semiconductor layer 10, and is formed between each source / drain portion 21 and the source / drain portion 22.
  • the channel part 23 is a band-like region extending in the thickness direction of the semiconductor layer 10.
  • the channel portion 23 is formed, for example, on the (110) plane, and the channel orientation is the ⁇ 110> direction. Yes.
  • the channel orientation refers to the direction of current flowing through the channel portion 23.
  • the semiconductor layer 10 is a (110) layer or a (110) substrate.
  • the channel portion 23 is formed, for example, on the (110) plane, and the channel orientation is the ⁇ 100> direction. It may be.
  • the semiconductor layer 10 is a (100) layer or a (100) substrate.
  • the source / drain sections 21 and 22 and the channel section 23 constitute an n-type transistor, the channel section 23 is formed, for example, on the (001) plane and the channel orientation is the ⁇ 110> direction. Yes.
  • the semiconductor layer 10 is a (110) layer or a (110) substrate.
  • the gate part 24 is embedded in the groove part 10 ⁇ / b> A and at a position facing the channel part 23.
  • the gate portion 24 extends in a direction parallel to the two side surfaces (or channel portions 23) facing each other in the groove portion 10A.
  • the upper surface of the gate portion 24 is formed at a position lower than the upper end portion of the groove portion 10 ⁇ / b> A, and there is a step between the upper surface of the gate portion 24 and the upper surface of the source / drain portion 21.
  • An insulating layer 36 is provided in such a manner that the step is embedded.
  • the gate portion 24 is made of, for example, polysilicon or metal. When the gate insulating film 28 is made of silicon oxide, the gate portion 24 is made of, for example, polysilicon. In the case where the gate insulating film 28 is made of the high-k material, the gate portion 24 is made of metal.
  • the electrode part 25 is electrically connected to the source / drain part 21 and is provided on the upper surface side of the semiconductor layer 10.
  • the electrode part 25 has, for example, a contact hole shape.
  • the electrode part 25 is embedded with, for example, an insulating layer 37, and a wiring layer 41 electrically connected to the electrode part 25 is provided on the insulating layer 37.
  • a conductive layer 34 made of, for example, silicide (for example, NiSi) is provided between the electrode unit 25 and the source / drain unit 21.
  • the electrode part 26 is electrically connected to the source / drain part 22 and is provided on the back side of the semiconductor layer 10.
  • the electrode portion 26 has, for example, a column shape.
  • An insulating layer 38 is provided on the back side of the semiconductor layer 10.
  • the insulating layer 38 has openings at locations facing the source / drain portions 22.
  • the back surface of the source / drain portion 22 is exposed at the bottom surface of the opening of the insulating layer 38, and the wiring layer 42 is electrically connected to the source / drain portion 22 through the opening of the insulating layer 38.
  • a conductive layer 35 made of, for example, silicide (for example, NiSi) is provided between the electrode part 26 and the source / drain part 22, a conductive layer 35 made of, for example, silicide (for example, NiSi) is provided.
  • the electrode part 27 is electrically connected to the gate part 24 and is provided on the upper surface side of the semiconductor layer 10.
  • the electrode part 27 has, for example, a contact hole shape or a slit shape.
  • the electrode part 27 is embedded with, for example, an insulating layer 37, and a wiring layer 43 electrically connected to the electrode part 27 is provided on the insulating layer 37.
  • the semiconductor device 1 further includes a stress applying unit that applies compressive stress or tensor stress to the channel unit 23 in the normal direction of the semiconductor layer 10 (longitudinal direction of the channel unit 23). ing.
  • the semiconductor device 1 includes a stress application film 31, a stress application film 32, and an element isolation film 33 as stress application units.
  • the stress application film 31 and the stress application film 32 are arranged so as to sandwich the channel portion 23 from the vertical direction (the extending direction of the channel portion 23).
  • the element isolation film 33 is disposed so as to sandwich the channel portion 23 from the width direction of the channel portion 23.
  • the stress application film 31 corresponds to a specific example of “first stress application film” of the present technology.
  • the stress application film 32 corresponds to a specific example of “second stress application film” of the present technology.
  • the element isolation film 33 corresponds to a specific example of “third stress applying film” of the present technology.
  • the stress application film 31 is provided on the upper surface side of the semiconductor layer 10. Specifically, the stress application film 31 is provided in contact with the upper surfaces of the two source / drain portions 21 and extends in a direction orthogonal to the extending direction of the gate portion 24. The width of the stress application film 31 is wider than the width of the source / drain portion 21.
  • the stress application film 31 is a tensor film, and is configured to apply a compressive stress to the channel portion 23.
  • the stress application film 32 is provided on the back side of the semiconductor layer 10. Specifically, the stress application film 32 is provided at a position facing the back surface of the source / drain portion 22 and extends in a direction orthogonal to the extending direction of the gate portion 24. The width of the stress application film 32 is wider than the width of the source / drain portion 22. For example, as shown in FIG. 6, the stress application film 32 is a tensor film, and is configured to apply a compressive stress to the channel portion 23.
  • the element isolation film 33 is provided on both sides of the channel portion 23.
  • the element isolation film 33 is for electrically isolating the transistor 20 from other elements formed in the semiconductor layer 10.
  • the element isolation film 33 is configured by STI (Shallow trench isolation).
  • the element isolation film 33 is a tensor film, and is configured to apply a compressive stress to the channel portion 23.
  • the stress application film 31, the stress application film 32, and the element isolation film 33 are all tensor films and, for example, apply compressive stress to the channel portion 23 as shown in FIG. It is configured as follows.
  • the stress application film 31, the stress application film 32, and the element isolation film 33 may all be composed of a compressive film.
  • the stress application film 31, the stress application film 32, and the element isolation film 33 are configured to apply a tensor stress to the channel portion 23 as shown in FIG. 9, for example.
  • the stress application part is a tensor film, and is configured to apply a compressive stress to the channel part 23.
  • the stress application part is a compressive film, and is configured to apply a tensor stress to the channel part 23.
  • the source / drain portions 21 and 22 and the channel portion 23 constitute an n-type transistor
  • the channel portion 23 is formed on the (001) plane
  • the channel orientation is the ⁇ 110> direction.
  • the stress application part is a compressive film, and is configured to apply a tensor stress to the channel part 23.
  • the mobility is maximized by setting the formation surface and the channel orientation of the channel portion 23 as described above.
  • the transistor characteristics are further improved by setting the stress application portion as described above after the formation surface and the channel orientation of the channel portion 23 are set as described above.
  • FIGS. 12 to 22 are cross-sectional views taken along the line AA ′ in FIG.
  • FIG. 11 is a cross-sectional view of a portion corresponding to the line CC ′ in FIG.
  • the semiconductor substrate 100 is prepared (FIG. 10).
  • the semiconductor substrate 100 is an SOI substrate in which an insulating layer 38 made of SiO 2 is provided between the semiconductor layer 101 and the semiconductor layer 10.
  • the element isolation film 33 is provided on the semiconductor layer 10 of the semiconductor substrate 100 (FIG. 11). Specifically, a pair of element isolation films 33 are provided at positions facing each other with a location where the source / drain portion 21 is formed later.
  • the semiconductor layer 10 and the pair of element isolation films 33 are selectively used with the insulating layer 102 as a mask.
  • Etching is performed to form the groove 10A (FIG. 12).
  • a gate insulating film 28 is formed on the inner surface of the trench 10A. Specifically, after forming the gate insulating film 28 on the two side surfaces facing each other on the inner surface of the trench 10A (FIG. 13), the source / drain portion 22 is formed at the bottom of the trench 10A via the trench 10A. (FIG. 14).
  • an insulating layer 36 is formed to fill the step between the upper surface of the gate portion 24 and the upper surface of the semiconductor layer 10 (FIG. 16).
  • the insulating layer 102 is removed.
  • the source / drain portion 21 is formed at the upper end portion of the groove portion 10A.
  • the source / drain portions 21 are formed one by one at the upper end portions of the two side surfaces facing each other in the groove portion 10A (the upper end portion of the groove portion 10A) (FIG. 17).
  • the channel portion 23 is formed between the source / drain portion 22 and the source / drain portion 21 (specifically, a position facing the gate portion 24).
  • a conductive layer 34 is formed on the two source / drain portions 21 (FIG. 18).
  • an insulating layer 37 is formed on the entire upper surface including the stress application film 31 (FIG. 19).
  • an opening is provided in a portion of the stress application film 31 and the insulating layer 37 that faces the upper surface of each source / drain portion 21, and the electrode portion 25 is formed in the opening, and is located at a position including the upper surface of the electrode portion 25.
  • a wiring layer 41 is formed (FIG. 20).
  • an opening is provided in a portion of the stress applying film 31 and the insulating layer 37 facing the upper surface of the gate portion 24, an electrode portion 27 is formed in the opening, and the wiring layer 43 is formed at a position including the upper surface of the electrode portion 27. (Not shown).
  • the manufacturing method shown above is suitable when the gate insulating film 28 is formed of silicon oxide.
  • a manufacturing method suitable for forming the gate insulating film 28 with the high-k material will be described below.
  • 23 to 27 show other examples of the manufacturing process of the semiconductor device 1 in order.
  • 23 to 27 are cross-sectional views of a portion corresponding to the line A-A ′ of FIG.
  • the groove 10A is formed in the semiconductor layer 10 through the same procedure as that shown in FIGS.
  • an insulating film 28a similar to the gate insulating film 28 is formed on the inner surface of the trench 10A.
  • an insulating film 28a similar to the gate insulating film 28 is formed on two side surfaces facing each other on the inner surface of the trench 10A (FIG. 23).
  • the source / drain part 22 is formed on the bottom of the groove 10A via the groove 10A. Further, a source / drain portion 21 is formed at the upper end of the groove 10A.
  • the source / drain portions 21 are formed one by one at the upper end portions of the two side surfaces facing each other in the groove portion 10A (the upper end portion of the groove portion 10A) (FIG. 24). As a result, a channel portion 23 is formed between the source / drain portion 22 and the source / drain portion 21.
  • the gate insulating film 28 is formed of the high-k material on the entire surface including the inner surface of the trench 10A (FIG. 25).
  • the gate portion 24 made of a metal material is formed so as to fill the groove portion 10A (FIG. 26).
  • an insulating layer 36 that fills the step between the upper surface of the gate portion 24 and the upper surface of the semiconductor layer 10 is formed (FIG. 26).
  • portions of the insulating layer 102 and the gate insulating film 28 that protrude from the trench 10A are removed (FIG. 27).
  • the conductive layer 34, the stress applying film 31, the insulating layer 37, the electrode part 25, the wiring layer 41, the electrode part 27, and the wiring layer 43 are formed by a method similar to the manufacturing method shown above (FIG. 18 to FIG. 18). FIG. 20).
  • the conductive layer 35 is formed (see FIGS. 21 and 22).
  • the stress applying film 32, the electrode 26, and the wiring layer 42 are formed by a method similar to the manufacturing method shown above (see FIG. 2). Even in this case, the semiconductor device 1 of the present embodiment is manufactured.
  • the transistor 20 is turned off and no current flows.
  • the source / drain section 22, the channel section 23, and the source / drain section 21 are arranged side by side in the normal direction of the semiconductor layer 10, and the gate section 24 is embedded in the trench section 10A.
  • a vertical transistor is provided in the semiconductor layer 10. Accordingly, as compared with a transistor in which all electrodes are provided on the upper surface side of the semiconductor layer, the channel length and the channel width can be easily increased, so that transistor characteristics can be improved.
  • a stress applying unit that applies a compressive stress or a tensor stress in the normal direction of the semiconductor layer 10 is provided for the channel unit 23. Thereby, transistor characteristics can be further improved.
  • an electrode part 25 electrically connected to the source / drain part 21 and an electrode part 27 electrically connected to the gate part 24 are provided on the upper surface side of the semiconductor layer 10.
  • An electrically connected electrode portion 26 is provided on the back side of the semiconductor layer 10. Accordingly, the occupation area can be reduced as compared with a transistor in which all the electrodes are provided on the upper surface side of the semiconductor layer. Therefore, it is possible to cope with the design shrink while improving the transistor characteristics.
  • the source / drain portion 22 is formed in the semiconductor layer 10 via the bottom surface of the groove portion 10A.
  • the source / drain 103 is formed near the back surface of the semiconductor layer 10 by using, for example, an ion implantation method.
  • the separation layer 104 having a conductivity type different from that of the source / drain portion 103 is formed by using, for example, an ion implantation method. It forms in places other than the place which forms. As a result, the remaining source / drain portion 103 becomes the source / drain portion 22.
  • a groove 10 ⁇ / b> A having a depth reaching the source / drain 22 is formed. Thereafter, the semiconductor device 1 is manufactured through the same processes as those described in the above embodiment.
  • the semiconductor layer 10 may be formed by epitaxial crystal growth.
  • FIGS. 31 to 36 show an example of the manufacturing process of the semiconductor device 1 according to this modification in order. 31, FIG. 32, and FIGS. 34 to 36 are cross-sectional views taken along the line AA ′ in FIG. 33 is a cross-sectional view of a portion corresponding to the line CC ′ of FIG.
  • a semiconductor substrate 200 provided with an insulating layer 38 between the semiconductor layer 101 and the semiconductor layer 105 is prepared (FIG. 31).
  • semiconductor layers 106, 107, and 108 are formed in this order on the semiconductor layer 105 by performing epitaxial crystal growth (FIG. 32). At this time, the conductivity types of the semiconductor layers 105, 106, and 108 are different from the conductivity type of the semiconductor layer 107.
  • a pair of element isolation films 33 are formed on the semiconductor layers 105, 106, 107, and 108 (FIG. 33).
  • the pair of element isolation films 33 is formed by the same method as the manufacturing method in the above embodiment.
  • an isolation layer 109 having a conductivity type different from that of the semiconductor layers 105 and 106 is formed in a portion of the semiconductor layers 105 and 106 other than the portion where the source / drain portion 22 is formed by using ion implantation, for example. (FIG. 34). As a result, the remaining semiconductor layers 105 and 106 become the source / drain portions 22.
  • the semiconductor layer 10 is selectively etched using the insulating layer 102 as a mask to form a groove 10A (FIG. 35).
  • the groove 10A is formed so that the source / drain 22 is the bottom of the groove 10A.
  • the semiconductor device 1 having the cross-sectional configuration as shown in FIG. 36 is manufactured through the same steps as those described in the above embodiment.
  • the source / drain portions 21 and 22 may be formed on the semiconductor layer 10 by epitaxial crystal growth.
  • 37 and 38 show an example of the manufacturing process of the semiconductor device 1 according to this modification in order.
  • 37 and 38 are cross-sectional views of a portion corresponding to the line AA ′ in FIG.
  • a groove 10A is formed in the semiconductor layer 10 (FIG. 37).
  • the semiconductor layer is stacked by performing epitaxial crystal growth on the entire top surface including the groove 10A.
  • the source / drain portion 22 is formed at the bottom of the trench 10A, and the source / drain portion 21 is formed at a portion other than the trench 10A on the upper surface of the semiconductor layer 10 (FIG. 38).
  • the semiconductor device 1 is manufactured through the same steps as those described in the above embodiment.
  • the source / drain portions 21 and 22 are formed by one epitaxial crystal growth. Therefore, the source / drain portions 21 and 22 can be formed very easily as compared with the manufacturing method according to the above embodiment.
  • the semiconductor device 1 has two channel parts 23 for one source / drain part 22.
  • the semiconductor device 1 may include, for example, two source / drain portions 22 and one channel portion 23 for each source / drain portion 22.
  • FIG. 39 illustrates an example of a cross-sectional configuration of the semiconductor device 1 according to this modification.
  • FIG. 39 corresponds to a cross section at a position corresponding to the line A-A ′ of FIG. 1 in the semiconductor device 1 according to the present modification.
  • the groove portion 10 ⁇ / b> A is formed so as to penetrate the semiconductor layers 105, 106, 107, and 108 without forming the isolation layer 109. This corresponds to the semiconductor layer 105, 106, 107, 108 separated into two.
  • the semiconductor device 1 shown in FIG. 39 has two semiconductor layers 105 corresponding to the source / drain portions 22 in the vicinity of the bottom of the groove 10A. Specifically, the two semiconductor layers 105 are formed in the groove portions. One 10A is provided in each of two regions facing each other with the bottom surface therebetween.
  • the semiconductor device 1 shown in FIG. 39 has two semiconductor layers 106 corresponding to the source / drain portions 22 in the vicinity of the bottom of the trench 10A. Specifically, the two semiconductor layers 106 are provided. , One in each of two regions facing each other with the bottom surface of the groove 10A in between.
