WO2015100629A1 - 一种环形光移位器及光信号的移位方法 - Google Patents

一种环形光移位器及光信号的移位方法 Download PDF

Info

Publication number
WO2015100629A1
WO2015100629A1 PCT/CN2013/091148 CN2013091148W WO2015100629A1 WO 2015100629 A1 WO2015100629 A1 WO 2015100629A1 CN 2013091148 W CN2013091148 W CN 2013091148W WO 2015100629 A1 WO2015100629 A1 WO 2015100629A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
shift
switch
waveguide
optical switch
Prior art date
Application number
PCT/CN2013/091148
Other languages
English (en)
French (fr)
Inventor
宋亮
杨迎春
刘耀达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/091148 priority Critical patent/WO2015100629A1/zh
Priority to CN201480050882.0A priority patent/CN105556356B/zh
Priority to JP2016543690A priority patent/JP6425729B2/ja
Priority to PCT/CN2014/071910 priority patent/WO2015100837A1/zh
Priority to EP14875986.3A priority patent/EP3076212B1/en
Publication of WO2015100629A1 publication Critical patent/WO2015100629A1/zh
Priority to US15/199,702 priority patent/US9709744B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2861Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using fibre optic delay lines and optical elements associated with them, e.g. for use in signal processing, e.g. filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3536Optical coupling means having switching means involving evanescent coupling variation, e.g. by a moving element such as a membrane which changes the effective refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3586Control or adjustment details, e.g. calibrating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • G02F1/3133Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type the optical waveguides being made of semiconducting materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3136Digital deflection, i.e. optical switching in an optical waveguide structure of interferometric switch type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/20Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 delay line

