WO2023167108A1 - 熱可塑性ポリエステルエラストマー樹脂組成物及びそれからなる成形体 - Google Patents

熱可塑性ポリエステルエラストマー樹脂組成物及びそれからなる成形体 Download PDF

Info

Publication number
WO2023167108A1
WO2023167108A1 PCT/JP2023/006798 JP2023006798W WO2023167108A1 WO 2023167108 A1 WO2023167108 A1 WO 2023167108A1 JP 2023006798 W JP2023006798 W JP 2023006798W WO 2023167108 A1 WO2023167108 A1 WO 2023167108A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyester
polyester elastomer
resin composition
elastomer resin
epoxy compound
Prior art date
Application number
PCT/JP2023/006798
Other languages
English (en)
French (fr)
Inventor
彩乃 中島
卓也 赤石
Original Assignee
東洋紡エムシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡エムシー株式会社 filed Critical 東洋紡エムシー株式会社
Publication of WO2023167108A1 publication Critical patent/WO2023167108A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic polyester elastomer resin composition that achieves both excellent fluidity and hydrolysis resistance and has excellent mechanical properties. More specifically, it relates to a thermoplastic polyester elastomer resin composition which is excellent in retention stability while maintaining fluidity, and which has good hydrolysis resistance and mechanical properties.
  • Thermoplastic polyester elastomers have properties as elastomers such as flexibility, impact resilience, low-temperature properties, and bending fatigue resistance, while also having particularly excellent heat resistance and oil resistance among thermoplastic elastomers.
  • elastomers such as flexibility, impact resilience, low-temperature properties, and bending fatigue resistance, while also having particularly excellent heat resistance and oil resistance among thermoplastic elastomers.
  • it can be molded by various methods such as injection molding, extrusion molding, blow molding, and compression molding, it can be used in a wide range of applications such as automobile parts, electrical and electronic parts, textiles, sheets/films, bottles/containers, etc. It is used.
  • thermoplastic polyester resins exhibit characteristics that are prone to deterioration due to hydrolysis due to the influence of moisture due to the resin skeleton. Therefore, as a means for improving hydrolysis resistance, a method of blocking terminal functional groups (carboxyl groups and/or hydroxyl groups) of a polymer with a reactive additive is generally used.
  • Patent Documents 1 and 2 disclose thermoplastic polyester elastomers in which a stabilizer having a tertiary amine skeleton and a difunctional or higher epoxy compound capable of reacting with terminal functional groups of the copolymer are blended with a polyester type block copolymer.
  • a resin composition has been proposed.
  • this method suppresses volatiles during heating and improves hydrolysis resistance and heat resistance, the amount of terminal functional groups in the resin composition and the amount of unreacted epoxy value contained in the composition are controlled. Therefore, it is not sufficiently satisfactory in terms of fluidity and retention stability.
  • the present invention has been invented in view of the current state of the prior art, and the purpose thereof is to achieve both fluidity including excellent retention stability and hydrolysis resistance, and to produce a thermoplastic resin having excellent mechanical properties.
  • An object of the present invention is to provide a polyester elastomer resin composition.
  • thermoplastic polyester elastomer resin and a thermoplastic polyester elastomer resin composition that achieve both fluidity, hydrolysis resistance and mechanical properties, and as a result, have completed the present invention.
  • a thermoplastic polyester elastomer resin composition obtained by reacting a thermoplastic polyester elastomer with an epoxy compound that is liquid at 23° C.
  • the acid value and the epoxy value (contained in the resin composition) of the resin composition are By setting the unreacted epoxy value) to a specific range, a thermoplastic polyester elastomer resin composition having excellent retention stability while maintaining fluidity, and having good hydrolysis resistance and mechanical properties is produced. found to be obtainable.
  • thermoplastic polyester elastomer resin composition obtained by reacting a thermoplastic polyester elastomer (A) with an epoxy compound (B) that is liquid at 23°C, wherein the thermoplastic polyester elastomer resin composition has an acid value of 25 eq. /ton or less, the epoxy value of the thermoplastic polyester elastomer resin composition is 10 eq/ton or more, and the epoxy value is greater than the acid value.
  • thermoplastic polyester elastomer resin composition 0.5 to 6 parts by mass of the portion derived from the epoxy compound (B), which is liquid at 23°C, per 100 parts by mass of the portion derived from the thermoplastic polyester elastomer (A).
  • thermoplastic polyester elastomer resin composition that achieves both fluidity and hydrolysis resistance, including excellent retention stability, and has excellent mechanical properties.
  • thermoplastic polyester elastomer (A) The thermoplastic polyester elastomer (A) is selected from polyester hard segments composed of aromatic dicarboxylic acids and aliphatic and/or alicyclic diols, aliphatic polyethers, aliphatic polyesters and aliphatic polycarbonates. At least one soft segment is attached.
  • the thermoplastic polyester elastomer (A) is a group consisting of a hard segment composed of a crystalline polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and an aliphatic polyether, an aliphatic polyester and an aliphatic polycarbonate. It is preferable that the main constituent is at least one soft segment selected from, and the content of the soft segment component is preferably 95 to 5% by mass. The content of the soft segment component is more preferably 90 to 10% by mass, more preferably 85 to 15% by mass, particularly preferably 75 to 25% by mass, most preferably 60 to 30% by mass. . Two or more thermoplastic polyester elastomers (A) having different soft segment component contents may be used in combination to adjust the soft segment content as described above.
  • thermoplastic polyester elastomer (A) ordinary aromatic dicarboxylic acids are widely used as the aromatic dicarboxylic acid constituting the polyester of the hard segment, and are not particularly limited. is desirable. Among the isomers of naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid is preferred. Other acid components include aromatic dicarboxylic acids such as diphenyldicarboxylic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrophthalic anhydride, succinic acid, glutaric acid, and adipine.
  • aromatic dicarboxylic acids such as diphenyldicarboxylic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid
  • alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid
  • Acids aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, and hydrogenated dimer acid. These other acid components are used within a range that does not greatly lower the melting point of the thermoplastic polyester elastomer (A), and the amount thereof is preferably less than 35 mol %, more preferably less than 30 mol % of the total acid components.
  • thermoplastic polyester elastomer (A) general aliphatic or alicyclic diols are widely used as the aliphatic or alicyclic diols constituting the polyester of the hard segment, and are not particularly limited. is preferably an alkylene glycol. Specific examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol and 1,4-cyclohexanedimethanol. Most preferred is either 1,4-butanediol or 1,4-cyclohexanedimethanol.