  • the semiconductor device 1 shown in FIG. 39 has two semiconductor layers 108 corresponding to the source / drain portions 21 at the upper end of the trench 10A.
  • the two semiconductor layers 108 are One in each of two regions facing each other with the upper portion of the groove portion 10A in between.
  • the semiconductor device 1 shown in FIG. 39 includes two semiconductor layers 107 including the channel portion 23. Specifically, the two semiconductor layers 107 are opposed to each other with the groove portion 10A interposed therebetween. One in each area. Each semiconductor layer 107 is provided between the semiconductor layer 106 and the semiconductor layer 108. Therefore, the semiconductor device 1 illustrated in FIG. 39 includes two stacked bodies in which the semiconductor layers 105, 106, 107, and 108 are stacked in this order, one in each of two regions facing each other with the groove 10A interposed therebetween. is doing.
  • the semiconductor device 1 shown in FIG. 39 includes one gate portion 24 in the groove portion 10A.
  • One gate portion 24 is shared by two channel portions 23 provided on both sides of the groove portion 10A. Therefore, in the semiconductor device 1 illustrated in FIG. 39, the transistor 20 includes two transistors Tr ⁇ b> 1 and Tr ⁇ b> 2 that share one gate part 24.
  • a semiconductor device 1 illustrated in FIG. 39 includes an insulating layer 110 embedded on the bottom side of the groove 10A, and an insulating layer 29 provided between the insulating layer 110 and the side surfaces of the semiconductor layers 105 and 106. .
  • the upper surfaces of the insulating layer 110 and the insulating layer 29 are, for example, in the same plane as the interface between the semiconductor layer 106 and the semiconductor layer 107 or at a position higher than the interface.
  • the semiconductor device 1 shown in FIG. 39 further includes a gate portion 24 embedded in the groove portion 10 ⁇ / b> A and at a position facing the channel portion 23.
  • the gate part 24 is formed on the insulating layer 110.
  • the position of the bottom surface of the gate portion 24 is defined by the positions of the top surfaces of the insulating layer 110 and the insulating layer 29.
  • the upper surface of the gate portion 24 is formed at a position lower than the upper end portion of the groove portion 10A, and is, for example, in the same plane as the boundary surface between the semiconductor layer 107 and the semiconductor layer 108, or the boundary surface thereof. Is in a lower position.
  • An insulating layer 36 is provided in such a manner that the step is embedded.
  • one electrode portion 25, 26 is further provided for the transistor Tr1, and one electrode portion 25, 26 is also provided for the transistor Tr2. .
  • 40 to 43 show an example of the manufacturing process of the semiconductor device 1 shown in FIG. 39 in order.
  • 40 to 43 are cross-sectional views of a portion corresponding to the line AA ′ in FIG.
  • semiconductor layers 106, 107, and 108 are formed in this order on the semiconductor substrate 200 (FIG. 32). At this time, the conductivity types of the semiconductor layers 105, 106, and 108 are different from the conductivity type of the semiconductor layer 107.
  • a pair of element isolation films 33 are formed on the semiconductor layers 105 to 108 (FIG. 33).
  • an insulating layer 102 having a strip-shaped opening across the pair of element isolation films 33 is formed on the upper surface of the semiconductor layer 108, the semiconductor layers 105 to 108 and the pair of element isolation films 33 are formed using the insulating layer 102 as a mask.
  • the groove 10A is formed by selective etching (FIG. 40).
  • the insulating film 29 and the insulating layer 110 are formed inside the groove 10A and on the bottom side of the groove 10A.
  • the insulating film 29 is formed on two side surfaces facing each other inside the groove portion 10A and on the bottom side of the groove portion 10A, and inside the groove portion 10A and at the bottom surface of the groove portion 10A.
  • the insulating layer 110 is formed so as to bury the side (FIGS. 41 and 42).
  • the insulating layers 29 are formed on the entire side surface of the groove 10A by oxidizing the semiconductor layers 105 to 108 exposed on the side surface of the groove 10A.
  • the insulating layer 110 is etched (etched back) together with the insulating film 29, thereby forming the inside of the groove portion 10A.
  • the insulating film 29 and the insulating layer 110 are formed only on the bottom surface side of the groove 10A.
  • the insulating film 29 and the insulating layer 110 are so formed that the upper surfaces of the insulating film 29 and the insulating layer 110 are flush with or higher than the boundary surface between the semiconductor layer 106 and the semiconductor layer 107.
  • the layer 110 is etched (etched back) (FIG. 42).
  • the gate insulating film 28 is formed on the inner surface of the groove 10A in which the insulating film 29 and the insulating layer 110 are formed on the bottom surface side. Specifically, the gate insulating film 28 is formed on two side surfaces facing each other on the inner surface of the trench 10A (FIG. 43). Subsequently, the gate portion 24 is formed so as to fill the groove portion 10A. Specifically, the gate portion 24 is formed inside the trench portion 10A and at a position facing the semiconductor layer 107 (FIG. 43). Thereby, the channel portion 23 is formed in the semiconductor layer 107.
  • the gate portion 24 is etched to leave the gate portion 24 only in the groove portion 10A.
  • the gate portion 24 is etched so that the upper surface of the gate portion 24 is flush with or lower than the boundary surface between the semiconductor layer 107 and the semiconductor layer 108.
  • the insulating layer 36 is formed so as to fill the groove 10A (FIG. 43).
  • the conductive portion 34, the stress application film 31, the insulating layer 37, the electrode portion 25, the wiring layer 41, the conductive layer 35, the stress application film 32, and the wiring layer 42 are formed in the same manner as in the above embodiment. In this way, the semiconductor device 1 is manufactured.
  • the manufacturing method shown above is a suitable method when the gate insulating film 28 is formed of silicon oxide.
  • a manufacturing method suitable for forming the gate insulating film 28 with the high-k material will be described below.
  • 44 and 45 show another example of the manufacturing process of the semiconductor device 1 in order.
  • 44 and 45 are cross-sectional views of a portion corresponding to the line A-A ′ of FIG.
  • the insulating film 29 and the insulating layer 110 are formed inside the trench 10A and on the bottom side of the trench 10A.
  • the gate insulating film 28 is formed of the high-k material over the entire surface including the inner surface of the trench 10A (FIG. 44).
  • the gate portion 24 made of a metal material is formed in the groove portion 10A and at a position facing the semiconductor layer 107 (FIG. 44). Thereby, the channel portion 23 is formed in the semiconductor layer 107.
  • the insulating layer 36 is formed so as to fill the groove 10A (FIG. 44).
  • portions of the insulating layer 102 and the gate insulating film 28 that protrude from the trench 10A are removed (FIG. 45). Thereafter, the conductive portion 34, the stress application film 31, the insulating layer 37, the electrode portion 25, the wiring layer 41, the conductive layer 35, the stress application film 32, and the wiring layer 42 are formed in the same manner as in the above embodiment. In this way, the semiconductor device 1 is manufactured.
  • the transistor 20 is constituted by two transistors Tr1 and Tr2 that share one gate portion 24. Even in this case, the semiconductor device 1 according to this modification has the same effect as the semiconductor device 1 of the above-described embodiment.
  • the semiconductor layers 105, 106, and 108 corresponding to the source / drain portions 21 and 22 are formed by one epitaxial crystal growth. Therefore, the semiconductor layers 105, 106, and 108 can be formed very easily as compared with the manufacturing method according to the above embodiment.
  • the position of the bottom surface of the gate portion 24 is defined by the thicknesses of the insulating film 29 and the insulating layer 110.
  • the thicknesses of the insulating film 29 and the insulating layer 110 are defined by adjusting the etch back amount. That is, the position where the channel portion 23 is formed can be adjusted by adjusting the etching back amounts of the insulating film 29 and the insulating layer 110.
  • the lower end of the gate portion 24 can be adjusted to a desired position with respect to the boundary between the channel portion 23 and the source / drain portion 22, so that the transistor characteristics can be arbitrarily adjusted.
  • the wiring layers 41 and 42 are shared by the two transistors Tr1 and Tr2.
  • the wiring layers 41 and 42 may be separately assigned to the two transistors Tr1 and Tr2.
  • the transistor Tr1 and the transistor Tr2 can be driven independently of each other.
  • an insulating layer 111 that separates the gate portion 24 into two may be provided inside the groove portion 10A.
  • the transistor Tr2 illustrated in FIG. 47 does not share the gate portion 24 with other transistors (for example, the transistor Tr1), and has a gate portion 24 uniquely.
  • the gate portion 24 is formed inside the groove portion 10A, a groove is provided in the gate portion 24, the gate portion 24 is separated into two, and the insulating layer 111 is formed so as to fill the groove, thereby forming a transistor.
  • Each can have its own gate 24. Even in this case, the transistor Tr1 and the transistor Tr2 can be driven independently of each other.
  • the semiconductor layers 106, 107, and 108 may function as a stress application unit.
  • the semiconductor layers 105, 106, 108 and the channel portion 23 constitute a p-type transistor, the channel portion 23 is formed on the (110) plane, and the channel orientation is the ⁇ 110> direction, the semiconductor layer 106
  • the lattice constant of at least one of the semiconductor layers 108 is larger than the lattice constant of the semiconductor layer 107.
  • the semiconductor layers 105, 106, and 108 and the channel portion 23 constitute a p-type transistor
  • the channel portion 23 is formed on the (110) plane, and the channel orientation is the ⁇ 100> direction
  • the semiconductor The lattice constant of at least one of the layer 106 and the semiconductor layer 108 is smaller than the lattice constant of the semiconductor layer 107.
  • the semiconductor layers 105, 106, 108 and the channel portion 23 constitute an n-type transistor, the channel portion 23 is formed on the (001) plane, and the channel orientation is the ⁇ 110> direction
  • the lattice constant of at least one of the semiconductor layer 106 and the semiconductor layer 108 is smaller than the lattice constant of the semiconductor layer 107.
  • the semiconductor layers 106, 107, and 108 are made of a material whose lattice constant can be adjusted, and for example, contain SiGe.
  • the semiconductor layers 106, 107, and 108 function as stress applying portions.
  • the transistor characteristics can be further improved not only by the action of the stress application films 31 and 32 and the element isolation film 33 but also by the action of the semiconductor layers 106, 107 and 108.
  • this modified example can be applied to modified example 2. That is, in the above description, the semiconductor layers 105 and 106 may be read as the source / drain portion 22 and the semiconductor layer 108 may be read as the source / drain portion 21. Therefore, even when this modification is applied to Modification 2, not only the action by the stress application films 31 and 32 and the element isolation film 33 but also the action by the source / drain portion 22 and the semiconductor layers 106, 107, and 108. Thus, transistor characteristics can be further improved.
  • the insulating layer 36 may have a convex portion 36A at a portion facing the source / drain part 22.
  • the insulating layer 36 may have a convex portion 36 ⁇ / b> A at a portion facing the source / drain portion 22.
  • the protrusions 36 ⁇ / b> A can be formed by etching back portions other than the portions facing the source / drain portions 22.
  • the stress application film 31 is formed on the upper surface of the convex portion 36A and the surfaces of the concave portions on both sides of the convex portion 36A. As a result, the stress applied from the stress application film 31 to the channel portion 23 can be further increased.
  • the upper surface of the element isolation film 33 may be formed at a position lower than the upper surface of the source / drain part 21.
  • the upper surface of the element isolation film 33 may be formed at a position lower than the upper surface of the source / drain portion 21.
  • the upper part of the source / drain part 21 (or the conductive layer 34) constitutes the convex part 10B in relation to the upper surface of the element isolation film 33.
  • the upper surface of the element isolation film 33 can be made lower than the upper surface of the source / drain portion 21 by etching back the element isolation film 33.
  • the stress application film 31 is formed on the upper surface of the source / drain part 21 (or the conductive layer 34) and the element isolation film 33. Formed on the upper surface of the substrate. That is, the stress application film 31 is formed across the convex portion 10B. As a result, the stress applied from the stress application film 31 to the channel portion 23 can be further increased.
  • the back surface of the element isolation film 33 may be formed at a location recessed from the back surface of the source / drain part 22.
  • the back surface of the element isolation film 33 may be formed at a location recessed from the back surface of the source / drain portion 22.
  • the lower portion of the source / drain portion 22 (or the conductive layer 35) constitutes the convex portion 10C in relation to the upper surface of the element isolation film 33.
  • the back surface of the element isolation film 33 can be recessed from the back surface of the source / drain portion 22.
  • the stress applying film 32 is formed on the back surface of the source / drain part 22 (or the conductive layer 35) and the element isolation film 33 by making the back surface of the element isolation film 33 recessed from the back surface of the source / drain part 22. It is formed on the back surface. That is, the stress application film 32 is formed across the convex portion 10C. As a result, the stress applied from the stress application film 32 to the channel portion 23 can be further increased.
  • the semiconductor layer 101 may be a Ge substrate or a Ge layer. At this time, the semiconductor layers 10, 106, 107, and 108 are Ge layers, and the channel portion 23 is formed in the Ge layer. In such a case, the transistor characteristics can be further improved by the action of the channel portion 23 formed in the Ge layer.
  • the semiconductor layer 101 may be a SiGe substrate or a SiGe layer. At this time, the semiconductor layers 10, 106, 107, and 108 are SiGe layers, and the channel portion 23 is formed in the SiGe layer. In such a case, the transistor characteristics can be further improved by the action of the channel portion 23 formed in the SiGe layer.
  • the source / drain portions 21 and 22 and the channel portion 23, or the semiconductor layers 105, 106 and 108, and the channel portion 23 constitute a p-type transistor, and the channel portion 23 further comprises (110). It may be formed on the surface and the channel orientation may be the ⁇ 110> direction. At this time, it is preferable that the stress applying unit is configured to apply a compressive stress to the channel unit 23.
  • the source / drain portions 21 and 22 and the channel portion 23, or the semiconductor layers 105, 106, and 108 and the channel portion 23 constitute a p-type transistor. 110) plane and the channel orientation may be the ⁇ 100> direction.
  • the stress applying unit is configured to apply a tensor stress to the channel unit 23.
  • the source / drain portions 21 and 22 and the channel portion 23, or the semiconductor layers 105, 106 and 108, and the channel portion 23 constitute an n-type transistor. (001) plane and the channel orientation may be the ⁇ 110> direction.
  • the stress applying unit is configured to apply a tensor stress to the channel unit 23.
  • the mobility can be maximized by setting the formation surface and the channel orientation of the channel portion 23 as described above.
  • the transistor characteristics can be further improved by setting the stress application part as described above after the formation surface and the channel orientation of the channel part 23 as described above.
  • the stress application unit includes the stress application films 31 and 32 and the element isolation film 33.
  • the stress application unit is configured to include at least one of the stress application films 31 and 32 and the element isolation film 33. Also good.
  • the stress application film 31 may be omitted.
  • an insulating layer 39 that has no or almost no action of applying stress to the channel portion 23 is provided. It may be provided.
  • the insulating layer 36 may be omitted.
  • the insulating layer 36 may be omitted, and the stress applying film 31 may be provided at a place where the insulating layer 36 was present. At this time, for example, the stress application film 32 may be omitted.
  • the channel portion 23 has two side surfaces that have the same plane orientation and face each other, and two side faces that have the same plane orientation and face each other. And may be formed.
  • the channel portion 23 has two side surfaces (first side surfaces) facing each other inside the groove portion 10A and two side surfaces (first side surfaces) adjacent to one first side surface and orthogonal to the first side surface. 2 side surfaces).
  • the channel portion 23 has two channel portions 23a provided one by one with respect to two side surfaces 10D facing each other on the inner surface of the groove portion 10A. Further, for example, as shown in FIG. 63, the channel portion 23 is a side surface adjacent to one of the side surfaces 10D, and is provided with two two ones with respect to the two side surfaces 10E orthogonal to the side surface 10D. It has a channel portion 23b.
  • the gate part 24 is provided not only in contact with the two channel parts 23a but also in contact with the two channel parts 23b. Therefore, for example, as illustrated in FIG. 63, the gate portion 24 has a cross shape when viewed from the normal direction of the semiconductor layer 10.
  • the channel width can be increased by the channel width of the two channel portions 23b as compared with the case where only the two channel portions 23a are provided. Thereby, transistor characteristics can be further improved.
  • the channel portion 23a is formed in the (110) plane
  • the channel orientation of the channel portion 23a is the ⁇ 110> direction
  • the channel portion 23b is formed in the (001) plane
  • the channel orientation of the channel portion 23b. Is in the ⁇ 110> direction.