Definitions

  • the present invention relates to the field of silicon light technology, and in particular, to a ring optical shifter and a method for storing and reading optical signals.
  • Optical Interconnection technology using fiber or waveguide as a transmission medium has significant advantages in terms of transmission rate, bandwidth density, power consumption and cost compared to copper-based electrical interconnection. In recent years, it has become a research hotspot and has developed rapidly.
  • an embodiment of the present invention provides a ring optical shifter and a method for shifting an optical signal, which can implement shifting of an optical signal.
  • shifting refers to the movement of optical signals contained in an annular optical shifter from one optically retarded waveguide ring to another optically retarded waveguide ring.
  • the optical signal in an optical delay waveguide ring corresponds to the information represented by the lbit electrical signal. It will be understood by those skilled in the art that by slow-waveguide material in the optically retarded waveguide ring arrangement, the transmission of optical signals in the optically retarded waveguide ring can be slowed down, thereby allowing more storage in an optically retarded waveguide ring. The information represented by the bit electrical signal.
  • annular optical shifter comprising:
  • a first curved through-waveguide in the shape of an n, connected to the input end and the output end of the optical signal, as a transmission bus of the optical signal, for transmitting the optical signal input from the input end to the output end;
  • a plurality of optically retarded waveguide rings are laterally juxtaposed on both arms of the first curved through waveguide, and both sides of each of the optical retardation waveguide rings and the arms of the first curved through waveguide are lighted by a pair of optical switches
  • the on/off of the circuit, the plurality of optical delay waveguide rings are used for buffering the optical signal
  • each pair of optical switches being used for optical paths on both sides of the first curved through-waveguide and the optical retardation waveguide ring corresponding to each pair of optical switches Control of on and off;
  • the controller is connected to each of the optical switches of the plurality of pairs of optical switches by the control signal line, and is configured to receive an optical signal shift instruction sent by the external device, generate a control signal according to the shift instruction, and send the control signal to the first curved through All optical switches on one side of an arm connected to the n-shaped structure of the waveguide, by controlling the switching state of a side optical switch, the optical signals stored in the plurality of optical delay waveguide rings are moved up or down shift.
  • the controller includes:
  • a shift instruction receiving unit configured to receive an optical signal shift instruction sent by an external device
  • an instruction parsing unit configured to parse the optical signal shift instruction, and extract a shifted direction identifier and a shifted bit number information
  • control signal generating unit configured to: according to the direction identifier of the shift, find a mapping relationship between the shift direction and the controlled optical switch, determine the identifier of the controlled optical switch, and calculate the optical switch state according to the shifted bit number information Interval time, generating a control signal according to the identifier of the controlled optical switch and the interval time;
  • the control signal sending unit is configured to send an "open" control signal to the optical switch corresponding to the identifier of the controlled optical switch, and after waiting for the interval of the switch state, send a "close” control signal to the identifier of the controlled optical switch.
  • Light switch In a second aspect, a shift control method for a ring optical shifter is provided, the method comprising: receiving an optical signal shift instruction sent by an external device;
  • the direction identifier of the shift find the mapping relationship between the shift direction and the controlled optical switch, determine the identifier of the controlled optical switch, and calculate the optical switch switch state transition according to the shifted bit number information.
  • Interval time according to the identification of the controlled optical switch and the interval time to generate the control signal; send the "open” control signal to the optical switch corresponding to the identification of the controlled optical switch, wait for the interval of the switch state transition, send "close” The control signal of the "light switch” corresponding to the identification of the controlled optical switch.
  • an annular optical shifter provided by an embodiment of the present invention and a shift of an optical signal by using the optical shifter can realize shifting of an optical signal.
  • FIG. 1 is a schematic structural diagram of a ring optical shifter according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a controller of a ring optical shifter according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a micro-ring electro-optical switch according to an embodiment of the present invention.
  • Figure 4A is a block diagram showing the first embodiment of an optical delay waveguide ring provided in an embodiment of the ring optical buffer of the present invention.
  • Figure 4B is a block diagram showing the second embodiment of the optical delay waveguide ring provided in the embodiment of the ring optical buffer of the present invention.
  • FIG. 5 is a schematic flow chart of shift control using a ring optical shifter according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide an annular light shifter, see FIG. 1, wherein the annular light shift The device 100 includes:
  • the first curved through-waveguide 101a is in the shape of an n, and is connected to an input end and an output of the optical signal, and is used as a transmission bus of the optical signal for transmitting the optical signal input from the input end to the output end;