  • the components constituting the hard segment polyester include butylene terephthalate units (units composed of terephthalic acid and 1,4-butanediol) or butylene naphthalate units (2,6-naphthalenedicarboxylic acid and 1,4-butanediol unit) is preferable from the viewpoint of physical properties, moldability and cost performance.
  • the soft segment of the thermoplastic polyester elastomer (A) used in the present invention is at least one selected from aliphatic polyethers, aliphatic polyesters, and aliphatic polycarbonates.
  • Aliphatic polyethers include poly(ethylene oxide) glycol, poly(propylene oxide) glycol, poly(tetramethylene oxide) glycol, poly(hexamethylene oxide) glycol, poly(trimethylene oxide) glycol, co-polymer of ethylene oxide and propylene oxide. polymers, ethylene oxide adducts of poly(propylene oxide) glycol, copolymers of ethylene oxide and tetrahydrofuran, and the like. Among these, poly(tetramethylene oxide) glycol and ethylene oxide adducts of poly(propylene oxide) glycol are preferred from the viewpoint of elastic properties.
  • Aliphatic polyesters include poly( ⁇ -caprolactone), polyenantholactone, polycaprylollactone, and polybutylene adipate. Among these, poly( ⁇ -caprolactone) and polybutylene adipate are preferred from the viewpoint of elastic properties.
  • the aliphatic polycarbonate preferably consists mainly of aliphatic diol residues having 2 to 12 carbon atoms.
  • these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- octanediol and the like.
  • aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of the flexibility and low-temperature properties of the resulting thermoplastic polyester elastomer.
  • These components may be used alone, or two or more of them may be used in combination according to the cases described below.
  • an aliphatic polycarbonate diol having good low-temperature properties which constitutes the soft segment of the thermoplastic polyester elastomer (A) used in the present invention
  • those having a low melting point (for example, 70° C. or lower) and a low glass transition temperature are used. preferable.
  • an aliphatic polycarbonate diol composed of 1,6-hexanediol, which is used to form the soft segment of a thermoplastic polyester elastomer has a low glass transition temperature of around -60°C and a melting point of around 50°C. Good low temperature characteristics are obtained.
  • an aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition point higher than that of the original aliphatic polycarbonate diol. is slightly higher, but the melting point is lowered or becomes amorphous, so it corresponds to an aliphatic polycarbonate diol with good low temperature properties.
  • an aliphatic polycarbonate diol composed of 1,9-nonanediol and 2-methyl-1,8-octanediol has a melting point of about 30°C and a glass transition temperature of about -70°C, which are sufficiently low. It corresponds to an aliphatic polycarbonate diol with good properties.
  • aliphatic polyethers are preferable as the soft segment of the thermoplastic polyester elastomer (A) used in the present invention.
  • thermoplastic polyester elastomer (A) used in the present invention is preferably a copolymer containing terephthalic acid, 1,4-butanediol, and poly(tetramethylene oxide) glycol as main components.
  • terephthalic acid is preferably 40 mol% or more, more preferably 70 mol% or more, further preferably 80 mol% or more, 90 mol % or more is particularly preferred.
  • the total amount of 1,4-butanediol and poly(tetramethylene oxide) glycol in the glycol component constituting the thermoplastic polyester elastomer (A) is preferably 40 mol% or more, more preferably 70 mol% or more. It is preferably 80 mol % or more, and particularly preferably 90 mol % or more.
  • the poly(tetramethylene oxide) glycol preferably has a number average molecular weight of 500-4000. If the number average molecular weight is less than 500, it may be difficult to develop elastomeric properties. On the other hand, if the number average molecular weight exceeds 4,000, the compatibility with the hard segment component may be lowered, making block-like copolymerization difficult.
  • the number average molecular weight of poly(tetramethylene oxide) glycol is more preferably 800 or more and 3000 or less, further preferably 1000 or more and 2500 or less.
  • the reduced viscosity of the thermoplastic polyester elastomer (A) is preferably 0.5 to 3.5 dl/g, more preferably 1.0 to 3.0 dl/g, from the viewpoint of maximizing the effects of the present invention.
  • thermoplastic polyester elastomer (A) can be produced by a conventionally known method.
  • a lower alcohol diester of a dicarboxylic acid, an excessive amount of a low molecular weight glycol, and a soft segment component are transesterified in the presence of a catalyst, and the resulting reaction product is polycondensed.
  • a method of subjecting the segment components to an esterification reaction in the presence of a catalyst and polycondensing the resulting reaction product can be employed.
  • the epoxy compound (B) used in the present invention is a liquid compound at room temperature (23°C).
  • the epoxy compound (B) is a compound having an epoxy group capable of reacting with the terminal functional group of the thermoplastic polyester elastomer (A).
  • the terminal functional groups of the thermoplastic polyester elastomer (A) are carboxyl groups and/or hydroxyl groups. Hereinafter, it may be referred to as a liquid epoxy compound (B).
  • Epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, glycerin diglycidyl ether.
  • Aliphatic epoxy compounds such as glycidyl ether, trimethylolpropane triglycidyl ether, diglycerin tetraglycidyl ether, dicyclopentadiene dioxide, epoxycyclohexenecarboxylic acid ethylene glycol diester, 3,4-epoxycyclohexenylmethyl-3'-4' - alicyclic epoxy compounds such as epoxycyclohexene carboxylate, 1,2:8,9-diepoxylimonene, hydroquinone, resorcinol, bisphenol A, bisphenol F, 4,4'-dihydroxybiphenyl, tetrabromobisphenol A, 2, 2-Bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane and aromatics obtained by reaction of polyphenolic compounds such as glycidyl ether of 1,6-dihydroxynaphthalene with epichlorohydrin Epoxy compounds and hydrogenated compounds thereof, aromatic or hetero
  • the liquid epoxy compound (B) is preferably a bifunctional epoxy compound from the viewpoint of the presence or absence of chain extension reaction and reaction control.
  • a monofunctional epoxy compound has a small effect of chain extension, and a trifunctional or more functional epoxy compound may be difficult to control reaction and maintain fluidity.
  • liquid epoxy compound (B) a bisphenol F type diepoxy compound having an epoxy equivalent of 3000 to 10000 eq/t (epoxy value of 100 to 333 g/eq) is particularly preferable.
  • the bisphenol F-type diepoxy compound has a lower viscosity than other epoxy compounds, and while producing the effect of chain extension, the epoxy value existing unreacted in the thermoplastic polyester elastomer resin composition is kept within a specific range. As a result, a dramatic improvement in hydrolysis resistance can be achieved while maintaining fluidity and mechanical strength.