  • the channel width of the channel portion 23 a is It is preferable that the channel width of the portion 23b is wider. This is because in the p-type transistor, the mobility in the (110) plane and the ⁇ 110> direction is higher than that in the (001) plane and the ⁇ 110> direction.
  • the channel width of the channel portion 23b is The channel width is preferably wider than 23a. This is because in the n-type transistor, the (001) plane and the ⁇ 110> direction have higher mobility than the (110) plane and the ⁇ 110> direction.
  • a dipole is generated between the electrode part 26 and the conductive layer 35 or the source / drain part 22 and a tunnel current flows.
  • a thin insulating film (specifically, a thickness of 1 nm or less) may be provided.
  • the insulating film 51 is thin enough to generate a dipole between the electrode portion 26 and the conductive layer 35 and a tunnel current flows (specifically, a thickness of 1 nm or less). May be provided.
  • the insulating film 51 includes, for example, TiO 2 , Al 2 O 3 , La 2 O 3 , an Hf-based material, or a Ta-based material.
  • the gate insulating film 28 is made of the high-k material and the gate portion 24 is made of a metal material, the conductive layer 35 or the conductive layer 35 is formed by a dipole generated at the interface of the gate insulating film 28.
  • the height of the Schottky barrier between the source / drain portion 22 and the gate portion 24 can be lowered. As a result, a tunnel current can flow through the gate insulating film 28.
  • the element isolation film 33 may not penetrate the semiconductor layer 10 or the semiconductor layers 105 to 108.
  • the element isolation film 33 may not penetrate the semiconductor layer 10, and a part of the semiconductor layer 10 may exist at the bottom of the element isolation film 33.
  • the semiconductor device 1 according to this modification has the same effect as the semiconductor device 1 of the above-described embodiment.
  • FIG. 66 illustrates a circuit configuration of the memory circuit 2 according to the second embodiment of the present technology.
  • the memory circuit 2 includes a plurality of memory elements 2A arranged in a matrix.
  • Each memory element 2A includes a nonvolatile element R1 and a switch element Sw.
  • the plurality of nonvolatile elements R1 are arranged in a row example, and the plurality of switch elements Sw are also arranged in a row example.
  • the plurality of switch elements Sw are allocated one by one for each nonvolatile element R1.
  • the memory circuit 2 further includes a plurality of word lines WL extending in the row direction, a plurality of bit lines BL extending in the column direction, and a plurality of data lines DL extending in the column direction.
  • one word line WL is assigned to each row of the plurality of switch elements Sw arranged in a matrix.
  • one bit line BL is assigned to each column of the plurality of switch elements Sw arranged in a matrix.
  • one data line DL is allocated to each column of the plurality of nonvolatile elements R1 arranged in a matrix.
  • Nonvolatile element R1 is, for example, an MTJ (Magnetic Tunnel) element, a resistance change film, a ferroelectric film, or the like.
  • the MTJ element has a structure in which an insulating layer is sandwiched between two ferromagnetic layers. One ferromagnetic layer has a fixed magnetization, and the other ferromagnetic layer has a variable magnetization.
  • the direction of magnetization of one ferromagnetic layer is fixed, and the other is changed, so that information is held by the difference in resistance value.
  • the resistance is high when the magnetic directions of the two magnetic layers are different, and the resistance is low at the same time.
  • the stored content (1 or 0) is read by passing a current through the MTJ element and detecting it.
  • the resistance change film changes the resistance by applying a set voltage or a reset voltage.
  • the resistance increases when a reset voltage is applied, and the resistance decreases when a set voltage is applied.
  • the stored content (1 or 0) is read by passing a current through the resistance change film and detecting it.
  • the hysteresis of the ferroelectric is utilized, and a voltage is applied to the ferroelectric film to cause spontaneous polarization to be positive or negative.
  • the stored content (1 or 0) is read by passing a current through the ferroelectric film and detecting it.
  • the switch element Sw is the semiconductor device 1 according to the above-described embodiment and its modified examples (modified examples 1 to 15).
  • the electrode part 27 is electrically connected to the word line WL
  • the electrode part 25 is electrically connected to the bit line BL
  • the electrode part 26 is electrically connected to one end of the nonvolatile element R1. It is connected to the.
  • the switch element Sw serves as a switch for determining whether or not to pass a current to the nonvolatile element R1. When the switch element Sw is turned on, a current flows through the nonvolatile element R1. When the switch element Sw is turned off, the current flowing through the nonvolatile element R1 is stopped.
  • the word line WL controls on / off of the switch element Sw.
  • the electrode portion 27 of the switch element Sw becomes a constant voltage, and the corresponding switch element Sw is turned on.
  • the bit line BL supplies a constant voltage to the electrode part 25 of the switch element Sw.
  • the data line DL is provided in a pair with the bit line BL, and is for forming a current path between the bit line BL and the data line DL.
  • FIG. 67 illustrates an example of a cross-sectional configuration of the memory circuit 2.
  • 67 shows a cross-sectional configuration of the memory circuit 2 when the semiconductor device 1 shown in FIG. 2 is provided as the switch element Sw.
  • a plurality of semiconductor devices 1 switch elements Sw
  • one nonvolatile element R1 is arranged at the bottom of each semiconductor device 1 (switch element Sw).
  • FIG. 67 two semiconductor devices 1 (switch elements Sw) arranged side by side in the row direction and two nonvolatile elements arranged one by one at the bottom of these two semiconductor devices 1 (switch elements Sw)
  • An example of a cross-sectional configuration of R1 is shown.
  • a wiring layer 41 (bit line BL) connected to the two electrode portions 25 is provided immediately above the two electrode portions 25, and is connected to the electrode portion 26 immediately below the electrode portion 26.
  • a nonvolatile element R1 is provided.
  • one end of the nonvolatile element R1 is connected to the electrode part 26, and the other end of the nonvolatile element R1 is connected to the data line DL via the conductive connection part 44.
  • the nonvolatile element R1 and the connection portion 44 are embedded in the insulating layer 45, and the data line DL is formed on the back surface of the insulating layer 45.
  • the semiconductor device 1 according to the above-described embodiment and its modified examples (modified examples 1 to 15) is used as the switch element Sw for controlling the current flowing through the nonvolatile element R1. Since the semiconductor device 1 has superior transistor characteristics compared to a transistor in which all electrodes are provided on the upper surface side of the semiconductor layer, for example, a material having high retention characteristics is selected as the material of the nonvolatile element R1. can do. As a result, performance stability as a memory can be ensured.
  • Second Embodiment the case where the semiconductor device 1 illustrated in FIG. 2 is provided as the switch element Sw is exemplified.
  • the semiconductor illustrated in FIG. A device 1 may be provided.
  • two transistors Tr1 and Tr2 sharing one gate part 23 may be assigned to each memory element 2A.
  • the semiconductor device 1 illustrated in FIG. 47 may be provided as the switch element Sw.
  • a volatile element R2 may be used instead of the nonvolatile element R1.
  • a common potential line for example, a ground line
  • the volatile element R2 is, for example, a capacitive element.
  • the plurality of memory elements 2A are arranged in a matrix, but may be arranged in a line. Further, for example, as shown in FIGS. 70 and 71, the memory circuit 2 may be composed of one memory element 2A.
  • a volatile element such as a capacitor may be provided instead of the nonvolatile element R.
  • the present technology has been described with the embodiment and its modifications.
  • the present technology is not limited to the above-described embodiment and the like, and various modifications are possible.
  • the effect described in this specification is an illustration to the last.
  • the effect of this technique is not limited to the effect described in this specification.
  • the present technology may have effects other than those described in the present specification.
  • the (110) plane is an example of the ⁇ 110 ⁇ plane
  • the (001) plane is an example of the ⁇ 100 ⁇ plane.
  • this technique can take the following composition.
  • a first diffusion part formed in the bottom of the groove or in the vicinity of the bottom;
  • a second diffusion part formed at the upper end of the groove part of the semiconductor layer;
  • a channel portion formed between the first diffusion portion and the second diffusion portion;
  • a first electrode part electrically connected to the first diffusion part and provided on the back side of the semiconductor layer;
  • a second electrode part electrically connected to the second diffusion part and provided on the upper surface side of the semiconductor layer;
  • a third electrode portion electrically connected to the gate portion and provided on the upper surface side of the semiconductor layer;
  • a semiconductor device comprising: a stress applying unit that applies a compressive stress or a tensor stress to the channel unit in a normal direction of the semiconductor layer.
  • the stress applying unit includes at least one of the following (a) to (d). (A) a first stress application film provided on the upper surface side of the semiconductor layer; (b) a second stress application film provided on the back surface side of the semiconductor layer; and (c) a first stress application film provided on both sides of the channel portion.
  • the stress applying part is configured to apply a compressive stress to the channel part
  • the first diffusion part, the second diffusion part and the channel part are configured by p-type transistors,
  • the stress applying unit is configured to give a tensor stress to the channel unit, The first diffusion part, the second diffusion part and the channel part are configured by p-type transistors, The semiconductor device according to (1) or (2), wherein the channel portion is formed in a ⁇ 110 ⁇ plane and a channel orientation is a ⁇ 100> direction.
  • the stress applying unit is configured to give a tensor stress to the channel unit, The first diffusion portion, the second diffusion portion, and the channel portion are configured by n-type transistors, The semiconductor device according to (1) or (2), wherein the channel portion is formed in a ⁇ 100 ⁇ plane and a channel orientation is a ⁇ 110> direction.
  • the lattice constant of at least one of the first diffusion part and the second diffusion part is larger than the lattice constant of the channel part,
  • the first diffusion part, the second diffusion part and the channel part are configured by p-type transistors,
  • the lattice constant of at least one of the first diffusion part and the second diffusion part is smaller than the lattice constant of the channel part,
  • the first diffusion part, the second diffusion part and the channel part are configured by p-type transistors,
  • the lattice constant of at least one of the first diffusion part and the second diffusion part is smaller than the lattice constant of the channel part,
  • the first diffusion portion, the second diffusion portion, and the channel portion are configured by n-type transistors,
  • the upper surface of the third stress application film is formed at a position lower than the upper surface of the second diffusion part, The semiconductor device according to (2), wherein the first stress application film is formed on an upper surface of the second diffusion portion and an upper surface of the third stress application film.
  • the back surface of the third stress application film is formed at a location recessed from the back surface of the first diffusion part, The semiconductor device according to (2), wherein the second stress application film is formed on an upper surface of the first diffusion portion and a back surface of the third stress application film.
  • the channel portion includes a first channel portion formed on two first side surfaces facing each other inside the groove portion, and two side surfaces adjacent to the first side surface and orthogonal to the first side surface.
  • the semiconductor device according to any one of (1) to (11), further including a second channel portion formed on the second side surface.
  • the channel portion includes a first channel portion formed on two first side surfaces facing each other inside the groove portion, and two side surfaces adjacent to the first side surface and orthogonal to the first side surface.
  • a second channel portion formed on the second side surface, The first diffusion part, the second diffusion part and the channel part are configured by p-type transistors,
  • the first channel portion is formed on a ⁇ 110 ⁇ plane, and the channel orientation of the first channel portion is a ⁇ 110> direction
  • the second channel portion is formed on a ⁇ 100 ⁇ plane, and the channel orientation of the second channel portion is a ⁇ 110> direction
  • the semiconductor device according to (13) wherein the channel width of the first channel portion is wider than the channel width of the second channel portion.
  • the channel portion includes a first channel portion formed on two first side surfaces facing each other inside the groove portion, and two side surfaces adjacent to the first side surface and orthogonal to the first side surface.
  • a second channel portion formed on the second side surface, The first diffusion portion, the second diffusion portion, and the channel portion are configured by n-type transistors,
  • the first channel portion is formed on a ⁇ 110 ⁇ plane, and the channel orientation of the first channel portion is a ⁇ 110> direction
  • the second channel portion is formed on a ⁇ 100 ⁇ plane, and the channel orientation of the second channel portion is a ⁇ 110> direction
  • the semiconductor device according to (13) wherein the channel width of the second channel portion is wider than the channel width of the first channel portion.
  • a non-volatile element or a volatile element, and a switch element for controlling a current flowing through the non-volatile element or the volatile element The switch element is Of the semiconductor layer having a groove, a first diffusion part formed in the bottom of the groove or in the vicinity of the bottom; A second diffusion part formed at the upper end of the groove part of the semiconductor layer; Of the semiconductor layer, a channel portion formed between the first diffusion portion and the second diffusion portion; A gate portion embedded in the groove portion and at a position facing the channel portion; A first electrode part electrically connected to the first diffusion part and provided on the back side of the semiconductor layer; A second electrode part electrically connected to the second diffusion part and provided on the upper surface side of the semiconductor layer; A third electrode portion electrically connected to the gate portion and provided on the upper surface side of the semiconductor layer; A memory circuit, comprising:
  • the nonvolatile element is an MTJ (Magnetic tunnel junctions) element.
  • the first diffusion portion is formed at the bottom portion of the groove portion via the groove portion, and the second diffusion portion is formed at the upper end portion of the groove portion. Forming a channel portion between the second diffusion portion; After forming a gate insulating film with a high-k material having a relative dielectric constant higher than that of silicon oxide on the entire surface including the inner surface of the groove portion, the gate insulating film is located inside the groove portion and at a position facing the channel portion.

