WO2015099494A1 - 폴리사이클로헥실렌디메틸렌 테레프탈레이트 수지 조성물 - Google Patents

폴리사이클로헥실렌디메틸렌 테레프탈레이트 수지 조성물 Download PDF

Info

Publication number
WO2015099494A1
WO2015099494A1 PCT/KR2014/012914 KR2014012914W WO2015099494A1 WO 2015099494 A1 WO2015099494 A1 WO 2015099494A1 KR 2014012914 W KR2014012914 W KR 2014012914W WO 2015099494 A1 WO2015099494 A1 WO 2015099494A1
Authority
WO
WIPO (PCT)
Prior art keywords
terephthalate resin
resin composition
polycyclohexylenedimethylene terephthalate
resin
pct
Prior art date
Application number
PCT/KR2014/012914
Other languages
English (en)
French (fr)
Inventor
김태영
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Publication of WO2015099494A1 publication Critical patent/WO2015099494A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polycyclonuclear silanedimethylene terephthalate resin composition having improved tensile strength, tensile elongation and laminar strength while maintaining excellent injection moldability.
  • Polyalkylene terephthalate has physical properties such as wear resistance, durability and heat resistance, and is used as a material for fibers, films, molded articles, and the like.
  • Such polyalkylene terephthalates include polyethylene terephthalate (Poly (ethylene terephthalate), hereinafter 'PET'); Polybutylene terephthalate (Poly (butylene terephthalate), hereinafter ' ⁇ '), polycyclonuxylenedimethylene terephthalate (Poly (cyclohexylenedimethylene terephthalate), hereinafter 'PCT') and the like are commercialized.
  • PET is used for fibers and bottles.
  • PET has a relatively slow crystallization rate, and therefore, in order to be used for engineering plastics requiring high crystallinity, a nuclear agent and a crystallization accelerator need help.
  • PET has a problem of maintaining a high crystallization rate by maintaining a relatively high mold silver during the injection molding process.
  • PBT has a faster crystallization rate than PET, it has been widely used in engineering plastics applications to overcome the problems of PET for engineering plastics mentioned above, that is, slow crystallization rate.
  • PBT has lower thermal strain than PET . Having silver, despite its excellent formability compared to PET, its use has been limited to applications requiring high heat resistance.
  • PCT is attracting attention as a new material that can overcome the problems of polyester materials described above, namely the formability problem due to the slow crystallization rate and the limitations of application development due to the low thermal strainability . have.
  • These PCTs are called terephthalic acid (' ⁇ ') or dimethyl terephthalate 'DMT') and crystalline (cryst all ine) polyesters produced by esterification or transesterification of 1,4-cyclonucleodimethanol (1,4—cyc lohexanedimethanol, hereinafter referred to as 'CHDM').
  • 'CHDM' 1,4-cyclonucleodimethanol
  • polyalkylene terephthalate resins such as PCT have high abrasion resistance, durability and heat resistance and are used for the production of fibers, films and molded articles. At this time, the high crystallinity of the resin is essential for ensuring adequate hardness, strength and heat resistance at high temperatures.
  • the present invention is to provide a polycyclonuclear silane dimethylene terephthalate resin composition having improved tensile strength, tensile elongation and layer strength while maintaining excellent injection moldability.
  • the present invention also provides a molded article formed from the resin composition. [Solution of problem]
  • the resin composition may include 50 to 95% by weight of the first polycyclonuclear silane dimethylene terephthalate resin and 5 to 50% by weight of the second polycyclonuclear silane dimethylene terephthalate resin based on the total weight of the resin.
  • the first and second polycyclonuclear silanedimethylene terephthalate resins having the above-described physical properties may be polymerized using specific monomers.
  • the first polycyclonuclear silane dimethylene terephthalate resin may be polymerized using a cyclonucleic acid dimethane having a trans isomer ratio of 70 mol% or more.
  • the second polycyclonuclear silane dimethylene terephthalate resin may be polymerized using cyclohexane dimethane having a t rans isomer ratio of 65 mol% or less.
  • the second polycyclonuclear silane dimethylene terephthalate resin isophthalic acid, isophthalic acid ester compound, ethylene glycol, 1, 3-propanediol, 1, 4-butanedi and molecular weight of 100 to 3000 It can be polymerized using one or more comonomers selected from the group consisting of phosphorus polypropylene glycol.
  • the resin composition may further include one or more additives selected from the group consisting of fillers, pigments, oxidative stabilizers, lubricants, reinforcing agents and nucleating agents.
  • the additive may be included in part, from 20 to 60 parts by weight per 100 parts by weight of the total resin. . .
  • the molded article formed from the ⁇ polycyclic nucleus xylene dimethylene terephthalate resin composition is provided.
  • the polycyclonuclear silanedimethylene terephthalate-resin composition according to an embodiment of the present invention may exhibit improved tensile strength, saddle elongation and laminar strength while maintaining excellent injection moldability.
  • a polycyclonuclear silane dimethylene terephthalate resin composition (hereinafter, referred to as "PCT resin") containing two kinds of polycyclonuclear silane dimethylene terephthalate resins having different melting points (hereinafter, 'Resin composition' is provided.
  • the resin composition has a crystal melting point of at least 295 ° C and an intrinsic viscosity of 0.
  • a first PCT resin that is 75 dL / g or less; And a crystal melting point of 280 ° C or less and an intrinsic viscosity of 0.
  • a second PCT resin that is at least 75 dL / g.
  • the intrinsic viscosity is calculated by the method described in Examples described later.
  • compositions comprising resins that exhibit high crystallinity show high brittleness and modulus but poor tensile elongation.
  • a resin composition having improved tensile acidity while maintaining excellent crystallinity may be provided.
  • the first PCT resin has a crystal melting point of at least 295 ° C. and an intrinsic viscosity of at most 75 dL / g, and a crystal melting point of at most 280 ° C. and an intrinsic viscosity of 0.
  • Resins comprising a 3 PCT resin of 75 dL / g or more.
  • the composition has excellent injection moldability, flows well in a thin flow path in the mold during the injection process, and can be crystallized at high speed.
  • the resin composition may have an excellent tensile elongation, thereby stably releasing the injection molded article formed from the resin composition without damage from the mold.
  • the resin composition is based on the total weight of the resin contained in the resin composition
  • the first and the second PCT resin is specific to have the above-described physical properties
  • the monomers can be prepared by polymerization.
  • the first PCT number having a higher melting point and a lower viscosity than the second PCT resin esterifies 1,4-cyclonucleodimethanol with a high proportion of trans isomers with terephthalic acid, or a high proportion of trans isomers.
  • 1,4-cyclonucleic acid dimethanol can be prepared by transesterification with an ester compound of terephthalic acid.
  • the commonly used .1,4-cyclonucleic acid dimethanol contains 70 mol% of the trans isomer and the remaining ratio of the cis isomer. Isomerization of such 1,4-cyclonucleodimethanol in the presence of a catalyst can change the content of cis and trans isomers of 1,4-cyclonucleodimethanol.
  • the first PCT resin polymerized using the above 1,4-cyclonucleodimethanol having a trans isomer ratio of 70 mol%, 73 mol% or 75 mol% or more may exhibit high melting point and heat resistance and high crystallinity. .
  • the second PCT resin ' having a low melting point and high viscosity compared to the first PCT resin can be used to esterify 1,4-cyclohexanedimethane having a trans isomer of 65 mol% or less or 60 mol% or less with terephthalic acid, or 1,4-cyclonucleic acid dimethanol having a proportion of trans isomers of 65 mol% or less or 60 mol% or less may be prepared by transesterification with a terephthalic acid ester compound.
  • 1,4-cyclonucleodimethanol when 1,4-cyclonucleodimethanol is used, 1,4-cyclonucleodimethane having a larger ratio of cis isomers to 1,4-cyclonucleodimethanol, which is generally used, has a low melting point. , which can increase the tensile elongation. 2 PCT resin can be polymerized.
  • the PCT resin 2 can be copolymerized in the esterification reaction or ester exchange reaction, it can be prepared by adding the monomer.
  • the copolymerizable monomer may include at least one comonomer selected from the group consisting of isophthalic acid, isophthalic acid ester compound, ethylene glycol, 1,3-propanedi, 1,4-butanediol and polypropylene glycol having a molecular weight of 100 to 3000. Can be used.
  • isophthalic acid it may be used in an amount of 15 mol% or less or 10 mol% or less based on the total dicarboxylic acid.
  • the isophthalic acid ester compound it is 15 mol% or less or 10 1% or less with respect to the total dicarboxylic acid ester compound.
  • the at least one comonomer selected from the group consisting of ethylene glycol, 1,3-propanediol, 1,4-butanediol and polypropylene glycol ⁇ having a molecular weight of 100 to 3000 is 15 mol% or less or 10 mol% or less with respect to the total diol compound.