  • the mechanism by which the liquid epoxy compound (B) develops fluidity when a large amount of terminal acid value remains in the thermoplastic polyester elastomer (A), the chain extension effect is exhibited by the reaction of the two, and the thermoplastic polyester elastomer is gradually formed. As the terminal acid value of (A) is blocked, a large amount of unreacted liquid epoxy compound remains in the resin composition. At this time, it is considered that fluidity is developed due to the plasticizing effect of the liquid epoxy compound in the resin composition.
  • the polyester elastomer resin composition tends to have reduced mechanical properties.
  • the mechanical properties do not deteriorate. It is presumed that this effect is due to the liquid epoxy compound (B) allowing the reaction to proceed when the polymer chain of the thermoplastic polyester elastomer (A) is cut during melting, and the fact that it is incorporated in the composition. be done.
  • the content is preferably 0.5 to 6 parts by mass, more preferably 0.5 to 6 parts by mass per 100 parts by mass of the thermoplastic polyester elastomer (A). is 0.7 to 5 parts by mass, more preferably 0.8 to 4 parts by mass, and particularly preferably 1.5 to 3.5 parts by mass. If it is less than 0.5 parts by mass, the amount of the remaining epoxy compound may be small and the fluidity may not be sufficiently developed. may occur.
  • thermoplastic polyester elastomer resin composition of the present invention contains a reaction product obtained by reacting the thermoplastic polyester elastomer (A) with the liquid epoxy compound (B), which has not reacted with the liquid epoxy compound (B). It may contain a free thermoplastic polyester elastomer (A) and a free liquid epoxy compound (B). This is because it is difficult to completely react the thermoplastic polyester elastomer (A) and the liquid epoxy compound (B).
  • thermoplastic polyester elastomer (A) the liquid epoxy compound (B) described above is such that in the thermoplastic polyester elastomer resin composition, the liquid epoxy compound (B ) is considered in terms of the mass derived from In the present invention, the point is to select the liquid epoxy compound (B) described above, adopt the production method described later, and dare to leave unreacted epoxy groups in the thermoplastic polyester elastomer resin composition.
  • a catalyst is efficient for the purpose of promoting the reaction between the liquid epoxy compound (B) and the thermoplastic polyester elastomer (A).
  • a catalyst any tertiary amines, imidazoles, and phosphorus compounds commercially available as curing accelerators for epoxy compounds can be blended.
  • thermoplastic polyester elastomer resin composition of the present invention may contain general-purpose antioxidants such as aromatic amine-based, hindered phenol-based, phosphorus-based, and sulfur-based antioxidants.
  • thermoplastic polyester elastomer resin composition of the present invention requires weather resistance, it is preferable to add an ultraviolet absorber and/or a hindered amine compound.
  • an ultraviolet absorber and/or a hindered amine compound for example, benzophenone-based, benzotriazole-based, triazole-based, nickel-based, and salicyl-based light stabilizers can be used.
  • additives can be added to the polyester elastomer resin composition of the present invention.
  • resins other than the thermoplastic polyester elastomer (A), inorganic fillers, stabilizers, and anti-aging agents can be added as long as the features of the present invention are not impaired.
  • coloring pigments, inorganic and organic fillers, coupling agents, tackiness improvers, quenchers, stabilizers such as metal deactivators, flame retardants, and the like can also be added.
  • the total content of the thermoplastic polyester elastomer (A) and the liquid epoxy compound (B) in the thermoplastic polyester elastomer resin composition of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more. , more preferably 95% by mass or more.
  • the acid value of the thermoplastic polyester elastomer resin composition of the present invention is 25 eq/t or less.
  • the acid value is preferably 20 eq/t or less, more preferably 15 eq/t or less, even more preferably 10 eq/t or less.
  • the lower limit of acid value is 0 eq/t. The smaller the acid value, the better the hydrolysis resistance can be expected.
  • the acid value can be measured by the method described in the Examples section below.
  • the epoxy value of the thermoplastic polyester elastomer resin composition of the present invention is 10 eq/t or more.
  • the epoxy value is preferably 20 eq/t or more, more preferably 30 eq/t or more, and even more preferably 45 eq/t or more.
  • the upper limit of the epoxy value is about 130 eq/t.
  • the liquid epoxy compound (B) acts as a plasticizer during melt molding and exhibits fluidity.
  • the epoxy value can be measured by the method described in the Examples section below.
  • the epoxy value of the thermoplastic polyester elastomer resin composition of the present invention is greater than the acid value.
  • the liquid epoxy compound (B) reacts with the acid terminal of the thermoplastic polyester elastomer (A), so the plasticizing effect cannot be exhibited. Since the reacted liquid epoxy compound (B) can exhibit a plasticizing effect on the thermoplastic polyester elastomer (A), both fluidity and hydrolysis resistance, including excellent retention stability, can be achieved.
  • a thermoplastic polyester elastomer resin composition having excellent mechanical properties can be obtained.
  • the difference between the epoxy value and the acid value is not particularly limited, it is preferably 5 eq/t or more, more preferably 20 eq/t or more, and even more preferably 40 eq/t or more.
  • the melt flow rate (according to JIS K7210) of the thermoplastic polyester elastomer resin composition of the present invention at 230°C and a load of 2.16 kg is preferably 2 g/10 min or more. More preferably, the melt flow rate is 3 g/10 min or more. The melt flow rate is preferably 15 g/10 min or less, more preferably 10 g/10 min or less.
  • thermoplastic polyester elastomer resin composition of the present invention As a method for producing the thermoplastic polyester elastomer resin composition of the present invention, a single-screw or twin-screw melt-kneader or a general thermoplastic resin mixer typified by a kneader-type heater is used. A method of melt-kneading, followed by pelletization by a granulation process can be mentioned. In the melt-kneading, it is not preferable to mix the thermoplastic polyester elastomer (A) and the liquid epoxy compound (B) before melt-kneading.
  • the liquid epoxy compound (B) By pre-mixing, the liquid epoxy compound (B) is given an excessive heat history, causing thermal deterioration of the liquid epoxy compound (B), reaction between the liquid epoxy compounds (B), and excessive thermoplastic polyester.
  • the elastomer (A) reacts with the liquid epoxy compound (B), and the desired acid value and epoxy value cannot be achieved. Therefore, it is preferable to blend the liquid epoxy compound (B) after melting the thermoplastic polyester elastomer (A). For example, in the case of a twin-screw melt kneader, it is preferable to charge the liquid epoxy compound (B) from another inlet after charging the thermoplastic polyester elastomer (A).
  • thermoplastic polyester elastomer resin composition of the present invention can be made into a molded article by a known molding method.