Abstract

 本技術の半導体装置は、第1拡散部(22)、第2拡散部(21)、チャネル部(23)、ゲート部(24)および応力印加部(31,32,または33)を備える。溝部(10A)を有する半導体層(10)において、溝部(10A)の底部または底部の近傍に第1拡散部(22)が、溝部(10A)の上端部に第2拡散部(21)が、第1拡散部(22)と第2拡散部(21)との間にチャネル部(23)がそれぞれ形成されている。溝部(10A)の内部であって、かつチャネル部(23)と対向する位置にゲート部(24)が埋め込まれている。応力印加部(31,32,または33)は、チャネル部(23)に対して、半導体層(10)の法線方向にコンプレッシブ応力もしくはテンソル応力を加える。

Description

半導体装置、メモリ回路、および半導体装置の製造方法
 本技術は、トランジスタのチャネルが基板面の法線方向に形成された半導体装置およびそれを備えたメモリ回路に関する。また、本技術は、上記半導体装置の製造方法に関する。
 従来、ムーアの法則のスケーリング則に従い、デザインシュリンクをしてテクノロジーノードを進めることで、LSIの性能が向上してきた。昨今、20nmノード、14nmノードの開発が進められているが、トランジスタのショートチャネル特性を抑制することが課題となっている。例えば、ショートチャネル特性の悪化は、スタンバイ時のサブスレシュホールドリークによるリーク電流増大を招き、特に、SRAM等においてリーク電流が大きな問題となっている。よって、近年では、揮発性のメモリから不揮発性のメモリへの置き換えによる、消費電力の低減が急務となっており、各種不揮発メモリが開発されている。中でも、高速書き込み読み出しが可能である、Spin Transfer Torque- Magnetic tunnel junctions (STT-MTJ)への、期待が高まっている。
 高速書き込みの点からは、選択トランジスタの能力向上が重要である。一般に、書き込みの応答性と、保持特性はトレードオフの関係にあるため、能力の高いトランジスタを適用すると、MTJの材料として保持特性の高いものを選択することができる。その結果、さらに、メモリとしての性能安定性を確保できる。
 トランジスタ特性を改善する方策として、例えば、基板面に対して垂直方向にトランジスタのチャネルを設けることが特許文献1において提案されている。
特開2004-214457号公報
 しかし、デザインシュリンクに対応するには、更なる改善を行うことが望ましい。
 従って、トランジスタ特性を改善しつつ、デザインシュリンクに対応することの可能な 半導体装置、メモリ回路、および半導体装置の製造方法を提供することが望ましい。
 本技術の一実施の形態の半導体装置は、第1拡散部、第2拡散部、チャネル部、ゲート部、第1電極部、第2電極部、第3電極部および応力印加部を備えている。第1拡散部は、溝部を有する半導体層のうち、溝部の底部または底部の近傍に形成されている。第2拡散部は、半導体層のうち、溝部の上端部に形成されている。チャネル部は、半導体層のうち、第1拡散部と第2拡散部との間に形成されている。ゲート部は、溝部の内部であって、かつチャネル部と対向する位置に埋め込まれている。第1電極部は、第1拡散部と電気的に接続され、半導体層の裏面側に設けられている。第2電極部は、第2拡散部と電気的に接続され、半導体層の上面側に設けられている。第3電極部は、ゲート部と電気的に接続され、半導体層の上面側に設けられている。応力印加部は、チャネル部に対して、半導体層の法線方向にコンプレッシブ(compressive)応力もしくはテンソル(tensile)応力を加える。
 本技術の一実施の形態のメモリ回路は、不揮発性素子または揮発性素子と、不揮発性素子または揮発性素子に流れる電流を制御するスイッチ素子とを含んでいる。スイッチ素子は、上記の半導体装置と同一の構成要素を有している。
 本技術の一実施の形態の半導体装置の製造方法は、以下の4つの手順を含むものである。
(1)溝部を有する半導体層において、溝部を介して、溝部の底部に第1拡散部を形成するとともに、溝部の上端部に第2拡散部を形成し、これにより、第1拡散部と第2拡散部との間にチャネル部を形成すること
(2)溝部の内面を含む表面全体に、シリコン酸化物よりも比誘電率が高いhigh-k材料でゲート絶縁膜を形成したのち、溝部の内部であって、かつチャネル部と対向する位置に金属材料からなるゲート部を形成し、さらに、ゲート絶縁膜のうち溝部からはみ出した部分を除去すること
(3)チャネル部に対して、半導体層の法線方向にコンプレッシブ(compressive)応力もしくはテンソル(tensile)応力を加える応力印加部を形成すること
(4)半導体層の裏面側に第1拡散部と電気的に接続された第1電極部と、半導体層の上面側に第2拡散部と電気的に接続された第2電極部と、半導体層の上面側にゲート部と電気的に接続された第3電極部を形成すること
 本技術の一実施の形態の半導体装置、メモリ回路および半導体装置の製造方法では、第1拡散部、チャネル部および第2拡散部が半導体層の法線方向に並んで配置され、かつゲート部が溝部に埋め込まれた埋め込みゲート型の縦型トランジスタが半導体層に設けられている。これにより、全ての電極が半導体層の上面側に設けられたトランジスタと比べて、トランジスタ特性を改善することができる。また、チャネル部に対して半導体層の法線方向にコンプレッシブ応力もしくはテンソル応力を加える応力印加部が設けられている。これにより、トランジスタ特性をさらに改善することができる。さらに、第2拡散部と電気的に接続された第2電極部と、ゲート部と電気的に接続された第3電極部が、半導体層の上面側に設けられ、第1拡散部と電気的に接続された第1電極部が、半導体層の裏面側に設けられている。これにより、全ての電極が半導体層の上面側に設けられたトランジスタと比べて、占有面積を小さくすることができる。
 本技術の一実施の形態の半導体装置、メモリ回路および半導体装置の製造方法によれば、埋め込みゲート型の縦型トランジスタに対して応力印加部を設け、さらに、縦型トランジスタの電極を半導体層の上面側と裏面側に設けるようにしたので、トランジスタ特性を改善しつつ、デザインシュリンクに対応することができる。本技術の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
本技術の第1の実施の形態に係る半導体装置の斜視構成図である。 図1の半導体装置のA-A’線における断面構成図である。 図1の半導体装置のB-B’線における断面構成図である。 図2の半導体装置のC-C’線における断面構成図である。 半導体層の上面側に設けられた応力印加膜によってチャネル部に印加される応力の一例を表す概念図である。 半導体層の裏面側に設けられた応力印加膜によってチャネル部に印加される応力の一例を表す概念図である。 素子分離膜によってチャネル部に印加される応力の一例を表す概念図である。 半導体層の上面側および裏面側に設けられた応力印加膜ならびに素子分離膜によってチャネル部に印加される応力の一例を表す概念図である。 半導体層の上面側および裏面側に設けられた応力印加膜ならびに素子分離膜によってチャネル部に印加される応力の一例を表す概念図である。 図1の半導体装置の製造に用いられる半導体基板における図1のA-A’線に対応する位置での断面構成の一例を表す図である。 図1の半導体装置の製造に用いられる半導体基板における図1のB-B’線に対応する位置での断面構成の一例を表す図である。 図10に続く製造工程における断面構成の一例を表す図である。 図12に続く製造工程における断面構成の一例を表す図である。 図13に続く製造工程における断面構成の一例を表す図である。 図14に続く製造工程における断面構成の一例を表す図である。 図15に続く製造工程における断面構成の一例を表す図である。 図16に続く製造工程における断面構成の一例を表す図である。 図17に続く製造工程における断面構成の一例を表す図である。 図18に続く製造工程における断面構成の一例を表す図である。 図19に続く製造工程における断面構成の一例を表す図である。 図20に続く製造工程における断面構成の一例を表す図である。 図21に続く製造工程における断面構成の一例を表す図である。 図1の半導体装置の製造に用いられる半導体基板における図1のA-A’線に対応する位置での断面構成の一例を表す図である。 図23に続く製造工程における断面構成の一例を表す図である。 図24に続く製造工程における断面構成の一例を表す図である。 図25に続く製造工程における断面構成の一例を表す図である。 図26に続く製造工程における断面構成の一例を表す図である。 図1の半導体装置の製造に用いられる半導体基板における図1のA-A’線に対応する位置での断面構成の一例を表す図である。 図28に続く製造工程における断面構成の一例を表す図である。 図29に続く製造工程における断面構成の一例を表す図である。 図1の半導体装置の製造に用いられる半導体基板における図1のA-A’線に対応する位置での断面構成の一例を表す図である。 図31に続く製造工程における断面構成の一例を表す図である。 図32に続く製造工程における断面構成の一例を表す図である。 図33に続く製造工程における断面構成の一例を表す図である。 図34に続く製造工程における断面構成の一例を表す図である。 図35に続く製造工程における断面構成の一例を表す図である。 図1の半導体装置の製造に用いられる半導体基板における図1のA-A’線に対応する位置での断面構成の一例を表す図である。 図37に続く製造工程における断面構成の一例を表す図である。 図36の半導体装置の一変形例を表す図である。 図39の半導体装置の製造に用いられる半導体基板における図1のA-A’線に対応する位置での断面構成の一例を表す図である。 図40に続く製造工程における断面構成の一例を表す図である。 図41に続く製造工程における断面構成の一例を表す図である。 図42に続く製造工程における断面構成の一例を表す図である。 図39の半導体装置の製造に用いられる半導体基板における図1のA-A’線に対応する位置での断面構成の一例を表す図である。 図44に続く製造工程における断面構成の一例を表す図である。 図39の半導体装置の一変形例を表す図である。 図46の半導体装置の一変形例を表す図である。 図3の半導体装置の一変形例を表す図である。 図4の半導体装置の一変形例を表す図である。 図4の半導体装置の一変形例を表す図である。 図2の半導体装置の一変形例を表す図である。 図36の半導体装置の一変形例を表す図である。 図39の半導体装置の一変形例を表す図である。 図46の半導体装置の一変形例を表す図である。 図2の半導体装置の一変形例を表す図である。 図36の半導体装置の一変形例を表す図である。 図39の半導体装置の一変形例を表す図である。 図46の半導体装置の一変形例を表す図である。 図2の半導体装置の一変形例を表す図である。 図36の半導体装置の一変形例を表す図である。 図39の半導体装置の一変形例を表す図である。 図46の半導体装置の一変形例を表す図である。 図1の半導体装置の一変形例を表す図である。 図2の半導体装置の一変形例を表す図である。 図4の半導体装置の一変形例を表す図である。 本技術の第2の実施の形態に係るメモリ回路の回路構成の一例を表す図である。 図66のメモリ回路の断面構成の一例を表す図である。 図66のメモリ回路の断面構成の一例を表す図である。 図66のメモリ回路の回路構成の一変形例を表す図である。 図66のメモリ回路の回路構成の一変形例を表す図である。 図69のメモリ回路の回路構成の一変形例を表す図である。
 以下、本技術を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 
1.第1の実施の形態(半導体装置)
2.第1の実施の形態の変形例(半導体装置)
3.第2の実施の形態(メモリ回路)
4.第2の実施の形態の変形例(メモリ回路)
 
<1.第1の実施の形態>
[構成]
 図1は、本技術の第1の実施の形態に係る半導体装置1の斜視構成を表したものである。図2は、図1の半導体装置1のA-A’線における断面構成の一例を表したものである。図3は、図1の半導体装置1のB-B’線における断面構成の一例を表したものである。図4は、図2の半導体装置1のC-C’線における断面構成の一例を表したものである。この半導体装置1は、半導体層10と、半導体層10に形成されたトランジスタ20とを備えている。
(トランジスタ20)
 トランジスタ20は、埋め込みゲート型の縦型トランジスタである。トランジスタ20は、p型MOSトランジスタ、または、n型MOSトランジスタである。トランジスタ20は、2つのソース・ドレイン部21、ソース・ドレイン部22、チャネル部23、ゲート部24、電極部25、電極部26、電極部27およびゲート絶縁膜28を備えている。なお、ソース・ドレイン部21が、本技術の「第2拡散部」の一具体例に相当する。ソース・ドレイン部22が、本技術の「第1拡散部」の一具体例に相当する。チャネル部23が、本技術の「チャネル部」の一具体例に相当する。ゲート部24が、本技術の「ゲート部」の一具体例に相当する。電極部25が、本技術の「第2電極部」の一具体例に相当する。電極部26が、本技術の「第1電極部」の一具体例に相当する。電極部27が、本技術の「第3電極部」の一具体例に相当する。
 半導体層10は、シリコン層である。トランジスタ20がp型MOSトランジスタである場合には、半導体層10は、n型シリコン層である。トランジスタ20がn型MOSトランジスタである場合には、半導体層10は、p型シリコン層である。ここで、半導体層10は、バルク型のシリコン基板であってもよいし、SOI(Silicon on Insulator)基板におけるシリコン層を分離したものであってもよい。なお、以下では、半導体層10がSOI基板におけるシリコン層を分離したものであるとして説明を行うが、半導体層10は、SOI基板におけるシリコン層を分離したものに限定されるものではない。
 半導体層10は、上面側に溝部10Aを有している。溝部10Aは、半導体層10をエッチングすることにより形成されたものである。溝部10Aは、半導体層10を貫通しない程度の深さとなっており、溝部10Aの底面と、半導体層10の裏面との間には、所定の間隙が存在している。ゲート絶縁膜28は、溝部10Aの内面に形成されており、溝部10Aの内面で互いに対向する2つの側面に形成されている。ゲート絶縁膜28は、溝部10Aの側面のうちチャネル部23と対向する位置に形成されている。ゲート絶縁膜28は、例えば、酸化シリコンによって構成されており、例えば、SiO、SiONからなる。なお、ゲート絶縁膜28は、例えば、シリコン酸化物よりも比誘電率が高いhigh-k材料によって形成されていてもよい。上記high-k材料は、例えば、HfO、ZrOなどの誘電率の高い絶縁材料である。ゲート絶縁膜28が上記high-k材料によって形成されている場合、絶縁膜容量を増大(つまり、ゲート絶縁膜28の薄膜化)させつつ、ゲート漏れ電流を低減することができる。ソース・ドレイン部22は、溝部10Aの底部に形成されており、溝部10Aの底面と、半導体層10の裏面との間に形成されている。トランジスタ20がp型MOSトランジスタである場合には、ソース・ドレイン部22は、p型半導体領域である。トランジスタ20がn型MOSトランジスタである場合には、ソース・ドレイン部22は、n型半導体領域である。
 2つのソース・ドレイン部21は、半導体層10のうち、溝部10Aの内面で互いに対向する2つの側面の上端部(溝部10Aの上端部)に形成されている。トランジスタ20がp型MOSトランジスタである場合には、2つのソース・ドレイン部21は、p型半導体領域である。トランジスタ20がn型MOSトランジスタである場合には、2つのソース・ドレイン部21は、n型半導体領域である。
 チャネル部23は、半導体層10のうち、上述した2つの側面に形成され、各ソース・ドレイン部21と、ソース・ドレイン部22との間に形成される。チャネル部23は、半導体層10の厚さ方向に延在する帯状の領域である。ソース・ドレイン部21、22およびチャネル部23がp型トランジスタを構成している場合には、チャネル部23は、例えば、(110)面に形成され、かつチャネル方位が<110>方向となっている。チャネル方位とは、チャネル部23に流れる電流の向きを指している。このとき、半導体層10は、(110)層、または(110)基板となっている。なお、ソース・ドレイン部21、22およびチャネル部23がp型トランジスタを構成している場合に、チャネル部23は、例えば、(110)面に形成され、かつチャネル方位が<100>方向となっていてもよい。このとき、半導体層10は、(100)層、または(100)基板となっている。ソース・ドレイン部21、22およびチャネル部23がn型トランジスタを構成している場合には、チャネル部23は、例えば、(001)面に形成され、かつチャネル方位が<110>方向となっている。このとき、半導体層10は、(110)層、または(110)基板となっている。
 ゲート部24は、溝部10Aの内部であって、かつチャネル部23と対向する位置に埋め込まれている。ゲート部24は、溝部10A内で互いに対向する2つの側面(またはチャネル部23)と平行な方向に延在している。ゲート部24の上面は、溝部10Aの上端部よりも低い箇所に形成されており、ゲート部24の上面と、ソース・ドレイン部21の上面との間には、段差が存在している。この段差を埋め込む態様で、絶縁層36が設けられている。ゲート部24は、例えば、ポリシリコン、または、メタルによって構成されている。ゲート絶縁膜28が、酸化シリコンによって構成されている場合には、ゲート部24は、例えば、ポリシリコンによって構成されている。ゲート絶縁膜28が、上記high-k材料によって構成されている場合には、ゲート部24は、メタルによって構成されている。
 電極部25は、ソース・ドレイン部21と電気的に接続され、半導体層10の上面側に設けられている。電極部25は、例えば、コンタクトホール形状となっている。電極部25は、例えば、絶縁層37によって埋め込まれており、電極部25と電気的に接続された配線層41が、絶縁層37の上に設けられている。電極部25と、ソース・ドレイン部21との間には、例えば、シリサイド(例えばNiSi)で構成された導電層34が設けられている。
 電極部26は、ソース・ドレイン部22と電気的に接続され、半導体層10の裏面側に設けられている。電極部26は、例えば、柱形状となっている。半導体層10の裏面側には、絶縁層38が設けられている。絶縁層38は、ソース・ドレイン部22と対向する箇所に開口を有している。ソース・ドレイン部22の裏面が、絶縁層38の開口の底面に露出しており、配線層42が、絶縁層38の開口を介してソース・ドレイン部22と電気的に接続されている。電極部26と、ソース・ドレイン部22との間には、例えば、シリサイド(例えばNiSi)で構成された導電層35が設けられている。
 電極部27は、ゲート部24と電気的に接続され、半導体層10の上面側に設けられている。電極部27は、例えば、コンタクトホール形状、またはスリット形状となっている。電極部27は、例えば、絶縁層37によって埋め込まれており、電極部27と電気的に接続された配線層43が、絶縁層37の上に設けられている。