  • a plurality of optical retardation waveguide rings 103 are laterally juxtaposed on both arms of the first curved through waveguide 101a, and both sides of each of the optical retardation waveguide rings 103 and the arms of the first curved through waveguide 101a pass through a pair of optical switches 102, the optical path is turned on and off, and the plurality of optical delay waveguide rings 103 are used for buffering the optical signal;
  • the plurality of pairs of optical switches 102 are the same as the plurality of optical delay waveguide rings 103, and each pair of optical switches 102 is used to extend the two arms of the first curved through waveguide 101a and the optical delay waveguide corresponding to each pair of optical switches 102.
  • the on and off of the optical paths on both sides of the ring 103 are controlled;
  • the controller (ie, the controller) 105 is connected to each of the plurality of optical switches 102 by the control signal line 106, and is configured to receive an optical signal shift instruction sent by the external device, and generate a control signal according to the shift instruction,
  • the control signal is sent to all of the optical switches 102 on one side connected to one of the arms of the n-shaped structure of the first curved through-pass waveguide 101a, and the control of the switching state of the optical switch 102 of the one side is made to store
  • the optical signals in the optical delay waveguide ring 103 are shifted up or down.
  • the controller 105 receives an optical signal shifting instruction sent by the external device, where the external device may be a CPU (Central Processing Unit) of the optical signal processing system, or an optical switch (optical switch) in the optical switching network, etc.
  • the external device may be a CPU (Central Processing Unit) of the optical signal processing system, or an optical switch (optical switch) in the optical switching network, etc.
  • the embodiment of the invention is not limited.
  • the use of the slow light effect waveguide 104 can slow the transmission rate of the optical signal at the optical delay waveguide ring 103.
  • FIG. 1 there are a plurality of pairs of optical switches, and a plurality of optical delay waveguide rings respectively connected to the plurality of pairs of optical switches. For the clarity of the drawing of the drawing, only one of the middle ones is shown in FIG. Reference numerals are indicated on the optical switch and the optical delay waveguide ring. It will be understood by those skilled in the art that the above reference numerals also refer to other pairs of optical switches and optical delay waveguide rings.
  • controller 105 includes:
  • a shift instruction receiving unit 1051 configured to receive an optical signal shift instruction sent by an external device
  • the instruction analyzing unit 1052 is configured to parse the optical signal shifting instruction, and extract the shifted direction identifier and the shifted bit number information
  • the control signal generating unit 1053 is configured to: according to the direction identifier of the shift, find a mapping relationship between the shift direction and the optical switch control, determine the identifier of the controlled optical switch, and find the calculated optical switch that is originally set according to the bit number information of the shift And an interval time of the switch state, generating a control signal according to the identifier of the controlled optical switch and the interval time;
  • the control signal sending unit 1054 is configured to send an "open" control signal to the optical switch corresponding to the identifier of the controlled optical switch, and after waiting for the interval of the switch state, send a "close” control signal to the identifier of the controlled optical switch.
  • the storage unit 1055 is configured to store a mapping relationship between the shift direction and the optical switch control.
  • the structure of the micro-ring electro-optic switch in the above-mentioned annular optical shifter is as shown in FIG. 3 , and the micro-ring electro-optic switch has two channel waveguides and one micro-ring waveguide.
  • the structure of the micro-ring waveguide is: upper electrode / upper confinement layer / waveguide core / lower confinement layer / lower electrode / village bottom, wherein the waveguide core is a polymer electro-optic material.
  • the radius of the microring is R, the lengths of the two channels are equal, each is 2L, L is the distance between the channel port and the coupling point, and the coupling distance between the microring and the channel is h.
  • the microring has a core width of a, a core thickness of n 1 () , and a body amplitude attenuation coefficient of .
  • the upper and lower electrodes are each b 3 thick and have a refractive index n 3 .
  • the body extinction coefficient is k 3 .
  • the refractive index of the left and right claddings on both sides of the core is n 4 .
  • the body amplitude attenuation coefficient is a 4 . .
  • the channel waveguide does not have a surface electrode. In order for the channel and the microring to have the same propagation constant, the core widths of the two are slightly different, which is caused by the bending of the microrings.
  • the channel waveguide and the other parameters of the micro-ring waveguide are the same.
  • the amplitude coupling ratio between the microring and the channel is k
  • the amplitude refractive ratio is t
  • k 2 + t 2 l.
  • this structure is a micro-ring resonant filter when no voltage is applied; when a voltage is applied, it is a micro-ring electro-optical switch.
  • the working principle of the micro-ring electro-optic switch is: selecting an optical signal having a resonant wavelength input from the left port A of the above channel, when the applied voltage is zero, the output optical power of the left channel D of the lower channel is the largest, and the right port of the upper port B of the upper channel is The output optical power is minimal.
  • the refractive index of the microring core polymer electro-optic material changes, causing a change in the propagation constant of the mode in the microring, resulting in a phase mismatch with the channel, resulting in microrings and
  • the optical power of the transmitted signal in the channel changes.