  • the molding method is not specified, and injection molding, blow molding, extrusion molding, foam molding, deformed molding, calender molding, and other various molding methods can be suitably used. Among them, injection molding is preferred.
  • thermoplastic polyester elastomer (A) A thermoplastic polyester elastomer (A-1) having a soft segment component content of 40.9% by mass using dimethyl terephthalate, 1,4-butanediol, and poly(tetramethylene oxide) glycol having a number average molecular weight of 1000 as raw materials. was synthesized. A thermoplastic polyester elastomer (A-2) having a soft segment component content of 47.1% by mass using dimethyl terephthalate, 1,4-butanediol, and poly(tetramethylene oxide) glycol having a number average molecular weight of 1500 as raw materials. was synthesized.
  • the acid value (eq/t) of the thermoplastic polyester elastomer (resin composition) was determined by dissolving 200 mg of a sample sufficiently dried to a moisture content of 0.1% by mass or less in 10 mL of hot benzyl alcohol, and obtaining a solution. After cooling, 10 mL of chloroform and phenol red were added, and the acid value (eq/t) was determined by a dissolution titration method in which titration was performed with a 1/25 N alcoholic potash solution (ethanol solution of KOH).
  • Epoxy value The epoxy value was quantified by 1 H-NMR measurement at a resonance frequency of 600 MHz.
  • the epoxy value was calculated from the ratio of the peak intensity derived from the epoxy detected at 2.8 ppm and the peak intensity derived from the thermoplastic polyester elastomer.
  • the peak strength derived from the thermoplastic polyester elastomer is derived from terephthalic acid, 1,4-butanediol, and poly(tetramethylene oxide) glycol in the thermoplastic polyester elastomer.
  • MFR melt flow rate
  • MFR initial MFR
  • ⁇ MFR -0.7 to 0.7 g / 10 min
  • MFR initial MFR
  • ⁇ MFR -1.0 to 1.0 g / 10 min (except for the case of ⁇ )
  • MFR (initial MFR) is less than 2 g/10 min
  • MFR (initial MFR) is 2 g/10 min or more but ⁇ MFR is outside the range of -1.0 to 1.0 g/10 min
  • thermoplastic polyester elastomer resin compositions of Examples have both excellent fluidity and hydrolysis resistance, and have excellent mechanical properties. Especially in Examples 2 to 6, in which the difference between the epoxy value and the acid value is 20 eq/t or more, it can be seen that the overall fluidity is even better.
  • thermoplastic polyester elastomer resin composition of the present invention has both excellent fluidity and hydrolysis resistance, and has excellent mechanical properties. It is suitable for various products such as sheets, bottles, containers, and other daily necessities. In particular, it can be applied to a wide range of applications, such as thin or large members that are easily affected by moisture and require fluidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、優れた滞留安定性を含めた流動性と耐加水分解性を両立し、優れた機械特性を有する熱可塑性ポリエステルエラストマー樹脂組成物であり、熱可塑性ポリエステルエラストマー(A)と23℃で液状のエポキシ化合物(B)が反応してなる熱可塑性ポリエステルエラストマー樹脂組成物であって、該熱可塑性ポリエステルエラストマー樹脂組成物の酸価が25eq/ton以下であり、かつ該熱可塑性ポリエステルエラストマー樹脂組成物のエポキシ価が10eq/ton以上であり、前記エポキシ価が前記酸価より大きい熱可塑性ポリエステルエラストマー樹脂組成物である。

Description

熱可塑性ポリエステルエラストマー樹脂組成物及びそれからなる成形体
 本発明は、優れた流動性と耐加水分解性を両立し、優れた機械特性を有する熱可塑性ポリエステルエラストマー樹脂組成物に関する。詳しくは、流動性を維持しながらも滞留安定性に優れ、かつ良好な耐加水分解性および機械物性を有する熱可塑性ポリエステルエラストマー樹脂組成物に関する。
 熱可塑性ポリエステルエラストマーは、柔軟性、反発弾性、低温特性、屈曲疲労性等のエラストマーとしての特性を有しながら、熱可塑性エラストマーの中でも特に優れた耐熱性、耐油性を有する。加えて、射出成形、押出成形、ブロー成形、圧縮成形等の様々な工法による成形加工が可能なことから、自動車部品および電気・電子部品、繊維、シート・フィルム、ボトル・容器等の幅広い用途に使用されている。
 熱可塑性ポリエステルエラストマーに限らず、熱可塑性ポリエステル系樹脂はその樹脂骨格より、水分の影響による加水分解での劣化が生じやすい特性を示す。そこで耐加水分解性を向上させる手段として、ポリマーの末端官能基(カルボキシル基及び/または水酸基)を反応性添加剤にて封鎖する方法が一般的に用いられている。