 半導体装置1は、さらに、チャネル部23に対して、半導体層10の法線方向(チャネル部23の長手方向)にコンプレッシブ(compressive)応力もしくはテンソル(tensile)応力を加える応力印加部を有している。半導体装置1は、応力印加部として、応力印加膜31、応力印加膜32および素子分離膜33を有している。応力印加膜31および応力印加膜32は、チャネル部23を上下方向(チャネル部23の延在方向)から挟み込むように配置されている。素子分離膜33は、チャネル部23を、チャネル部23の幅方向から挟み込むように配置されている。なお、応力印加膜31が、本技術の「第1応力印加膜」の一具体例に相当する。応力印加膜32が、本技術の「第2応力印加膜」の一具体例に相当する。素子分離膜33が、本技術の「第3応力印加膜」の一具体例に相当する。
 応力印加膜31は、半導体層10の上面側に設けられている。具体的には、応力印加膜31は、2つのソース・ドレイン部21の上面に接して設けられており、ゲート部24の延在方向と直交する方向に延在している。応力印加膜31の幅は、ソース・ドレイン部21の幅よりも広くなっている。応力印加膜31は、例えば、図5に示したように、テンソル膜であり、チャネル部23に対してコンプレッシブ応力を与えるように構成されている。
 応力印加膜32は、半導体層10の裏面側に設けられている。具体的には、応力印加膜32は、ソース・ドレイン部22の裏面と対向する位置に設けられており、ゲート部24の延在方向と直交する方向に延在している。応力印加膜32の幅は、ソース・ドレイン部22の幅よりも広くなっている。応力印加膜32は、例えば、図6に示したように、テンソル膜であり、チャネル部23に対してコンプレッシブ応力を与えるように構成されている。
 素子分離膜33は、チャネル部23の両脇に設けられている。素子分離膜33は、トランジスタ20を、半導体層10に形成された他の素子から電気的に分離するためのものである。素子分離膜33は、STI(Shallow trench isolation)によって構成されている。素子分離膜33は、例えば、図7に示したように、テンソル膜であり、チャネル部23に対してコンプレッシブ応力を与えるように構成されている。以上のことから、応力印加膜31、応力印加膜32および素子分離膜33は、いずれも、テンソル膜であり、例えば、図8に示したように、チャネル部23に対してコンプレッシブ応力を与えるように構成されている。
 なお、応力印加膜31、応力印加膜32および素子分離膜33が、いずれも、コンプレッシブ膜で構成されていてもよい。この場合には、応力印加膜31、応力印加膜32および素子分離膜33は、例えば、図9に示したように、チャネル部23に対してテンソル応力を与えるように構成されている。
 ソース・ドレイン部21、22およびチャネル部23がp型トランジスタを構成し、チャネル部23が(110)面に形成され、かつチャネル方位が<110>方向となっているとする。この場合には、応力印加部は、テンソル膜であり、チャネル部23に対してコンプレッシブ応力を与えるように構成されている。また、ソース・ドレイン部21、22およびチャネル部23がp型トランジスタを構成し、チャネル部23が、(110)面に形成され、かつチャネル方位が<100>方向となっているとする。この場合には、応力印加部は、コンプレッシブ膜であり、チャネル部23に対してテンソル応力を与えるように構成されている。また、ソース・ドレイン部21、22およびチャネル部23がn型トランジスタを構成し、チャネル部23が、(001)面に形成され、かつチャネル方位が<110>方向となっているとする。この場合には、応力印加部は、コンプレッシブ膜であり、チャネル部23に対してテンソル応力を与えるように構成されている。本実施の形態において、チャネル部23の形成面やチャネル方位を上記のようにすることにより、移動度が最も大きくなる。さらに、本実施の形態において、チャネル部23の形成面やチャネル方位を上記のようにした上で、応力印加部を上記のようにすることにより、トランジスタ特性が更に向上する。
[製造方法] 
 次に、本実施の形態の半導体装置1の製造方法の一例について説明する。図10~図22は、半導体装置1の製造工程の一例を順番に表したものである。なお、図10、図12~図22は、図1のA-A’線に対応する箇所の断面図である。図11は、図2のC-C’線に対応する箇所の断面図である。
 まず、半導体基板100を用意する(図10)。半導体基板100は、半導体層101と、半導体層10との間にSiOからなる絶縁層38が設けられたSOI基板である。まず、半導体基板100の半導体層10に対して、素子分離膜33を設ける(図11)。具体的には、後にソース・ドレイン部21を形成する箇所を間にして互いに対向する位置に一対の素子分離膜33を設ける。
 次に、一対の素子分離膜33を横切る帯状の開口を有する絶縁層102を半導体層10の上面に形成したのち、絶縁層102をマスクとして、半導体層10および一対の素子分離膜33を選択的にエッチングすることにより、溝部10Aを形成する(図12)。続いて、溝部10Aの内面に対してゲート絶縁膜28を形成する。具体的には、溝部10Aの内面で互いに対向する2つの側面に対してゲート絶縁膜28を形成したのち(図13)、溝部10Aを介して、溝部10Aの底部にソース・ドレイン部22を形成する(図14)。次に、溝部10Aを埋め込むようにして、ゲート部24を形成したのち(図15)、ゲート部24の上面と半導体層10の上面との段差を埋め込む絶縁層36を形成する(図16)。次に、絶縁層102を除去する。続いて、溝部10Aの上端部にソース・ドレイン部21を形成する。具体的には、溝部10A内で互いに対向する2つの側面の上端部(溝部10Aの上端部)に1つずつ、ソース・ドレイン部21を形成する(図17)。これにより、ソース・ドレイン部22とソース・ドレイン部21との間(具体的には、ゲート部24と対向する位置)にチャネル部23を形成する。その後、2つのソース・ドレイン部21の上部に導電層34を形成する(図18)。
 次に、2つのソース・ドレイン部21の上面に接する位置に応力印加膜31を形成したのち、応力印加膜31を含む上面全体に絶縁層37を形成する(図19)。次に、応力印加膜31および絶縁層37のうち各ソース・ドレイン部21の上面と対向する部分に開口を設け、その開口内に電極部25を形成し、電極部25の上面を含む位置に配線層41を形成する(図20)。さらに、応力印加膜31および絶縁層37のうちゲート部24の上面と対向する部分にも開口を設け、その開口内に電極部27を形成し、電極部27の上面を含む位置に配線層43を形成する(図示せず)。
 次に、半導体層101を除去したのち(図21)、絶縁層38のうちソース・ドレイン部22と対向する位置に開口を形成し、その開口を介して、ソース・ドレイン部22に導電層35を形成する(図22)。その後、応力印加膜32、電極26および配線層42を形成する(図2)。このようにして、本実施の形態の半導体装置1が製造される。
 上で示した製造方法は、酸化シリコンでゲート絶縁膜28を形成する場合に好適なものである。以下に、上記high-k材料でゲート絶縁膜28を形成する場合に好適な製造方法について説明する。図23~図27は、半導体装置1の製造工程の他の例を順番に表したものである。なお、図23~図27は、図1のA-A’線に対応する箇所の断面図である。
 まず、図10~図12に示した手順と同一の手順を経て、半導体層10に溝部10Aを形成する。次に、溝部10Aの内面に対して、ゲート絶縁膜28と同様の絶縁膜28aを形成する。具体的には、溝部10Aの内面で互いに対向する2つの側面に対して、ゲート絶縁膜28と同様の絶縁膜28aを形成する(図23)。次に、溝部10Aを介して、溝部10Aの底部にソース・ドレイン部22を形成する。さらに、溝部10Aの上端部にソース・ドレイン部21を形成する。具体的には、溝部10A内で互いに対向する2つの側面の上端部(溝部10Aの上端部)に1つずつ、ソース・ドレイン部21を形成する(図24)。これにより、ソース・ドレイン部22とソース・ドレイン部21との間にチャネル部23を形成する。
 次に、絶縁膜28aを除去したのち、溝部10Aの内面を含む表面全体に、上記high-k材料でゲート絶縁膜28を形成する(図25)。次に、溝部10Aを埋め込むようにして、金属材料からなるゲート部24を形成する(図26)。次に、ゲート部24の上面と半導体層10の上面との段差を埋め込む絶縁層36を形成する(図26)。次に、絶縁層102と、ゲート絶縁膜28のうち溝部10Aからはみ出した部分を除去する(図27)。次に、上で示した製造方法と同様の方法で、導電層34、応力印加膜31、絶縁層37、電極部25、配線層41、電極部27および配線層43を形成する(図18~図20参照)。次に、上で示した製造方法と同様の方法で、半導体層101を除去したのち、導電層35を形成する(図21、図22参照)。最後に、上で示した製造方法と同様の方法で、応力印加膜32、電極26および配線層42を形成する(図2参照)。このようにしても、本実施の形態の半導体装置1が製造される。
 [動作] 
 次に、本実施の形態の半導体装置1の動作について説明する。本実施の形態では、配線層41、42を介して、電極部25、26に電圧が印加され、電極部25、26間の電位差が閾値を超えると、トランジスタ20がオンし、例えば、図2に示したような電流が積層方向に流れる。また、電極部25、26への電圧印加を停止し、電極部25、26間の電位差が閾値を下回ると、トランジスタ20がオフし、電流が流れなくなる。
 [効果] 
 次に、本実施の形態の半導体装置1の効果について説明する。
 本実施の形態では、ソース・ドレイン部22、チャネル部23およびソース・ドレイン部21が半導体層10の法線方向に並んで配置され、かつゲート部24が溝部10Aに埋め込まれた埋め込みゲート型の縦型トランジスタが半導体層10に設けられている。これにより、全ての電極が半導体層の上面側に設けられたトランジスタと比べて、チャネル長やチャネル幅を大きくすることが容易となるので、トランジスタ特性を改善することができる。また、チャネル部23に対して、半導体層10の法線方向にコンプレッシブ応力もしくはテンソル応力を加える応力印加部が設けられている。これにより、トランジスタ特性をさらに改善することができる。さらに、ソース・ドレイン部21と電気的に接続された電極部25と、ゲート部24と電気的に接続された電極部27が、半導体層10の上面側に設けられ、ソース・ドレイン部22と電気的に接続された電極部26が、半導体層10の裏面側に設けられている。これにより、全ての電極が半導体層の上面側に設けられたトランジスタと比べて、占有面積を小さくすることができる。従って、トランジスタ特性を改善しつつ、デザインシュリンクに対応することができる。
<2.第1の実施の形態の変形例>
 次に、上記実施の形態の半導体装置1の変形例について説明する。なお、以下では、上記実施の形態の半導体装置1と共通する構成要素に対しては、同一の符号が付与される。さらに、上記実施の形態の半導体装置1と共通する構成要素についての説明は、適宜、省略されるものとする。
[変形例その1] 
 上記実施の形態では、ソース・ドレイン部22を、溝部10Aの底面を介して半導体層10に形成していた。しかし、以下の方法を採ることにより、半導体層10にソース・ドレイン部22を形成した後に溝部10Aを形成することが可能である。
 まず、例えば、図28に示したように、溝部10Aを形成する前に、例えばイオン注入法を用いて、半導体層10の裏面寄りにソース・ドレイン部103を形成する。続いて、例えば、図29に示したように、例えばイオン注入法を用いて、ソース・ドレイン部103とは導電型の異なる分離層104を、ソース・ドレイン部103のうち、ソース・ドレイン部22を形成する箇所以外の箇所に形成する。その結果、残ったソース・ドレイン部103が、ソース・ドレイン部22となる。続いて、例えば、図30に示したように、ソース・ドレイン部22に達する深さを有する溝部10Aを形成する。その後は、上記実施の形態に記載の工程と同様の工程を経ることにより、半導体装置1が製造される。
[変形例その2] 
 上記実施の形態において、半導体層10をエピタキシャル結晶成長によって形成してもよい。図31~図36は、本変形例に係る半導体装置1の製造工程の一例を順番に表したものである。なお、図31、図32、図34~図36は、図1のA-A’線に対応する箇所の断面図である。図33は、図2のC-C’線に対応する箇所の断面図である。
 まず、半導体層101と半導体層105との間に絶縁層38が設けられた半導体基板200を用意する(図31)。次に、例えば、エピタキシャル結晶成長を行うことによって、半導体層105の上に、半導体層106、107、108をこの順に形成する(図32)。このとき、半導体層105、106、108の導電型と、半導体層107の導電型とを互いに異ならせる。
 次に、半導体層105、106、107、108に対して、一対の素子分離膜33を形成する(図33)。このとき、上記実施の形態における製造方法と同様の方法で、一対の素子分離膜33を形成する。次に、例えば、イオン注入法を用いて、半導体層105、106とは導電型の異なる分離層109を、半導体層105、106のうち、ソース・ドレイン部22を形成する箇所以外の箇所に形成する(図34)。これにより、残った半導体層105、106が、ソース・ドレイン部22となる。
 次に、所定の箇所に開口を有する絶縁層102を上面に形成したのち、絶縁層102をマスクとして、半導体層10を選択的にエッチングして、溝部10Aを形成する(図35)。このとき、ソース・ドレイン部22が溝部10Aの底部となるように、溝部10Aを形成する。その後は、上記実施の形態に記載の工程と同様の工程を経ることにより、例えば、図36に示したような断面構成を有する半導体装置1が製造される。
 [変形例その3] 
 上記実施の形態において、ソース・ドレイン部21,22を半導体層10上にエピタキシャル結晶成長によって形成してもよい。図37、図38は、本変形例に係る半導体装置1の製造工程の一例を順番に表したものである。なお、図37、図38は、図1のA-A’線に対応する箇所の断面図である。
 まず、半導体層10に対して溝部10Aを形成する(図37)。次に、溝部10Aを含む上面全体に対して、エピタキシャル結晶成長を行うことによって、半導体層を積層する。その結果、溝部10Aの底部にソース・ドレイン部22が形成され、半導体層10の上面のうち、溝部10A以外の部分にソース・ドレイン部21が形成される(図38)。その後は、溝部10Aの内部にゲート部24、絶縁層36を形成したのち、上記実施の形態に記載の工程と同様の工程を経ることにより、半導体装置1が製造される。
 本変形例に係る製造方法では、一度のエピタキシャル結晶成長によって、ソース・ドレイン部21,22が形成される。そのため、上記実施の形態に係る製造方法と比べて、非常に容易にソース・ドレイン部21,22を形成することができる。
 [変形例その4] 
 上記実施の形態およびその変形例(変形例その1~その3)では、半導体装置1は、1つのソース・ドレイン部22に対して2つのチャネル部23を有していた。しかし、半導体装置1が、例えば、2つのソース・ドレイン部22を有し、かつ、ソース・ドレイン部22ごとに1つずつチャネル部23を有していてもよい。
 図39は、本変形例に係る半導体装置1の断面構成の一例を表したものである。図39は、本変形例に係る半導体装置1において、図1のA-A’線に対応する位置における断面に相当する。図39に記載の半導体装置1は、例えば、変形例その2の製造過程において、分離層109を形成せず、半導体層105、106、107、108を貫通するように、溝部10Aを形成することにより、半導体層105、106、107、108を2つに分離したものに相当する。
 図39に記載の半導体装置1は、ソース・ドレイン部22に相当する2つの半導体層105を、溝部10Aの底部の近傍に有しており、具体的には、2つの半導体層105を、溝部10Aの底面を間にして互いに対向する2つの領域に1つずつ有している。また、図39に記載の半導体装置1は、ソース・ドレイン部22に相当する2つの半導体層106を、溝部10Aの底部の近傍に有しており、具体的には、2つの半導体層106を、溝部10Aの底面を間にして互いに対向する2つの領域に1つずつ有している。また、図39に記載の半導体装置1は、ソース・ドレイン部21に相当する2つの半導体層108を、溝部10Aの上端部に有しており、具体的には、2つの半導体層108を、溝部10Aの上部を間にして互いに対向する2つの領域に1つずつ有している。さらに、図39に記載の半導体装置1は、チャネル部23を含む2つの半導体層107を有しており、具体的には、2つの半導体層107を、溝部10Aを間にして互いに対向する2つの領域に1つずつ有している。各半導体層107は、半導体層106と、半導体層108との間に設けられている。従って、図39に記載の半導体装置1は、半導体層105、106、107、108がこの順に積層された2つの積層体を、溝部10Aを間にして互いに対向する2つの領域に1つずつ有している。
 さらに、図39に記載の半導体装置1は、溝部10A内に1つのゲート部24を備えている。1つのゲート部24は、溝部10Aの両脇に設けられた2つのチャネル部23によって共有されている。従って、図39に記載の半導体装置1では、トランジスタ20が、1つのゲート部24を共有する2つのトランジスタTr1,Tr2によって構成されている。
 図39に記載の半導体装置1は、溝部10Aの底部側に埋め込まれた絶縁層110と、絶縁層110と半導体層105,106の側面との間に設けられた絶縁層29とを備えている。絶縁層110および絶縁層29の上面は、例えば、半導体層106と半導体層107との境界面と同一面内にあるか、または、その境界面よりも高い位置にある。図39に記載の半導体装置1は、さらに、溝部10Aの内部であって、かつチャネル部23と対向する位置に埋め込まれたゲート部24を備えている。ゲート部24は、絶縁層110上に形成されている。ゲート部24の底面の位置は、絶縁層110および絶縁層29の上面の位置によって規定されている。ゲート部24の上面は、溝部10Aの上端部よりも低い箇所に形成されており、かつ、例えば、半導体層107と半導体層108との境界面と同一面内にあるか、または、その境界面よりも低い位置にある。ゲート部24の上面と、半導体層108の上面との間には、段差が存在している。この段差を埋め込む態様で、絶縁層36が設けられている。図39に記載の半導体装置1では、さらに、トランジスタTr1に対して電極部25,26が1つずつ設けられており、トランジスタTr2に対しても電極部25,26が1つずつ設けられている。
[製造方法] 
 次に、図39に記載の半導体装置1の製造方法について説明する。図40~図43は、図39に記載の半導体装置1の製造工程の一例を順番に表したものである。なお、図40~図43は、図1のA-A’線に対応する箇所の断面図である。
