WO2015100636A1 - 一种环形光缓存器及光信号存入和读取方法 - Google Patents
一种环形光缓存器及光信号存入和读取方法 Download PDFInfo
- Publication number
- WO2015100636A1 WO2015100636A1 PCT/CN2013/091164 CN2013091164W WO2015100636A1 WO 2015100636 A1 WO2015100636 A1 WO 2015100636A1 CN 2013091164 W CN2013091164 W CN 2013091164W WO 2015100636 A1 WO2015100636 A1 WO 2015100636A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- ring
- signal
- waveguide
- delay waveguide
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 651
- 239000000872 buffer Substances 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000005540 biological transmission Effects 0.000 claims abstract description 46
- 238000013507 mapping Methods 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 18
- 230000001795 light effect Effects 0.000 claims description 11
- 239000000284 extract Substances 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 5
- 230000003111 delayed effect Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims 2
- 230000003139 buffering effect Effects 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract 2
- 239000000835 fiber Substances 0.000 description 10
- 230000003134 recirculating effect Effects 0.000 description 9
- 239000013307 optical fiber Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000004038 photonic crystal Substances 0.000 description 6
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/50—Queue scheduling
- H04L47/62—Queue scheduling characterised by scheduling criteria
- H04L47/6245—Modifications to standard FIFO or LIFO
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0003—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/002—Construction using optical delay lines or optical buffers or optical recirculation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0033—Construction using time division switching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
- H04Q2011/0039—Electrical control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/003—Constructional details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2213/00—Indexing scheme relating to selecting arrangements in general and for multiplex systems
- H04Q2213/1301—Optical transmission, optical switches
Definitions
- the present invention relates to the field of silicon light technology, and in particular, to a ring optical buffer and a method for storing and reading optical signals.
- Optical interconnects using fiber or Wave-Guide Optical technology has significant advantages in terms of transmission rate, bandwidth density, power consumption and cost, and has become a research hotspot and fast in recent years. development of.
- OPS optical packet switching
- the basic unit uses a 2 X 2 optical switch plus a Recirculation Fiber Loop to buffer the optical signal (as shown in Figure 1A). Specifically, by controlling the optical switch at the entrance of the optical buffer to be in an open state, the optical signal enters the recirculating fiber ring, and when the optical signal needs to be output, the optical switch at the outlet of the optical buffer is turned on, so that The optical signal is output from the optical buffer.
- the optical buffer formed by using the basic unit cascade is as shown in FIG. 1B.
- the controller turns on the lower right output end of the first optical switch, and the optical signal enters the second 2 ⁇ 2 optical switch through the lower right end of the first optical switch, if the second optical switch corresponds to the recirculating optical fiber
- the ring also has an optical signal, then the controller Opening the lower right output end of the second optical switch, the optical signal enters the next 2 x 2 optical switch through the lower right output end of the second optical switch, until the optical fiber ring corresponding to the optical switch of the one optical switch does not have an optical signal
- the upper right output end of the optical switch can be controlled to open, and the data enters the recirculating fiber ring through the upper right output end of the optical switch, so that the data is cyclically transmitted in the recirculating fiber ring, that is, the buffer function is realized.
- the existing optical buffers use the method of increasing the length of the optical fiber to prolong the transmission time of the optical data. Since the transmission rate of the optical fiber in the optical fiber is close to the optical speed, the optical fiber delay scheme has a small capacity, a large size, and is difficult to implement.
- the existing optical buffer is generally a first-in-first-out storage mode, when an optical signal enters the recirculating fiber ring of a certain optical buffer unit, and just the optical signal buffered in the recirculating fiber ring When an output is required, this causes a collision of two optical signals at the output end of the lower right end of the optical switch corresponding to the optical buffer unit, so that any disordered access of the optical signal cannot be achieved.
- an embodiment of the present invention provides a ring optical buffer and a method for storing and reading optical signals, which can achieve monolithic integration of the optical buffer and can realize arbitrary out-of-order access of the optical signal.
- a ring optical buffer comprising:
- a first curved through-waveguide in the shape of an n, connected to the input end and the output end of the optical signal, as a transmission bus of the optical signal, for transmitting the optical signal input from the input end to the output end;
- a plurality of optically retarded waveguide rings are laterally juxtaposed on both arms of the first curved through-waveguide, and both sides of each of the optically retarded waveguide rings and the arms of the first curved through-waveguide are optically coupled through a pair of optical switches Broken, multiple optical delay waveguide rings are used to buffer optical signals;
- each pair of optical switches being used for optical paths on both sides of the first curved through-waveguide and the optical retardation waveguide ring corresponding to each pair of optical switches Control of on and off;
- a beam splitter disposed at an input end of the first curved through waveguide, for separating a part of the optical signal from the input end input optical signal and transmitting the optical signal to the controller through the second curved through waveguide;
- a slow light effect waveguide disposed on the first curved through waveguide between the optical switch closest to the input end and the beam splitter for slowing the optical signal transmission rate transmitted therein;
- a controller connected to the beam splitter through the second curved through-waveguide, connected to the external device, and connected to each of the plurality of optical switches by the control signal line, for receiving a part of the light split by the beam splitter a signal, photoelectrically converting the part of the optical signal to obtain an electrical signal, and parsing the data packet of the electrical signal, generating a transmission request of the optical signal according to the parsed information, and transmitting the transmission request to the external device, and receiving the transmission by the external device
- the optical signal transmitted in the first curved through-waveguide enters the optical delay waveguide ring corresponding to one of the optical switches; or is used to receive an optical signal transmitted from an external device to be buffered in an optical delay waveguide ring from the optical delay waveguide
- the controller includes:
- a photoelectric converter configured to receive a part of the optical signal separated by the beam splitter, and photoelectrically convert a part of the optical signal to obtain an electrical signal
- a data packet parsing unit configured to parse a data packet of the electrical signal, obtain a packet header information of the electrical signal data packet, and extract a destination address of the data packet from the packet header information
- a transmission request unit configured to generate a transmission request of the optical signal according to the destination address, and send the transmission request to the external device
- An instruction receiving unit configured to receive an instruction sent by an external device to store the optical signal in the ring optical buffer
- a storage ring determining unit configured to determine an optical delay waveguide ring from the optical delay waveguide ring in the ring optical buffer that does not have an optical signal according to the deposit instruction
- mapping relationship establishing unit configured to establish, by using a destination address of the parsed data packet, a mapping relationship relationship between the destination address and the determined optical delay waveguide ring, and send the mapping relationship information to Storage unit
- control signal generating unit configured to generate a control signal sent to a certain optical switch corresponding to the determined optical delay waveguide ring, the control signal is used to control a switching state of the one optical switch; and the storage unit is configured to store at least one A mapping relationship between the destination address and at least one optical delay waveguide ring.
- the controller includes:
- the instruction receiving unit is further configured to receive an instruction sent by the external device to output an optical signal buffered in an optical delay waveguide ring from the optical delay waveguide ring;
- An instruction parsing unit configured to parse the received output instruction, and extract a destination address of the optical signal that needs to be output;
- the storage ring determining unit is further configured to: according to the extracted destination address, query a mapping relationship between the destination address stored in the storage unit and the optical delay waveguide ring, and determine an optical delay waveguide ring corresponding to the destination address; and the control signal generating unit is further configured to Outputting an instruction to generate a control signal sent to a certain optical switch corresponding to the determined optical delay waveguide ring, where the control signal is used to control a switching state of the one optical switch;
- the mapping relationship deleting unit is configured to delete the mapping relationship information corresponding to the determined optical delay waveguide ring stored in the storage unit.
- each of the optical delay waveguide rings includes a slow light effect waveguide for slowing the transmission rate of the optical signal transmitted therein.
- each optical delay waveguide A section of slow light effect waveguide included in the ring includes:
- a wave decomposition multiplexer configured to demultiplex the wavelength division multiplexed optical signals of the M wavelengths into M single wavelength optical signals of different wavelengths
- a single-wavelength optical delay waveguide ring for respectively delaying optical signals of the M different wavelength single-wavelength optical signals
- Wavelength division multiplexer for wavelength division of the above-mentioned delayed single wavelength optical signals of M different wavelengths It is multiplexed into one wavelength division multiplexed optical signal.
- a method for optical signal storage using the ring optical buffer comprising:
- the controller receives a part of the optical signal separated by the beam splitter, and photoelectrically converts the part of the optical signal to obtain an electrical signal;
- the controller parses the data packet of the electrical signal, and generates a transmission request of the optical signal according to the parsed information
- the controller sends the transmission request to the external device
- the controller receives an instruction sent by the external device to store the optical signal into the ring optical buffer
- the controller generates a control signal according to the stored instruction and using the information obtained by the parsing;
- the controller sends the control signal to an optical switch, and by controlling the switching state of the optical switch, the optical signal transmitted in the first curved through-waveguide enters the optical delay waveguide ring corresponding to one of the optical switches. in.
- the controller according to the depositing instruction, and generating the control signal by using the parsed information, includes:
- the method further includes: establishing a mapping relationship between the destination address and the determined optical delay waveguide ring, And storing the mapping relationship in the storage unit.
- a method for optical signal reading using a ring optical buffer comprising:
- the controller receives an instruction sent by the external device to output an optical signal buffered in an optical delay waveguide ring from the optical delay waveguide ring;
- the controller generates a control signal according to the output instruction
- the controller sends a control signal to an optical switch, and controls the switching state of the optical switch to output an optical signal buffered in the optical delay waveguide ring corresponding to the optical switch from the optical delay waveguide ring.
- the controller generates the control signal according to the output instruction, including:
- an "off" state signal of the right optical switch of the right optical switch of the optical delay waveguide ring determined by the control is generated.
- the method further includes: deleting the mapping relationship information corresponding to the determined optical delay waveguide ring stored in the storage unit.
- a ring optical buffer provided by an embodiment of the present invention and a method for storing and reading an optical signal based on the ring optical buffer can be compared by using a waveguide as a medium for optical signal transmission and buffering.
- Dacheng reduces the size of the optical buffer, which facilitates the monolithic integration of the optical buffer.
- the switching state of the optical switch in the ring optical buffer is controlled, thereby realizing the access of the optical signal due to Storing an optical signal into an optical delay waveguide ring is determined according to a destination address obtained by analyzing the optical signal, and reading the optical signal from an optical delay waveguide ring
- the output is determined according to an instruction of the external device, and the above-mentioned process of storing and reading the optical signal is not sequentially performed, so that any disordered access of the optical signal can be realized.
- 1A is a schematic view showing the structure of a recirculating fiber ring in the prior art.
- Fig. 1B is a schematic view showing the structure of an optical buffer constructed by connecting a plurality of recirculating fiber loops in the prior art.