  • the output optical power of the left port D of the lower channel becomes the minimum, and the output optical power of the right port B of the upper channel becomes the maximum, thereby realizing the switching function.
  • FIG. 1 102 in FIG. 1 is a micro-ring electro-optic switch, and the optical signal in the first curved through-pass waveguide 101a is realized by using the switching characteristics thereof.
  • the optical delay waveguide ring 103 is flowed through the micro-ring electro-optical switch, and the optical signal in the optical delay waveguide ring 103 is realized to flow into the first curved through-pass waveguide 101a through the micro-ring electro-optical switch.
  • the optical switch 102 described above is described by a micro ring electro-optical switch, and an MZI (Mach-Zehnder Interferometer) electro-optical switch can also be used.
  • MZI Machine-Zehnder Interferometer
  • each of the optical retardation waveguide rings 103 in the above-mentioned annular optical shifter can be realized by a slow light effect waveguide 104b and a curved waveguide 101b, wherein the slow light effect waveguide 104b is used to slow down the light. Delaying the transmission rate of the optical signal in the waveguide ring 103 enables storage of a larger capacity optical signal in the optical delay waveguide ring 103.
  • the slow light effect waveguide 104b may be a Photonic Crystal Waveguide (PCW), an Electromagnetically Induced Transparency (EIT), a Coherent Population Oscillation (CPO), or a stimulated Brillouin scattering (Chip). SBS, Stimulated Brillouin Scattering) and other methods are implemented.
  • the curved waveguide 101b can be implemented using a silicon waveguide or other waveguide, and the embodiment of the present invention is not limited in any way.
  • the optical delay waveguide ring 103 may be a photonic crystal waveguide ring corresponding to a single wavelength, as shown in FIG. 4A, or may be a photonic crystal waveguide ring corresponding to wavelength division multiplexing (WDM), that is, multiple The photonic crystal waveguide rings respectively correspond to a plurality of wavelengths, as shown in FIG. 4B.
  • the photonic crystal waveguide 104b acts only to slow down the optical transmission rate (i.e., slow light effect) for the optical signal of the wavelength.
  • is an integer and M > 1) containing one wavelength
  • a wave decomposition multiplexer 201a it is necessary to use a wave decomposition multiplexer 201a to include one wavelength.
  • the wavelength division multiplexed optical signal is demultiplexed into M wavelengths of single wavelength optical signals; then the M different wavelength single wavelength optical signals are passed through M single wavelength optical delay waveguide rings, respectively for M different wavelengths
  • the single-wavelength optical signal is subjected to optical signal delay; then, the delayed M-wavelength single-wavelength optical signals are wavelength-multiplexed into one wavelength division multiplexed optical signal by the wavelength division multiplexer 201b.
  • another embodiment of the present invention provides a shift control method for a ring optical shifter, the method comprising:
  • the optical signal shifting instruction is sent by an external device, and the external device may be a CPU (Central Processing Unit) of the optical signal processing system, or an optical switch (optical switch) in the optical switching network, etc., the present invention
  • the external device may be a CPU (Central Processing Unit) of the optical signal processing system, or an optical switch (optical switch) in the optical switching network, etc., the present invention
  • the embodiment is not limited.
  • the shift instruction of the optical signal includes: a direction indicator of the shift and a bit number information of the shift, and the shift direction indication is extracted, and the shifted direction identifier and the shifted digit information are extracted therefrom, wherein
  • the direction indicator of the shift includes: Up (UP) or (Down), and the number of bits of the shift includes: the number of the optical delay waveguide loops of the optical signal, and it should be noted that an optical delay waveguide is assumed.
  • the length of the optical signal stored in the ring is 1 bit.
  • the shifted bit number information indicates the number of optical delay waveguide rings that the optical signal is shifted.
  • mapping relationship between the shift direction and the controlled optical switch can be implemented by means of a table, as an example, as shown in the following table:
  • the interval time of the switching state transition of the optical switch is calculated.
  • the direction of the shift in the shift instruction received by the controller 105 of the optical shifter is UP (UP)
  • the bit number information of the shift is 2 bits
  • the controller 105 passes the query.
  • a shifting direction and a mapping table of the controlled optical switch, determining that the controlled optical switch is an n-type left optical switch of the optical shifter, and calculating the controlled optical switch according to the bit number information of the shifting is 2 bits
  • control unit 105 processes the reading process for 40 ns (including processing the instructions sent by the external device, parsing the instructions, generating and transmitting the optical switch control signals), and the optical switch 102 has an off time of 2 ns, so when the light is off
  • the switch 102 is in the open state (the sum of the processing time of the control unit 105 and the switching time of the optical switch is 42ns)
  • the time for the optical signal to be removed from an optical delay waveguide ring is 5 ns, and then the optical signal is completely moved into another optical delay waveguide through one optical switch.
  • the time of the ring is 3 ns, so the time taken for the optical signal to shift 1 bit is 50 ns.
  • the time taken is 42+8*n ( ns ).
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or a magnetic disk. And other media that can store program code.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种环形光移位器(100)以及利用该环形光移位器进行移位控制的方法,其中,该环形光移位器(100)包括:第一弯曲直通波导(101a),连接光信号的输入端以及输出端,用于将从输入端输入的光信号传输至输出端;多个光延迟波导环(103),在第一弯曲直通波导(101a)的两臂上横向并列地分布,多个光延迟波导环(103)用于对光信号进行缓存;多对光开关(102),每一对光开关(102)用于对第一弯曲直通波导(101a)的两臂和与所述每一对光开关(102)对应的光延迟波导环(103)的两侧的光路的通断进行控制;控制器(105),用于实现存储在所述多个光延迟波导环(103)中的光信号进行上移或者下移。