  • the at least one comonomer selected from the group consisting of ethylene glycol, 1,3-propanediol, 1,4-butanediol and polypropylene glycol ⁇ having a molecular weight of 100 to 3000 is 15 mol% or less or 10 mol% or less with respect to the total diol compound.
  • the second PCT resin may be prepared to have a high molecular weight in order to secure excellent tensile properties.
  • the second PCT resin may have, for example, a number average molecular weight of 15,000 g / mol to 45,000 g / mol.
  • the reaction product is molded to form pellets; And / or a step of crystallizing the reaction product or pellets and polymerizing the solid phase may be further employed.
  • the manufacturing method of the 1st and 2nd PGT resin is not limited to the manufacturing method mentioned above, If a 1st and 2nd PCT resin has the above-mentioned physical property, it is known in the technical field to which this invention belongs besides the above-mentioned method. Various manufacturing methods can be employed.
  • the resin composition may further include an additive used to supplement or enhance the physical properties of the PCT resin in the art.
  • the additives include one or more additives selected from the group consisting of layering agents, pigments, oxidative stabilizers, lubricants, reinforcing agents and nucleating agents.
  • the layer agent is. Glass fiber, carbon fiber, boron fiber, glass bead, glass flake, talc, carbon black, clay, mica, wol lastonite, calcium titanate whisker, aluminum boric acid whisker , Zinc oxide whiskers, calcium whiskers, or mixtures thereof.
  • needle fillers may be used as fillers to provide molded articles having excellent surface smoothness.
  • the filler may be glass fiber, wollastonite, calcium titanate whisker, aluminum boric acid whisker or a combination thereof in order to provide a white molded article having excellent surface smoothness. Can be used.
  • the glass fibers are used to improve the formability of the composition, Mechanical properties such as tensile strength, bending strength, bending elasticity of molded articles, and heat resistance such as heat deformation temperature can be improved.
  • the glass fiber may be a glass fiber in the form of filament, thread, fiber, or whisker.
  • the glass fiber may be a glass fiber having an average length of 0.1 to 20 ⁇ , 0.3 to 10 3 or 3 to 5 ⁇ .
  • the aspect ratio [L (average length of fiber) / D (average outer diameter of fiber)] is . Glass fibers having 10 to 2000 or 30 to 1000 can be used to provide a resin composition having excellent mechanical strength.
  • the plate-like layering agent such as mica (mica) may be added or glass fiber may be used as a mixture.
  • the pigment examples include titanium oxide, zinc oxide, zinc sulfide, zinc sulfate, barium sulfate, lithopone (BaS0 4 ⁇ ZnS), white lead (2PbC0 3 ⁇ Pb (0H) 2 ), chame carbonate, alumina, Boron nitride, a mixture thereof, etc. can be illustrated.
  • the oxidizing stabilizer may be exemplified by AADEKA Co., Ltd. A0-60 or the like as a hindered phenolic oxidizing stabilizer.
  • the lubricant may be used to stably disperse the filler or pigment in the resin composition and to easily release the resin composition.
  • examples of such a lubricant include ⁇ , ⁇ '-ethylenebis (stearamide) and the like.
  • the reinforcing agent may impart toughness to the resin composition to improve tensile strength.
  • Such reinforcing agents can be exemplified by random terpolymers obtained by polymerizing ethylene, acrylic acid esters and glycidyl methacrylate under high pressure.
  • the nucleating agent may act as a nucleus of crystallization during molding of the resin composition to improve the crystallization rate of the resin composition.
  • sodium salt of montanic acid tnontanic acid
  • Licomont NaVlOl of Clariant can be used as such a nucleating agent.
  • the additive may be appropriately used depending on the physical properties of the desired resin composition.
  • the additive may be used in an amount of 20 to 60 parts by weight based on 100 parts by weight of the total resin, thereby further improving mechanical strength and processability of the first and second PCT resins.
  • the first and second PCT resins included in the resin composition and any additives added as necessary may be uniformly mixed using, for example, a twin screw extruder.
  • the resin composition may exhibit excellent tensile properties while having excellent injection moldability due to the combination of two kinds of PCT resins having different melting points.
  • a molded article formed from the polycyclonuclear silane dimethylene terephthalate resin composition. Since a method of manufacturing a molded article by molding the resin composition is well known in the art, detailed description thereof will be omitted.
  • the molded article may be easily produced from the resin composition including the first and second PCT resins described above, and may exhibit excellent mechanical properties.
  • the operation and effects of the invention will be described in more detail with reference to specific examples. However, this is presented as an example of the invention, whereby the scope of the invention is not limited in any sense.
  • PCT resin (A-1) having an intrinsic viscosity of 0.65 dL / g. .
  • the intrinsic viscosity of the PCT resin was measured by dissolving the resin in o-chlorophen at a concentration of 1.2 g / dL using a Ubbelodhe viscous tube. Maintain the temperature of the viscosity tube at 35 ° C, the time it takes for the solvent to pass (efflux time, t) and the time for solution to pass (t) between the sections inside the viscosity tube ab 0) 'it was obtained. Then, the specific viscosity is obtained by substituting t value and to value in Equation 1. The intrinsic viscosity was calculated by substituting the calculated specific viscosity value into Equation 2.
  • Equation 2 In Equation 2, A was 0.247 as Huggins constant, and c was 1.2 g / dL as the concentration value. . . Preparation Example 2 Preparation of PCT Resin (A-2) Having High Melting Point
  • PCT resin (B-3) was obtained by the same method as Preparation Example 4, except that 2.9 kg of 1,3-propanediol (PD0) was used instead of 2.4 kg of ethylene glycol (EG) in Preparation Example 4.
  • PD0 1,3-propanediol
  • EG ethylene glycol
  • Preparation Example 6 Preparation of PCT Water Resin (B-4) Having a Low Melting Point
  • PCT resin (B-4) was obtained by the same method as Preparation Example 4, except that 19.07 kg (polyol) was used.
  • the product obtained in the esterification reaction was subjected to polycondensation reaction for about 150 minutes at a temperature of about 295 ° C. and a pressure of 0.5 to 1 torr to obtain a PCT resin.
  • the PCT resin was prepared in pellet form through a pelletizing process. Thereafter, the PCT resin in pellet form was further solid-phase polymerized to obtain a PCT resin (B-5) having increased molecular weight.
  • TPA Terephthalic Acid
  • polyol polypropylene glycol having a number average molecular weight of l, 000 g / mol
  • Examples 1 to 18 and Comparative Examples 1 to 2 Preparation of PCT resin composition
  • the pellet was put into an injection machine heated to about 295 ° C., and the molten resin composition was injected into an ASTM tensile specimen mold set to 150 ° C to prepare a specimen for mechanical properties evaluation. .
  • Example 2 80 0 20 0 0 0 0 0 30 0.2 0.2 Example 3 3 0 0 30 0 0 0 0 0 30 0.2 0.2 Example 4 90 0 0 10 0 0 0 0 30 0.2 0.2 Example 5 80 0 0 20 0 0 0 0 30 0.2 0.2 Example 6 70 0 0 30 0 0 0 30 0.2 0.2 Example 7 90 0 0 0 10 0 0 0.30 0.2 0.2 Example 8 80 0 0 0 20 0 0 0 30 0.2 0.2 Example 9 70 0 0 0 30 0 0 0 30 0.2 0.2 0.2 Example 10 90 0 0 0 0 10 0 0 30 0.2 0.2 0.2 Example 11 80 0 0 0 0 20 0 0 30 0.2 0.2 0.2 Example 12 70 0 0 0 0 30 0 0 30 0.2 0.2 0.2 Example Example 13 90 0 0 0 0 10 0 30
  • the pellet was put into an injection machine heated to about 295 ° C., and the molten resin composition was injected into an ASTM tensile specimen mold set to 150 ° C to prepare a specimen for mechanical properties evaluation.
  • Example 19 80 20 0 0 0 0 0 0 30 4 4
  • Example 20 80 0 20 0 0 0 0 30 4 4
  • Example 21 80 0 0 20 0 0 0 30 4 4
  • Example 22 80 0 0 0 20 0 0 30 4 4
  • Example 23 80 0 0 0 20 0 30 44 example 24 80 0 0 0 0 20 30 44
  • Lamellar strength measured in Izod notched type by ASTM D256 method at a temperature of 25 ° C. The thickness of the specimen used was 1/8 ".
  • Example 1 15 35 750 1.5 35 Comparative Example 2 17 60 970 1.9 34 Example 1 16 29 850 2.3 39 Example 2 19 32 950 3.0 45 Example 3 20 38 990 4: 6 . 60 Example 4 "17 33 810 2.4 37 Example 5 19 31 930 3.6 42 Example 6 21 37 1010 4.9 85 Example 7 15 28 790 1.9 42 Example 8 18 - 31 930 2.8 54 Example 9 21 34 1090 4.5 77 Example 10 16 30 830 2.5 47 Example 11 19 35 960.
  • Example 12 20 38 1150 7.2 97 ' Example 13 17 19 790 1.9 43
  • Example 14 18 20 970 ⁇ 2.8 55
  • Example 15 20 24 ' 1090 4.0 70
  • Example 16 16-20 830 2.2 48
  • Example 17 18 23. 950 3. 1
  • Example 19 19 19 1195 3.9
  • Example 20 15 20 1300 4.2 72 '
  • Examples 22 16 20 1380 6.7 95 Examples 23 17 23 1285 5.5 76
  • Examples 24 18- 24 1350 6. 1 69 Referring to Table 4 above, Examples 1 to 24 were injected at a level similar to Comparative Examples 1 to 2. It is confirmed that it is possible to provide a molded article showing the cooling time and the injection pressure, while showing improved tensile strength, tensile elongation and impact strength compared to Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