- FIG. 2 is a schematic structural diagram of a ring optical buffer provided by an embodiment of the present invention.
- Figure 3 is a block diagram showing the configuration of a first embodiment of the controller of the ring optical buffer in the embodiment of the present invention.
- Fig. 4 is a schematic structural view showing a second embodiment of the controller of the ring optical buffer in the embodiment of the present invention.
- Figure 5A is a block diagram showing the first embodiment of the optical delay waveguide ring provided in the embodiment of the ring optical buffer of the present invention.
- Figure 5B is a block diagram showing the second embodiment of the optical delay waveguide ring provided in the embodiment of the ring optical buffer of the present invention.
- FIG. 6 is a schematic diagram of a process for depositing an optical signal by using a ring optical buffer according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a packet of an electrical signal data packet according to an embodiment of the present invention.
- FIG. 8 is a schematic flowchart of reading an optical signal by using a ring optical buffer according to an embodiment of the present invention. detailed description
- the ring-shaped optical buffer 100 includes:
- a first curved through waveguide 101a in the shape of an n, connected to the input end and the output end of the optical signal, as a transmission bus of the optical signal, for transmitting the optical signal input from the input end to the output end;
- a plurality of optical retardation waveguide rings 103 are laterally juxtaposed on both arms of the first curved through waveguide 101a, and both sides of each of the optical retardation waveguide rings 103 and the arms of the first curved through waveguide 101a pass through a pair of optical switches 102. Activating and stopping the optical path, the plurality of optical delay waveguide rings 103 are used for buffering the optical signal;
- the plurality of pairs of optical switches 102 are the same as the plurality of optical delay waveguide rings 103, and each pair of optical switches 102 is used for both arms of the first curved through waveguide 101a and the optical delay waveguide corresponding to each pair of optical switches 102 The on and off of the optical paths on both sides of the ring 103 are controlled;
- the beam splitter 106 is disposed at an input end of the first curved through waveguide 101a for distributing a part of the optical signal from the input end input optical signal to the controller 105 via the second curved through waveguide 101c (ie, the controller in FIG. 2) 105);
- a slow light effect waveguide 104a disposed on the first curved through waveguide 101a between the optical switch closest to the input end and the beam splitter for slowing the optical signal transmission rate transmitted therein; the controller 105, Connected to the beam splitter 106 via the second curved through waveguide 101c, connected to the external device, and connected to each of the optical switches of the plurality of pairs of optical switches 102 via the control signal line 107 for receiving a portion of the splitter 106
- the optical signal photoelectrically converts the part of the optical signal to obtain an electrical signal, and parses the data packet of the electrical signal, generates a transmission request of the optical signal according to the parsed information, and sends the transmission request to the external device to receive the external
- a control signal is generated, and the control signal is sent to a certain optical switch 102.
- the optical signal transmitted in the first curved through waveguide 101a enters the optical switch corresponding to the optical switch.
- the optical delay waveguide ring 103 or for receiving an instruction sent by an external device to output an optical signal buffered in an optical delay waveguide ring from the optical delay waveguide ring, generating a control signal according to the output instruction, and transmitting the control signal
- the optical signal buffered in the optical delay waveguide ring 103 corresponding to the optical switch 102 is output from the optical delay waveguide ring 103 by controlling the switching state of the optical switch 102.
- the use of the slow light effect waveguide 104a can slow down the transmission rate of the optical signal in the first curved through waveguide 101a, thus ensuring that the controller 105 has sufficient time to generate a control signal and realize an optical switch to the ring optical buffer.
- the control of the switching state enables the storage of optical signals or the reading of optical signals.
- FIG. 2 there are multiple pairs of optical switches, and a plurality of optical delay waveguide rings connected with a plurality of pairs of optical switches, for the clarity of the logo of the drawing, only the most Reference numerals are indicated on the upper pair of optical switches and optical delay waveguide rings. It will be understood by those skilled in the art that the above reference numerals may also refer to other pairs of optical switches and optical delay waveguide rings.
- the foregoing controller (Controller) 105 includes:
- the photoelectric converter 1051 is configured to receive a part of the optical signal separated by the beam splitter 106, and photoelectrically convert the part of the optical signal to obtain an electrical signal;
- the packet parsing unit 1052 is configured to parse the data packet of the electrical signal processed by the photoelectric converter 1051, obtain the header information of the electrical signal data packet, and extract the destination address of the data packet from the packet header information;
- the transmission requesting unit 1053 is configured to generate a transmission request of the optical signal according to the destination address of the data packet, and send the transmission request to the external device;
- the instruction receiving unit 1054 is configured to receive an instruction sent by the external device to store the optical signal in the ring optical buffer;
- a storage ring determining unit 1055 configured to: from the ring optical buffer according to the above deposit instruction Determining an optical retardation waveguide ring in the optical delay waveguide ring in which the optical signal is stored;
- the mapping relationship maintenance unit 1056 is configured to use the destination address of the parsed data packet, establish mapping relationship information between the destination address and the determined optical delay waveguide ring, and send the mapping relationship information to the storage unit 1058;
- the control signal generating unit 1057 is configured to generate a control signal sent to an optical switch corresponding to the determined optical delay waveguide ring, where the control signal is used to control a switching state of a certain optical switch;
- the storage unit 1058 is configured to store a mapping relationship between the destination address and the optical delay waveguide ring.
- the controller 105 further includes: an instruction receiving unit 1054, configured to receive an optical signal transmitted from an external device and buffered in an optical delay waveguide ring from the optical delay waveguide. An instruction output in the ring;
- the instruction parsing unit 1059 is configured to parse the received output instruction, and extract a destination address of the optical signal to be outputted from the instruction output unit;
- the storage ring determining unit 1055 is further configured to query the mapping relationship between the destination address and the optical delay waveguide ring stored in the storage unit 1058 according to the extracted destination address, and determine the optical delay waveguide ring corresponding to the destination address;
- the control signal generating unit 1057 is further configured to generate, according to the output command, a control signal sent to one of the optical switches corresponding to the determined optical delay waveguide, wherein the control signal is used to control a switching state of the optical switch;
- the mapping relationship maintenance unit 1056 is further configured to delete the mapping relationship information corresponding to the determined optical delay waveguide ring stored in the storage unit.
- each of the optical delay waveguide rings 103 in the above-mentioned annular optical buffer can be realized by a slow optical effect waveguide 104b and a curved waveguide 101b, wherein the slow optical effect waveguide 104b is used to slow the optical delay.
- the transmission rate of the optical signal in the waveguide ring 103 enables storage of a larger capacity optical signal in the optical delay waveguide ring 103.
- the slow light effect waveguide 104b may be a Photonic Crystal Waveguide (PCW), an Electromagnetically Induced Transparency (EIT), a Coherent Population Oscillation (CPO), or a stimulated Brillouin scattering (Chip). SBS, Stimulated Brillouin Scattering) and other methods are implemented. Bending wave
- the guide 101b can be implemented using a silicon waveguide or other waveguide, and the embodiment of the present invention is not limited in any way.
- the optical delay waveguide ring 103 may be a photonic crystal waveguide ring corresponding to a single wavelength, as shown in FIG. 5A, or may be a photonic crystal waveguide ring corresponding to Wavelength Division Multiplexing (WDM).
- the photonic crystal waveguide rings respectively correspond to a plurality of wavelengths, as shown in FIG. 5B.
- the photonic crystal waveguide 104b functions only to slow down the optical transmission rate (i.e., slow light effect) for the optical signal of the wavelength.
- Fig. 5B there are four photonic crystal waveguides that produce a slow light effect on optical signals of wavelengths ⁇ 2 and ⁇ 3 , respectively.
- the wavelength division multiplexer 201a For a wavelength division multiplexed optical signal ( ⁇ is an integer and M > 1 ) including one wavelength, first, the wavelength division multiplexer 201a is required to demultiplex the wavelength division multiplexed optical signal including one wavelength into M. a single-wavelength optical signal of different wavelengths; and then passing the M-wavelength single-wavelength optical signals through M single-wavelength optical delay waveguide rings, respectively performing optical signal delay on M different wavelength single-wavelength optical signals; and then utilizing The wavelength division multiplexer 201b wavelength-multiplexes the delayed M-wavelength single-wavelength optical signals into one wavelength-multiplexed optical signal.
- Another embodiment of the present invention provides a method for depositing an optical signal applied to the above-mentioned ring optical buffer. Referring to FIG. 6, the method includes the following steps:
- the controller receives a part of the optical signal separated by the beam splitter, and performs photoelectric conversion on the part of the optical signal to obtain an electrical signal.
- the beam splitter used in the above is used to split a part of the optical signal from the optical signal input from the optical signal input end.
- the beam splitter has a diffraction grating type, a prism type, and a waveguide. (Waveguide type) and other implementations are not described here.
- the process of photoelectrically converting the optical signal to obtain an electrical signal is a process of the existing photodetection, and will not be described herein.
- the controller parses the data packet of the electrical signal, and generates a transmission request of the optical signal according to the parsed information.
- the controller parses the data packet of the electrical signal obtained by photoelectric conversion, and generates a transmission request of the optical signal according to the parsed information, including: (1) performing data analysis on the electrical signal data packet, obtaining the header information of the electrical signal data packet, and extracting the destination address of the data packet from the packet header information;
- the packet structure of the data packet of the electrical signal is as shown in FIG. 7.
- the packet structure includes: a packet header and a packet body, where the packet header includes: a source address 701, a destination address 702, and a data type 703; the packet body contains specific data. Content 704.
- the controller photoelectrically converts the single-wavelength optical signal to obtain an electrical signal, and parses the electrical signal, and extracts only the information of the packet header, such as the header occupying 24 Bytes, only need to extract 24 bytes, get its destination address from the extracted header information.
- the packet structure of the foregoing data packet for the electrical signal may be stipulated in the communication protocol of the optical transmission system, similar to the TCP/IP communication protocol, for which the embodiment of the present invention is not expanded and limited. .
- the wavelengths are recorded as: ⁇ . , ⁇ 2 , ⁇ 3 , etc.
- the fixed wavelength ⁇ can be used to optically modulate the header information
- ⁇ 2 and ⁇ 3 are used to optically modulate the content in the inclusion body.
- the controller only needs to detect the optical signal with the wavelength ⁇ , extract its header information, and obtain its destination address from the extracted header information.
- the optical information of the optical signal having the wavelength ⁇ is optically modulated by the optical signal of the optical transmission system, and can be set in a communication protocol between the transmitting end and the receiving end of the optical transmission system.
- the destination address of the foregoing data packet is the address of the destination end of the received optical signal.
- the destination can be a processing device for other optical signals.