Description

一种环形光移位器及光信号的移位方法
技术领域
本发明涉及硅光技术领域, 尤其涉及一种环形光移位器及光信号的存入 和读取方法。
背景技术
以光纤或波导为传输媒介的光互连( Optical Interconnection )技术, 相比 以铜线为媒介的电互连 ( Electrical Interconnection )在传输速率、 带宽密度、 功耗及成本等方面都有显著的优势, 近年来成为研究的热点并快速地发展。
如何实现光学信号的移位以满足对光学信号的緩存, 仍然是当前一个技 术难点。
发明内容
基于此, 本发明实施例提供一种环形光移位器以及光信号的移位方法, 能够实现光信号的移位。
贯穿本说明书, 术语 "移位" 指的是环形光移位器所包含的光信号从一 个光延迟波导环移至另一个光延迟波导环中。 为了介绍方便, 可以假定一个 光延迟波导环中的光信号对应有 lbit电信号所代表的信息。 对于本领域的技 术人员, 可以理解, 通过在光延迟波导环设置中慢光波导材料, 能够减慢光 延迟波导环中的光信号的传输, 进而可以在一个光延迟波导环中存储有更多 bit电信号所代表的信息。
第一方面, 提供了一种环形光移位器, 该光移位器包括:
第一弯曲直通波导, 呈 n形, 连接光信号的输入端以及输出端, 作为光 信号的传输总线, 用于将从输入端输入的光信号传输至输出端;
多个光延迟波导环, 在第一弯曲直通波导的两臂上横向并列地分布, 每 个光延迟波导环的两侧和第一弯曲直通波导的两臂均通过一对光开关实现光 路的通断, 上述多个光延迟波导环用于对光信号进行緩存;
多对光开关, 和多个光延迟波导环的数目相同, 每一对光开关用于对第 一弯曲直通波导的两臂和与每一对光开关对应的光延迟波导环的两侧的光路 的通断进行控制;
控制器, 通过控制信号线和多对光开关的每一个光开关相连, 用于接收 外部设备发送的光信号移位指令, 根据移位指令产生控制信号, 将控制信号 发送给和第一弯曲直通波导的 n形结构的某一臂相连的某一侧所有的光开关, 通过对某一侧光开关的开关状态的控制, 使得存储在多个光延迟波导环中的 光信号进行上移或者下移。
在第一方面的第一种实现方式中, 上述控制器包括:
移位指令接收单元, 用于接收外部设备发送的光信号移位指令; 指令解析单元, 用于对光信号移位指令进行解析, 从中提取出移位的方 向标识以及移位的位数信息;
控制信号产生单元, 用于根据移位的方向标识, 查找移位方向和被控制 光开关的映射关系, 确定被控光开关的标识, 以及根据移位的位数信息, 计 算出光开关开关状态的间隔时间, 根据被控光开关的标识以及间隔时间产生 控制信号;
控制信号发送单元, 用于发送 "打开" 的控制信号给被控光开关的标识 所对应的光开关, 等待开关状态的间隔时间后, 发送 "关闭" 控制信号给被 控光开关的标识所对应的光开关。 第二方面, 提供了一种环形光移位器的移位控制方法, 该方法包括: 接收外部设备发送的光信号移位指令;
对上述光信号移位指令进行解析, 从中提取出移位的方向标识以及移位 的位数信息;
根据移位的方向标识, 查找移位方向和被控制光开关的映射关系, 确定 被控光开关的标识, 以及根据移位的位数信息, 计算出光开关开关状态转换 的间隔时间, 根据被控光开关的标识以及间隔时间产生控制信号; 发送 "打开" 的控制信号给被控光开关的标识所对应的光开关, 等待开 关状态转换的间隔时间后, 发送 "关闭" 的控制信号给被控光开关的标识所 对应的光开关。
基于上述技术方案, 本发明实施例提供的一种环形光移位器以及利用该 光移位器实现光信号的移位, 能够实现光信号的移位。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的环形光移位器的组成结构示意图。
图 2是本发明实施例提供的环形光移位器的控制器的组成结构示意图。 图 3是本发明实施例所提供的微环电光开关的组成结构示意图。
图 4A是本发明环形光緩存器的实施例中提供的光延迟波导环的第一实 施例的结构示意图。
图 4B 是本发明环形光緩存器的实施例中提供的光延迟波导环的第二实 施例的结构示意图。
图 5是本发明实施例提供的利用环形光移位器进行移位控制的流程示意 图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
本发明的实施例提供一种环形光移位器, 参看图 1 , 其中, 该环形光移位 器 100包括:
第一弯曲直通波导 101a, 呈 n形, 连接光信号的输入端 (input ) 以及输 出端 (output ), 作为光信号的传输总线, 用于将从输入端输入的光信号传输 至输出端;
多个光延迟波导环 103 , 在第一弯曲直通波导 101a的两臂上横向并列地 分布, 每个光延迟波导环 103的两侧和第一弯曲直通波导 101a的两臂均通过 一对光开关 102实现光路的通断, 上述多个光延迟波导环 103用于对光信号 进行緩存;
多对光开关 102, 和上述多个光延迟波导环 103的数目相同, 每一对光开 关 102用于将第一弯曲直通波导 101a的两臂和与每一对光开关 102对应的光 延迟波导环 103的两侧的光路的通断进行控制;
控制器(即: Controller ) 105 , 通过控制信号线 106和多对光开关 102的 每一个光开关相连, 用于接收外部设备发送的光信号移位指令, 根据该移位 指令产生控制信号, 将控制信号发送给和第一弯曲直通波导 101a的 n形结构 的某一臂相连的某一侧所有的光开关 102,通过对所述某一侧光开关 102的开 关状态的控制, 使得存储在多个光延迟波导环 103 中的光信号进行上移或者 下移。
具体的, 控制器 105接收外部设备发送的光信号移位指令, 上述外部设 备可以为光信号处理系统的 CPU ( Central Processing Unit ) , 或光交换网络中 的光交换机(Optical Switch )等, 对此, 本发明的实施例不加以限制。
采用慢光效应波导 104能够减慢光信号在光延迟波导环 103的传输速率。 需要说明的是, 在图 1 中, 存在多对光开关, 以及和多对光开关分别相 连的多个光延迟波导环, 为了所画附图的标识的清晰, 在图 1仅对中间的一 对光开关和光延迟波导环上标明了附图标记, 对于本领域技术人员可以理解, 上述附图标记也指代其他对光开关以及和光延迟波导环。
具体的, 上述控制器 105包括:
移位指令接收单元 1051 , 用于接收外部设备发送的光信号移位指令; 指令解析单元 1052, 用于对上述光信号移位指令进行解析, 从中提取出 移位的方向标识以及移位的位数信息;