본 발명의 일 구현예에 따른 폴리사이클로헥실렌디메틸렌 테레프탈레이트 수지 조성물은 우수한 사출 성형성을 유지하면서도 개선된 인장강도, 인장신율 및 충격강도를 나타낼 수 있다.

Description

【명세서]
【발명의 명칭】 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물
【기술분야】 ᅳ
본 발명은 우수한 사출 성형성을 유지하면서도 개선된 인장강도, 인장신율 및 층격강도를 가지는 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물에 관한 것이다.
【배경기술】
폴리알킬렌 테레프탈레이트는 내마모성, 내구성, 내열성 등의 물성을 가져, 섬유, 필름, 성형품 등의 재료로 사용되고 있다. 이러한 폴라알킬렌 테레프탈레이트로는 폴리에틸렌 테레≥탈레이트 (Poly(ethylene terephthalate) , 이하 'PET'); 폴리부틸렌 테레프탈레이트 (Poly(butylene terephthalate), 이하 'ΡΒΤ'), 폴리사이클로핵실렌디메틸렌 테레프탈레이트 (Poly(cyclohexylenedimethylene terephthalate), 이하 'PCT' ) 등이 상업화되어 있다. 이 중, 상업적으로 가장 널리 쓰이고 있는 재료는 섬유, bottle 용도로 사용되고 있는 PET이다.
PET는 우수한 물성에도 불구하고, 결정화 속도가 상대적으로 느리기 때문에 높은 결정화도가 요구되는 엔지니어링 플라스틱 용도로 사용되려면, 핵제 및 결정화 촉진제 등의 도움이 필요하다. 또한, PET는 사출 성형 공정 중 금형 은도를 상대적으로 높게 유지하여 결정화 속도를 높게 유지해야 하는 문제가 있다.
PBT는 PET보다 결정화 속도가 빠르기 때문에, 위에서 언급된 엔지니어링 플라스틱 용도로의 PET의 문제점, 즉 결정화 속도가 느린 점을 극복하여, 엔지니어링 플라스틱 용도에서는 폭넓게 사용되어 왔다. 그러나, PBT는 PET 대비 낮은 열변형. 은도를 가지고 있어, PET 대비 우수한 성형성에도 불구하고 높은 내열도를 요구하는 용도에는 그 사용이 제한되어 왔다.
PCT는 상술한 폴리에스테르 재료의 문제점, 즉 느린 결정화 속도로 기인한 성형성 문제와 낮은 열변형 은도로 인한 용도전개 상의 제한을 극복할 수 있는 새로운 재료로서 주목을 받고.있다. 이러한 PCT는 테레프탈산 (terephthalic acid, 이하 'ΤΡΑ') 혹은 디메틸 테레프탈레이트 (dimethyl terephthalate, 이하 ' DMT ' )와 1 , 4-사이클로핵산디메탄올 ( 1,4— cyc lohexanedimethano l , 이하 ' CHDM ' )의 에스테르화 반응 혹은 에스테르 교환에 의해 제조되는 결정성 ( cryst a l l ine) 폴리에스테르를 의미할 수 있다.
한편, PCT 등의 폴리알킬렌 테레프탈레이트 수지는 높은 내마모성, 내구성 및 내열성을 가져 섬유, 필름 및 성형품의 제조에 사용되고 있다. 이때, 수지의 높은 결정성은 고온에서의 적당한 경도, 강도 및 내열성 확보에 있어 필수적이다.
그러나, 수지의 결정화도를 증가시키면, 재료의 취성 및 모들러스가 증가하지만 신율이 저하된다. 이와 같이 플라스틱 소재의 인장 신율이 저하되고 취성이 증가하면 외부의 힘에 대해 쉽게 깨질 수 있다. 특히, 결정화도가 증가된 재료를 사출 성형하면, 열악한 인장 신율로 인해 넁각된 플라스틱 소재가 금형에 박히거나 혹은 냉각된 플라스틱 소재가 금형으로부터 용이하게 이형되지 않는 문제가 초래될 수 있다. ᅳ
. 이러한 문제를 해결하기 위하여 —수지의 분자량을 증가시키는. 방안을 고려할 수 있다. 수지의 분자량을 증가시키면, 수지로부터 형성된 성형품의 기계적 강도가 향상되어 사출 성형 시에 금형에서 성형품을 안정적으로 이형시킬 수 있다.
하지만, 수지의 분자량을 증가시키면 사출 공정 중에 용융된 수지의 점도가 상승하며, 이로 인하여 용융된 수지의 흐름성이 급격히 저하되고, 사출 압력이 급증하게 된다.
따라서, 사출 성형 중에 적¾한 흐름성을 가지도록 우수한 가공성을 가지며, 결정화 후 금형으로부터 안정적인 이형이 가능하도록 우수한 인장 특성을 가지는 조성물의 개발이 절실한 실정이다.
【발명의 내용】
【해결하려는 과제】
본 발명은 우수한 사출 성형성을 유지하면서도 개선된 인장강도, 인장신율 및 층격강도를 가지는 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물을 제공하기 위한 것이다.
본 발명은 또한 상기 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다. [과제의 해결 수단】
발명의 일 구현예에 따르면, 결정 용융점이 295 °C 이상이고 고유점도가 0.75dL/g 이하인 제 1 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지; 및 결정 용융점이 280 °C 이하이고 고유점도가 0.75dL/g 이상인 제 2 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지를 포함하는 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물이 제공된다.
상기 수지 조성물은 수지 전체 중량에 대하여 50 내지 95 중량 %의 제 1 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 및 5 내지 50 중량 %의 제 2 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지를 포함할 수 있다.
상술한 물성을 가지는 제 1 및 제 2 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지는 특정 단량체들을 사용하여 중합될 수 있다.
일 예로, 상기 제 1 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지는 trans 이성질체 비율이 70mo l% 이상인 사이클로핵산디메탄을을 사용하여 중합될 수 있다.
다른 일 예로, 상기 제 2 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지는 t rans 이성질체 비율이 65mol % 이하인 사이클로핵산디메탄을을 사용하여 중합될 수 있다.
또한, 또 다른 일 예로, 상기 제 2 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지는 이소프탈산, 이소프탈산 에스테르 화합물, 에틸렌 글리콜, 1 , 3-프로판디올, 1, 4-부탄디을 및 분자량이 100 내지 3000인 폴리프로필렌 글리콜로 이루어진 군에서 선택되는 1종 이상의 공단량체를 사용하여 중합될 수 있다.