- the controller sends the foregoing transmission request to an external device. Specifically, the controller sends a transmission request for sending an optical signal to an external device, where the external device may be a CPU (Central Processing Unit) of the optical signal processing system, or an optical switch (optical switch) in the optical switching network, etc.
- the external device may be a CPU (Central Processing Unit) of the optical signal processing system, or an optical switch (optical switch) in the optical switching network, etc.
- the embodiment of the invention is not limited.
- the controller receives an instruction sent by the external device to store the optical signal in the ring optical buffer.
- the external device sends an instruction to store the optical signal in the ring optical buffer to the controller.
- the following application scenarios exist.
- the external device is an optical switch, and the optical switch reaches the path of the destination address of the data packet, the optical switch sends the optical signal to the ring optical buffer.
- the instructions of the device are given to the controller.
- the controller generates a control signal according to the stored instruction, and generates information by using the parsed information. Specifically, the controller stores the optical signal into the ring optical buffer according to the storing instruction, and the ring optical buffer does not exist yet. Determining an optical delay waveguide ring in the optical delay waveguide ring of the optical signal; generating an "on" state signal for controlling the optical switch on the left side of the optical delay waveguide ring, and introducing the determined light when the optical signal passes through the optical switch on the left side After delaying the waveguide ring, an "off" state signal is generated that controls the left optical switch.
- the method further includes: after determining an optical delay waveguide ring from the optical delay waveguide ring that does not have an optical signal in the ring optical buffer according to the deposit instruction, the method further includes:
- mapping relationship between the destination address obtained by the above analysis and the determined optical delay waveguide ring is established, and the mapping relationship is stored in the storage unit 1058 of the controller.
- mapping relationship between the destination address stored in the storage unit 1058 of the controller and the plurality of optical delay waveguide rings in the ring optical buffer may be implemented by using a table, as shown in the following table (Table 1):
- the mapping relationship between the two destination addresses and the storage unit has been stored.
- all the optical delay waveguide rings of the annular optical buffer are found.
- a communication message discarded by the optical signal is sent to the external device, and the optical signal is discarded.
- the controller sends a control signal to an optical switch, and by controlling the switching state of the optical switch, the optical signal transmitted in the first curved through-waveguide enters an optical delay waveguide ring corresponding to one optical switch. in.
- the controller when the determined optical delay waveguide ring is the second optical delay waveguide ring, the controller generates an "on" of the left optical switch that controls the second optical delay waveguide ring according to an instruction to store the optical signal in the ring optical buffer.
- "Status signal such that the optical signal to be stored in the ring-shaped optical buffer enters the second optical delay waveguide ring through the first curved through-waveguide 101a, and the optical signal is introduced into the second optical delay waveguide ring through the optical switch on the left side. , generating an "off" state signal that controls the left optical switch, and sends it to the second optical delay waveguide ring.
- the "on" state of the left optical switch of the optical delay waveguide ring and the transmission timing of the "off” state control signal of the left optical switch are determined by the following manner (see FIG. 2):
- the time taken by the processor 105 to process the optical signal is nl
- the switching time between the optical switch state is n2
- the time when the optical signal is transmitted from the beam splitter 106 to the optical switch 102 is n3, then ⁇ 1 3 ⁇ 4 + . If the time of a piece of optical signal passing through the optical switch is n4, the controller 105 starts transmitting a portion of the optical signal received by the beam splitter 106, and transmits the optical switch by a time slightly greater than or equal to n3+n4.
- the "state signal" is applied to the optical switch 102, and after the n2 time, the optical switch is turned off, and the time when the optical signal enters the optical delay waveguide ring through the optical switch is n5, then 1 ⁇ ⁇ n 4 + and ⁇ 2 * (1 4 + ) .
- the optical signal By selecting the transmission time of the "on" and “off” state control signals of the optical switch, the optical signal can be stored in an optical delay waveguide ring.
- the time control of the storage process of the corresponding optical delay waveguide ring of other left optical switches and the like is basically the same as the above selection, and the slight difference is that the optical signal is transmitted from the beam splitter 106 to other light.
- the time used for the switch will be slightly different, but the above difference is almost negligible (the reason is: the transmission speed of the optical signal in the waveguide is near Like the speed of light, the time difference between the optical signal reaching all the left optical switches of the ring optical buffer is very small, and the time of nl+n is negligible).
- Another embodiment of the present invention further provides a method for optical signal reading using the above-described ring optical buffer.
- the method includes:
- the controller receives an instruction sent by an external device to output an optical signal buffered in an optical delay waveguide ring from the optical delay waveguide ring.
- the instruction for outputting the optical signal from the optical delay waveguide ring of the ring optical buffer is sent by an external device, which may be a CPU (Central Processing Unit) of the optical signal processing system, or an optical switch in the optical switching network. (Optical Switch) and the like, for which the embodiment of the present invention is not limited.
- an external device which may be a CPU (Central Processing Unit) of the optical signal processing system, or an optical switch in the optical switching network. (Optical Switch) and the like, for which the embodiment of the present invention is not limited.
- the controller generates a control signal according to the output instruction.
- the controller generates the control signal according to the output instruction, including:
- the controller acquires the destination address of the optical signal to be output according to the received output command.
- Specific implementation scenario 1 When the external device is an optical switch, the optical switch sends an instruction to output an optical signal buffered in an optical delay waveguide ring from the optical delay waveguide ring to the controller, and after receiving the instruction, the controller receives the command. According to the instruction, the destination address corresponding to the optical signal that needs to be output is determined. For example, if the optical switch finds that a route is not occupied, it determines that the optical signal destined for the destination address 0010 needs to be transmitted to the receiving end corresponding to the destination address through the routing table based on the routing table stored in the optical switch. The destination address of the signal is 0010.
- Specific implementation scenario 2 When the external device is a CPU, the CPU sends an instruction to output an optical signal buffered in a certain optical delay waveguide ring from the optical delay waveguide ring, where the command carries a destination address corresponding to the optical signal.
- the controller parses the output command and extracts the destination address corresponding to the optical signal.
- the controller queries the mapping table of the destination address and the optical delay waveguide ring stored in the storage unit according to the extracted destination address, and determines the optical delay waveguide ring corresponding to the destination address. (3) According to the output command, generating an "off" state signal of the right optical switch of the optical retardation waveguide ring determined by the control to form an "off" state signal of the right optical switch.
- the "on" state of the right side optical switch of the optical delay waveguide ring and the transmission timing of the "off” state control signal of the right optical switch are determined by the following means (see Fig. 2):
- the optical delay waveguide ring is integrally entered and the optical signal has passed through the left optical switch 102, and the optical signal enters the optical delay waveguide ring through the left optical switch.
- the time is n5, and the controller 105 sends a shutdown control signal to the optical switch 102 on the right side to start timing (that is, after the controller 105 receives a part of the optical signal from the beam splitter after the beam splitter is processed, the time starts at the time n3+n4 Timing), the time taken for the optical signal to reach the right optical switch 102 again should be greater than or equal to n2+n5*l/2, the optical signal is transmitted inside the optical delay waveguide ring, and the time when the optical signal reaches the right optical switch 102 next time should be For greater than or equal to n2+n5*3/2, the time after the subsequent optical signal reaches the right optical switch 102 should be greater than or equal to n2+n5*5/2, n2+n5*7/2, because of the right side light.
- the opening time of the switch 102 is ⁇ 2
- the optical signal in the delay waveguide ring corresponding to the right optical switch 102 it should be sent by the controller 105 at the time ⁇ 2 before the optical signal reaches the right optical switch 102.
- Signal to the right optical switch 102 to Open so that the light signal reaches or right after the optical switch 102, i.e., an optical signal derived from the right side of the optical switch 102 in the optical switch 102 to open the right moment. Therefore, the controller 105 should send an "on" state control signal to the right side at the time of ⁇ 5*1/2 or ⁇ 5*3/2 or ⁇ 5*5/2 or ⁇ 5*7/2 after the start timing. Switch 102.
- the time required for the optical signal to be completely derived from the right optical switch 102 is ⁇ 4, that is, the controller 105 is greater than or equal to ⁇ 5*3/2 or ⁇ 5*5/2 or ⁇ 5*7/2 or ⁇ 5* after the start timing described above.
- the "off" state control signal is sent to the right optical switch 102 at 9/2, and the right optical switch 102 is turned off at time ⁇ 2.
- the controller sends a control signal to the optical switch, and controls the switching state of the optical switch to make the optical signal buffered in the optical delay waveguide ring corresponding to the optical switch from the optical delay waveguide ring. Output.
- the controller sends the control signal to an optical switch
- the The method also includes: interest.