 まず、半導体基板200上に、半導体層106、107、108をこの順に形成する(図32)。このとき、半導体層105、106、108の導電型と、半導体層107の導電型とを互いに異ならせる。次に、半導体層105~108に対して、一対の素子分離膜33を形成する(図33)。次に、一対の素子分離膜33を横切る帯状の開口を有する絶縁層102を半導体層108の上面に形成したのち、絶縁層102をマスクとして、半導体層105~108および一対の素子分離膜33を選択的にエッチングすることにより、溝部10Aを形成する(図40)。このように、半導体層105~108を貫通する溝部10Aを形成したのち、溝部10Aの内部であって、かつ溝部10Aの底部側に絶縁膜29および絶縁層110を形成する。具体的には、溝部10Aの内部であって、かつ溝部10Aの底部側において互いに対向する2つの側面に対して絶縁膜29を形成するとともに、溝部10Aの内部であって、かつ溝部10Aの底面側を埋め込むようにして、絶縁層110を形成する(図41、図42)。例えば、溝部10Aの側面に露出する半導体層105~108を酸化することにより、溝部10Aの側面全体に絶縁膜29を形成する。続いて、例えば、溝部10Aの内面を含む表面全体に、絶縁層110を積層したのち、絶縁層110を、絶縁膜29と一緒にエッチング(エッチバック)することにより、溝部10Aの内部であって、かつ溝部10Aの底面側にだけ、絶縁膜29および絶縁層110を形成する。このとき、例えば、絶縁膜29および絶縁層110の上面が半導体層106と半導体層107との境界面と同一面となるか、または、その境界面よりも高くなるように、絶縁膜29および絶縁層110をエッチング(エッチバック)する(図42)。
 次に、底面側に絶縁膜29および絶縁層110が形成された溝部10Aの内面に対してゲート絶縁膜28を形成する。具体的には、溝部10Aの内面で互いに対向する2つの側面に対してゲート絶縁膜28を形成する(図43)。続いて、溝部10Aを埋め込むようにして、ゲート部24を形成する。具体的には、溝部10Aの内部であって、かつ半導体層107と対向する位置に、ゲート部24を形成する(図43)。これにより、半導体層107にチャネル部23を形成する。例えば、溝部10Aの内面を含む表面全体に、ゲート部24を積層したのち、ゲート部24をエッチングすることにより、溝部10Aの内部にだけ、ゲート部24を残す。このとき、例えば、ゲート部24の上面が半導体層107と半導体層108との境界面と同一面となるか、または、その境界面よりも低くなるように、ゲート部24をエッチングする。次に、溝部10Aを埋め込むようにして、絶縁層36を形成する(図43)。その後は、上記実施の形態と同様にして、導電部34、応力印加膜31、絶縁層37、電極部25、配線層41、導電層35、応力印加膜32および配線層42を形成する。このようにして、半導体装置1が製造される。
 上で示した製造方法は、酸化シリコンでゲート絶縁膜28を形成する場合に好適な方法である。以下に、上記high-k材料でゲート絶縁膜28を形成する場合に好適な製造方法について説明する。図44、図45は、半導体装置1の製造工程の他の例を順番に表したものである。なお、図44、図45は、図1のA-A’線に対応する箇所の断面図である。
 まず、図40~図42に示した手順と同一の手順を経て、溝部10Aの内部であって、かつ溝部10Aの底部側に、絶縁膜29および絶縁層110を形成する。次に、溝部10Aの内面を含む表面全体に、上記high-k材料でゲート絶縁膜28を形成する(図44)。次に、図43に示した手順と同一の手順を経て、溝部10Aの内部であって、かつ半導体層107と対向する位置に、金属材料からなるゲート部24を形成する(図44)。これにより、半導体層107にチャネル部23を形成する。続いて、溝部10Aを埋め込むようにして、絶縁層36を形成する(図44)。次に、絶縁層102と、ゲート絶縁膜28のうち溝部10Aからはみ出した部分を除去する(図45)。その後は、上記実施の形態と同様にして、導電部34、応力印加膜31、絶縁層37、電極部25、配線層41、導電層35、応力印加膜32および配線層42を形成する。このようにして、半導体装置1が製造される。
 本変形例では、トランジスタ20が、1つのゲート部24を共有する2つのトランジスタTr1,Tr2によって構成されている。このようにした場合であっても、本変形例に係る半導体装置1は、上記実施の形態の半導体装置1と同様の効果を備えている。
 また、本変形例に係る製造方法では、一度のエピタキシャル結晶成長によって、ソース・ドレイン部21,22に対応する半導体層105,106,108が形成される。そのため、上記実施の形態に係る製造方法と比べて、非常に容易に半導体層105,106,108を形成することができる。
 また、図39に記載の半導体装置1の製造方法では、ゲート部24の底面の位置が、絶縁膜29および絶縁層110の厚さによって規定される。絶縁膜29および絶縁層110の厚さは、エッチバック量の調整により規定される。つまり、チャネル部23の形成位置を、絶縁膜29および絶縁層110のエッチバック量の調整によって調整することが可能である。これにより、ゲート部24の下端を、チャネル部23とソース・ドレイン部22との境界に対して所望の位置に合わせることができるので、トランジスタ特性を任意に調整することが可能となる。
 [変形例その5] 
 変形例その4では、配線層41,42が、2つのトランジスタTr1,Tr2によって共有されていた。しかし、例えば、図46に示したように、配線層41,42が、2つのトランジスタTr1,Tr2に対して1つずつ、別個に割り当てられていてもよい。このようにした場合には、トランジスタTr1と、トランジスタTr2とを、互いに独立に駆動することが可能となる。さらに、例えば、図47に示したように、溝部10Aの内部に、ゲート部24を2つに分離する絶縁層111が設けられていてもよい。図47に記載のトランジスタTr2は、他のトランジスタ(例えばトランジスタTr1)とゲート部24を共用しておらず、独自にゲート部24を有している。例えば、溝部10Aの内部にゲート部24を形成したのち、ゲート部24に溝を設けて、ゲート部24を2つに分離し、その溝を埋め込むように絶縁層111を形成することにより、トランジスタごとに独自のゲート部24を設けることができる。このようにした場合にも、トランジスタTr1と、トランジスタTr2とを、互いに独立に駆動することが可能となる。
 [変形例その6] 
 変形例その4、その5において、半導体層106、107、108が応力印加部として機能するようになっていてもよい。半導体層105、106、108およびチャネル部23がp型トランジスタを構成し、チャネル部23が(110)面に形成され、かつチャネル方位が<110>方向となっている場合には、半導体層106および半導体層108のうち少なくとも一方の格子定数が、半導体層107の格子定数よりも大きくなっている。また、半導体層105、106、108およびチャネル部23がp型トランジスタを構成し、チャネル部23が(110)面に形成され、かつチャネル方位が<100>方向となっている場合には、半導体層106および半導体層108のうち少なくとも一方の格子定数が、半導体層107の格子定数よりも小さくなっている。また、半導体層105、106、108およびチャネル部23がn型トランジスタを構成し、チャネル部23が、(001)面に形成され、かつチャネル方位が<110>方向となっている場合には、半導体層106および半導体層108のうち少なくとも一方の格子定数が、半導体層107の格子定数よりも小さくなっている。本変形例において、半導体層106、107、108は、格子定数の調整の可能な材料で構成されており、例えば、SiGeを含んで構成されている。
 本変形例では、半導体層106、107、108が応力印加部として機能する。これにより、応力印加膜31,32および素子分離膜33による作用だけでなく、半導体層106、107、108による作用によって、さらにトランジスタ特性を改善することができる。
 なお、本変形例を、変形例その2に適用することも可能である。すなわち、上記の説明において、半導体層105,106をソース・ドレイン部22に読み替え、半導体層108をソース・ドレイン部21に読み替えればよい。従って、本変形例を、変形例その2に適用した場合にも、応力印加膜31,32および素子分離膜33による作用だけでなく、ソース・ドレイン部22および半導体層106、107、108による作用によって、さらにトランジスタ特性を改善することができる。
 [変形例その7] 
 上記実施の形態およびその変形例(変形例その1~その6)において、絶縁層36が、ソース・ドレイン部22と対向する部分に凸部36Aを有していてもよい。例えば、図48に示したように、絶縁層36が、ソース・ドレイン部22と対向する部分に凸部36Aを有していてもよい。例えば、図16において、絶縁層36を形成する際に、ソース・ドレイン部22と対向する部分以外の部分をエッチバックすることにより、凸部36Aを形成することができる。このように、絶縁層36に凸部36Aを設けることにより、応力印加膜31は、凸部36Aの上面と、凸部36Aの両脇の窪んだ部分の面とに形成される。その結果、応力印加膜31からチャネル部23へ与える応力をより大きくすることができる。
 [変形例その8] 
 上記実施の形態およびその変形例(変形例その1~その7)において、素子分離膜33の上面が、ソース・ドレイン部21の上面よりも低い箇所に形成されていてもよい。例えば、図49に示したように、素子分離膜33の上面が、ソース・ドレイン部21の上面よりも低い箇所に形成されていてもよい。このとき、ソース・ドレイン部21(または導電層34)の上部が、素子分離膜33の上面との関係で、凸部10Bを構成している。例えば、図11において、素子分離膜33を形成する際に、素子分離膜33をエッチバックすることにより、素子分離膜33の上面をソース・ドレイン部21の上面よりも低くすることができる。このように、素子分離膜33の上面をソース・ドレイン部21の上面よりも低くすることにより、応力印加膜31は、ソース・ドレイン部21(または導電層34)の上面と、素子分離膜33の上面とに形成される。つまり、応力印加膜31は、凸部10Bをまたいて形成される。その結果、応力印加膜31からチャネル部23へ与える応力をより大きくすることができる。
 [変形例その9] 
 上記実施の形態およびその変形例(変形例その1~その8)において、素子分離膜33の裏面が、ソース・ドレイン部22の裏面よりも窪んだ箇所に形成されていてもよい。例えば、図50に示したように、素子分離膜33の裏面が、ソース・ドレイン部22の裏面よりも窪んだ箇所に形成されていてもよい。このとき、ソース・ドレイン部22(または導電層35)の下部が、素子分離膜33の上面との関係で、凸部10Cを構成している。例えば、図22において、絶縁層38を除去した上で、素子分離膜33をエッチバックすることにより、素子分離膜33の裏面をソース・ドレイン部22の裏面よりも窪ませることができる。このように、素子分離膜33の裏面をソース・ドレイン部22の裏面よりも窪ませることにより、応力印加膜32は、ソース・ドレイン部22(または導電層35)の裏面と、素子分離膜33の裏面とに形成される。つまり、応力印加膜32は、凸部10Cをまたいて形成される。その結果、応力印加膜32からチャネル部23へ与える応力をより大きくすることができる。
 [変形例その10] 
 上記実施の形態およびその変形例(変形例その1~その9)において、半導体層101がGe基板またはGe層であってもよい。このとき、半導体層10、106、107、108は、Ge層となっており、チャネル部23が、Ge層に形成されている。このようにした場合には、チャネル部23がGe層に形成されていることによる作用によって、さらにトランジスタ特性を改善することができる。また、上記実施の形態およびその変形例(変形例その1~その9)において、半導体層101がSiGe基板またはSiGe層であってもよい。このとき、半導体層10、106、107、108は、SiGe層となっており、チャネル部23が、SiGe層に形成されている。このようにした場合には、チャネル部23がSiGe層に形成されていることによる作用によって、さらにトランジスタ特性を改善することができる。
 本変形例において、ソース・ドレイン部21、22およびチャネル部23、または、半導体層105、106、108およびチャネル部23がp型トランジスタを構成しており、さらに、チャネル部23が、(110)面に形成され、かつチャネル方位が<110>方向となっていてもよい。このとき、応力印加部は、チャネル部23に対してコンプレッシブ応力を与えるように構成されていることが好ましい。また、本変形例において、ソース・ドレイン部21、22およびチャネル部23、または、半導体層105、106、108およびチャネル部23がp型トランジスタを構成しており、さらに、チャネル部23が、(110)面に形成され、かつチャネル方位が<100>方向となっていてもよい。このとき、応力印加部は、チャネル部23に対してテンソル応力を与えるように構成されていることが好ましい。また、本変形例において、ソース・ドレイン部21、22およびチャネル部23、または、半導体層105、106、108およびチャネル部23がn型トランジスタを構成しており、さらに、チャネル部23が、(001)面に形成され、かつチャネル方位が<110>方向となっていてもよい。このとき、応力印加部は、チャネル部23に対してテンソル応力を与えるように構成されていることが好ましい。本変形例において、チャネル部23の形成面やチャネル方位を上記のようにすることにより、移動度を最も大きくすることができる。さらに、本変形例において、チャネル部23の形成面やチャネル方位を上記のようにした上で、応力印加部を上記のようにすることにより、トランジスタ特性を更に向上させることができる。
 [変形例その11] 
 上記実施の形態およびその変形例(変形例その1~その10)では、応力印加部は、応力印加膜31,32および素子分離膜33を含んで構成されていた。しかし、上記実施の形態およびその変形例(変形例その1~その10)において、応力印加部は、応力印加膜31,32および素子分離膜33のうち、少なくとも1つを含んで構成されていてもよい。
 例えば、図51、図52、図53、図54に示したように、応力印加膜31が省略されていてもよい。また、例えば、図55、図56、図57、図58に示したように、応力印加膜32の代わりに、応力をチャネル部23に印加する作用を有しないか、ほとんど有しない絶縁層39が設けられていてもよい。
 [変形例その12] 
 上記実施の形態およびその変形例(変形例その1~その11)において、絶縁層36が省略されていてもよい。例えば、図59、図60、図61、図62に示したように、絶縁層36が省略され、絶縁層36のあった箇所に、応力印加膜31が設けられていてもよい。このとき、さらに、例えば、応力印加膜32が省略されていてもよい。
 [変形例その13] 
 上記実施の形態およびその変形例(変形例その1~その12)において、チャネル部23が、面方位が互いに等しく、互いに対向する2つの側面と、面方位が互いに等しく、互いに対向する2つの側面とに対して形成されていてもよい。例えば、チャネル部23が、溝部10Aの内部で互いに対向する2つの側面(第1側面)と、一方の第1側面に隣接する側面であって、かつ第1側面と直交する2つの側面(第2側面)とに対して形成されていてもよい。
 チャネル部23は、例えば、図63に示したように、溝部10Aの内面で互いに対向する2つの側面10Dに対して1つずつ設けられた2つのチャネル部23aを有している。チャネル部23は、さらに、例えば、図63に示したように、一方の側面10Dに隣接する側面であって、かつ側面10Dと直交する2つの側面10Eに対して1つずつ設けられた2つのチャネル部23bを有している。
 ゲート部24は、2つのチャネル部23aに接して設けられているだけでなく、2つのチャネル部23bにも接して設けられている。そのため、ゲート部24は、例えば、図63に示したように、半導体層10の法線方向から見たときに、十字形状となっている。
 本変形例では、2つのチャネル部23aだけが設けられている場合と比べて、2つのチャネル部23bのチャネル幅の分だけ、チャネル幅を大きくすることができる。これにより、さらにトランジスタ特性を改善することができる。
 ところで、チャネル部23aが(110)面に形成され、かつチャネル部23aのチャネル方位が<110>方向となっており、チャネル部23bが(001)面に形成され、かつチャネル部23bのチャネル方位が<110>方向となっているとする。このとき、ソース・ドレイン部21、22およびチャネル部23、または、半導体層105、106、108およびチャネル部23がp型トランジスタを構成している場合には、チャネル部23aのチャネル幅が、チャネル部23bのチャネル幅よりも広くなっていることが好ましい。これは、p型トランジスタにおいて、(110)面、<110>方向の方が、(001)面、<110>方向よりも移動度が高いからである。また、ソース・ドレイン部21、22およびチャネル部23、または、半導体層105、106、108およびチャネル部23がn型トランジスタを構成している場合には、チャネル部23bのチャネル幅が、チャネル部23aのチャネル幅よりも広くなっていることが好ましい。これは、n型トランジスタにおいて、(001)面、<110>方向の方が、(110)面、<110>方向よりも移動度が高いからである。
 [変形例その14] 
 上記実施の形態およびその変形例(変形例その1~その13)において、電極部26と、導電層35またはソース・ドレイン部22との間に、ダイポールを発生し、かつトンネル電流が流れる程度に薄い(具体的には厚さ1nm以下の)絶縁膜が設けられていてもよい。例えば、図64に示したように、電極部26と、導電層35との間に、ダイポールを発生し、かつトンネル電流が流れる程度に薄い(具体的には厚さ1nm以下の)絶縁膜51が設けられていてもよい。絶縁膜51は、例えば、TiO、Al、La、Hf系材料、またはTa系材料を含んで構成されている。このようにした場合に、ゲート絶縁膜28が上記high-k材料で構成され、ゲート部24が金属材料で構成されているときには、ゲート絶縁膜28の界面に発生したダイポールにより、導電層35またはソース・ドレイン部22と、ゲート部24とのショットキー障壁の高さを下げることができる。その結果、ゲート絶縁膜28にトンネル電流を流すことができる。
 [変形例その15] 
 上記実施の形態およびその変形例(変形例その1~その14)において、素子分離膜33が、半導体層10または、半導体層105~108を貫通していなくてもよい。例えば、図65に示したように、素子分離膜33が、半導体層10を貫通しておらず、素子分離膜33の底部に半導体層10の一部が存在していてもよい。このようにした場合であっても、本変形例に係る半導体装置1は、上記実施の形態の半導体装置1と同様の効果を備えている。
<3.第2の実施の形態>
[構成]
 図66は、本技術の第2の実施の形態に係るメモリ回路2の回路構成を表したものである。メモリ回路2は、行列状に配置された複数のメモリ素子2Aを備えている。各メモリ素子2Aは、不揮発性素子R1と、スイッチ素子Swとを有している。メモリ回路2において、複数の不揮発性素子R1は、行例状に配置されており、複数のスイッチ素子Swも行例状に配置されている。複数のスイッチ素子Swは、不揮発性素子R1ごとに1つずつ、割り当てられている。メモリ回路2は、さらに、行方向に延在する複数のワード線WLと、列方向に延在する複数のビット線BLと、列方向に延在する複数のデータ線DLとを有している。複数のワード線WLは、例えば、行列状に配置された複数のスイッチ素子Swの行ごとに1本ずつ割り当てられている。複数のビット線BLは、例えば、行列状に配置された複数のスイッチ素子Swの列ごとに1本ずつ割り当てられている。複数のデータ線DLは、例えば、行列状に配置された複数の不揮発性素子R1の列ごとに1本ずつ割り当てられている。