상기 수지 조성물은 충전제, 안료, 산화안정제, 활제, 강화제 및 핵제로 이루어지는 군으로부터 선택되는 1종 이상의 첨가제를 추가로 포함할 수 있다. 그리고, 상기 첨가제는 전체 수지 100 중량부에 대하여 '20 내지 60 중량부로 포함될 수 있다. . .
한편, 본 발명의 다른 구현예에 따르면, 상기 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물로부터 형성된 성형품이 제공된다.
, 【발명의 효과] 본 발명의 일 구현예에 따른 폴리사이클로핵실렌디메틸렌 테레프탈레이트 - 수지 조성물은 우수한 사출 성형성을 유지하면서도 개선된 인장강도, 안장신율 및 층격강도를 나타낼 수 있다 .
【발명을 실시하기 위한 구체적인 내용】
이하 발명의 구체적인 구현예에 따른 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물과 이로부터 형성된 성형품 등에 대해 설명하기로 한다. 、
발명의 일 구현예에 따르면, 융점이 서로 다른 2종의 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 (이하, ' PCT 수지 '라 함)를 포함하는 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물 (이하, '수지 조성물 '이라 함)이 제공된다. 구체적으로, 수지 조성물은 결정 용융점이 295 °C 이상이고 고유점도가 0 . 75dL/g 이하인 제 1 PCT 수지; 및 결정 용융점이 280 °C 이하이고 고유점도가 0 . 75dL/g 이상인 제 2 PCT 수지를 포함한다. 상기 고유점도는 후술하는 실시예에 기재된 방법으로 산출된 것이다.
일반적으로 높은 결정화도를 보이는 수지를 포함하는 조성물은 높은 취성 및 모들러스를 보이지만 열악한 인장 신율을 보인다. 그러나, 본 발명의 일 구현예에 따르면 서로 다른 물성을 보이는 2종의 PCT 수지를 조합하여 우수한 결정성을 유지하면서도 인장 산율을 향상시킨 수지 조성물을 제공할 수 있다. 구체적으로, 결정 용융점이 295 °C 이상이고 고유점도가 0. 75dL/g 이하인 제 1 PCT 수지와 결정 용융점이 280 °C 이하이고 고유점도가 0 . 75dL/g 이상인 쎄 2 PCT 수지를 포함하는 수지 .조성물은, 우수한 사출 성형성을 가져 사출 공정 중 금형 내 얇은 유로에서도 잘 흐르고, 빠른 속도로 결정화될 수 있다. 또한, 상기 수지 조성물은 우수한 인장 신율을 가져 상기 수지 조성물로부터 형성된 사출 성형품을 금형으로부터 파손 없이 안정적으로 이형시킬 수 있다.
. 상기 수지 조성물은 수지 조성물에 포함되는 수지 전체 중량에 대하여
50 내지 95 중량 % 또는 60 내지 95 중량 %의 제 1 PCT 수자를 포함하고, 5 내지 50 중량 % 또는 5 내지 40 중량. %의 제 2 PCT 수지를 포함할 수 있다. 제 1 및 제 2 PCT 수지를 상기 범위 내의 함량으로 배합하면 우수한 사출 성형성 및 인장 물성을 동시에 나타낼 수 있다.
상기 제 1 및 제 2 PCT 수지는 상술한 물성을 가질 수 있도록 특정 단량체들을 중합하여 제조할 수 있다.
일 예로 , 제 2 PCT 수지 대비 고융점 및 저점도를 가지는 제 1 PCT 수자는 trans 이성질체의 비율이 높은 1,4-사이클로핵산디메탄올을 테레프탈산과 에스테르화 반응시키거나, 또는 trans 이성질체의 비율이 높은 1,4-사이클로핵산디메탄올을 테레프탈산의 에스테르 화합물과 에스테르 교환 반응시켜 제조할 수 있다.
일반적으로 사용되는 .1,4-사이클로핵산디메탄올은 70mol%의 trans 이성질체와 나머지 비율의 cis 이성질체를 포함한다. 이러한 1,4- 사이클로핵산디메탄올을 촉매 존재 하에서 이성화 반웅시키면 1,4- 사이클로핵산디메탄올의 cis 및 trans 이성질체의 함량을 변화시킬 수 있다. 상기.1,4-사이클로핵산디메탄올로 trans 이성질체 비율이 70mol% 이상, 73mol% 이상 또는 75mol% 이상인 것을 사용하여 중합한 제 1 PCT 수지는 높은 융점 및 내열도를 가지며 높은 결정성을 나타낼 수 있다.
다른 예로, 제 1 PCT 수지 대비 저융점 및 고점도를 가지는 제 2 PCT 수지'는 trans 이성질체의 비율이 65mol% 이하 또는 60mol% 이하인 1,4- 사이클로헥산디메탄을을 테레프탈산과 에스테르화 반응시키거나 또는 trans 이성질체의 비율이 65mol% 이하 또는 60mol% 이하인 1,4- 사이클로핵산디메탄올을 테레프탈산 에스테르 화합물과 에스테르 교환 반응시켜 제조할 수 있다. 이와 같이 , 1,4-사이클로핵산디메탄올로, 일반적으로 사용되는 1, 4-사이클로핵산디메탄올 대비, cis 이성질체의 비율이 더 큰 1,4- 사이클로핵산디메탄을을 사용하면 저융점을 가지며, 인장 신율을 증가시킬 수 있는 제. 2 PCT 수지를 중합할 수 있다.
또한, 또 다른 예로, 제 2 PCT 수지는 에스테르화 반응 또는 에스테르 교환 반응에 공중합 가능,한 단량체를 추가하여 제조할 수 있다. 상기 공중합 가능한 단량체로는 이소프탈산, 이소프탈산 에스테르 화합물, 에틸렌 글리콜, 1,3-프로판디을, 1,4-부탄디올 및 분자량이 100 내지 3000인 폴리프로필렌 글리콜로 이루어진 군에서 선택된 1 종 이상의 공단량체를 사용할 수 있다. 상기에서 이소프탈산의 경우 전체 디카복실산에 대하여 15mol% 이하 또는 10mol% 이하로 사용될 수 있다. 그리고, 이소프탈산 에스테르 화합물의 경우 전체 디카르복실산 에스테르 화합물에 대하여 15mol% 이하 또는 10 1% 이하로 사용될 수 있다. 또한, 에틸렌 글리콜, 1,3-프로판디올, 1,4-부탄디올 및 분자량이 100 내지 3000인 폴리프로필렌 글리콜^ 이루어진 군에서 선택된 1종 이상의 공단량체는 전체 디을 화합물에 대하여 15mol% 이하 또는 10mol% 이하로 사용될 수 있다.
제 2 PCT 수지는 우수한 인장 물성을 확보하기 위하여 고분자량을 가지도록 제조될 수 있다ᅳ 제 2 PCT 수지는, 예를 들면, 수평균분자량이 15,000g/mol 내지 45,000g/mol일 수 있다. ᅳ이와 같이 고분자량의 제 2 PCT 수지를 제조하기 위하여, 상술한 단량체들을 에스테르화 반응 또는 에스테르 교환 반웅 시킨 후, 반응 생성물을 성형하여 펠렛을 형성하는 공정; 및 /또는 반응 생성물 또는 펠렛을 결정화하여 고상 중합하는 공정을 추가로 채용할 수 있다.