- the disclosed systems, devices, and methods may be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
- the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or software. The form of the unit is implemented.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, and the program code can be stored. Medium.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Optical Integrated Circuits (AREA)
- Small-Scale Networks (AREA)
Abstract
本发明实施例公开了一种光緩存器以及光信号的存入和读取的方法。其中,光緩存器包括:第一弯曲直通波导,作为光信号的传输总线;多个光延迟波导环,用于对光信号进行緩存;多对光开关,和所述多个光延迟波导环的数目相同,每一对光开关用于对所述第一弯曲直通波导的两臂和与所述每一对光开关对应的光延迟波导环的两侧的光路的通断进行控制;分束器,用于将从输入端输入光信号分出一部分光信号经过第二弯曲直通波导传送给控制器;慢光效应波导,用于将在其内部传输的光信号传输速率减慢;所述控制器,用于控制光信号的存入和读取。利用上述环形光緩存器能够实现光緩存器的单片集成以及对光信号的任意无序存取。
Description
一种环形光緩存器及光信号存入和读取方法 技术领域
本发明涉及硅光技术领域, 尤其涉及一种环形光緩存器及光信号的存入 和读取方法。
背景技术
以光纤 (Fiber ) 或波导 (Wave-Guide ) 为传输媒介的光互连 (Optical 技术在传输速率、 带宽密度、 功耗及成本等方面都有显著的优势, 近年来成 为研究的热点并快速地发展。
如何实现大容量、低成本、高端口密度的光分组交换(OPS , Optical Packet Switch ) 系统, 以满足众核 ( Many Core )通信, 仍然是当前一个技术难点。 这是由于集成了光分组交换的片上光网络(ONoC, Optical Network on Chip ) 系统需要光緩存, 但目前光緩存方面存在技术瓶颈一一容量小、 尺寸大、 不 易集成等, 这也就导致了 OPS片上光网络系统发展緩慢。
目前业界大部分光緩存器都是利用光纤环的方案, 其基本单元是利用一 个 2 X 2光开关加上一个再循环光纤环( Recirculation Fiber Loop )来实现光信 号的緩存(如图 1A所示), 具体的, 通过控制光緩存器入口处的光开关为开 状态, 使得光信号进入再循环光纤环, 当需要将光信号输出时, 打开光緩存 器出口处的光开关为开状态, 使得光信号从光緩存器内输出。 采用这种基本 单元级联所构成的光緩存器如图 1B所示, 当数据从左侧入口进入第一个 2 X 2光开关, 若第一个光开关对应的再循环光纤环已存有光信号, 则控制器打开 第一个光开关的右下输出端, 光信号即经第一个光开关右下端进入第二个 2 χ 2光开关, 若第二个光开关对应的再循环光纤环也已存有光信号, 则控制器
打开第二个光开关的右下输出端, 光信号即经第二个光开关右下输出端进入 下一个 2 x 2光开关, 直到某一个光开关对应的再循环光纤环未存有光信号, 可控制打开此光开关的右上输出端, 数据即经此光开关右上输出端进入再循 环光纤环, 从而致使数据在再循环光纤环内循环传输, 即实现緩存功能。
在对现有技术的研究中, 发现现有技术至少存在如下的问题:
现有的光緩存器都是利用增加光纤长度的方式来延长光数据的传输时间 , 而由于光在光纤中的传输速率接近光速, 故采用光纤延迟方案具有容量小、 尺寸大、 且难以实现单片集成, 现有的光緩存器一般都是先进先出的存储方 式, 当有一路光信号要进入某一个光緩存单元的再循环光纤环时, 而刚好该 再循环光纤环中緩存的光信号需要输出时, 这样就会导致两路光信号在该光 緩存单元对应的光开关的右下端的输出端产生沖突, 因而无法实现光信号的 任意无序存取。
发明内容
基于此, 本发明实施例提供一种环形光緩存器以及光信号的存入和读取 方法, 能够达到光緩存器的单片集成且能够实现光信号的任意无序存取。
第一方面, 提供了一种环形光緩存器, 该光緩存器包括:
第一弯曲直通波导, 呈 n形, 连接光信号的输入端以及输出端, 作为光 信号的传输总线, 用于将从输入端输入的光信号传输至输出端;
多个光延迟波导环, 在第一弯曲直通波导的两臂上横向并列地分布, 每 个光延迟波导环的两侧和第一弯曲直通波导的两臂均通过一对光开关实现光 路的通断, 多个光延迟波导环用于对光信号进行緩存;
多对光开关, 和多个光延迟波导环的数目相同, 每一对光开关用于对第 一弯曲直通波导的两臂和与每一对光开关对应的光延迟波导环的两侧的光路 的通断进行控制;
分束器, 设置于第一弯曲直通波导的输入端, 用于将从输入端输入光信 号分出一部分光信号经过第二弯曲直通波导传送给控制器;
慢光效应波导, 设置于最接近输入端的光开关和分束器之间的第一弯曲 直通波导上, 用于将在其内部传输的光信号传输速率减慢;
控制器, 通过第二弯曲直通波导连接到分束器, 和外部设备相连接, 以 及通过控制信号线和上述多对光开关的每一个光开关相连, 用于接收分束器 分出的一部分光信号, 对这一部分光信号进行光电转换得到电信号, 并对电 信号的数据包进行解析, 根据解析得到的信息产生光信号的传输请求, 并将 传输请求发送给外部设备, 接收外部设备发送的将光信号存入环形光緩存器 的指令, 根据存入指令, 并利用解析得到的信息产生控制信号, 将控制信号 发送给某一个光开关, 通过对某一个光开关的开关状态的控制, 使得在第一 弯曲直通波导中传输的光信号进入和某一个光开关对应的光延迟波导环中; 或 用于接收外部设备发送的将緩存在某一光延迟波导环中的光信号从光延 迟波导环中输出的指令, 根据输出指令产生控制信号, 并将控制信号发送给 某一个光开关, 通过对这一个光开关的开关状态的控制, 使得緩存在某一个 光开关对应的光延迟波导环中的光信号从该光延迟波导环中输出。
在第一方面的第一种实现方式中, 上述控制器包括:
光电转换器, 用于接收分束器分出的一部分光信号, 对一部分光信号进 行光电转换得到电信号;
数据包解析单元, 用于对电信号的数据包进行解析, 获取电信号数据包 的包头信息, 并从包头信息中提取数据包的目的地址;
传输请求单元, 用于根据目的地址产生光信号的传输请求, 并将传输请 求发送给外部设备;
指令接收单元, 用于接收外部设备发送的将光信号存入环形光緩存器的 指令;
存储环确定单元, 用于根据存入指令, 从环形光緩存器中还未存有光信 号的光延迟波导环中确定一个光延迟波导环;
映射关系建立单元, 用于利用解析得到的数据包的目的地址, 建立起该 目的地址和确定的光延迟波导环的映射关系信息, 并将映射关系信息发送给
存储单元;
控制信号产生单元, 用于生成向确定的光延迟波导环对应的某一个光开 关发送的控制信号, 该控制信号用于控制所述某一个光开关的开关状态; 存储单元, 用于存储至少一个目的地址和至少一个光延迟波导环的映射 关系。
在第一方面的第二种实现方式中, 该控制器包括:
指令接收单元, 还用于接收外部设备发送的将緩存在某一光延迟波导环 中的光信号从光延迟波导环中输出的指令;
指令解析单元, 用于对接收到的输出指令进行解析, 从中提取出需要输 出的光信号的目的地址;
存储环确定单元, 还用于根据提取出的目的地址, 查询存储单元中存储 的目的地址和光延迟波导环的映射关系, 确定目的地址对应的光延迟波导环; 控制信号产生单元, 还用于根据输出指令, 生成向确定的光延迟波导环 对应的某一个光开关发送的控制信号, 控制信号用于控制所述某一个光开关 的开关状态;
映射关系删除单元, 用于删除存储单元中存储的确定的光延迟波导环对 应的映射关系信息。
在第一方面的第三种实现方式中, 每个光延迟波导环中包括一段慢光效 应波导, 用于将在其内部传输的光信号的传输速率减慢。
在第一方面的第四种实现方式中, 当上述环形光緩存器处理的光信号为 M个波长的波分复用光信号时, 其中, M为整数且M > 1 , 每一个光延迟波导 环所包括的一段慢光效应波导包括:
波分解复用器, 用于将上述 M个波长的波分复用光信号解复用为 M个不 同波长的单波长光信号;
个单波长的光延迟波导环, 用于分别对上述 M个不同波长的单波长光 信号进行光信号延迟;
波分复用器, 用于将上述经过延迟的 M个不同波长的单波长光信号波分
复用为一路波分复用光信号。
第二方面, 提供了一种利用上述环形光緩存器进行光信号存入的方法, 该方法包括:
控制器接收分束器分出的一部分光信号, 对这一部分光信号进行光电转 换得到电信号;
控制器对电信号的数据包进行解析, 根据解析得到的信息产生光信号的 传输请求;
控制器将传输请求发送给外部设备;
控制器接收外部设备发送的将光信号存入环形光緩存器的指令;
控制器根据存入指令, 并利用解析得到的信息产生控制信号;
控制器将所述控制信号发送给某一个光开关, 通过对这一个光开关的开 关状态的控制, 使得在第一弯曲直通波导中传输的光信号进入和某一个光开 关对应的光延迟波导环中。
在第二方面的第一种实现方式中, 上述控制器根据所述存入指令, 并利 用解析得到的信息产生控制信号, 包括:
根据存入指令, 从环形光緩存器中还未存有光信号的光延迟波导环中确 定一个光延迟波导环;
生成控制确定的光延迟波导环左侧光开关的 "开" 状态信号, 以及当光 信号经左侧的光开关导入确定的光延迟波导环后,生成控制左侧光开关的 "关" 状态信号。
在第二方面的第二种实现方式中, 根据存入指令, 从环形光緩存器中还 未存有光信号的光延迟波导环中确定一个光延迟波导环的过程中, 当发现环 形光緩存器所有的光延迟波导环均已存有光信号时, 发出光信号丟弃的通信 消息给所述外部设备。
在第二方面的第三种实现方式中, 在根据所述存入指令, 从所述环形光 緩存器中还未存有光信号的光延迟波导环中确定一个光延迟波导环之后, 所 述方法还包括: 建立所述目的地址和所述确定的光延迟波导环的映射关系,
并将所述映射关系存储在所述存储单元中。
第三方面, 还提供了一种利用环形光緩存器进行光信号读取的方法, 该 方法包括:
控制器接收外部设备发送的将緩存在某一光延迟波导环中的光信号从光 延迟波导环中输出的指令;
控制器根据输出指令产生控制信号;
控制器将控制信号发送给某一个光开关, 通过对某一个光开关的开关状 态的控制, 使得緩存在某一个光开关对应的光延迟波导环中的光信号从光延 迟波导环中输出。
在第三方面的第一种实现方式中, 控制器根据输出指令产生控制信号, 包括:
对接收到的输出指令进行解析, 从中提取出需要输出的光信号的目的地 址;
根据提取出的目的地址, 查询存储单元中存储的目的地址和所述光延迟 波导环的映射关系, 确定目的地址对应的光延迟波导环;
根据输出指令, 生成控制确定的光延迟波导环右侧光开关的 "开" 状态 制所述右侧光开关的 "关" 状态信号。
在第三方面的第二种实现方式中, 在控制器将控制信号发送给某一个光 开关之后, 该方法还包括: 删除存储单元中存储的确定的光延迟波导环对应 的映射关系信息。
基于上述技术方案, 本发明实施例提供的一种环形光緩存器以及基于该 环形光緩存器实现光信号的存入和读取的方法, 通过利用波导作为光信号传 输和緩存的介质,能够较大成都减小光緩存器的尺寸, 便于光緩存器的单片集 成, 此外, 根据外部设备的指令实现对环形光緩存器中光开关的开关状态的 控制, 从而实现光信号的存取, 由于将光信号存入某一光延迟波导环是根据 光信号解析得到的目的地址确定的, 以及将光信号从某一光延迟波导环中读
出是根据外部设备的指令确定, 上述对光信号的存入和读取过程并非依序操 作, 从而能够实现光信号的任意无序存取。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1A是现有技术中再循环光纤环的结构示意图。
图 1B 是现有技术中采用多个再循环光纤环相连所构成的光緩存器的结 构示意图。
图 2是本发明实施例提供的一种环形光緩存器的组成示意图。
图 3是本发明实施例中环形光緩存器的控制器的第一实施例的结构示意 图。
图 4是本发明实施例中环形光緩存器的控制器的第二实施例的结构示意 图。
图 5A是本发明环形光緩存器的实施例中提供的光延迟波导环的第一实 施例的结构示意图。
图 5B 是本发明环形光緩存器的实施例中提供的光延迟波导环的第二实 施例的结构示意图。
图 6是本发明实施例提供的利用环形光緩存器进行光信号的存入的流程 示意图。
图 7是本发明实施例提供的电信号数据包的包结构示意图。
图 8是本发明实施例提供的利用环形光緩存器进行光信号的读取的流程 示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
本发明的实施例提供一种环形光緩存器, 参看图 2, 其中, 该环形光緩存 器 100包括:
第一弯曲直通波导 101a, 呈 n形, 连接光信号的输入端以及输出端, 作 为光信号的传输总线, 用于将从输入端输入的光信号传输至输出端;
多个光延迟波导环 103 , 在第一弯曲直通波导 101a的两臂上横向并列地 分布, 每个光延迟波导环 103的两侧和第一弯曲直通波导 101a的两臂通过一 对光开关 102实现光路的通断, 上述多个光延迟波导环 103用于对光信号进 行緩存;
多对光开关 102, 和上述多个光延迟波导环 103的数目相同, 每一对光开 关 102用于对第一弯曲直通波导 101a的两臂和与每一对光开关 102对应的光 延迟波导环 103的两侧的光路的通断进行控制;
分束器 106, 设置于第一弯曲直通波导 101a的输入端, 用于将从输入端 输入光信号分出一部分光信号经过第二弯曲直通波导 101c传送给控制器 105 (即图 2中的 Controller 105 );
慢光效应波导 104a, 设置于最接近输入端的光开关和所述分束器之间的 第一弯曲直通波导 101a上, 用于将在其内部传输的光信号传输速率减慢; 控制器 105 , 通过第二弯曲直通波导 101c连接到分束器 106, 和外部设 备相连接,以及通过控制信号线 107和多对光开关 102的每一个光开关相连, 用于接收分束器 106分出的一部分光信号, 对这一部分光信号进行光电转换 得到电信号, 并对上述电信号的数据包进行解析, 根据解析得到的信息产生 光信号的传输请求, 并将该传输请求发送给外部设备, 接收外部设备发送的 将光信号存入环形光緩存器的指令, 根据存入指令, 并利用解析得到的信息
产生控制信号, 将该控制信号发送给某一个光开关 102, 通过对这一个光开关 102的开关状态的控制, 使得在第一弯曲直通波导 101a中传输的光信号进入 和这一个光开关对应的光延迟波导环 103中, 或者 用于接收外部设备发送的 将緩存在某一光延迟波导环中的光信号从光延迟波导环中输出的指令, 根据 输出指令产生控制信号, 并将控制信号发送给某一个光开关 102, 通过对这一 个光开关 102的开关状态的控制, 使得緩存在某一个光开关 102对应的光延 迟波导环 103中的光信号从光延迟波导环 103中输出。
采用慢光效应波导 104a能够减慢光信号在第一弯曲直通波导 101a的传输 速率, 这样就能够保证控制器 105有足够的时间产生控制信号, 并实现对环 形光緩存器的某一光开关的开关状态的控制, 从而实现光信号的存入或光信 号的读取。
需要说明的是, 在图 2 中, 存在多对光开关, 以及和多对光开关——进 行相连的多个光延迟波导环, 为了所画附图的标识的清晰, 在图 2仅对最上 面的一对光开关和光延迟波导环上标明了附图标记, 对于本领域技术人员可 以理解, 上述附图标记也可指代其他对光开关以及和光延迟波导环。
可选的, 在具体实现的过程中, 参看图 3 , 上述控制器(Controller ) 105 包括:
光电转换器 1051 , 用于接收分束器 106分出的一部分光信号, 并对这一 部分光信号进行光电转换得到电信号;
数据包解析单元 1052,用于对光电转换器 1051处理得到的电信号的数据 包进行解析, 获取电信号数据包的包头信息, 并从包头信息中提取该数据包 的目的地址;
传输请求单元 1053 , 用于根据上述数据包的目的地址产生光信号的传输 请求, 并将该传输请求发送给外部设备;
指令接收单元 1054, 用于接收该外部设备发送的将光信号存入环形光緩 存器的指令;
存储环确定单元 1055 , 用于根据上述存入指令, 从环形光緩存器中还未
存有光信号的光延迟波导环中确定一个光延迟波导环;
映射关系维护单元 1056, 用于利用解析得到的数据包的目的地址, 建立 起所述目的地址和所述确定的光延迟波导环的映射关系信息, 并将映射关系 信息发送给存储单元 1058;
控制信号产生单元 1057, 用于生成向确定的光延迟波导环对应的某一个 光开关发送的控制信号, 该控制信号用于控制某一个光开关的开关状态;
存储单元 1058, 用于存储目的地址和光延迟波导环的映射关系。
进一步的, 在实现的过程中, 参看图 4, 上述控制器 105还包括: 指令接收单元 1054, 还用于接收外部设备发送的将緩存在某一光延迟波 导环中的光信号从光延迟波导环中输出的指令;
指令解析单元 1059, 用于对接收到的输出指令进行解析, 从中提取出需 要输出的光信号的目的地址;
存储环确定单元 1055 ,还用于根据提取出的目的地址,查询存储单元 1058 中存储的目的地址和光延迟波导环的映射关系, 确定目的地址对应的光延迟 波导环;
控制信号产生单元 1057 , 还用于根据输出指令, 生成向确定的光延迟波 导环对应的某一个光开关发送的控制信号, 上述控制信号用于控制某一个光 开关的开关状态;
映射关系维护单元 1056, 还用于删除所述存储单元中存储的确定的光延 迟波导环对应的映射关系信息。
可选的,参看图 5A,上述环形光緩存器中的每一个光延迟波导环 103中, 可由慢光效应波导 104b和弯曲波导 101b组成实现,其中慢光效应波导 104b, 用于减慢光延迟波导环 103中的光信号的传输速率,实现在光延迟波导环 103 中更大容量的光信号的存储。 上述慢光效应波导 104b可以采用光子晶体波导 ( PCW, Photonic Crystal Waveguide )、电磁感应透明( EIT, Electromagnetically Induced Transparency )、相干布居数振荡( CPO, Coherent Population Oscillation )、 受激布里渊散射(SBS , Stimulated Brillouin Scattering )等方法实现。 弯曲波
导 101b可以采用硅波导或者其他波导实现, 对此, 本发明的实施例不加任何 限制。
可选的, 光延迟波导环 103 可以是对应单波长的光子晶体波导环, 如图 5 A所示, 也可以是对应波分复用(WDM, Wavelength Division Multiplexing ) 的光子晶体波导环,即多个光子晶体波导环分别对应多个波长,如图 5B所示。 其中, 在图 5A中, 光子晶体波导 104b仅对波长为 的光信号起减慢光传输 速率的作用 (即慢光效应)。 在图 5B 中, 有四根光子晶体波导, 分别对波长 为 、 λ2、 λ3、 的光信号产生慢光效应。 对于包含 Μ个波长的波分复用光信 号( Μ为整数且M > 1 ), 首先, 需要采用波分解复用器 201a对包含 Μ个波长 的波分复用光信号解复用为 M个不同波长的单波长光信号;然后将上述 M个 不同波长的单波长光信号经过 M个单波长的光延迟波导环,分别对 M个不同 波长的单波长光信号进行光信号延迟; 而后, 利用波分复用器 201b将经过延 迟的 M个不同波长的单波长光信号波分复用为一路波分复用光信号。 本发明的另一实施例提供一种应用于上述环形光緩存器的光信号的存入 方法, 参看图 6, 该方法包括如下步骤:
601、 控制器接收分束器分出的一部分光信号, 对这一部分光信号进行光 电转换得到电信号;
其中, 上述所采用的分束器用于从光信号输入端输入的光信号分出一部 分光信号, 现有技术中, 该分束器有衍射光栅( Diffraction Grating )型、 棱镜 ( Prism )型、 波导 ( Waveguide )型等多种实现方式, 在此不再赘述。
其中, 对光信号进行光电转换得到电信号的过程, 为现有的光电探测的 过程, 在此不再赘述。
602、 控制器对电信号的数据包进行解析, 根据解析得到的信息产生光信 号的传输请求;
具体的, 控制器对光电转换得到的电信号的数据包进行解析, 根据解析 得到的信息产生光信号的传输请求, 包括:
( 1 )对电信号数据包进行数据解析, 获取电信号数据包的包头信息, 并 从包头信息中提取该数据包的目的地址;
其中, 电信号的数据包的包结构如图 7所示, 该包结构包括: 包头和包 体, 其中包头包括: 源地址 701、 目的地址 702以及数据类型 703; 包体包含 的是具体的数据内容 704。
根据上述包结构可以看出,欲获取上述数据包的目的地址 702, 只需要解 析电信号数据包的包头即可, 针对这一特征, 在具体实现的过程中, 针对光 信号的不同类型可以通过如下的方式实现:
A ) 当光信号为单波长光信号时, 波长记为 ο, 则控制器对该单波长光信 号进行光电转换得到电信号, 并对电信号进行解析, 仅提取包头的信息, 如 包头占用 24个字节, 仅需提取 24个字节, 从提取的包头信息中获取其目的 地址。
需要说明的是, 上述针对电信号的数据包的包结构, 可以通过在光传输 系统的通信协议中去约定, 类似于 TCP/IP通信协议, 对此, 本发明的实施例 不加以展开和限定。
Β ) 当光信号为多波长的光信号时, 波长分别记为: λ。、 、 λ2、 λ3等, 在 光信号的发送端,可以采用固定波长 ο去对包头信息进行光调制,而采用 、 λ2、 λ3去对包体中的内容进行光调制, 这样, 控制器只需要对波长为 ο的光信 号进行探测, 提取其包头信息, 从提取的包头信息中获取其目的地址。
需要说明的是, 上述多波长的光信号中, 利用波长为 ο的光信号对包头 信息进行光调制, 可以通过在光传输系统的发送端和接收端的通信协议中设 定。
( 2 )根据得到的数据包的目的地址, 产生并发送光信号到上述目的地址 的传输请求。
在具体的实现过程中, 上述数据包的目的地址为接收光信号的目的端的 地址。 该目的端可以为其他光信号的处理装置。
603、 控制器将上述传输请求发送给外部设备;
具体的, 控制器将发送光信号的传输请求发送给外部设备, 上述外部设 备可以为光信号处理系统的 CPU ( Central Processing Unit ) , 或光交换网络中 的光交换机(Optical Switch )等, 对此, 本发明的实施例不加以限制。
604、 控制器接收外部设备发送的将光信号存入环形光緩存器的指令; 上述外部设备发送将光信号存入环形光緩存器的指令给控制器。 在具体 的应用中, 存在如下应用场景, 当外部设备是一个光交换机时, 且光交换机 到达上述数据包的目的地址的路径被占用时, 上述光交换机就会发送将光信 号存入环形光緩存器的指令给控制器。
605、 控制器根据存入指令, 并利用解析得到的信息产生控制信号; 具体的, 控制器根据上述将光信号存入环形光緩存器的存入指令, 从环 形光緩存器中还未存有光信号的光延迟波导环中确定一个光延迟波导环; 生成控制所述确定的光延迟波导环左侧光开关的 "开" 状态信号, 以及 当光信号经左侧的光开关导入确定的光延迟波导环后, 生成控制所述左侧光 开关的 "关" 状态信号。
其中, 在根据存入指令, 从环形光緩存器中还未存有光信号的光延迟波 导环中确定一个光延迟波导环之后, 上述方法还包括:
建立上述解析得到的目的地址和上述确定的光延迟波导环的映射关系, 并将上述映射关系存储在控制器的存储单元 1058中。
其中, 控制器的存储单元 1058中存储的目的地址和环形光緩存器中多个 光延迟波导环的映射关系, 上述映射关系可采用表的方式实现, 如下表(表 一)所示:
上述表一中, 已经存储两个目的地址和存储单元的映射关系。 此外, 根据上述存入指令, 从环形光緩存器中还未存有光信号的光延迟 波导环中确定一个光延迟波导环的过程中, 当发现所述环形光緩存器所有的 光延迟波导环均已存有光信号时, 发出光信号丟弃的通信消息给外部设备, 并将该光信号丟弃。
606、 控制器将控制信号发送给某一个光开关, 通过对这一个光开关的开 关状态的控制, 使得在第一弯曲直通波导中传输的光信号进入和某一个光开 关对应的光延迟波导环中。
具体的, 当确定的光延迟波导环为第二光延迟波导环时, 根据将光信号 存入环形光緩存器的指令, 控制器生成控制第二光延迟波导环的左侧光开关 的 "开" 状态信号, 这样上述待存入环形光緩存器的光信号就会通过第一弯 曲直通波导 101a进入第二光延迟波导环, 当光信号经左侧的光开关导入第二 光延迟波导环后, 生成控制左侧光开关的 "关" 状态信号, 并发送给第二光 延迟波导环。
在具体实现的过程中, 通过如下方式来确定光延迟波导环的左侧光开关 的 "开"状态,以及左侧光开关的 "关"状态控制信号的发送时刻(参看图 2 ): 假定控制器 105处理光信号所花时间为 nl , 光开关开关状态之间的转换时间 为 n2, 光信号从分束器 106传到光开关 102的时间为 n3 , 则 ≥1¾ + 。 若一 段光信号通过光开关的时间为 n4, 则控制器 105从收到分束器 106所分得的 一部分光信号开始,经过稍大于或等于 n3+n4的时间,发送使该光开关的"关" 状态信号给光开关 102, 并经过 n2时间后该光开关关闭, 光信号通过光开关 进入光延迟波导环的时间为 n5 , 则1^ ≥ n4 + 且 < 2 * (1 4 + )。
通过上述对光开关 "开" "关" 状态控制信号的发送时间的选择, 即可实 现将光信号存入某一光延迟波导环中。 需要说明的是, 其他的左侧光开关等 对应的光延迟波导环的存入过程的时间控制和上述的选择基本相同, 稍有差 别的地方在于光信号从分束器 106传输到其他的光开关所用的时间会略有差 别, 但上述差别几乎可以忽略不计 (原因是: 光信号在波导中的传输速度近