控制信号产生单元 1053 , 用于根据移位的方向标识, 查找移位方向和光 开关控制的映射关系, 确定被控光开关的标识, 以及根据移位的位数信息, 查找原先设置的计算出光开关开关状态的间隔时间, 根据所述被控光开关的 标识以及所述间隔时间产生控制信号;
控制信号发送单元 1054, 用于发送 "打开" 的控制信号给被控光开关的 标识所对应的光开关, 等待开关状态的间隔时间后, 发送 "关闭" 控制信号 给被控光开关的标识所对应的光开关;
存储单元 1055, 用于存储移位方向和光开关控制的映射关系。
其中, 上述环形光移位器中的微环电光开关的结构如图 3所示, 该微环 电光开关有两条信道波导和一个微环波导构成。 微环波导的结构依次为: 上 电极 /上限制层 /波导芯 /下限制层 /下电极 /村底,其中波导芯为聚合物电光材料。 微环的半径为 R, 两条信道的长度相等, 各为 2L, L为信道端口到耦合点间 的距离, 微环与信道间的耦合间距为 h。 微环的芯宽度为 a, 芯厚度为 折 射率为 n1(), 体振幅衰减系数为 。; 上下电极厚度各为 b3, 折射率为 n3。, 体 消光系数为 k3。; 芯两侧左右包层的折射率为 n4。, 体振幅衰减系数为 a4。。 信 道波导不加上表面电极。 为了使信道和微环具有相同的传播常量, 两者的芯 宽度稍有差别, 这是由微环的弯曲而造成的。 除此之外, 信道波导与微环波 导的其他参量皆相同。微环与信道间的振幅耦合比率为 k,振幅折射比率为 t, 有 k2+t2=l。
图 3 中的微环电光开关结构, 不施加电压时, 这一结构为微环谐振滤波 器; 施加电压时, 则为微环电光开关。 微环电光开关的工作原理是: 选择具 有谐振波长的光信号由上面信道的左端口 A输入, 当外加电压为零时, 下面 信道左端口 D的输出光功率最大, 二上面信道右端口 B的输出光功率最小。 当在微环的电极上施加电压时, 微环芯层聚合物电光材料的折射率发生变化, 使微环中模的传播常量发生变化, 与信道产生了相位失配, 从而导致微环和 信道中传输信号的光功率发生变化。 当外加电压等于开关转换电压时, 下面 信道左端口 D的输出光功率变为最小, 而上面信道的右端口 B的输出光功率 变为最大, 从而实现了开关功能。
利用上面的微环电光开关的工作原理, 以图 1 为例说明光移位的原理: 图 1中的 102为微环电光开关,利用其开关特性,实现第一弯曲直通波导 101a 中的光信号通过微环电光开关流入光延迟波导环 103 ,以及实现光延迟波导环 103中的光信号通过微环电光开关流入第一弯曲直通波导 101a中。
作为本领域技术人员可以理解,上述的光开关 102采用微环( Micro Ring ) 电光开关进行描述, 还可以采用 MZI ( Mach-Zehnder Interferometer, 马赫-曾 德尔)电光开关。上述微环电光开关和 MZI电光开关的实现均属于现有技术, 对此, 本发明的实施例不再赘述。
可选的,参看图 4A,上述环形光移位器中的每一个光延迟波导环 103中, 可由慢光效应波导 104b和弯曲波导 101b组成实现,其中慢光效应波导 104b, 用于减慢光延迟波导环 103中的光信号的传输速率,实现在光延迟波导环 103 中更大容量的光信号的存储。 上述慢光效应波导 104b可以采用光子晶体波导 ( PCW, Photonic Crystal Waveguide )、电磁感应透明( EIT, Electromagnetically Induced Transparency )、相干布居数振荡( CPO, Coherent Population Oscillation )、 受激布里渊散射(SBS , Stimulated Brillouin Scattering )等方法实现。 弯曲波 导 101b可以采用硅波导或者其他波导实现, 对此, 本发明的实施例不加任何 限制。
可选的, 光延迟波导环 103 可以是对应单波长的光子晶体波导环, 如图 4A所示, 也可以是对应波分复用(WDM, Wavelength Division Multiplexing ) 的光子晶体波导环,即多个光子晶体波导环分别对应多个波长,如图 4B所示。 其中, 在图 4A中, 光子晶体波导 104b仅对波长为 的光信号起减慢光传输 速率的作用 (即慢光效应)。 在图 4B 中, 有四根光子晶体波导, 分别对波长 为 、 λ2、 λ3、 4的光信号产生慢光效应。 对于包含 Μ个波长的波分复用光信 号( Μ为整数且M > 1 ), 首先, 需要采用波分解复用器 201a对包含 Μ个波长 的波分复用光信号解复用为 M个不同波长的单波长光信号;然后将上述 M个 不同波长的单波长光信号经过 M个单波长的光延迟波导环,分别对 M个不同 波长的单波长光信号进行光信号延迟; 而后, 利用波分复用器 201b将经过延 迟的 M个不同波长的单波长光信号波分复用为一路波分复用光信号。
此外, 本发明的另一实施例提供一种环形光移位器的移位控制方法, 该 方法包括:
501、 接收外部设备发送的光信号移位指令;
其中, 光信号的移位指令是外部设备发送的, 这些外部设备可以为光信 号处理系统的 CPU ( Central Processing Unit ) , 或光交换网络中的光交换机 ( Optical Switch )等, 对此, 本发明的实施例不加以限制。
502、 对上述光信号移位指令进行解析, 从中提取出移位的方向标识以及 移位的位数信息;
其中, 上述光信号的移位指令包括: 移位的方向标识以及移位的位数信 息, 通过对上述移位指令进行解析, 从中提取出移位的方向标识以及移位的 位数信息, 其中, 移位的方向标识包括: 上(UP )或者(Down ), 移位的位 数信息包括: 光信号的所移的光延迟波导环的个数, 这里需要说明的是, 假 设一个光延迟波导环所存储的光信号的长度为 1位, 这样, 移位的位数信息 就表示光信号所移的光延迟波导环的个数。
503、 根据上述移位的方向标识, 查找移位方向和被控制光开关的映射关 系, 确定被控制光开关的标识, 以及根据上述移位的位数信息, 计算出光开 关的开关状态转换的间隔时间, 根据被控光开关的标识以及间隔时间产生控 制信号;
其中, 在具体的实现过程中, 移位方向和被控光开关的映射关系可以通 过表(Table ) 的方式实现, 作为举例, 如下表所示:
移位方向 被控制的光开关
上(UP ) 左侧的光开关 下 (DOWN ) 右侧的光开关 表一移位方向和被控光开关的映射表
根据移位指令中的移位的方向标识, 查找上述表一, 得到被控制的光开 关。
根据移位的位数信息, 计算得到光开关的开关状态转换的间隔时间。
参考图 1进行举例, 假设该光移位器的控制器 105接收到的移位指令中 的移位的方向标识为上(UP ), 移位的位数信息为 2位, 控制器 105通过查询 移位方向和被控光开关的映射表, 确定被控制的光开关为光移位器的 n型左 侧的光开关, 根据移位的位数信息为 2位, 计算被控制的光开关的开关状态 的间隔时间。