그러나, 제 1 및 제 2 PGT 수지의 제조 방법은 상술한 제조 방법에 한정되는 것은 아니며, 제 1 및 제 2 PCT 수지가 상술한 물성을 가진다면, 상술한 방법 외에 본 발명이 속하는 기술분야에 알려진 다양한 제조 방법이 채용될 수 있다.
상기 수지 조성물은 본 발명이 속하는 기술분야에서 PCT 수지의 물성을 보완 또는 강화시키기 위하여 사용하는 첨가제를 추가로 포함할 수 있다. 상기 첨가제의 예로는 층전제, 안료, 산화안정제, 활제, 강화제 및 핵제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제 등을 들 수 있다.
상기 층전제로는 . 유리섬유, 탄소섬유, 붕소섬유, 유리비드, 유리플레이크, 탈크, 카본블랙, 클레이, 마이카, 워러스트나이트 (wol lastonite), 티탄산칼슘휘스커 (calcium titanate whisker) , 붕산알루미늄휘스커 (aluminum boric acid whisker), 산화아연휘스커 (zinc oxide whisker), 칼슘휘스커 (calcium whisker) 또는 이들의 흔합물 등을 예시할 수 있다. 이 중, 표면 평활성이 우수한 성형품을 제공하기 위하여 충전제로 침상 충전제를 사용할 수 있다. 특히, 표면 평활성이 우수하고 백색의 성형품을 제공하기 위하여 상기 충전제로 유리섬유, 워러스트나이트 (wollastonite), 티탄산칼슘휘스커 (calcium titanate whisker), 붕산알루미늄휘스커 (aluminum boric acid whisker) 또는 이들의 흔합물을 사용할 수 있다. 이 중에서도 유리섬유를 사용하여 조성물의 성형성을 향상시키고, 성형품의 인장 강도, 굽힘 강도, 굽힘 탄성를 등의 기계적 특성과 열변형 온도 등의 내열성을 향상시킬 수 있다. / ' 상기 층전제로 유리섬유를 사용하는 경우 유리섬유로는 필라멘트 (filament), 쓰레드 (thread), 파이버 (fiber) 또는 휘스커 (whisker) 형태의 유리섬유를 사용할 수 있다. 그리고, 상기 유리섬유로는 평균 길이가 0.1 내지 20隱, 0.3 내지 10讓 또는 3 내지 5瞧인 유리섬유를 사용할 수 있다. 또한, 종횡비 (aspect ratio, [L (섬유의 평균 길이 ) /D (섬유의 평균 외경 )] )가. 10 내지 2000 또는 30 내지 1000인 유리섬유를 사용하여 기계적 강도가 우수한 수지 조성물을 제공할 수 있다.
상기와 같이 충전제로 침상 충전제를 채용하는 경우, 수지 조성물을 사출한 시편이 뒤를리는 것을 방지하기 위하여 마이카 (운모)와 같은 판상의 층전제를 추가로 첨가하거나 혹은 유리섬유를 흔합물로 사용할 수 있다.
상기 안료로는 산화티타늄, 산화아연, 황화아연, 황산아연, 황산바륨, 리토폰 (lithopone, BaS04 · ZnS), 연백 (white lead, 2PbC03 · Pb(0H)2), 탄산칼슴, 알루미나, 보론나이트라이드 (boron nitride) 또는 이들의 흔합물 등을 예시할 수 있다. 그리고, 상기 산화안정제로는 힌더드 페놀계 산화안정제로서 ADEKA 사의 A0-60 등을 예시할 수 있다.
상기 활제는 충전제 또는 안료 등이 수지 조성물 내에 안정적으로 분산되고, 수지 조성물의 용이한 이형을 위하여 사용될 수 있다. 이러한 활제로는 Ν,Ν'-에틸렌비스 (스테아르아미드) 등을 예시할 수 있다.
상기 강화제는 수지 조성물에 인성을 부여하여 인장강도를 향상시킬 수 있다. 이러한 강화제로는 에틸렌, 아크릴산 에스테르 및 글리시딜 메타크릴레이트를 고압 하에서 중합한 랜덤 삼원중합체 등을 예시할 수 있다. 상기 핵제는 수지 조성물의 성형 시 결정화의 핵으로 작용하여 수지 조성물의 결정화 속도를 향상시킬 수 있다. 이러한 핵제로는 몬탄산 (tnontanic acid)의 나트륨 염 (Clariant사의 Licomont NaVlOl) 등을 사용할 수 있다.
상기 첨가제는 목적하는 수지 조성물의 물성에 따라 적절하게 사용될 수 있다. 일 예로, 상기 첨가제는 전체 수지 100 중량부에 대하여 20 내지 60 중량부로 사용되어, 제 1 및 제 2 PCT 수지의 기계적 강도 및 가공성을 더욱 향상시킬 수 있다. 상기 수지 조성물에 포함되는 제 1 및 제 2 PCT 수지와 필요에 따라 첨가된 임의의 첨가제는, 예를 들면 , 이축 압출기 (Twin Screw Extruder)를 사용하여 균일하게 흔합될 수 있다.
상기 수지 조성물은 융점이 서로 다른 2 종의 PCT 수지의 조합으로 인하여 우수한 사출 성형성을 가지면서도 우수한 인장 물성을 나타낼 수 있다. 한편, 본 발명의 다른 구현예에 따르면, 상기 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물로부터 형성된 성형품이 제공된다. 상기 수지 조성물을 성형하여 성형품을 제조하는 방법은 본 발명의 기술분야에 널리 알려져 있으므로 자세한 설명은 생략한다.
상기 성형품은 상술한 제 1 및 제 2 PCT 수지를 포함하는 수지 조성물로부터 용이하게 생산 가능하며, 우수한 기계적 물성을 나타낼 수 있다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 제조예 1: 고융점을 갖는 PCT수지 (A-1)의 제조
trans 이성질체를 ?^ ^로 포함하는 1,4-사이클로핵산디메탄올 (CHDM) 55kg, 테레프탈산 (TPA) 48kg, 트리에틸 포스페이트 7g, 티타늄 옥사이드계 촉매 (Sachtleben 사의 상표명 Hombifast PC, 촉매 중 유효 Ti 비율: 15¾>) 40g 을 반웅기에 투입하였다. 이어서, 반응기와 온도를 약 280°C까지 올리고, 약 280°C의 온도 및 상압에서 약 3 시간 동안 에스테르화 반웅을 진행하였다.
이후, 상기 에스테르화 반응에서 수득한 생성물을 약 295°C의 온도 및 0.5 내지 1 torr 의 압력 하에서 약 150 분 동안 중축합 반응시켜 고유점도가 0.65dL/g인 PCT수지 (A-1)를 얻었다.
PCT 수지의 고유점도는 수지를 o-chlorophen 에 1.2 g/dL의 농도로 용해시킨 후 Ubbelodhe 점도관을 이용하여 측정하였다. 점도관의 온도를 35 °C로 유지하고, 점도관 내부 구간 a-b 사이를 용매 (solvent)가 통과하는 데에 걸리는 시간 (efflux time, t)과 용액 (solution)이 통과하는 데에 걸리는 시간 (t0)을 '구하였다. 이후, t값과 to값을 식 1에 대입하여 비점도 (specific viscosity)를 산출하고, 산출된 비점도 값을 식 2에 대입하여 고유점도를 산출하였다.