似光速, 所以光信号到达该环形光緩存器的所有左侧的光开关的时间差别非 常小, 相比于 nl+n这一段的时间可忽略不计)。
本发明的另一个实施例还提供一种利用上述环形光緩存器进行光信号读 取的方法, 参看图 8, 该方法包括:
801、 控制器接收外部设备发送的将緩存在某一光延迟波导环中的光信号 从该光延迟波导环中输出的指令;
其中, 将光信号从环形光緩存器的光延迟波导环中输出的指令是外部设 备发送的, 这些外部设备可以为光信号处理系统的 CPU ( Central Processing Unit ), 或光交换网络中的光交换机(Optical Switch )等, 对此, 本发明的实 施例不加以限制。
802、 控制器根据输出指令产生控制信号;
具体的, 控制器根据输出指令产生控制信号包括:
( 1 )控制器根据接收到的输出指令,获取需要输出的光信号的目的地址。 具体实现场景一: 外部设备是光交换机时, 上述光交换机发出将緩存在 某一光延迟波导环中的光信号从该光延迟波导环中输出的指令给控制器, 控 制器接收到该指令后,根据该指令,确定需要输出的光信号对应的目的地址。 譬如: 光交换机发现某一路由未被占用, 则基于自身存储的路由表, 确定发 往目的地址为 0010的光信号需要经过这一路由传输到目的地址对应的接收端, 则确定需要输出的光信号的目的地址 0010。
具体实现场景二: 外部设备是 CPU时,上述 CPU发出将緩存在某一光延 迟波导环中的光信号从该光延迟波导环中输出的指令, 该指令中携带该光信 号对应的目的地址。 控制器对该输出指令进行解析, 从中提取出该光信号对 应的目的地址。
( 2 )根据提取出的目的地址, 查询存储单元中存储的目的地址和光延迟 波导环的映射关系, 确定目的地址对应的光延迟波导环;
控制器根据提取得到的目的地址, 查询存储单元中存储的目的地址和光 延迟波导环的映射关系表, 确定目的地址对应的光延迟波导环。
( 3 )根据输出指令, 生成控制确定的光延迟波导环右侧光开关的 "开" 成控制右侧光开关的 "关" 状态信号。
在具体实现的过程中, 通过如下的方式来确定光延迟波导环的右侧光开 关的 "开" 状态, 以及右侧光开关的 "关" 状态控制信号的发送时刻 (参看 图 2 ):
在上述光信号存入环形光緩存器的某一个光延迟波导环的过程中, 整体 进入光延迟波导环并且光信号已经过左侧光开关 102,光信号通过左侧光开关 进入光延迟波导环的时间为 n5 , 以控制器 105发送关闭控制信号给右侧的光 开关 102开始计时(即以控制器 105从收到分束器做分束处理后的一部分的 光信号之后 n3+n4时刻开始计时 ), 光信号再次到达右侧光开关 102所用时间 应为大于或等于 n2+n5*l/2, 光信号在光延迟波导环内部传输, 光信号下一次 到达右侧光开关 102的时间应为大于或等于 n2+n5*3/2,后续光信号到达右侧 光开关 102的时间依次应为大于或等于 n2+n5*5/2, n2+n5*7/2, , 因右 侧光开关 102开断时间为 η2, 则要想取右侧光开关 102对应延迟波导环内的 光信号,则应在光信号到达右侧光开关 102之前的 η2时间,即要由控制器 105 发送控制信号给右侧光开关 102将其打开, 从而在右侧光开关 102打开的那 一刻或之后光信号到达右侧光开关 102, 即光信号由右侧光开关 102导出。 所 以控制器 105应在上述开始计时时刻之后的 η5*1/2或 η5*3/2或 η5*5/2或 η5*7/2等时刻就要发送 "开"状态控制信号给右侧光开关 102。 因光信号由右 侧光开关 102完全导出需要的时间为 η4, 即控制器 105在上述开始计时时刻 之后大于或等于 η5*3/2或 η5*5/2或 η5*7/2或 η5*9/2等时间发送 "关" 状态 控制信号给右侧光开关 102, 并在此之后 η2时刻关闭右侧光开关 102。
803、 控制器将控制信号发送给某一个光开关, 通过对某一个光开关的开 关状态的控制, 使得緩存在这一个光开关对应的光延迟波导环中的光信号从 上述光延迟波导环中输出。
可选的, 在所述控制器将所述控制信号发送给某一个光开关之后, 所述
方法还包括: 息。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、 装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在一个 单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能
单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方案 的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一 个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步 骤。 而前述的存储介质包括: U盘、移动硬盘、只读存储器(ROM, Read-Only Memory ), 随机存取存者器( RAM, Random Access Memory )、 磁碟或者光盘 等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。
Claims
1、 一种环形光緩存器, 其特征在于, 所述光緩存器包括:
第一弯曲直通波导, 呈 n形, 连接光信号的输入端以及输出端, 作为光信 号的传输总线, 用于将从所述输入端输入的光信号传输至所述输出端;
多个光延迟波导环, 在所述第一弯曲直通波导的两臂上横向并列地分布, 每个光延迟波导环的两侧和所述第一弯曲直通波导的两臂均通过一对光开关实 现光路的通断, 所述多个光延迟波导环用于对光信号进行緩存;
多对光开关, 和所述多个光延迟波导环的数目相同, 每一对光开关用于对 所述第一弯曲直通波导的两臂和与所述每一对光开关对应的光延迟波导环的两 侧的光路的通断进行控制;
分束器, 设置于所述第一弯曲直通波导的输入端, 用于将从所述输入端输 入光信号分出一部分光信号经过第二弯曲直通波导传送给控制器;
慢光效应波导, 设置于最接近所述输入端的光开关和所述分束器之间的所 述第一弯曲直通波导上, 用于将在其内部传输的光信号传输速率减慢;
所述控制器, 通过所述第二弯曲直通波导连接到所述分束器, 和外部设备 相连接, 以及通过控制信号线和所述多对光开关的每一个光开关相连, 用于接 收所述分束器分出的一部分光信号, 对所述一部分光信号进行光电转换得到电 信号, 并对所述电信号的数据包进行解析, 根据所述解析得到的信息产生光信 号的传输请求, 并将所述传输请求发送给外部设备, 接收所述外部设备发送的 将光信号存入所述环形光緩存器的指令, 根据所述存入指令, 并利用解析得到 的信息产生控制信号, 将所述控制信号发送给某一个光开关, 通过对所述某一 个光开关的开关状态的控制, 使得在所述第一弯曲直通波导中传输的光信号进 入和所述某一个光开关对应的光延迟波导环中; 或 用于接收所述外部设备发送 的将緩存在某一光延迟波导环中的光信号从所述光延迟波导环中输出的指令, 根据所述输出指令产生控制信号, 并将所述控制信号发送给某一个光开关, 通 过对所述某一个光开关的开关状态的控制, 使得緩存在所述某一个光开关对应 的光延迟波导环中的光信号从所述光延迟波导环中输出。
2、 根据权利要求 1所述的环形光緩存器, 其特征在于, 所述控制器包括: 光电转换器, 用于接收所述分束器分出的一部分光信号, 对所述一部分光 信号进行光电转换得到电信号;
数据包解析单元, 用于对所述电信号的数据包进行解析, 获取电信号数据 包的包头信息, 并从所述包头信息中提取所述数据包的目的地址;
传输请求单元, 用于根据所述目的地址产生所述光信号的传输请求, 并将 所述传输请求发送给所述外部设备;
指令接收单元, 用于接收所述外部设备发送的将光信号存入所述环形光緩 存器的指令;
存储环确定单元, 用于根据所述存入指令, 从所述环形光緩存器中还未存 有光信号的光延迟波导环中确定一个光延迟波导环;
映射关系建立单元, 用于利用所述解析得到的所述数据包的目的地址, 建 立起所述目的地址和所述确定的光延迟波导环的映射关系信息, 并将所述映射 关系信息发送给存储单元;
控制信号产生单元, 用于生成向所述确定的光延迟波导环对应的某一个光 开关发送的控制信号, 所述控制信号用于控制所述某一个光开关的开关状态; 所述存储单元, 用于存储所述目的地址和所述光延迟波导环的映射关系。
3、 根据权利要求 2所述的环形光緩存器, 其特征在于, 所述控制器包括: 指令接收单元, 还用于接收所述外部设备发送的将緩存在某一光延迟波导 环中的光信号从所述光延迟波导环中输出的指令;
指令解析单元, 用于对接收到的所述输出指令进行解析, 从中提取出需要 输出的光信号的目的地址;
存储环确定单元, 还用于根据所述提取出的目的地址, 查询所述存储单元 中存储的所述目的地址和所述光延迟波导环的映射关系, 确定所述目的地址对 应的光延迟波导环;
控制信号产生单元, 还用于根据所述输出指令, 生成向所述确定的光延迟 波导环对应的某一个光开关发送的控制信号, 所述控制信号用于控制所述某一
个光开关的开关状态; 导环对应的映射关系信息。
4、 根据权利要求 1-3任一所述的环形光緩存器, 其特征在于, 所述每个光 延迟波导环中包括一段慢光效应波导, 用于将在其内部传输的光信号的传输速 率减慢。
5、 根据权利要求 4所述的环形光緩存器, 其特征在于, 当所述环形光緩存 器处理的光信号为 M个波长的波分复用光信号时, 其中, M为整数且M > 1 , 所 述每一个光延迟波导环所包括的一段慢光效应波导包括:
波分解复用器, 用于将所述 M个波长的波分复用光信号解复用为 M个不同 波长的单波长光信号;
个单波长的光延迟波导环, 用于分别对所述 M个不同波长的单波长光信 号进行光信号延迟;
波分复用器, 用于将所述经过延迟的 M个不同波长的单波长光信号波分复 用为一路波分复用光信号。
6、 一种利用环形光緩存器进行光信号存入的方法, 其特征在于, 所述方法 包括:
控制器接收所述分束器分出的一部分光信号, 对所述一部分光信号进行光 电转换得到电信号;
所述控制器对所述电信号的数据包进行解析, 根据所述解析得到的信息产 生光信号的传输请求;
所述控制器将所述传输请求发送给外部设备;
所述控制器接收所述外部设备发送的将光信号存入所述环形光緩存器的指 令;
所述控制器根据所述存入指令, 并利用解析得到的信息产生控制信号; 所述控制器将所述控制信号发送给某一个光开关, 通过对所述某一个光开 关的开关状态的控制, 使得在所述第一弯曲直通波导中传输的光信号进入和所
述某一个光开关对应的光延迟波导环中。
7、 根据权利要求 6所述的方法, 其特征在于, 所述控制器根据所述存入指 令, 并利用解析得到的信息产生控制信号, 包括:
根据所述存入指令, 从所述环形光緩存器中还未存有光信号的光延迟波导 环中确定一个光延迟波导环;
生成控制所述确定的光延迟波导环左侧光开关的 "开" 状态信号, 以及当 侧光开关的 "关" 状态信号。
8、 根据权利要求 7所述的方法, 其特征在于, 根据所述存入指令, 从所述 环形光緩存器中还未存有光信号的光延迟波导环中确定一个光延迟波导环的过 程中, 当发现所述环形光緩存器所有的光延迟波导环均已存有光信号时, 发出 光信号丟弃的通信消息给所述外部设备。
9、 根据权利要求 7所述的方法, 其特征在于, 在根据所述存入指令, 从所 述环形光緩存器中还未存有光信号的光延迟波导环中确定一个光延迟波导环之 后, 所述方法还包括:
建立所述目的地址和所述确定的光延迟波导环的映射关系, 并将所述映射 关系存储在所述存储单元中。
10、 一种利用环形光緩存器进行光信号读取的方法, 其特征在于, 所述方 法包括:
控制器接收所述外部设备发送的将緩存在某一光延迟波导环中的光信号从 所述光延迟波导环中输出的指令;
所述控制器根据所述输出指令产生控制信号;
所述控制器将所述控制信号发送给某一个光开关, 通过对所述某一个光开 关的开关状态的控制, 使得緩存在所述某一个光开关对应的光延迟波导环中的 光信号从所述光延迟波导环中输出。
11、 根据权利要求 10所述的方法, 其特征在于, 所述控制器根据所述输出 指令产生控制信号, 包括:
对接收到的所述输出指令进行解析, 从中提取出需要输出的光信号的目的 地址;
根据所述提取出的目的地址, 查询所述存储单元中存储的所述目的地址和 所述光延迟波导环的映射关系, 确定所述目的地址对应的光延迟波导环;
根据所述输出指令,生成控制所述确定的光延迟波导环右侧光开关的 "开" 后, 生成控制所述右侧光开关的 "关" 状态信号。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 在所述控制器将所 述控制信号发送给某一个光开关之后, 所述方法还包括:
系信息
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/091164 WO2015100636A1 (zh) | 2013-12-31 | 2013-12-31 | 一种环形光缓存器及光信号存入和读取方法 |