假定控制单元 105处理读取过程所花时间为 40ns (包括处理接收外部设备 发送的指令, 对指令进行解析, 产生和发送光开关控制信号), 而光开关 102 开断时间为 2ns, 所以当光开关 102处于打开状态时(控制单元 105处理时间 和光开关开关转换时间总和 42ns ) , 光信号从一个光延迟波导环移出的时间为 5ns,然后该光信号通过一个光开关完全移入另一个光延迟波导环的时间为 3ns, 这样光信号移 1位所花去的时间为 50ns。 而当控制器接收到的移位的位数信 息为 n位时, 则需要花去的时间为 42+8*n ( ns ), 上述的例子中, 移位指令是 向上移 2位, 则花去的时间为 42+8*2=58ns, 即等待 58ns后, 控制器向环形 光移位器的左侧所有开关发送 "关闭" 的控制信号。
504、 发送 "打开" 的控制信号给被控光开关的标识所对应的光开关, 等 待上述开关状态转换的间隔时间后, 发送 "关闭" 的控制信号给被控光开关 的标识所对应的光开关。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、 装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在一个 单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能 单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方案 的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一 个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步 骤。 而前述的存储介质包括: U盘、移动硬盘、只读存储器(ROM, Read-Only Memory ), 随机存取存者器( RAM, Random Access Memory )、 磁碟或者光盘 等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求 书
1. 【保护环形光移位器】一种环形光移位器, 其特征在于, 所述光移位器 包括:
第一弯曲直通波导, 呈 n形, 连接光信号的输入端以及输出端, 作为光信 号的传输总线, 用于将从所述输入端输入的光信号传输至所述输出端;
多个光延迟波导环, 在所述第一弯曲直通波导的两臂上横向并列地分布, 每个光延迟波导环的两侧和所述第一弯曲直通波导的两臂均通过一对光开关实 现光路的通断, 所述多个光延迟波导环用于对光信号进行緩存;
多对光开关, 和所述多个光延迟波导环的数目相同, 每一对光开关用于对 所述第一弯曲直通波导的两臂和与所述每一对光开关对应的光延迟波导环的两 侧的光路的通断进行控制;
所述控制器, 通过控制信号线和所述多对光开关的每一个光开关相连, 用 于接收外部设备发送的光信号移位指令, 根据所述移位指令产生控制信号, 将 所述控制信号发送给和所述第一弯曲直通波导的 n形结构的某一臂相连的某一 侧所有的光开关, 通过对所述某一侧光开关的开关状态的控制, 使得存储在所 述多个光延迟波导环中的光信号进行上移或者下移。
2、 【实现移位器时控制器结构的细化】根据权利要求 1 所述的环形光移位 器, 其特征在于, 所述控制器包括:
移位指令接收单元, 用于接收外部设备发送的光信号移位指令;
指令解析单元, 用于对所述光信号移位指令进行解析, 从中提取出移位的 方向标识以及移位的位数信息;
控制信号产生单元, 用于根据所述移位的方向标识, 查找移位方向和被控 制光开关的映射关系,确定被控光开关的标识,以及根据所述移位的位数信息, 计算出光开关开关转换状态的间隔时间, 根据所述被控光开关的标识以及所述 间隔时间产生控制信号;
控制信号发送单元, 用于发送 "打开" 的控制信号给所述被控光开关的标 识所对应的光开关, 等待所述开关转换状态的间隔时间后, 发送 "关闭" 控制 信号给所述被控光开关的标识所对应的光开关;
存储单元, 用于存储所述移位方向和被控制光开关的映射关系。
3.【保护移位的控制方法】一种环形光移位器的移位控制方法,其特征在于, 所述方法包括:
接收外部设备发送的光信号移位指令;
对所述光信号移位指令进行解析, 从中提取出移位的方向标识以及移位的 位数信息;
根据所述移位的方向标识, 查找移位方向和被控制光开关的映射关系, 确 定被控光开关的标识, 以及根据所述移位的位数信息, 计算出光开关开关状态 转换的间隔时间, 根据所述被控光开关的标识以及所述间隔时间产生控制信号; 发送 "打开" 的控制信号给所述被控光开关的标识所对应的光开关, 等待 所述开关状态转换的间隔时间后, 发送 "关闭" 的控制信号给所述被控光开关 的标识所对应的光开关。
PCT/CN2013/091148 2013-12-31 2013-12-31 一种环形光移位器及光信号的移位方法 WO2015100629A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2013/091148 WO2015100629A1 (zh) 2013-12-31 2013-12-31 一种环形光移位器及光信号的移位方法
CN201480050882.0A CN105556356B (zh) 2013-12-31 2014-02-10 一种环形光移位器及光信号的移位方法
JP2016543690A JP6425729B2 (ja) 2013-12-31 2014-02-10 環状光シフタ、及び光信号をシフトするための方法
PCT/CN2014/071910 WO2015100837A1 (zh) 2013-12-31 2014-02-10 一种环形光移位器及光信号的移位方法
EP14875986.3A EP3076212B1 (en) 2013-12-31 2014-02-10 Annular optical shifter and optical signal shifting method
US15/199,702 US9709744B2 (en) 2013-12-31 2016-06-30 Annular optical shifter and method for shifting optical signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/091148 WO2015100629A1 (zh) 2013-12-31 2013-12-31 一种环形光移位器及光信号的移位方法