[식 1]
t ᅳ t '
^7 sp
[식 2]
Figure imgf000010_0001
상기 식 2에서, A는 Huggins 상수로서 0.247를, c는 농도값으로서 1.2 g/dL 의 값이 각각 사용되었다. . . 제조예 2: 고융점을 갖는 PCT수지 (A-2)의 제조
trans 이성질체를 75inol%로 포함하는 1 , 4-사이클로핵산디메탄을 (CHDM) 55kg , 테레프탈산 (TPA) 48kg , 트리에틸 포스페이트 .7g , 티타늄 옥사이드계 촉매 (Sacht l eben 사의 상표명 Hombi fast PC , 촉매 중 유효 Ti 비율: 15%) 40g 을 반응기에 투입하였다. 이어서, 반응기의 온도를 약 280 °C까지 을리고, 약 280°C의 온도 및 상압에서 약 3 시간 동안 에스테르화 반웅을 진행하였다.
이후, 상기 에스테르화 반응에서 수득한 생성물을 약 295 °C의 온도 및 0.5 내지 1 torr 의 압력 하에서 약 150 분 동안 중축합 반응시켜 PCT 수지를 얻었다. 그리고, 상기 PCT 수지를 펠렛타이징 공정을 거쳐 펠렛 형태로 제조하였다. 이후, 펠렛 형태의 PCT 수지를 추가로 약 250°C 및 진공. 조건에서 약 15 시간 동안 체류시켜 고유점도가 0.80dL/g인 PCT수지 (A-2)를 얻었다. 제조예 3: 저융점을 갖는 PCT수지 (B-1)의 제조
trans 이성질체를 70mol%로 포함하는 1,4-사이클로핵산디메탄올 (CHDM) 55kg , 테레프탈산 (TPA) 43kg , 이소프탈산 ( IPA) 5kg , 트리에틸 포스페이트 7g , 티타늄 옥사이드계 촉매 (Sacht leben사의 상표명 Hombi fast PC , 촉매 중 유효 Ti 비율: 15%) 40g 을 반응기에 투입하였다. 이어서, 반응기의 온도를 약 280°C까지 을리고, 약 28CTC의 은도 및 상압에서 약 3 시간 동안 에스테르화 반응을 진행하였다. — 상기 에스테르화 반응에서 수득한 생성물을 약 295°C의 온도 및 0.5 내지 1 torr의 압력 하에서 약 150분 동안 중축합 반응시켜 PCT 수지를 얻었다. 그리고, 상기 PCT 수지를 펠렛타이징 공정을 거쳐 펠렛 형태로 제조하였다. 이후, 펠렛 형태의 PCT 수지를 추가로 고상 중합하여 분자량을 증가시킨 PCT 수지 (B- 1)를 얻었다. 제조예 4: 저융점을 갖는 PCT수지 (B-2)의 제조
trans 이성질체를 70mol%로 포함하는 1 , 4-사이클로핵산디메탄올 (CHDM) 50kg , 에틸렌 글리콜 (EG) 2.4kg , 테레프탈산 (TPA) 48kg , 트리에틸 포스페이트 7g , 티타늄 옥사이드계 촉매 (Sacht leben사의 상표명 Hombi fast PC , 촉매 중 유효 Ti 비율: 15%) 40g 을 반응기에 투입하였다. 이어서, 반응기의 온도를 약 280 °C까지 을리고, 약 280 °C의 온도 및 상압에서 약 3 시간 동안 에스테르화 반웅을 진행하였다. '
상기 에스테르화 반응에서 수득한 생성물을 약 295°C의 온도 및 0.5.내지 1 torr의 압력 하에서 약 150분 동안 중축합 반응시켜 PCT 수지를 얻었다. 그리고, 상기 PCT 수지를 펠렛타이징 공정을 거쳐 펠렛 형태로 제조하였다. 이후, 펠렛 형태의 PCT 수지를 추가로 고상 중합하여 분자량을 증가시킨 PCT 수지 (B- 2)를 얻었다. 제조예 5: 저융점을 갖는 PCT수지 (B-3)의 제조
제조예 4 에서 에틸렌 글리콜 (EG) 2.4kg 대신 1,3-프로판디올 (PD0) 2.9kg 을 사용한 것을 제외하고, 제조예 4 와 동일한 방법으로 PCT 수지 (B-3)를 얻었다. 제조예 6: 저융점을 갖는 PCT수자 (B-4)의 제조
제조예 4 에서 trans 이성질체를 70tnol%로 포함하는 1,4- 사이클로핵산디메탄을 (CHDM) 52.25kg 사용하고, 에틸렌 글리콜 (EG) 2.4kg 대신 수평균분자량이 l , 000g/mol 인 폴리프로필렌 글리콜 (polyol ) 19.07kg 을 사용한 것을 제외하고, 제조예 4와 동일한 방법으로 PCT수지 (B— 4)를 얻었다.
. 제조예 7: 저융점을 갖는 PCT수지 (B-5)의 제조
cis 이성질체를 40mol%로 포함하는 1,4-사이클로핵산디메탄올 (CHDM) 55kg 테레프탈산 (TPA) 48kg, 트리에틸 포스페이트 7g, 티타늄 옥사이드계 촉매 (Sachtleben 사의 상표명 Hombifast PC, 촉매 중 유효 Ti 비을: 15%) 40g 을 반웅기에 투입하였다. 이어서, 반웅기의 온도를 약 280°C까지 을리고, 약 280°C의 온도 및 상압에서 약 3 시간 동안 에스테르화 반응을 진행하였다.
상기 에스테르화 반웅에서 수득한 생성물을 약 295°C의 온도 및 0.5 내지 1 torr의 압력 하에서 약 150분 동안 중축합 반웅시켜 PCT 수지를 얻었다. 그리고, 상기 PCT 수지를 펠렛타이징 공정을 거쳐 펠렛 형태로 제조하였다. 이후 펠렛 형태의 PCT 수지를 추가로 고상 중합하여 분자량을 증가시킨 PCT 수지 (B- 5)를 얻었다.
― 제조예 8: 저융점을 갖는 PCT수자 (B-6)의 제조
제조예 7 에서 cis 이성질체를 40mol%로 포함하는 1,4- 사이클로핵산디메탄을 (CHDM) 55kg 대신 cis 이성질체를 50mol%로 포함하는 1,4- 사이클로핵산디메탄올 (CHDM) 55kg 을 사용한 것을 제외하고, 제조예 7 과 동일한 방법으로 PCT 수지 (Bᅳ 6)를 얻었다. 하기 표 1 에 제조예 1 내지 8 에서 제조한 PCT 수지의 원료와 고유점도 및 융점을 나타내었다. ᅳ 표 1]
디카복실산 디올 화합물 고유점도 [d 융점
TPA IPA CHDM cis-이성질체 공단량체 공단량체 함량 L/g] [°C]
[kg] - [kg] [kg] 함량 [mo ] [kg]
제조예 1 48 0 55 25 - 0 0.65 295 제조예 2 48 0 55 25 - 0 0.80 294 제조예 3 43 5 55 30 - 0 " 0.81 275 제조예 4 48 0 50 30 EG 2.4 0.78 276 제조예 5 48 0 50 30 PD0 2.9 0.79 277 제조예 6 48 0 52.25 30 Polyo l 19.07 0.77 270 제조예 7 48 0 55 40 - 0 0.82 275 제조예 8 48 0 55 50 - 0 0.84 265
TPA : 테레프탈산
IPA: 이소프탈산
CHDM : 1 , 4—사이클로핵산디메탄올
c i s-이성질체 함량: CHDM 내의 c i sᅳ이성질체의 함량
EG: 에틸렌 글리콜
PD0 : 1, 3-프로판디올