PCT/CN2014/071911 WO2015100838A1 (zh) | 2013-12-31 | 2014-02-10 | 一种环形光缓存器及光信号存入和读取方法 |
CN201480050658.1A CN105556985B (zh) | 2013-12-31 | 2014-02-10 | 一种环形光缓存器及光信号存入和读取方法 |
JP2016543669A JP6382990B2 (ja) | 2013-12-31 | 2014-02-10 | 環状光バッファならびに光信号を記憶するための方法および読み出すための方法 |
KR1020167020194A KR101809578B1 (ko) | 2013-12-31 | 2014-02-10 | 환형 광 버퍼 및 광 신호를 저장하고 판독하는 방법 |
EP14876401.2A EP3079311B1 (en) | 2013-12-31 | 2014-02-10 | Annular optical buffer and optical signal storage and reading method |
US15/199,140 US9807478B2 (en) | 2013-12-31 | 2016-06-30 | Optical buffer and methods for storing optical signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/091164 WO2015100636A1 (zh) | 2013-12-31 | 2013-12-31 | 一种环形光缓存器及光信号存入和读取方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015100636A1 true WO2015100636A1 (zh) | 2015-07-09 |
Family
ID=53492982
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/091164 WO2015100636A1 (zh) | 2013-12-31 | 2013-12-31 | 一种环形光缓存器及光信号存入和读取方法 |
PCT/CN2014/071911 WO2015100838A1 (zh) | 2013-12-31 | 2014-02-10 | 一种环形光缓存器及光信号存入和读取方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/071911 WO2015100838A1 (zh) | 2013-12-31 | 2014-02-10 | 一种环形光缓存器及光信号存入和读取方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9807478B2 (zh) |
EP (1) | EP3079311B1 (zh) |
JP (1) | JP6382990B2 (zh) |
KR (1) | KR101809578B1 (zh) |
CN (1) | CN105556985B (zh) |
WO (2) | WO2015100636A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI647926B (zh) * | 2016-05-05 | 2019-01-11 | 中華電信股份有限公司 | Intelligent multi-wavelength dynamic optical delay buffer control device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015157911A1 (zh) * | 2014-04-15 | 2015-10-22 | 华为技术有限公司 | 光波导群速度延时测量装置及方法 |
CN107820142B (zh) * | 2017-12-15 | 2019-03-22 | 中国人民解放军国防科技大学 | 基于高密度存储器的单裸片光交换结构 |
TWI690176B (zh) * | 2018-06-11 | 2020-04-01 | 台達電子工業股份有限公司 | 智慧定義光隧道網路系統與網路系統控制方法 |
US10911845B1 (en) * | 2019-07-11 | 2021-02-02 | Huawei Technologies Co., Ltd. | Apparatus and method for tunable photonic delay |
CN114629555A (zh) * | 2022-03-28 | 2022-06-14 | 中国科学院计算技术研究所 | 一种数据转发装置及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11352527A (ja) * | 1998-06-09 | 1999-12-24 | Hitachi Cable Ltd | 遅延線光バッファ |
CN101127570A (zh) * | 2007-08-28 | 2008-02-20 | 北京交通大学 | 多波长并行缓存全光缓存器 |
CN101621718A (zh) * | 2009-08-04 | 2010-01-06 | 复旦大学 | 基于n×n光开关矩阵的可调谐多环路多进制的光缓存器 |
JP4431704B2 (ja) * | 2004-07-27 | 2010-03-17 | 独立行政法人情報通信研究機構 | 光バッファ遅延器 |
CN102111692A (zh) * | 2010-12-15 | 2011-06-29 | 北京邮电大学 | 一种基于慢光缓存的光突发交换信道调度方法 |
US20120293856A1 (en) * | 2011-05-19 | 2012-11-22 | Fujitsu Limited | Optical delay device, optical circuit, and optical delay method |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4815804A (en) * | 1985-02-08 | 1989-03-28 | The Board Of Trustees Of The Leland Stanford Junior University | In-line fiber optic memory and method of using same |
US5115428A (en) * | 1989-09-05 | 1992-05-19 | The University Of Colorado Foundation, Inc. | Serial array time-slot interchangers |
US5103333A (en) * | 1989-10-16 | 1992-04-07 | Gte Laboratories Incorporated | Photonic time-slot interchangers using cascade-structured integrated optical switches |
JP3085311B2 (ja) * | 1990-05-25 | 2000-09-04 | 日本電信電話株式会社 | Fifoバッファ |
DE69431463T2 (de) * | 1993-07-14 | 2003-04-03 | Nippon Telegraph And Telephone Corp., Tokio/Tokyo | Optischer FIFO Puffer mit Frequenzmultiplexierung |
JPH0836897A (ja) * | 1994-07-25 | 1996-02-06 | Nippon Telegr & Teleph Corp <Ntt> | 光周波数多重型ランダムアクセスメモリ |
JPH08242235A (ja) * | 1995-03-02 | 1996-09-17 | Toshiba Corp | 光atm交換器 |
JPH10500537A (ja) * | 1995-03-15 | 1998-01-13 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | データ信号と一致して光学パルス系列を変調するユニット |
US5701372A (en) * | 1996-10-22 | 1997-12-23 | Texas Instruments Incorporated | Hybrid architecture for integrated optic switchable time delay lines and method of fabricating same |
JP3589537B2 (ja) * | 1996-11-15 | 2004-11-17 | 沖電気工業株式会社 | 光バッファメモリ装置 |
US5926589A (en) | 1997-07-07 | 1999-07-20 | Hughes Electronics Corporation | High-speed integrated-optics switchable delay-line using trombone sections |
KR100259173B1 (ko) * | 1998-01-16 | 2000-06-15 | 이계철 | 셀포인터를이용한광버퍼 |
US6542269B1 (en) * | 1998-09-17 | 2003-04-01 | Corning O.T.I., Inc. | Optical device for processing an optical impulse |
KR100341394B1 (ko) * | 1999-12-03 | 2002-06-22 | 오길록 | 광 패킷 스위치의 광 패킷 헤더 처리장치 |
US6647163B2 (en) * | 2000-05-22 | 2003-11-11 | Shaowen Song | Optical memory apparatus and method |
US6671426B2 (en) | 2001-03-19 | 2003-12-30 | General Instrument Corporation | Monolithic integrated terahertz optical asymmetric demultiplexer |
JP2003015173A (ja) * | 2001-06-20 | 2003-01-15 | Agilent Technol Inc | 光信号を記憶する装置 |
FR2830709B1 (fr) * | 2001-10-05 | 2004-01-30 | Cit Alcatel | Dispositif de commutation selective de frequences et circuit a retard optique reconfigurable l'incorporant |
CN1264297C (zh) | 2001-10-26 | 2006-07-12 | 中国科学院研究生院 | 全光纤移位式光脉冲序列压缩-扩展方法 |
JP2004120696A (ja) * | 2002-09-30 | 2004-04-15 | Yokogawa Electric Corp | 光経路制御装置 |
US6917739B2 (en) * | 2003-03-27 | 2005-07-12 | Agilent Technologies, Inc. | Optical cache memory |
US7313329B2 (en) * | 2003-09-04 | 2007-12-25 | The Regents Of The University Of California | All optical variable buffer queue useful in optical packet networks |
WO2005103782A1 (en) | 2004-04-27 | 2005-11-03 | Thales International Asia Holding Pte Ltd | Optical time delay line circuit, in particular for true time delay generation of microwave phase array antennas |
ITMI20041186A1 (it) * | 2004-06-14 | 2004-09-14 | St Microelectronics Srl | Dispositivo di ritardo ottico e sistema di trasmissione comprendente detto dispositivo di ritardo |