Publications (1)

Publication Number Publication Date
WO2015100629A1 true WO2015100629A1 (zh) 2015-07-09

Family

ID=53492976

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/091148 WO2015100629A1 (zh) 2013-12-31 2013-12-31 一种环形光移位器及光信号的移位方法
PCT/CN2014/071910 WO2015100837A1 (zh) 2013-12-31 2014-02-10 一种环形光移位器及光信号的移位方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071910 WO2015100837A1 (zh) 2013-12-31 2014-02-10 一种环形光移位器及光信号的移位方法

Country Status (5)

Country Link
US (1) US9709744B2 (zh)
EP (1) EP3076212B1 (zh)
JP (1) JP6425729B2 (zh)
CN (1) CN105556356B (zh)
WO (2) WO2015100629A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009487B (zh) * 2013-12-31 2017-12-15 华为技术有限公司 一种光发射机和光发射方法
WO2015100636A1 (zh) * 2013-12-31 2015-07-09 华为技术有限公司 一种环形光缓存器及光信号存入和读取方法
US20190317278A1 (en) * 2016-12-28 2019-10-17 Nec Corporation Directional coupler and method for designing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414728A (zh) * 2001-10-26 2003-04-30 中国科学院研究生院 全光纤移位式光脉冲序列压缩-扩展方式
CN101258699A (zh) * 2005-09-28 2008-09-03 朗迅科技公司 全光方法和系统
JP2009162933A (ja) * 2007-12-28 2009-07-23 Nippon Telegr & Teleph Corp <Ntt> 導波路型光回路
CN101834699A (zh) * 2010-05-06 2010-09-15 北京邮电大学 光组播网络中基于逻辑运算的网络编码实现方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926589A (en) * 1997-07-07 1999-07-20 Hughes Electronics Corporation High-speed integrated-optics switchable delay-line using trombone sections
JPH11352527A (ja) 1998-06-09 1999-12-24 Hitachi Cable Ltd 遅延線光バッファ
KR100341394B1 (ko) 1999-12-03 2002-06-22 오길록 광 패킷 스위치의 광 패킷 헤더 처리장치
US6671426B2 (en) * 2001-03-19 2003-12-30 General Instrument Corporation Monolithic integrated terahertz optical asymmetric demultiplexer
US6917739B2 (en) 2003-03-27 2005-07-12 Agilent Technologies, Inc. Optical cache memory
US7313329B2 (en) 2003-09-04 2007-12-25 The Regents Of The University Of California All optical variable buffer queue useful in optical packet networks
WO2005103782A1 (en) * 2004-04-27 2005-11-03 Thales International Asia Holding Pte Ltd Optical time delay line circuit, in particular for true time delay generation of microwave phase array antennas
ITMI20041186A1 (it) * 2004-06-14 2004-09-14 St Microelectronics Srl Dispositivo di ritardo ottico e sistema di trasmissione comprendente detto dispositivo di ritardo
JP4431704B2 (ja) 2004-07-27 2010-03-17 独立行政法人情報通信研究機構 光バッファ遅延器
JP4849627B2 (ja) 2007-02-26 2012-01-11 独立行政法人情報通信研究機構 光パケットバッファ制御装置とその制御方法
CN100589348C (zh) 2007-08-28 2010-02-10 北京交通大学 多波长并行缓存全光缓存器
US8081852B2 (en) * 2009-01-21 2011-12-20 Nanyang Technological University Two-ring optical buffer
CN101546086B (zh) 2009-04-23 2011-01-26 贵州大学 一种基于高非线性光纤的法布里-珀罗腔结构全光缓存器
CN101881859A (zh) 2009-05-06 2010-11-10 中国科学院微电子研究所 一种采用多模干涉耦合的光延时器
CN101610435B (zh) 2009-07-17 2012-05-16 清华大学 队列式全光缓存器
CN101621718A (zh) 2009-08-04 2010-01-06 复旦大学 基于n×n光开关矩阵的可调谐多环路多进制的光缓存器
US9753349B2 (en) * 2010-08-20 2017-09-05 University Of Rochester Optical circuit apparatus, method, and application
CN102111692A (zh) 2010-12-15 2011-06-29 北京邮电大学 一种基于慢光缓存的光突发交换信道调度方法
CN102156507B (zh) * 2010-12-27 2013-03-27 中国科学院半导体研究所 一种基于微环谐振器的二位光学译码器
JP5862053B2 (ja) 2011-05-19 2016-02-16 富士通株式会社 光遅延装置、光回路および光遅延方法
JP5831206B2 (ja) * 2011-12-21 2015-12-09 富士通株式会社 光スイッチ素子、光復調器、光復調方法
US8705899B2 (en) * 2012-03-09 2014-04-22 Technische Universitaet Berlin Optical pulse delay generator
CN102629067B (zh) * 2012-03-22 2014-03-12 中国科学院半导体研究所 基于微环谐振器的一位二进制光学数值比较器
CN102638311B (zh) * 2012-04-23 2015-04-08 西安电子科技大学 基于波长分配的光片上网络系统及其通信方法
CN103091784B (zh) * 2013-01-29 2014-11-12 浙江大学 基于微环谐振器的低损耗四端口非阻塞光学路由器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414728A (zh) * 2001-10-26 2003-04-30 中国科学院研究生院 全光纤移位式光脉冲序列压缩-扩展方式
CN101258699A (zh) * 2005-09-28 2008-09-03 朗迅科技公司 全光方法和系统
JP2009162933A (ja) * 2007-12-28 2009-07-23 Nippon Telegr & Teleph Corp <Ntt> 導波路型光回路
CN101834699A (zh) * 2010-05-06 2010-09-15 北京邮电大学 光组播网络中基于逻辑运算的网络编码实现方法

Also Published As

Publication number Publication date
EP3076212A4 (en) 2016-12-07
JP2017503206A (ja) 2017-01-26
WO2015100837A1 (zh) 2015-07-09
CN105556356B (zh) 2019-02-19
JP6425729B2 (ja) 2018-11-21
EP3076212B1 (en) 2019-07-03
EP3076212A1 (en) 2016-10-05
CN105556356A (zh) 2016-05-04
US9709744B2 (en) 2017-07-18
US20160313508A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
Bergman et al. Photonic network-on-chip design
Biberman et al. Optical interconnection networks for high-performance computing systems
Biberman et al. Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors
US9705630B2 (en) Optical interconnection methods and systems exploiting mode multiplexing
Maniotis et al. Optical buffering for chip multiprocessors: a 16GHz optical cache memory architecture
US20160301478A1 (en) Optical differential signal sending method, apparatus and system
Dokania et al. Analysis of challenges for on-chip optical interconnects
Xiao et al. Silicon photonic Flex-LIONS for bandwidth-reconfigurable optical interconnects
CN108519642B (zh) 一种兼容波分复用与模分复用功能的集成化光模式开关
WO2015100629A1 (zh) 一种环形光移位器及光信号的移位方法
Zhao et al. 96-Channel on-chip reconfigurable optical add-drop multiplexer for multidimensional multiplexing systems
Jayabarathan et al. Performance evaluation of two dimensional photonic crystal based all optical AND/OR logic gates
Shaik et al. Investigation on photonic crystal based all‐optical clocked D‐flip flop
Li et al. Handling mode and polarization in fiber by fs-laser inscribed (de) multiplexer and silicon switch array
Jadhav et al. Micro-ring resonator based all-optical Arithmetic and Logical Unit
Dehghani et al. ICES: an innovative crosstalk-efficient 2× 2 photonic-crystal switch
Koohi et al. Hierarchical opto-electrical on-chip network for future multiprocessor architectures
CN116736564A (zh) 一种基于石墨烯电极的聚合物三维波导模式光开关
Govdeli et al. On-chip switch and add/drop multiplexer design with left-handed behavior in photonic crystals
US20190094466A1 (en) Multi-wavelength optical signal splitting
Wu et al. Large-scale silicon photonic switches
Pappas et al. Caching with light: a 16-bit capacity optical cache memory prototype
Xie et al. Towards large-scale programmable silicon photonic chip for signal processing
Lee et al. Multi-wavelength message routing in a non-blocking four-port bidirectional switch fabric for silicon photonic networks-on-chip
Dai et al. Reconfigurable silicon photonics: devices and circuits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900678

Country of ref document: EP

Kind code of ref document: A1