polyol : 수평균분자량이 l , 000g/mol인 폴리프로필렌 글리콜 실시예 1내ᅵ지 18및 비교예 1내지 2: PCT수지 조성물의 제조
하기 표 2에 기재된 조성과 같이 1종 또는 2종의 PCT 수지에 유리섬유, 산화안정제 (ADEKA사의 A0— 60 ) 및 활제 (Sinwon chemi cal사의 Hi-Lube)를 배합하고, 이를 이축흔련압출기 ( Φ : 40隱, L/D = 44)를 사용하여 균일하게 흔련하고 압출하여 펠렛을 제조하였다.
상기 펠렛을 약 295°C로 가열된 사출기에 투입하고, 용융된 수지 조성물을 150°C로 세팅된 ASTM 인장 시편 금형에 사출하여 기계적 특성 평가용 시편을 제조하였다. .
【표 2】
PCT 수지 유리 산화 활제
A-1. A-2 B-1 B— 2 B-3 B-4 B-5 B-6 섬유 안정제 비교예 1 100 0 0 0 0 0 0 0 30 0.2 0.2 비교예 2 0 100 0 0 0 - 0 0 0 30 0.2 0.2 실시예 1 90 0 10 0 0 0 0 0 . 30 0.2 0.2 실시예 2 80 0 20 0 0 0 0 0 30 0.2 0.2 실시예- 3 70 0 30 0 0 0 0 0 30 0.2 0.2 실시예 4 90 0 0 10 0 0 0 0 30 0.2 0.2 실시예 5 80 0 0 20 0 0 0 0 30 0.2 0.2 실시예 6 70 0 0 30 0 0 0 0 30 0.2 0.2 실시예 7 90 0 0 0 10 0 0 0 .30 0.2 0.2 실시예 8 80 0 0 0 20 0 0 0 30 0.2 0.2 실시예 9 70 0 0 0 30 0 0 0 30 0.2 0.2 실시예 10 90 0 0 0 0 10 0 0 30 0.2 0.2 실시예 11 80 0 0 0 0 20 0 0 30 0.2 0.2 실시예 12 70 0 0 0 0 30 0 0 30 0.2 0.2 실시예 13 90 0 0 0 0 0 10 0 30 0.2 0.2 실시예 14 80 0 0 0 0 0 20 0 30 0.2 0.2 실시예 15 70 0 0 0 0 0 30 0 30 0.2 0.2 실시예 16 90 0 0 0 0 0 0 10 30 0.2 0.2 실시예 17 80 0 0 0 0 0 0 20 30 . 0.2 0.2 실시예 18 70 0 0 0 0 0 0 30 30 0.2 0.2
(단위 : 중량부) 실시예 19 내지 24: PCT수지 조성물의 제조
하기 표 3에 기재된 조성과 같이 2종의 PCT 수지에 PCT 수지 100 중량부에 대하여 유리섬유 30 중량부, 산화안정제 (ADEKA사의 A0-60) 0.2 중량부 및 활제 (Sinwon chemi ca l사의 Hi-Lube) 0.2 중량부를 배합하고, 표 3에 기재된 제 1 기타 첨가제 (Arkema사의 AX8900) 4 중량부 및 제 2 기타 첨가제 (Clar i ant사의 Li comont . NaVlOl) 4 중량부를 배합한 후, 이를 이축흔련압출기 ( Φ : 40mm , L/D = 44)를 사용하여 균일하게 흔련하고 압출하여 펠렛을 제조하였다.
상기 펠렛을 약 295 °C로 가열된 사출기에 투입하고, 용융된 수지 조성물을 150°C로 세팅된 ASTM 인장 시편 금형에 사출하여 기계적 특성 평가용 시편을 제조하였다.
【표 3】
PCT 수지 O pi o
ΤΓ Η σ ΤΓ 제 1첨가제 제 2첨가제
A-1 B-1 B— 2 B-3 B-4 B-5 B-6
실시예 19 80 20 0 0 0 0 0 30 4 4 실시예 20 80 0 20 0 0 0 0 30 4 4 실시예 21 80 0 0 20 0 0 0 30 4 4 실시예 22 80 0 0 0 20 0 0 30 4 4 실시예 23 80 0 0 0 0 20 0 30 4 4 실시예 24 80 0 0 0 0 0' 20 30 4 4
(단위 : 중량부) 시험예: PCT수지 조성물의 물성 평가
상기 실시예 1 내지 24 및 비교예 1 내지 2에서 제조한 PCT 수지 조성물을 이용하여 다음과 같은 방법으로 물성을 평가하고 그 결과를 표 4에 기재하였다.
( 1) 최소냉각시간: 실시예 1 내지 24 및 비교예 1 내지 2의 시편 제조시, ASTM 인장 시편 금형에 사출된 조성물이 고화되어 .금형으로부터 안정적으로 분리되는 최단 시간 (사출 넁각 시간)을 측정하였다.
(2) 사출압력: 실시예 1 내지 24 및 비교예 1 내지 2에서 제조된 펠렛 각각을 사출기에 투입하고, 시편을 제조하기 위하여 용융된 수지 조성물을 금형에 사출하여 용융된 수지 조성물이 금형에 채워질 때 발생되는 최대 용융 수지 조성물의 압력을 측정하였다. 용융된 수지 조성물의 흐름성이 좋을수록 낮은 사출 압력이 측정된다.
(3) 인장강도 및 인장신율: ASTM D638 방법에 의하여 측정되었다.
(4) 층격강도: 25°C의 온도 하에서 ASTM D256 방법에 의하여 Izod notched type으로 측정되었으며, 이때 사용된 시편의 두께는 1/8"이었다.
【표 4】
최소냉각시간 [초] 사출압력 [bar ] 인장강도 [kgf/cm2] 인장신율 [« 충격강도 [J/m] 비교예 1 15 35 750 1.5 35 비교예 2 17 60 970 1.9 34 실시예 1 16 29 850 2.3 39 실시예 2 19 32 950 3.0 45 실시예 3 20 38 990 4 :6 . 60 실시예 4 ' 17 33 810 2.4 37 실시예 5 19 31 930 3.6 42 실시예 6 21 37 1010 4.9 85 실시예 7 15 28 790 1.9 42 실시예 8 18 - 31 930 2.8 54 실시예 9 21 34 1090 4.5 77 실시예 10 16 30 830 2.5 47 실시예 11 19 35 960 . 4.3 62 실시예 12 20 38 1150 7.2 97 ' 실시예 13 17 19 790 1.9 43 실시예 14 18 20 970 · 2.8 55 실시예 15 20 24 ' 1090 4.0 70 실시예 16 16 - 20 830 2.2 48 실시예 17 18 23. 950 3. 1 64 실시예 18 21 24 1150 4.3 79 실시예 19 19 19 1195 3.9 69 실시예 20 15 20 1300 4.2 72 ' 실시예 21 16 24 1270 5.3 87 . 실시예 22 16 20 1380 6.7 95 실시예 23 17 23 1285 5.5 76 실시예 24 18- 24 1350 6. 1 69 상기 표 4를 참고하면, 실시예 1 내지 24는 비교예 1 내지 2와 비슷한 수준의 사출 냉각 시간 및 사출압력을 보이면서도, 비교예 1 내지 2 대비 개선된 인장강도, 인장신율 및 충격강도를 보이는 성형품을 제공할 수 있음이 확인된다.