US20060171386A1 (en) * | 2004-09-01 | 2006-08-03 | Interactic Holdings, Llc | Means and apparatus for a scaleable congestion free switching system with intelligent control III |
US7558486B2 (en) | 2005-09-28 | 2009-07-07 | Alcatel-Lucent Usa Inc. | All-optical methods and systems |
US7835649B2 (en) * | 2006-02-24 | 2010-11-16 | Cisco Technology, Inc. | Optical data synchronization scheme |
WO2008028125A2 (en) * | 2006-08-31 | 2008-03-06 | The Trustees Of Columbia University In The City Of New York | System and method for strong optical data |
CN100561980C (zh) * | 2006-09-26 | 2009-11-18 | 北京大学 | 支持突发数据包和ip分组的交换方法及节点结构 |
US7436580B2 (en) * | 2006-12-27 | 2008-10-14 | Lucent Technologies Inc | Optical buffer employing four-wave mixing |
JP4849627B2 (ja) * | 2007-02-26 | 2012-01-11 | 独立行政法人情報通信研究機構 | 光パケットバッファ制御装置とその制御方法 |
JP4774037B2 (ja) | 2007-12-28 | 2011-09-14 | 日本電信電話株式会社 | 導波路型光回路 |
US8081852B2 (en) * | 2009-01-21 | 2011-12-20 | Nanyang Technological University | Two-ring optical buffer |
CN101546086B (zh) * | 2009-04-23 | 2011-01-26 | 贵州大学 | 一种基于高非线性光纤的法布里-珀罗腔结构全光缓存器 |
CN101881859A (zh) * | 2009-05-06 | 2010-11-10 | 中国科学院微电子研究所 | 一种采用多模干涉耦合的光延时器 |
CN101610435B (zh) * | 2009-07-17 | 2012-05-16 | 清华大学 | 队列式全光缓存器 |
CN101834699B (zh) | 2010-05-06 | 2013-06-12 | 北京邮电大学 | 光组播网络中基于逻辑运算的网络编码实现方法 |
CN102156507B (zh) | 2010-12-27 | 2013-03-27 | 中国科学院半导体研究所 | 一种基于微环谐振器的二位光学译码器 |
JP5831206B2 (ja) | 2011-12-21 | 2015-12-09 | 富士通株式会社 | 光スイッチ素子、光復調器、光復調方法 |
US8705899B2 (en) | 2012-03-09 | 2014-04-22 | Technische Universitaet Berlin | Optical pulse delay generator |
CN102629067B (zh) | 2012-03-22 | 2014-03-12 | 中国科学院半导体研究所 | 基于微环谐振器的一位二进制光学数值比较器 |
CN102638311B (zh) | 2012-04-23 | 2015-04-08 | 西安电子科技大学 | 基于波长分配的光片上网络系统及其通信方法 |
CN103091784B (zh) | 2013-01-29 | 2014-11-12 | 浙江大学 | 基于微环谐振器的低损耗四端口非阻塞光学路由器 |
US9288557B2 (en) * | 2013-05-01 | 2016-03-15 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for analyzing the spectrum of radio-frequency signals using unamplified fiber optic recirculation loops |
WO2015100629A1 (zh) * | 2013-12-31 | 2015-07-09 | 华为技术有限公司 | 一种环形光移位器及光信号的移位方法 |
CN105453495B (zh) * | 2014-07-18 | 2019-03-01 | 华为技术有限公司 | 一种路由节点、光交换网络及光信号传输的方法 |
US9405070B1 (en) * | 2015-05-15 | 2016-08-02 | Alcatel Lucent | Optical buffer with a signal-switching capability |
-
2013
- 2013-12-31 WO PCT/CN2013/091164 patent/WO2015100636A1/zh active Application Filing
-
2014
- 2014-02-10 CN CN201480050658.1A patent/CN105556985B/zh active Active
- 2014-02-10 WO PCT/CN2014/071911 patent/WO2015100838A1/zh active Application Filing
- 2014-02-10 EP EP14876401.2A patent/EP3079311B1/en active Active
- 2014-02-10 KR KR1020167020194A patent/KR101809578B1/ko active IP Right Grant
- 2014-02-10 JP JP2016543669A patent/JP6382990B2/ja active Active
-
2016
- 2016-06-30 US US15/199,140 patent/US9807478B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11352527A (ja) * | 1998-06-09 | 1999-12-24 | Hitachi Cable Ltd | 遅延線光バッファ |
JP4431704B2 (ja) * | 2004-07-27 | 2010-03-17 | 独立行政法人情報通信研究機構 | 光バッファ遅延器 |
CN101127570A (zh) * | 2007-08-28 | 2008-02-20 | 北京交通大学 | 多波长并行缓存全光缓存器 |
CN101621718A (zh) * | 2009-08-04 | 2010-01-06 | 复旦大学 | 基于n×n光开关矩阵的可调谐多环路多进制的光缓存器 |
CN102111692A (zh) * | 2010-12-15 | 2011-06-29 | 北京邮电大学 | 一种基于慢光缓存的光突发交换信道调度方法 |
US20120293856A1 (en) * | 2011-05-19 | 2012-11-22 | Fujitsu Limited | Optical delay device, optical circuit, and optical delay method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI647926B (zh) * | 2016-05-05 | 2019-01-11 | 中華電信股份有限公司 | Intelligent multi-wavelength dynamic optical delay buffer control device |
Also Published As
Publication number | Publication date |
---|---|
US20160316282A1 (en) | 2016-10-27 |
US9807478B2 (en) | 2017-10-31 |
KR20160102531A (ko) | 2016-08-30 |
CN105556985A (zh) | 2016-05-04 |
CN105556985B (zh) | 2019-05-24 |
JP2017509185A (ja) | 2017-03-30 |
JP6382990B2 (ja) | 2018-08-29 |
WO2015100838A1 (zh) | 2015-07-09 |
KR101809578B1 (ko) | 2018-01-18 |
EP3079311A4 (en) | 2016-12-21 |
EP3079311A1 (en) | 2016-10-12 |
EP3079311B1 (en) | 2019-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015100636A1 (zh) | 一种环形光缓存器及光信号存入和读取方法 | |
US9712901B2 (en) | Interconnection system, apparatus, and data transmission method | |
US20160323660A1 (en) | System and Method for Optical Network | |
KR100493096B1 (ko) | 고속 광 라우팅 장치 및 그 방법 | |
JP4977215B2 (ja) | 下位互換性を有するpon共存 | |
JP2012165267A (ja) | 光パケット交換システムおよび光パケット交換装置 | |
JP4940313B2 (ja) | 光データパケット信号をルーティングする通信ノードおよび方法 | |
WO2016008145A1 (zh) | 一种路由节点、光交换网络及光信号传输的方法 | |
JP2007067948A (ja) | 光スイッチ装置、光アクセスネットワーク、光スイッチ方法およびプログラム | |
CN117157915A (zh) | 无源光网络中的时间同步 | |
US9806909B2 (en) | Data switching apparatus and system | |
WO2015161403A1 (zh) | 一种计算机系统互连装置和信号传输方法 | |
WO2017145886A1 (ja) | 非同期光スイッチ制御を可能とする光パススイッチシステムおよび光パス制御方法 | |
JP3855691B2 (ja) | 光スイッチモジュール | |
JP2002374270A (ja) | 光ネットワークシステム及びコントローラ | |
JP2003005240A (ja) | 光ビット列識別装置 | |
WO2023246503A1 (zh) | 一种适配器和在板光互连系统 | |
JP4033380B2 (ja) | 波長ラベル付加型光ルータ | |
JP4033380B6 (ja) | 波長ラベル付加型光ルータ | |
Fu et al. | Experimental Demonstration of “PON+ Embedded-Hardware-Switch” for Low-Latency Communication in Dual-Stage 5G Fronthaul Network Architecture | |
Raffaelli et al. | Optical packet switching | |
JPH0514283A (ja) | 光ローカルエリアネツトワークシステムの光波長多重伝送方式とノード装置 | |
Gumaste et al. | Achieving multi-rate dynamic sub-wavelength service provisioning in strongly connected light-trails (SLiTs) | |
EP3133755A1 (en) | An optical node for managing optical signals | |
Goyal et al. | Analysis of all-optical buffers for high-speed WDM networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13900693 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13900693 Country of ref document: EP Kind code of ref document: A1 |