 不揮発性素子R1は、例えば、MTJ(Magnetic tunnel junctions)素子、抵抗変化膜、強誘電体膜などである。MTJ素子は、例えば、2つの強磁性層の間に絶縁層が挟まれた構造を有している。一方の強磁性層は磁化が固定され、他方の強磁性層は磁化が可変である。MTJ素子は、例えば、一方の強磁性層の磁化の方向を固定し、他方を変化させることでその抵抗値の違いにより、情報を保持するものである。MTJ素子では、2つの磁性層の磁気の向きが違う時に抵抗が高く、同じ時に抵抗が低い。MTJ素子では、MTJ素子に対して電流を流して、これを検出することにより、記憶内容(1又は0)が読み出される。抵抗変化膜は、例えば、セット電圧またはリセット電圧を印加することで抵抗が変化するものである。抵抗変化膜では、例えば、リセット電圧が印加されたときに抵抗が高くなり、セット電圧が印加されたときに抵抗が低くなる。抵抗変化膜では、抵抗変化膜に対して電流を流して、これを検出することにより、記憶内容(1又は0)が読み出される。強誘電体膜では、強誘電体のヒステリシスを利用し、強誘電体膜に電圧をかけて正または負に自発分極させる。強誘電体膜では、強誘電体膜に対して電流を流して、これを検出することにより、記憶内容(1又は0)が読み出される。
 スイッチ素子Swは、上記実施の形態およびその変形例(変形例その1~その15)に係る半導体装置1である。スイッチ素子Swにおいて、電極部27がワード線WLに電気的に接続されており、電極部25がビット線BLに電気的に接続されており、電極部26が不揮発性素子R1の一端に電気的に接続されている。スイッチ素子Swは、不揮発性素子R1に電流を流すか否かのスイッチの役割を果たすものである。スイッチ素子Swがオンとなることにより、不揮発性素子R1に電流が流れる。スイッチ素子Swがオフとなることにより、不揮発性素子R1に流れる電流が止まる。
 ワード線WLは、スイッチ素子Swのオン、オフを制御するものである。ワード線WLに電圧をかけることにより、スイッチ素子Swの電極部27が一定の電圧になり、対応するスイッチ素子Swがオンする。ビット線BLは、スイッチ素子Swの電極部25に一定の電圧を供給するものである。データ線DLは、ビット線BLと対に設けられたものであり、ビット線BLとデータ線DLとの間に電流経路を形成するためのものである。スイッチ素子Swがオンになれば、ビット線BLとデータ線DLとの間に電流が流れることになり、不揮発性素子R1に一定の電流が流れる。これにより、不揮発性素子R1の抵抗値を検出し、記憶内容を読み出す事ができる。若しくは、所定の電流を流すことにより、情報を書き込むことができる。
 図67は、メモリ回路2の断面構成の一例を表したものである。図67には、スイッチ素子Swとして、図2に記載の半導体装置1が設けられているときの、メモリ回路2の断面構成が示されている。メモリ回路2では、複数の半導体装置1(スイッチ素子Sw)が並んで配置されており、さらに、各半導体装置1(スイッチ素子Sw)の底部に、不揮発性素子R1が1つずつ、配置されている。図67には、行方向に並んで配置された2つの半導体装置1(スイッチ素子Sw)と、これら2つの半導体装置1(スイッチ素子Sw)の底部に1つずつ配置された2つの不揮発性素子R1の断面構成の一例が示されている。
 各メモリ素子2Aにおいて、2つの電極部25の直上に、2つの電極部25に接続された配線層41(ビット線BL)が設けられており、電極部26の直下に、電極部26に接続された不揮発性素子R1が設けられている。各メモリ素子2Aにおいて、不揮発性素子R1の一端が電極部26に接続されており、不揮発性素子R1の他端が、導電性の接続部44を介して、データ線DLに接続されている。不揮発性素子R1および接続部44は、絶縁層45に埋め込まれており、データ線DLは、絶縁層45の裏面上に形成されている。
 本実施の形態では、不揮発性素子R1に流す電流を制御するスイッチ素子Swとして、上記実施の形態およびその変形例(変形例その1~その15)に係る半導体装置1が用いられている。半導体装置1は、全ての電極が半導体層の上面側に設けられたトランジスタと比べて、優れたトランジスタ特性を備えていることから、例えば、不揮発性素子R1の材料として保持特性の高いものを選択することができる。その結果、メモリとしての性能安定性を確保することができる。
<4.第2の実施の形態の変形例>
 第2の実施の形態では、スイッチ素子Swとして、図2に記載の半導体装置1が設けられている場合が例示されていたが、例えば、図68に示したように、図46に記載の半導体装置1が設けられていてもよい。このとき、1つのゲート部23を共有する2つのトランジスタTr1,Tr2が、メモリ素子2Aごとに1つずつ割り当てられていてもよい。また、第2の実施の形態において、スイッチ素子Swとして、例えば、図47に記載の半導体装置1が設けられていてもよい。
 また、第2の実施の形態において、不揮発性素子R1の代わりに揮発性素子R2が用いられていてもよい。このとき、例えば、図69に示したように、ビット線BLの代わりに、各メモリ素子2Aに共通の共通電位線(例えばグラウンド線)が設けられていてもよい。揮発性素子R2は、例えば、容量素子などである。
 また、第2の実施の形態では、複数のメモリ素子2Aが行列状に配置されていたが、一列に並んで配置されていてもよい。また、例えば、図70、図71に示したように、メモリ回路2が、1つのメモリ素子2Aで構成されていてもよい。
 また、第2の実施の形態およびその変形例において、不揮発性素子Rの代わりに、キャパシタなどの揮発性素子が設けられていてもよい。
 以上、実施の形態およびその変形例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本技術の効果は、本明細書中に記載された効果に限定されるものではない。本技術が、本明細書中に記載された効果以外の効果を持っていてもよい。
 例えば、上記実施の形態およびその変形例において、(110)面は{110}面の一例であり、(001)面は{100}面の一例である。
 また、例えば、本技術は以下のような構成を取ることができる。
(1)
 溝部を有する半導体層のうち、前記溝部の底部または前記底部の近傍に形成された第1拡散部と、
 前記半導体層のうち、前記溝部の上端部に形成された第2拡散部と、
 前記半導体層のうち、前記第1拡散部と前記第2拡散部との間に形成されたチャネル部と、
 前記溝部の内部であって、かつ前記チャネル部と対向する位置に埋め込まれたゲート部と、
 前記第1拡散部と電気的に接続され、前記半導体層の裏面側に設けられた第1電極部と、
 前記第2拡散部と電気的に接続され、前記半導体層の上面側に設けられた第2電極部と、
 前記ゲート部と電気的に接続され、前記半導体層の上面側に設けられた第3電極部と、
 前記チャネル部に対して、前記半導体層の法線方向にコンプレッシブ応力もしくはテンソル応力を加える応力印加部と
 を備えた
 半導体装置。
(2)
 前記応力印加部は、以下の(a)~(d)のうち少なくとも1つを含んで構成されている
 請求項1に記載の半導体装置。
(a)前記半導体層の上面側に設けられた第1応力印加膜
(b)前記半導体層の裏面側に設けられた第2応力印加膜
(c)前記チャネル部の両脇に設けられた第3応力印加膜
(d)前記チャネル部の格子定数とは異なる格子定数の前記第1拡散部および前記第2拡散部のうち少なくとも一方の拡散部
(3)
 前記応力印加部は、前記チャネル部に対してコンプレッシブ応力を与えるように構成され、
 前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
 前記チャネル部が{110}面に形成され、かつチャネル方位が<110>方向となっている
 (1)または(2)に記載の半導体装置。
(4)
 前記応力印加部は、前記チャネル部に対してテンソル応力を与えるように構成され、
 前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
 前記チャネル部が{110}面に形成され、かつチャネル方位が<100>方向となっている
 (1)または(2)に記載の半導体装置。
(5)
 前記応力印加部は、前記チャネル部に対してテンソル応力を与えるように構成され、
 前記第1拡散部、前記第2拡散部および前記チャネル部がn型トランジスタで構成され、
 前記チャネル部が{100}面に形成され、かつチャネル方位が<110>方向となっている
 (1)または(2)に記載の半導体装置。
(6)
 前記チャネル部が、GeあるいはSiGeを含んで構成されている
 (1)ないし(5)のいずれか1つに記載の半導体装置。
(7)
 前記第1拡散部および前記第2拡散部のうち少なくとも一方の格子定数が、前記チャネル部の格子定数よりも大きくなっており、
 前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
 前記チャネル部が{110}面に形成され、かつチャネル方位が<110>方向となっている
(2)に記載の半導体装置。
(8)
 前記第1拡散部および前記第2拡散部のうち少なくとも一方の格子定数が、前記チャネル部の格子定数よりも小さくなっており、
 前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
 前記チャネル部が{110}面に形成され、かつチャネル方位が<100>方向となっている
 (2)に記載の半導体装置。
(9)
 前記第1拡散部および前記第2拡散部のうち少なくとも一方の格子定数が、前記チャネル部の格子定数よりも小さくなっており、
 前記第1拡散部、前記第2拡散部および前記チャネル部がn型トランジスタで構成され、
 前記チャネル部が{100}面に形成され、かつチャネル方位が<110>方向となっている
 (2)に記載の半導体装置。
(10)
 前記第3応力印加膜の上面は、前記第2拡散部の上面よりも低い箇所に形成され、
 前記第1応力印加膜は、前記第2拡散部の上面および前記第3応力印加膜の上面に形成されている
 (2)に記載の半導体装置。
(11)
 前記第3応力印加膜の裏面は、前記第1拡散部の裏面よりも窪んだ箇所に形成され、
 前記第2応力印加膜は、前記第1拡散部の上面および前記第3応力印加膜の裏面に形成されている
 (2)に記載の半導体装置。
(12)
前記チャネル部は、前記溝部の内部で互いに対向する2つの側面にそれぞれ形成されている
 (1)ないし(11)のいずれか1つに記載の半導体装置。
(13)
前記チャネル部は、前記溝部の内部で互いに対向する2つの第1側面に形成された第1チャネル部と、前記第1側面に隣接する側面であって、かつ前記第1側面と直交する2つの第2側面に形成された第2チャネル部とを有する
 (1)ないし(11)のいずれか1つに記載の半導体装置。
(14)
前記チャネル部は、前記溝部の内部で互いに対向する2つの第1側面に形成された第1チャネル部と、前記第1側面に隣接する側面であって、かつ前記第1側面と直交する2つの第2側面に形成された第2チャネル部とを有し、
前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
 前記第1チャネル部は{110}面に形成され、かつ前記第1チャネル部のチャネル方位が<110>方向となっており、
 前記第2チャネル部は{100}面に形成され、かつ前記第2チャネル部のチャネル方位が<110>方向となっており、
 前記第1チャネル部のチャネル幅が、前記第2チャネル部のチャネル幅よりも広くなっている
 (13)に記載の半導体装置。
(15)
前記チャネル部は、前記溝部の内部で互いに対向する2つの第1側面に形成された第1チャネル部と、前記第1側面に隣接する側面であって、かつ前記第1側面と直交する2つの第2側面に形成された第2チャネル部とを有し、
 前記第1拡散部、前記第2拡散部および前記チャネル部がn型トランジスタで構成され、
 前記第1チャネル部は{110}面に形成され、かつ前記第1チャネル部のチャネル方位が<110>方向となっており、
 前記第2チャネル部は{100}面に形成され、かつ前記第2チャネル部のチャネル方位が<110>方向となっており、
 前記第2チャネル部のチャネル幅が、前記第1チャネル部のチャネル幅よりも広くなっている
 (13)に記載の半導体装置。
(16)
 前記第1電極部と前記第1拡散部との間に、ダイポールを発生し、かつトンネル電流が流れる程度に薄い絶縁膜をさらに備えた
 (1)ないし(15)のいずれか1つに記載の半導体装置。
(17)
 前記溝部の内部であって、かつ当該溝部の底部側に埋め込まれた絶縁層をさらに備え、
 前記ゲート部は、前記絶縁層上に形成されている
 (1)ないし(16)のいずれか1つに記載の半導体装置。
(18)
 不揮発性素子または揮発性素子と、前記不揮発性素子または前記揮発性素子に流れる電流を制御するスイッチ素子とを含み、
 前記スイッチ素子は、
 溝部を有する半導体層のうち、前記溝部の底部または前記底部の近傍に形成された第1拡散部と、
 前記半導体層のうち、前記溝部の上端部に形成された第2拡散部と、
 前記半導体層のうち、前記第1拡散部と前記第2拡散部との間に形成されたチャネル部と、
 前記溝部の内部であって、かつ前記チャネル部と対向する位置に埋め込まれたゲート部と、
 前記第1拡散部と電気的に接続され、前記半導体層の裏面側に設けられた第1電極部と、
 前記第2拡散部と電気的に接続され、前記半導体層の上面側に設けられた第2電極部と、
 前記ゲート部と電気的に接続され、前記半導体層の上面側に設けられた第3電極部と、
 前記チャネル部に対して、前記半導体層の法線方向にコンプレッシブ応力もしくはテンソル応力を加える応力印加部と
 を有する
 メモリ回路。
(19)
 前記不揮発性素子は、MTJ(Magnetic tunnel junctions)素子である
 (18)に記載のメモリ回路。
(20)
 溝部を有する半導体層において、前記溝部を介して、前記溝部の底部に第1拡散部を形成するとともに、前記溝部の上端部に第2拡散部を形成し、これにより、前記第1拡散部と前記第2拡散部との間にチャネル部を形成することと、
 前記溝部の内面を含む表面全体に、シリコン酸化物よりも比誘電率が高いhigh-k材料でゲート絶縁膜を形成したのち、前記溝部の内部であって、かつ前記チャネル部と対向する位置に金属材料からなるゲート部を形成し、さらに、前記ゲート絶縁膜のうち前記溝部からはみ出した部分を除去することと、
 前記チャネル部に対して、前記半導体層の法線方向にコンプレッシブ応力もしくはテンソル応力を加える応力印加部を形成することと
 を含む
 半導体装置の製造方法。
(21)
 第1導電型の第1半導体層、第2導電型の第2半導体層および前記第1導電型の第3半導体層がこの順に形成された半導体層を貫通する溝部を形成したのち、前記溝部の内部であって、かつ前記溝部の底面側に絶縁層を形成することと、
前記絶縁層が形成された前記溝部の内面を含む表面全体に、シリコン酸化物よりも比誘電率が高いhigh-k材料でゲート絶縁膜を形成したのち、前記溝部の内部であって、かつ前記第2半導体層と対向する位置に金属材料からなるゲート部を形成し、これにより、前記第2半導体層にチャネル部を形成し、さらに、前記ゲート絶縁膜のうち前記溝部からはみ出した部分を除去することと、
 前記チャネル部に対して、前記半導体層の法線方向にコンプレッシブ応力もしくはテンソル応力を加える応力印加部を形成することと
 を含む
 半導体装置の製造方法。
(22)
 前記半導体層の裏面側に前記第1拡散部と電気的に接続された第1電極部と、前記半導体層の上面側に前記第2拡散部と電気的に接続された第2電極部と、前記半導体層の上面側に前記ゲート部と電気的に接続された第3電極部を形成することと
 をさらに含む
(20)または(21)に記載の半導体装置の製造方法。
 本出願は、日本国特許庁において2014年1月8日に出願された日本特許出願番号第2014-1806号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  溝部を有する半導体層のうち、前記溝部の底部または前記底部の近傍に形成された第1拡散部と、
     前記半導体層のうち、前記溝部の上端部に形成された第2拡散部と、
     前記半導体層のうち、前記第1拡散部と前記第2拡散部との間に形成されたチャネル部と、
     前記溝部の内部であって、かつ前記チャネル部と対向する位置に埋め込まれたゲート部と、
     前記第1拡散部と電気的に接続され、前記半導体層の裏面側に設けられた第1電極部と、
     前記第2拡散部と電気的に接続され、前記半導体層の上面側に設けられた第2電極部と、
     前記ゲート部と電気的に接続され、前記半導体層の上面側に設けられた第3電極部と、
     前記チャネル部に対して、前記半導体層の法線方向にコンプレッシブ(compressive)応力もしくはテンソル(tensile)応力を加える応力印加部と
     を備えた
     半導体装置。
  2.  前記応力印加部は、以下の(a)~(d)のうち少なくとも1つを含んで構成されている
     請求項1に記載の半導体装置。
    (a)前記半導体層の上面側に設けられた第1応力印加膜
    (b)前記半導体層の裏面側に設けられた第2応力印加膜
    (c)前記チャネル部の両脇に設けられた第3応力印加膜
    (d)前記チャネル部の格子定数とは異なる格子定数の前記第1拡散部および前記第2拡散部のうち少なくとも一方の拡散部
  3.  前記応力印加部は、前記チャネル部に対してコンプレッシブ応力を与えるように構成され、
     前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
     前記チャネル部が{110}面に形成され、かつチャネル方位が<110>方向となっている
     請求項2に記載の半導体装置。
  4.  前記応力印加部は、前記チャネル部に対してテンソル応力を与えるように構成され、
     前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
     前記チャネル部が{110}面に形成され、かつチャネル方位が<100>方向となっている
     請求項2に記載の半導体装置。
  5.  前記応力印加部は、前記チャネル部に対してテンソル応力を与えるように構成され、
     前記第1拡散部、前記第2拡散部および前記チャネル部がn型トランジスタで構成され、
     前記チャネル部が{100}面に形成され、かつチャネル方位が<110>方向となっている
     請求項2に記載の半導体装置。
  6.  前記チャネル部が、GeあるいはSiGeを含んで構成されている
     請求項2に記載の半導体装置。
  7.  前記第1拡散部および前記第2拡散部のうち少なくとも一方の格子定数が、前記チャネル部の格子定数よりも大きくなっており、
     前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
     前記チャネル部が{110}面に形成され、かつチャネル方位が<110>方向となっている
     請求項2に記載の半導体装置。
  8.  前記第1拡散部および前記第2拡散部のうち少なくとも一方の格子定数が、前記チャネル部の格子定数よりも小さくなっており、