Claims

【특허청구범위】
【창구항 1】
결정 용융점이 295 °C 이상이고 고유점도가 0 .75dL/g 이하인 제 1 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지; 및
결정 용융점이 280 °C 이하이고 고유점도가 0 . 75dL/g 이상인 제 2 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지를 포함하는 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물.
【청구항 2】
게 1항에 있어서, 수지 전체 중량에 대하여 . 50 내지 95 중량 %의 제 1 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 및 5 내지 50 중량 %의 제 2 폴리사이클로핵실렌디메틸렌 . 테레프탈레이트 수지를 포함하는 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물.
【청구항 3】
제 1항에 있어서, 상기 제 1 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지는 t rans 이성질체 비율이 70mo H¾ 이상인 사이클로핵산디메탄올을 사용하여 중합된 것인 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물.
【청구항 4】 '
게 1항에 있어서, 상기 제 2 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지는 t rans 이성질체 비율이 65mo l % 이하인 사이클로핵산디메탄을을 사용하여 중합된 것인 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물. .
【청구항 5】
제 1항에 있어서, 상기 제 2 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지는 이소프탈산, 이소프탈산 에스테르 화합물, 에틸렌 글리콜, 1 , 3- 프로판디을, 1 , 4-부탄디올 및 분자량이 100 내지 3000인 폴리프로필렌 글리콜로 이루어진 군에서 선택되는 1종 이상의 공단량체를 사용하여 중합된 것인 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물.
【청구항 6】
게 1항에 있어서, 층전제, 안료, 산화안정제, 활제, 강화제 및 핵제로 이루어지는 군으로부터 선택되는 1종 이상의 첨가제를 추가로 포함하는 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물. 【청구항 7】
거 16항에 있어서, 상기 첨가제는 전체 수지 100 중량부에 대하여 20 내지0 중량부로 포함되는 폴리사이클로핵실렌디메틸렌 테레프탈레이트 수지 조성물. [청구항 8】
제 1항에 따른 수지 조성물로부터 형성된 성형품 .
PCT/KR2014/012914 2013-12-27 2014-12-26 폴리사이클로헥실렌디메틸렌 테레프탈레이트 수지 조성물 WO2015099494A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130166207 2013-12-27
KR10-2013-0166207 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015099494A1 true WO2015099494A1 (ko) 2015-07-02

Family

ID=53479254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012914 WO2015099494A1 (ko) 2013-12-27 2014-12-26 폴리사이클로헥실렌디메틸렌 테레프탈레이트 수지 조성물

Country Status (3)

Country Link
KR (1) KR102169415B1 (ko)
TW (1) TWI571488B (ko)
WO (1) WO2015099494A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362663B1 (ko) * 2017-09-14 2022-02-11 에스케이케미칼 주식회사 폴리에스터 수지 조성물
KR20190115965A (ko) * 2018-04-04 2019-10-14 에스케이케미칼 주식회사 폴리사이클로헥실렌디메틸렌테레프탈레이트 수지, 이의 제조방법 및 이를 포함하는 섬유
KR102485784B1 (ko) 2020-07-21 2023-01-09 한국화학연구원 폴리에스터-나노셀룰로오스 복합소재 및 이의 제조방법
KR102553959B1 (ko) * 2021-07-05 2023-07-11 에스케이마이크로웍스 주식회사 폴리에스테르 필름, 이를 포함하는 열수축성 라벨 및 포장재

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100904A (ja) * 1993-10-01 1995-04-18 Toray Ind Inc ポリエステル中空成形品
US5804617A (en) * 1995-09-21 1998-09-08 Eastman Chemical Company Poly(cyclohexylenedimethylene terephthalate) copolyester molding compositions
JP2000178349A (ja) * 1998-12-18 2000-06-27 Mitsubishi Chemicals Corp ポリシクロヘキサンジメチレンテレフタレートの製造方法
KR20040044917A (ko) * 2001-09-14 2004-05-31 이스트만 케미칼 컴파니 결정화 거동이 개선된 폴리에스테르 및 이로부터 제조된압출 취입 성형 제품
KR20120093936A (ko) * 2009-10-09 2012-08-23 이스트만 케미칼 컴파니 투명한 부품을 성형하기 위한 폴리에스터 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05194840A (ja) * 1992-01-21 1993-08-03 Toray Ind Inc 樹脂組成物
EP1228130A2 (en) * 1999-09-23 2002-08-07 Eastman Chemical Company Improved pct formulations containing halogenated imides, sodium antimonate, and reinforcing fibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100904A (ja) * 1993-10-01 1995-04-18 Toray Ind Inc ポリエステル中空成形品
US5804617A (en) * 1995-09-21 1998-09-08 Eastman Chemical Company Poly(cyclohexylenedimethylene terephthalate) copolyester molding compositions
JP2000178349A (ja) * 1998-12-18 2000-06-27 Mitsubishi Chemicals Corp ポリシクロヘキサンジメチレンテレフタレートの製造方法
KR20040044917A (ko) * 2001-09-14 2004-05-31 이스트만 케미칼 컴파니 결정화 거동이 개선된 폴리에스테르 및 이로부터 제조된압출 취입 성형 제품
KR20120093936A (ko) * 2009-10-09 2012-08-23 이스트만 케미칼 컴파니 투명한 부품을 성형하기 위한 폴리에스터 조성물

Also Published As

Publication number Publication date
KR102169415B1 (ko) 2020-10-23
TWI571488B (zh) 2017-02-21
KR20150077359A (ko) 2015-07-07
TW201542676A (zh) 2015-11-16

Similar Documents

Publication Publication Date Title
EP0748356B1 (en) High impact strength articles from polyester blends
JP6378211B2 (ja) 耐衝撃性または耐熱性に優れた高分子樹脂組成物
JP5396690B2 (ja) 無機強化ポリエステル系樹脂組成物及びそれを用いた成形品の表面外観改良方法。
WO2003054084A1 (fr) Composition de resine thermoplastique
KR20130044867A (ko) 폴리에스테르/폴리카보네이트 블렌드
JP2012512937A (ja) 1,4−シクロヘキサンジメタノールおよび2,2,4,4−テトラメチルシクロブタン−1,3−ジオールを含有するテレフタレートポリエステルの混和性ブレンド物
JP6667253B2 (ja) センターフェイシア用耐薬品性高分子樹脂組成物
KR100856747B1 (ko) 투명성과 내열성이 우수한 폴리에스테르/폴리카보네이트블렌드
WO2015099494A1 (ko) 폴리사이클로헥실렌디메틸렌 테레프탈레이트 수지 조성물
WO2001025332A1 (fr) Composition de resine de polyester ignifuge, article moule a base de cette composition et procede de moulage de cet article
JP7288752B2 (ja) 熱可塑性樹脂組成物及び成形体
JP3500279B2 (ja) ポリエステル樹脂組成物及びその成形品
KR102362662B1 (ko) 폴리에스터 수지 조성물
JP2017172794A (ja) 樹脂ベルト材料用熱可塑性ポリエステルエラストマ樹脂組成物および樹脂ベルト成形体
CN111094451B (zh) 无机强化热塑性聚酯树脂组合物
JP2013540875A (ja) 熱的安定性および色安定性に優れたポリエステル/ポリカーボネートブレンド
KR101405869B1 (ko) 색상 안정성이 우수한 폴리에스테르/폴리카보네이트블렌드의 제조방법
WO2017119647A1 (ko) 금속 접착용 고분자 수지 조성물, 이를 이용한 금속-수지 복합체 및 물품
KR102362663B1 (ko) 폴리에스터 수지 조성물
WO2019188285A1 (ja) 樹脂ベルト材料用熱可塑性ポリエステルエラストマ樹脂組成物および樹脂ベルト成形体
KR101786185B1 (ko) 폴리에스테르 수지 조성물 및 이를 포함하는 성형품
EP0020739A4 (en) THERMOPLASTIC MOLDING COMPOSITIONS.
JP2845444B2 (ja) ウエルド部を有する成形品
WO2002077062A1 (fr) Polyester transparent et souple
WO2023167108A1 (ja) 熱可塑性ポリエステルエラストマー樹脂組成物及びそれからなる成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875700

Country of ref document: EP

Kind code of ref document: A1