 例えば、特許文献1および2ではポリエステル型ブロック共重合体に対し、共重合体の末端官能基と反応しうる2官能以上のエポキシ化合物および3級アミン骨格を有する安定剤を配合する熱可塑性ポリエステルエラストマー樹脂組成物が提案されている。しかし、この方法では加熱時の揮発物の抑制や耐加水分化性および耐熱性は向上するものの、樹脂組成物の末端官能基量と組成物中に含まれる未反応のエポキシ価量が制御されていないことから、流動性や滞留安定性の面では十分に満足できるものではない。
特開2000-143950号公報 特許第3693152号公報
 本発明はかかる従来技術の現状に鑑み創案されたものであり、その目的とするところは優れた滞留安定性を含めた流動性と耐加水分解性を両立し、優れた機械特性を有する熱可塑性ポリエステルエラストマー樹脂組成物を提供することにある。
 本発明者は上記目的を達成するために、流動性と耐加水分解性および機械特性を両立する熱可塑性ポリエステルエラストマー樹脂、及び熱可塑性ポリエステルエラストマー樹脂組成物について鋭意検討した結果、本発明の完成に至った。詳しくは、熱可塑性ポリエステルエラストマーに、23℃雰囲気下にて液状であるエポキシ化合物を反応させた熱可塑性ポリエステルエラストマー樹脂組成物において、該樹脂組成物の酸価とエポキシ価(樹脂組成物中に含まれる未反応のエポキシ価量)を特定の範囲とすることで、流動性を維持しながらも滞留安定性に優れ、かつ良好な耐加水分解性および機械物性を有する熱可塑性ポリエステルエラストマー樹脂組成物が得られることが分かった。
 即ち、本発明は以下のとおりである。
[1] 熱可塑性ポリエステルエラストマー(A)と23℃で液状のエポキシ化合物(B)が反応してなる熱可塑性ポリエステルエラストマー樹脂組成物であって、該熱可塑性ポリエステルエラストマー樹脂組成物の酸価が25eq/ton以下であり、かつ該熱可塑性ポリエステルエラストマー樹脂組成物のエポキシ価が10eq/ton以上であり、前記エポキシ価が前記酸価より大きいことを特徴とする熱可塑性ポリエステルエラストマー樹脂組成物。
[2] 熱可塑性ポリエステルエラストマー樹脂組成物において、熱可塑性ポリエステルエラストマー(A)に由来する部分100質量部に対して、23℃で液状のエポキシ化合物(B)に由来する部分0.5~6質量部である、[1]に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
[3] 23℃で液状のエポキシ化合物(B)が二官能エポキシ化合物である[1]または[2]に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
[4] 230℃、2.16kg荷重におけるメルトフローレート(JIS K7210に準拠)が2g/10min以上である[1]~[3]のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物。
[5] [1]~[4]のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物からなる成形体。
 本発明により、優れた滞留安定性を含めた流動性と耐加水分解性を両立し、優れた機械特性を有する熱可塑性ポリエステルエラストマー樹脂組成物を提供することが出来る。
[熱可塑性ポリエステルエラストマー(A)]
 熱可塑性ポリエステルエラストマー(A)は、芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合されてなる。
 熱可塑性ポリエステルエラストマー(A)は、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成される結晶性ポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル及び脂肪族ポリカーボネートからなる群から選択される少なくとも1種のソフトセグメントとを主たる構成成分とすることが好ましく、前記ソフトセグメント成分の含有量が95~5質量%であることが好ましい。ソフトセグメント成分の含有量はより好ましくは90~10質量%であり、さらに好ましくは85~15質量%であり、特に好ましくは75~25質量%であり、最も好ましくは60~30質量%である。また、熱可塑性ポリエステルエラストマー(A)は、ソフトセグメント成分の含有量が異なる2種類以上のものを併用して、上述のソフトセグメント含有量となるように調整してもよい。
 熱可塑性ポリエステルエラストマー(A)において、ハードセグメントのポリエステルを構成する芳香族ジカルボン酸は通常の芳香族ジカルボン酸が広く用いられ、特に限定されないが、主たる芳香族ジカルボン酸としてはテレフタル酸又はナフタレンジカルボン酸であることが望ましい。ナフタレンジカルボン酸は、異性体の中では2,6-ナフタレンジカルボン酸が好ましい。その他の酸成分としては、ジフェニルジカルボン酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸などの脂環族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸、水添ダイマー酸などの脂肪族ジカルボン酸などが挙げられる。これらその他の酸成分は熱可塑性ポリエステルエラストマー(A)の融点を大きく低下させない範囲で用いられ、その量は全酸成分の35モル%未満が好ましく、より好ましくは30モル%未満である。
 また熱可塑性ポリエステルエラストマー(A)において、ハードセグメントのポリエステルを構成する脂肪族又は脂環族ジオールは一般の脂肪族又は脂環族ジオールが広く用いられ、特に限定されないが、主として炭素数2~8のアルキレングリコール類であることが望ましい。具体的にはエチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。1,4-ブタンジオール及び1,4-シクロヘキサンジメタノールのいずれかが最も好ましい。
 上記のハードセグメントのポリエステルを構成する成分としては、ブチレンテレフタレート単位(テレフタル酸と1,4-ブタンジオールからなる単位)あるいはブチレンナフタレート単位(2,6-ナフタレンジカルボン酸と1,4-ブタンジオールからなる単位)よりなるものが物性、成形性、コストパフォーマンスの点で好ましい。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントは、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種である。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、ポリ(トリメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、エチレンオキシドとテトラヒドロフランの共重合体などが挙げられる。これらの中でも、弾性特性の点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物が好ましい。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペートなどが挙げられる。これらの中でも、弾性特性の点から、ポリ(ε-カプロラクトン)、ポリブチレンアジペートが好ましい。
 脂肪族ポリカーボネートは、主として炭素数2~12の脂肪族ジオール残基からなるものであることが好ましい。これらの脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオールなどが挙げられる。特に、得られる熱可塑性ポリエステルエラストマーの柔軟性や低温特性の点から、炭素数5~12の脂肪族ジオールが好ましい。これらの成分は、以下に説明する事例に基づき、単独で用いてもよいし、必要に応じて2種以上を併用してもよい。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントを構成する、低温特性が良好な脂肪族ポリカーボネートジオールとしては、融点が低く(例えば、70℃以下)かつ、ガラス転移温度が低いものが好ましい。一般に、熱可塑性ポリエステルエラストマーのソフトセグメントを形成するのに用いられる1,6-ヘキサンジオールからなる脂肪族ポリカーボネートジオールは、ガラス転移温度が-60℃前後と低く、融点も50℃前後となるため、低温特性が良好なものとなる。その他にも、上記脂肪族ポリカーボネートジオールに、例えば、3-メチル-1,5-ペンタンジオールを適当量共重合して得られる脂肪族ポリカーボネートジオールは、元の脂肪族ポリカーボネートジオールに対してガラス転移点が若干高くなるものの、融点が低下もしくは非晶性となるため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。また、例えば、1,9-ノナンジオールと2-メチル-1,8-オクタンジオールからなる脂肪族ポリカーボネートジオールは、融点が30℃程度、ガラス転移温度が-70℃前後と十分に低いため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントとしては、本発明の課題を解決する観点から、脂肪族ポリエーテルが好ましい。