     前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
     前記チャネル部が{110}面に形成され、かつチャネル方位が<100>方向となっている
     請求項2に記載の半導体装置。
  9.  前記第1拡散部および前記第2拡散部のうち少なくとも一方の格子定数が、前記チャネル部の格子定数よりも小さくなっており、
     前記第1拡散部、前記第2拡散部および前記チャネル部がn型トランジスタで構成され、
     前記チャネル部が{100}面に形成され、かつチャネル方位が<110>方向となっている
     請求項2に記載の半導体装置。
  10.  前記第3応力印加膜の上面は、前記第2拡散部の上面よりも低い箇所に形成され、
     前記第1応力印加膜は、前記第2拡散部の上面および前記第3応力印加膜の上面に形成されている
     請求項2に記載の半導体装置。
  11.  前記第3応力印加膜の裏面は、前記第1拡散部の裏面よりも窪んだ箇所に形成され、
     前記第2応力印加膜は、前記第1拡散部の上面および前記第3応力印加膜の裏面に形成されている
     請求項2に記載の半導体装置。
  12. 前記チャネル部は、前記溝部の内部で互いに対向する2つの側面にそれぞれ形成されている
     請求項1に記載の半導体装置。
  13. 前記チャネル部は、前記溝部の内部で互いに対向する2つの第1側面に形成された第1チャネル部と、前記第1側面に隣接する側面であって、かつ前記第1側面と直交する2つの第2側面に形成された第2チャネル部とを有する
     請求項1に記載の半導体装置。
  14.  前記第1拡散部、前記第2拡散部および前記チャネル部がp型トランジスタで構成され、
     前記第1チャネル部は{110}面に形成され、かつ前記第1チャネル部のチャネル方位が<110>方向となっており、
     前記第2チャネル部は{100}面に形成され、かつ前記第2チャネル部のチャネル方位が<110>方向となっており、
     前記第1チャネル部のチャネル幅が、前記第2チャネル部のチャネル幅よりも広くなっている
     請求項13に記載の半導体装置。
  15.  前記第1拡散部、前記第2拡散部および前記チャネル部がn型トランジスタで構成され、
     前記第1チャネル部は{110}面に形成され、かつ前記第1チャネル部のチャネル方位が<110>方向となっており、
     前記第2チャネル部は{100}面に形成され、かつ前記第2チャネル部のチャネル方位が<110>方向となっており、
     前記第2チャネル部のチャネル幅が、前記第1チャネル部のチャネル幅よりも広くなっている
     請求項13に記載の半導体装置。
  16. 前記第1電極部と前記第1拡散部との間に、ダイポールを発生し、かつトンネル電流が流れる程度に薄い絶縁膜をさらに備えた
     請求項1に記載の半導体装置。
  17. 前記溝部の内部であって、かつ当該溝部の底部側に埋め込まれた絶縁層をさらに備え、
    前記ゲート部は、前記絶縁層上に形成されている
     請求項1に記載の半導体装置。
  18. 不揮発性素子または揮発性素子と、前記不揮発性素子または前記揮発性素子に流れる電流を制御するスイッチ素子とを含み、
    前記スイッチ素子は、
     溝部を有する半導体層のうち、前記溝部の底部または前記底部の近傍に形成された第1拡散部と、
     前記半導体層のうち、前記溝部の上端部に形成された第2拡散部と、
     前記半導体層のうち、前記第1拡散部と前記第2拡散部との間に形成されたチャネル部と、
     前記溝部の内部であって、かつ前記チャネル部と対向する位置に埋め込まれたゲート部と、
     前記第1拡散部と電気的に接続され、前記半導体層の裏面側に設けられた第1電極部と、
     前記第2拡散部と電気的に接続され、前記半導体層の上面側に設けられた第2電極部と、
     前記ゲート部と電気的に接続され、前記半導体層の上面側に設けられた第3電極部と、
     前記チャネル部に対して、前記半導体層の法線方向にコンプレッシブ(compressive)応力もしくはテンソル(tensile)応力を加える応力印加部と
     を有する
     メモリ回路。
  19.  前記不揮発性素子は、MTJ(Magnetic tunnel junctions)素子である
     請求項17に記載のメモリ回路。
  20.  溝部を有する半導体層において、前記溝部を介して、前記溝部の底部に第1拡散部を形成するとともに、前記溝部の上端部に第2拡散部を形成し、これにより、前記第1拡散部と前記第2拡散部との間にチャネル部を形成することと、
     前記溝部の内面を含む表面全体に、シリコン酸化物よりも比誘電率が高いhigh-k材料でゲート絶縁膜を形成したのち、前記溝部の内部であって、かつ前記チャネル部と対向する位置に金属材料からなるゲート部を形成し、さらに、前記ゲート絶縁膜のうち前記溝部からはみ出した部分を除去することと、
     前記チャネル部に対して、前記半導体層の法線方向にコンプレッシブ(compressive)応力もしくはテンソル(tensile)応力を加える応力印加部を形成することと、
     前記半導体層の裏面側に前記第1拡散部と電気的に接続された第1電極部と、前記半導体層の上面側に前記第2拡散部と電気的に接続された第2電極部と、前記半導体層の上面側に前記ゲート部と電気的に接続された第3電極部を形成することと
     を含む
     半導体装置の製造方法。
PCT/JP2014/082871 2014-01-08 2014-12-11 半導体装置、メモリ回路、および半導体装置の製造方法 WO2015104947A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015556744A JP6439705B2 (ja) 2014-01-08 2014-12-11 半導体装置およびメモリ回路
US15/107,977 US10269867B2 (en) 2014-01-08 2014-12-11 Semiconductor device, memory circuit, method of manufacturing semiconductor device
CN201480071921.5A CN105874578B (zh) 2014-01-08 2014-12-11 半导体装置、存储器电路、半导体装置制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014001806 2014-01-08
JP2014-001806 2014-01-08

Publications (1)

Publication Number Publication Date
WO2015104947A1 true WO2015104947A1 (ja) 2015-07-16

Family

ID=53523785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082871 WO2015104947A1 (ja) 2014-01-08 2014-12-11 半導体装置、メモリ回路、および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US10269867B2 (ja)
JP (1) JP6439705B2 (ja)
CN (1) CN105874578B (ja)
TW (1) TWI689920B (ja)
WO (1) WO2015104947A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365306B2 (ja) 2020-09-09 2023-10-19 株式会社東芝 半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082564A (ja) * 2013-10-22 2015-04-27 ソニー株式会社 メモリセル構造、メモリ製造方法、メモリ装置
US9847416B1 (en) * 2016-11-15 2017-12-19 Globalfoundries Inc. Performance-enhanced vertical device and method of forming thereof
US10916582B2 (en) * 2017-12-30 2021-02-09 Spin Memory, Inc. Vertically-strained silicon device for use with a perpendicular magnetic tunnel junction (PMTJ)
JP2019192869A (ja) * 2018-04-27 2019-10-31 東芝メモリ株式会社 半導体記憶装置
US10910435B2 (en) * 2019-03-27 2021-02-02 International Business Machines Corporation Stackable symmetrical operation memory bit cell structure with bidirectional selectors
US11164816B2 (en) * 2019-09-05 2021-11-02 Nanya Technology Corporation Semiconductor device and method for fabricating the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214457A (ja) * 2003-01-06 2004-07-29 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
JP2005012213A (ja) * 2003-06-17 2005-01-13 Internatl Business Mach Corp <Ibm> 低漏洩ヘテロ接合垂直トランジスタおよびその高性能デバイス
JP2006191109A (ja) * 2005-01-04 2006-07-20 Samsung Electronics Co Ltd ファセットチャンネルを有する半導体素子及びその製造方法
JP2006245267A (ja) * 2005-03-03 2006-09-14 Fujitsu Ltd 半導体装置
JP2007329239A (ja) * 2006-06-07 2007-12-20 Sharp Corp パワーicデバイス及びその製造方法
JP2008226901A (ja) * 2007-03-08 2008-09-25 Toshiba Corp 縦型スピントランジスタ及びその製造方法
JP2009130098A (ja) * 2007-11-22 2009-06-11 Toyota Motor Corp 半導体装置の製造方法
WO2009096464A1 (ja) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体装置およびその製造方法
WO2010010865A1 (ja) * 2008-07-22 2010-01-28 日本電気株式会社 半導体装置
JP2013115158A (ja) * 2011-11-28 2013-06-10 Hitachi Ltd 4h−SiC半導体素子及び半導体装置
JP2013187482A (ja) * 2012-03-09 2013-09-19 Fuji Electric Co Ltd Mos型半導体装置およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781195B2 (en) * 2001-01-23 2004-08-24 Semiconductor Components Industries, L.L.C. Semiconductor bidirectional switching device and method
KR100399436B1 (ko) * 2001-03-28 2003-09-29 주식회사 하이닉스반도체 마그네틱 램 및 그 형성방법
US8237195B2 (en) * 2008-09-29 2012-08-07 Fairchild Semiconductor Corporation Power MOSFET having a strained channel in a semiconductor heterostructure on metal substrate
KR101333914B1 (ko) * 2011-02-22 2013-11-27 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 진보된 실리콘 프로세스로 감소된 소프트 에러 레이트(ser)를 갖는 반도체 디바이스를 제조하는 방법 및 그러한 반도체 디바이스
US8466513B2 (en) * 2011-06-13 2013-06-18 Semiconductor Components Industries, Llc Semiconductor device with enhanced mobility and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214457A (ja) * 2003-01-06 2004-07-29 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
JP2005012213A (ja) * 2003-06-17 2005-01-13 Internatl Business Mach Corp <Ibm> 低漏洩ヘテロ接合垂直トランジスタおよびその高性能デバイス
JP2006191109A (ja) * 2005-01-04 2006-07-20 Samsung Electronics Co Ltd ファセットチャンネルを有する半導体素子及びその製造方法
JP2006245267A (ja) * 2005-03-03 2006-09-14 Fujitsu Ltd 半導体装置
JP2007329239A (ja) * 2006-06-07 2007-12-20 Sharp Corp パワーicデバイス及びその製造方法
JP2008226901A (ja) * 2007-03-08 2008-09-25 Toshiba Corp 縦型スピントランジスタ及びその製造方法
JP2009130098A (ja) * 2007-11-22 2009-06-11 Toyota Motor Corp 半導体装置の製造方法
WO2009096464A1 (ja) * 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体装置およびその製造方法
WO2010010865A1 (ja) * 2008-07-22 2010-01-28 日本電気株式会社 半導体装置
JP2013115158A (ja) * 2011-11-28 2013-06-10 Hitachi Ltd 4h−SiC半導体素子及び半導体装置
JP2013187482A (ja) * 2012-03-09 2013-09-19 Fuji Electric Co Ltd Mos型半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365306B2 (ja) 2020-09-09 2023-10-19 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
CN105874578B (zh) 2019-12-13
US20160322422A1 (en) 2016-11-03
TWI689920B (zh) 2020-04-01
JPWO2015104947A1 (ja) 2017-03-23
US10269867B2 (en) 2019-04-23
TW201532039A (zh) 2015-08-16
JP6439705B2 (ja) 2018-12-19
CN105874578A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6439705B2 (ja) 半導体装置およびメモリ回路
KR101050034B1 (ko) 상이한 도전성 타입 영역들에 유리한 게이트들을 포함하는플로팅 바디 메모리 셀
KR100657964B1 (ko) 한 쌍의 핀-타입 채널 영역들에 대응하는 단일 게이트전극을 갖는 반도체 소자 및 랜덤 액세스 메모리
TW519751B (en) Semiconductor memory device
US8803200B2 (en) Access transistor with a buried gate
US7361545B2 (en) Field effect transistor with buried gate pattern
TWI427776B (zh) 關於具有一浮動主體之記憶體單元的方法,裝置及系統
US9257432B2 (en) Semiconductor memory device and method of manufacturing semiconductor memory device
KR101163711B1 (ko) 함몰된 바디에 두개의 게이트를 갖는 1t 디램 소자와 그 동작방법 및 제조방법
JP6081704B2 (ja) 半導体メモリ装置
US20100289091A1 (en) Semiconductor device and method of manufacturing the same
US10056376B2 (en) Ferroelectric FinFET
KR101177282B1 (ko) 반도체 메모리 소자의 제조 방법
JP2003031696A (ja) 半導体メモリ装置及びその製造方法
JP2011014753A (ja) 半導体装置
KR100842905B1 (ko) 벌크 실리콘을 이용한 더블 게이트 1-트랜지스터 디램 셀과이를 구비한 디램 소자 및 그의 제조방법
CN114695352A (zh) 半导体结构及其形成方法
JP2008098467A (ja) 半導体記憶装置及びその製造方法
JP2006012991A (ja) 半導体記憶装置
KR100866125B1 (ko) 스위치드 스토리지 노드 콘택 구조를 이용한 디램
KR100790905B1 (ko) 반도체 메모리 소자
JP3880492B2 (ja) 半導体記憶装置
KR20060097896A (ko) 반도체 기억장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107977

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015556744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877859

Country of ref document: EP

Kind code of ref document: A1