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、テレフタル酸、1,4-ブタンジオール、及びポリ(テトラメチレンオキシド)グリコールを主たる成分とする共重合体であることが好ましい。熱可塑性ポリエステルエラストマー(A)を構成するジカルボン酸成分中、テレフタル酸が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。熱可塑性ポリエステルエラストマー(A)を構成するグリコール成分中、1,4-ブタンジオールとポリ(テトラメチレンオキシド)グリコールの合計が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。
 前記ポリ(テトラメチレンオキシド)グリコールの数平均分子量は、500~4000であることが好ましい。数平均分子量が500未満であると、エラストマー特性を発現しにくい場合がある。一方、数平均分子量が4000を超えると、ハードセグメント成分との相溶性が低下し、ブロック状に共重合することが難しくなる場合がある。ポリ(テトラメチレンオキシド)グリコールの数平均分子量は、800以上3000以下であることがより好ましく、1000以上2500以下であることがさらに好ましい。
 熱可塑性ポリエステルエラストマー(A)の還元粘度は、本願発明の効果を最大限に発揮する観点から、0.5~3.5dl/gが好ましく、1.0~3.0dl/gがより好ましい。
 熱可塑性ポリエステルエラストマー(A)は、従来公知の方法で製造することができる。例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコール、およびソフトセグメント成分を触媒の存在下エステル交換反応せしめ、得られる反応生成物を重縮合する方法、ジカルボン酸と過剰量のグリコールおよびソフトセグメント成分を触媒の存在下エステル化反応せしめ、得られる反応生成物を重縮合する方法を採用することができる。
[エポキシ化合物(B)]
 本発明で使用するエポキシ化合物(B)は、室温(23℃)で液状の化合物である。エポキシ化合物(B)とは、前記熱可塑性ポリエステルエラストマー(A)の末端官能基と反応しうるエポキシ基を有する化合物である。前記熱可塑性ポリエステルエラストマー(A)の末端官能基とは、カルボキシル基及び/または水酸基である。以下、液状エポキシ化合物(B)と称することもある。
 エポキシ化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリセリンテトラグリシジルエーテル等の脂肪族エポキシ化合物、ジシクロペンタジエンジオキサイド、エポキシシクロヘキセンカルボン酸エチレングリコールジエステル、3,4-エポキシシクロヘキセニルメチル-3’-4’-エポキシシクロヘキセンカルボキシレート、1,2:8,9-ジエポキシリモネン等の脂環族エポキシ化合物、ヒドロキノン、レゾルシノール、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシビフェニル、テトラブロモビスフェノールA、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、および1,6-ジヒドロキシナフタレンのグリシジルエーテル等のポリフェノール化合物とエピクロルヒドリンとの反応によって得られる芳香族エポキシ化合物及びその水添化合物、フタル酸ジグリシジルエステル、トリグリシジルイソシアヌレート等の芳香族又は複素環式エポキシ化合物、シリコーンオイルの末端にエポキシ基を有する化合物やアルコキシシランとエポキシ基を有する化合物等が挙げられる。
 液状エポキシ化合物(B)とは、これらエポキシ化合物の中でも23℃雰囲気下にて固体ではなく、液状で存在する化合物を指す。
 液状エポキシ化合物(B)としては、鎖延長反応の有無と反応制御の観点より、2官能のエポキシ化合物であることが好ましい。単官能のエポキシ化合物は鎖延長の作用が小さく、3官能以上のエポキシ化合物では、反応制御および流動性保持が困難な場合がある。
 液状エポキシ化合物(B)としては、特にエポキシ当量が3000~10000eq/t(エポキシ価が100~333g/eq)であるビスフェノールF型ジエポキシ化合物が好ましい。ビスフェノールF型ジエポキシ化合物は、他のエポキシ化合物と比較して粘度が低く、鎖延長の作用を生じながら、熱可塑性ポリエステルエラストマー樹脂組成物中に未反応で存在するエポキシ価量を特定の範囲とすることで、流動性と機械強度を保持しながら耐加水分解性の飛躍的な向上を実現できる。液状エポキシ化合物(B)による流動性発現のメカニズムとしては、熱可塑性ポリエステルエラストマー(A)の末端酸価が多量に残存する場合には、両者の反応により鎖延長効果を示し、次第に熱可塑性ポリエステルエラストマー(A)の末端酸価が封鎖されるに従い、未反応の液状エポキシ化合物が樹脂組成物中に多く残存する。この際、樹脂組成物中での液状のエポキシ化合物の可塑化効果により、流動性が発現すると考えられる。
 驚くべきことに、熱可塑性ポリエステルエラストマー(A)と反応性を示さない、一般的な可塑剤を添加して流動性を発現した場合にはポリエステルエラストマー樹脂組成物の機械物性が低下する傾向を示すが、反応性の液状エポキシ化合物(B)による流動性付与においては機械物性の低下を示さない。この効果は、溶融時に熱可塑性ポリエステルエラストマー(A)のポリマー鎖が切断された場合に、液状エポキシ化合物(B)によって反応が進行しうることや、組成物中に組み込まれていることによると推定される。
 液状エポキシ化合物(B)を熱可塑性ポリエステルエラストマー(A)に添加する場合、含有割合は熱可塑性ポリエステルエラストマー(A)100質量部に対して0.5~6質量部であることが好ましく、より好ましくは0.7~5質量部であり、さらに好ましくは0.8~4質量部であり、特に好ましくは1.5~3.5質量部である。0.5質量部未満では残存エポキシ化合物量が少なく流動性の発現が不十分となる可能性がある一方で、6質量部超の添加では過疎化効果が顕著に働き、機械物性の低下等が生じる場合がある。
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物は、熱可塑性ポリエステルエラストマー(A)と液状エポキシ化合物(B)が反応して得られた反応物を含むものであるが、液状エポキシ化合物(B)と反応していない熱可塑性ポリエステルエラストマー(A)や遊離の液状エポキシ化合物(B)が含まれていても良い。これは、熱可塑性ポリエステルエラストマー(A)と液状エポキシ化合物(B)を完全に反応させることが、困難であるからである。上述した熱可塑性ポリエステルエラストマー(A)と液状エポキシ化合物(B)の含有量の関係は、熱可塑性ポリエステルエラストマー樹脂組成物中では、熱可塑性ポリエステルエラストマー(A)に由来する質量に対する液状エポキシ化合物(B)に由来する質量で考える。なお、本発明においては、上述した液状エポキシ化合物(B)を選択し、後述する製造方法も採用し、あえて熱可塑性ポリエステルエラストマー樹脂組成物中に未反応のエポキシ基を残すことがポイントである。
 本願発明の達成には必須では無いが、液状エポキシ化合物(B)と熱可塑性ポリエステルエラストマー(A)の反応を促進せしめる目的において、触媒の添加が効率的である。触媒としては、エポキシ化合物の硬化促進剤として市販されている任意の第三級アミン類、イミダゾール類、リン化合物を配合することが出来る。
[その他の添加剤]
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物には、必要に応じて、芳香族アミン系、ヒンダードフェノール系、リン系、硫黄系などの汎用の酸化防止剤を配合してもよい。
 さらに本発明の熱可塑性ポリエステルエラストマー樹脂組成物に耐候性を必要とする場合は、紫外線吸収剤および/またはヒンダードアミン系化合物を添加することが好ましい。例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアゾール系、ニッケル系、サリチル系光安定剤が使用可能である。具体的には、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、p-t-ブチルフェニルサリシレート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミル-フェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’、5’-ビス(α,α-ジメチルベンジルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンアゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾチリアゾール、2,5-ビス-〔5’-t-ブチルベンゾキサゾリル-(2)〕-チオフェン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル燐酸モノエチルエステル)ニッケル塩、2-エトキシ-5-t-ブチル-2’-エチルオキサリックアシッド-ビス-アニリド85~90%と2-エトキシ-5-t-ブチル-2’-エチル-4’-t-ブチルオキサリックアシッド-ビス-アニリド10~15%の混合物、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2-エトキシ-2’-エチルオキサザリックアシッドビスアニリド、2-〔2’-ヒドロオキシ-5’-メチル-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミド-メチル)フェニル〕ベンゾトリアゾール、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-ヒドロキシ-4-i-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-オクタデシルオキシベンゾフェノン、サリチル酸フェニルなどの光安定剤を挙げることができる。含有量は、熱可塑性ポリエステルエラストマー樹脂組成物の質量基準で、0.1質量%以上5質量%以下が好ましい。
 本発明のポリエステルエラストマー樹脂組成物には、その他各種の添加剤を配合することができる。添加剤としては、熱可塑性ポリエステルエラストマー(A)以外の樹脂、無機フィラー、安定剤、及び老化防止剤を本発明の特徴を損なわない範囲で添加することができる。また、その他の添加剤として、着色顔料、無機、有機系の充填剤、カップリング剤、タック性向上剤、クエンチャー、金属不活性化剤等の安定剤、難燃剤等を添加することもできる。本発明の熱可塑性ポリエステルエラストマー樹脂組成物は、熱可塑性ポリエステルエラストマー(A)、液状エポキシ化合物(B)の合計で、80質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましい。
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物の酸価は、25eq/t以下である。酸価は、20eq/t以下が好ましく、15eq/t以下がより好ましく、10eq/t以下がさらに好ましい。酸価の下限は、0eq/tである。酸価が小さいほど、耐加水分解性の向上が期待できる。酸価は、後記する実施例の項で記載の方法により測定できる。
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物のエポキシ価は、10eq/t以上である。エポキシ価は、20eq/t以上が好ましく、30eq/t以上がより好ましく、45eq/t以上がさらに好ましい。エポキシ価の上限は、130eq/t程度である。エポキシ価がこの範囲にあることで、液状エポキシ化合物(B)が溶融成形時に可塑剤として働き、流動性を発現する。エポキシ価は、後記する実施例の項で記載の方法により測定できる。
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物は、エポキシ価が酸価より大きい。エポキシ価が酸価以下の場合、液状エポキシ化合物(B)は熱可塑性ポリエステルエラストマー(A)の酸末端と反応するので可塑化効果が発現できないが、酸価よりエポキシ価を大きくすることで、未反応の液状エポキシ化合物(B)が熱可塑性ポリエステルエラストマー(A)に対して可塑化効果を発現出来ることになるので、優れた滞留安定性を含めた流動性と耐加水分解性を両立し、優れた機械特性を有する熱可塑性ポリエステルエラストマー樹脂組成物を得ることができる。エポキシ価と酸価の差は特に限定されないが、5eq/t以上であることが好ましく、20eq/t以上であることがより好ましく、40eq/t以上であることがさらに好ましい。
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物の230℃、2.16kg荷重におけるメルトフローレート(JIS K7210に準拠)は、2g/10min以上であることが好ましい。該メルトフローレートは、3g/10min以上であることがより好ましい。該メルトフローレートは、15g/10min以下であることが好ましく、10g/10min以下であることがさらに好ましい。
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物の製造方法としては、単軸もしくは二軸のスクリュー式溶融混錬機、または、ニーダー式加熱機に代表される通常の熱可塑性樹脂の混合機を用いて溶融混練し、引き続き造粒工程によりペレット化する方法が挙げられる。なお、溶融混練する際、溶融混練前に熱可塑性ポリエステルエラストマー(A)と液状エポキシ化合物(B)を混合することは好ましくない。事前に混合することで、液状エポキシ化合物(B)に余分な熱履歴を与え、液状エポキシ化合物(B)の熱劣化や液状エポキシ化合物(B)同士の反応が起こったり、必要以上に熱可塑性ポリエステルエラストマー(A)と液状エポキシ化合物(B)が反応してしまい、所定の酸価、エポキシ価が達成できない。そこで、熱可塑性ポリエステルエラストマー(A)を溶融後、液状エポキシ化合物(B)を配合することが好ましい。例えば、二軸のスクリュー式溶融混錬機の場合、熱可塑性ポリエステルエラストマー(A)を投入後、別の投入口から液状エポキシ化合物(B)を投入する方法が好ましい。
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物は、公知の成形方法により成形体とすることができる。成形方法は特定されるものではなく、射出成形、ブロー成形、押出成形、発泡成形、異形成形、カレンダー成形、その他各種成形方法において好適に使用できる。中でも射出成形が好ましい。
 本発明をさらに詳細に説明するために以下に実施例を挙げるが、本発明は実施例によってなんら限定されるものではない。尚、実施例に記載された各測定値は次の方法によって測定したものである。
[熱可塑性ポリエステルエラストマー(A)]
 ジメチルテレフタレート、1,4-ブタンジオール、及び数平均分子量が1000のポリ(テトラメチレンオキシド)グリコールを原料として、ソフトセグメント成分の含有量が40.9質量%の熱可塑性ポリエステルエラストマー(A-1)を合成した。
 ジメチルテレフタレート、1,4-ブタンジオール、及び数平均分子量が1500のポリ(テトラメチレンオキシド)グリコールを原料として、ソフトセグメント成分の含有量が47.1質量%の熱可塑性ポリエステルエラストマー(A-2)を合成した。
[エポキシ化合物(B)]
(B-1)23℃で液状のビスフェノールF型ジエポキシ化合物、粘度:3500mPa・s、エポキシ価:165~177g/eq
(B-2)23℃で液状のポリエチレングリコールジグリシジルエーテル、粘度:20mPa・s、エポキシ価:122g/eq
(B-3)23℃で固体状のビスフェノールF型ジエポキシ化合物、エポキシ価:950~1200g/eq
[触媒]
リン系化合物:トリフェニルフォスフィン
実施例、比較例
 上記熱可塑性ポリエステルエラストマー(A-1)または(A-2)のみ、及び上記熱可塑性ポリエステルエラストマー(A-1)または(A-2)100質量部に対して、エポキシ化合物(B-1)、(B-2)、または(B-3)をそれぞれ表1に記載の比率にて、二軸スクリュー式押出機にて、混練・ペレット化した。エポキシ化合物(B)の投入方法は、熱可塑性ポリエステルエラストマー(A)を二軸スクリュー式押出機に投入後、サイドフィーダーから投入した場合をA、熱可塑性ポリエステルエラストマー(A)とドライブレンドした後、二軸スクリュー式押出機に投入した場合をBと表した。混錬時のシリンダー温度は、240℃に設定した。得られた熱可塑性ポリエステルエラストマー(樹脂組成物)のペレットを用いて、下記の評価を行った。結果を表1に示す。
[酸価]
 熱可塑性ポリエステルエラストマー(樹脂組成物)の酸価(eq/t)は、十分に乾燥させて水分率が0.1質量%以下とした試料200mgを熱ベンジルアルコール10mLに溶解させ、得られた溶液を冷却した後、クロロホルム10mLとフェノールレッドとを加え、1/25規定の酒精カリ溶液(KOHのエタノール溶液)で滴定する溶解滴定法により、酸価(eq/t)を求めた。              
[エポキシ価]
 エポキシ価の定量は、共鳴周波数600MHzのH-NMR測定にて行った。測定装置はBRUKER社製NMR装置AVANCE-NEO600を用い、測定は以下の通りに行った。
 試料20mgを溶媒(重クロロホルム/1,1,1,3,3,3ヘキサフルオロイソプロパノール-d=9/1容量比)に溶解後、その溶液をNMRチューブに充填し測定を行った。ロック溶媒には重クロロホルムを用い、待ち時間を1秒、データ取り込み時間を4秒、積算回数を128回とした。測定後、エポキシ価を2.8ppmに検出されるエポキシ由来ピーク強度と熱可塑性ポリエステルエラストマーに由来するピーク強度の比から算出した。熱可塑性ポリエステルエラストマーに由来するピーク強度は、上記熱可塑性ポリエステルエラストマー(A-1)の場合、熱可塑性ポリエステルエラストマー中のテレフタル酸、1,4-ブタンジオール、及びポリ(テトラメチレンオキシド)グリコールに由来する、それぞれ8.1ppm、2.0ppm及び1.6ppmに検出されるピーク強度を用いた。
[MFR]
 JIS K7210記載の試験法に準拠し、230℃、2.16kg荷重でのメルトフローレート(MFR:初期MFRと称する)を測定した。試料は、十分に乾燥させて水分率が0.1質量%以下とした。樹脂(組成物)を20分間装置中に溶融させた状態で滞留した後、同様の方法でMFRを測定し、下記式によりΔMFRを求めた。ΔMFRは、滞留安定性の指標となり、-1.0~1.0g/10minであることが好ましく、-0.7~0.7g/10minであることがより好ましい。
る。
 ΔMFR=(滞留後のMFR)-(初期MFR)
[総合的な流動性]
 以下の指標で判断した。
 〇:MFR(初期MFR)が2g/10min以上で、かつΔMFRが-0.7~0.7g/10min
 △:MFR(初期MFR)が2g/10min以上で、かつΔMFRが-1.0~1.0g/10min(〇の場合を除く)
 ×:MFR(初期MFR)が2g/10min未満、もしくはMFR(初期MFR)が2g/10min以上だがΔMFRが-1.0~1.0g/10minの範囲外
[引張破断強度]
 射出成形機を用い、樹脂(組成物)を230℃の温度設定にて2mm厚×100mm×100mmの平板に成形した後、ダンベル状3号形の試験片を平板から直角方向に打ち抜いた。テンシロンを用い、得られた試験片を毎分500mmの速さで伸長し、試験片が破断したときの応力を引張破断強度(MPa)とした。
[耐加水分解性]
 射出成形機を用い、樹脂(組成物)を230℃の温度設定にて2mm厚×100mm×100mmの平板に成形した後、ダンベル状3号形の試験片を平板から直角方向に打ち抜いた。得られた試験片を、100℃の沸騰水中に浸漬し、引張伸度保持率が初期引張伸度の50%になるまでの時間を観測し、耐加水分解性の指標とした。
 引張伸度保持率が50%になる時間として、1000時間未満を×、1000時間以上を〇と表記した。
Figure JPOXMLDOC01-appb-T000001
 表1より明らかなように、実施例の熱可塑ポリエステルエラストマー樹脂組成物は、優れた流動性と耐加水分解性を両立し、優れた機械特性を有していることが分かる。特に、エポキシ価と酸価の差が20eq/t以上である、実施例2~6では、総合的な流動性がいっそう優れていることが分かる。
 本発明の熱可塑ポリエステルエラストマー樹脂組成物は、上述した通り、優れた流動性と耐加水分解性を両立し、優れた機械特性を有することから、自動車部品、電機機器等の工業用品やフィルム・シートやボトル・容器等の生活用品まで、様々な製品に好適である。特に水分の影響を受けやすくかつ、薄型または大型の流動性が求められる部材等、幅広い用途に応用することが出来る。
 

Claims (5)

  1.  熱可塑性ポリエステルエラストマー(A)と23℃で液状のエポキシ化合物(B)が反応してなる熱可塑性ポリエステルエラストマー樹脂組成物であって、該熱可塑性ポリエステルエラストマー樹脂組成物の酸価が25eq/ton以下であり、かつ該熱可塑性ポリエステルエラストマー樹脂組成物のエポキシ価が10eq/ton以上であり、前記エポキシ価が前記酸価より大きいことを特徴とする熱可塑性ポリエステルエラストマー樹脂組成物。
  2.  熱可塑性ポリエステルエラストマー樹脂組成物において、熱可塑性ポリエステルエラストマー(A)に由来する部分100質量部に対して、23℃で液状のエポキシ化合物(B)に由来する部分0.5~6質量部である、請求項1に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
  3.  23℃で液状のエポキシ化合物(B)が二官能エポキシ化合物である請求項1または2に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
  4.  230℃、2.16kg荷重におけるメルトフローレート(JIS K7210に準拠)が2g/10min以上である請求項1または2に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
  5.  請求項1または2に記載の熱可塑性ポリエステルエラストマー樹脂組成物からなる成形体。
     
PCT/JP2023/006798 2022-03-02 2023-02-24 熱可塑性ポリエステルエラストマー樹脂組成物及びそれからなる成形体 WO2023167108A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022031900 2022-03-02
JP2022-031900 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023167108A1 true WO2023167108A1 (ja) 2023-09-07

Family

ID=87883725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006798 WO2023167108A1 (ja) 2022-03-02 2023-02-24 熱可塑性ポリエステルエラストマー樹脂組成物及びそれからなる成形体

Country Status (1)

Country Link
WO (1) WO2023167108A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094000A (ja) * 2009-10-29 2011-05-12 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー組成物
WO2018174129A1 (ja) * 2017-03-24 2018-09-27 東洋紡株式会社 ポリエステルエラストマー樹脂組成物
JP2020012040A (ja) * 2018-07-17 2020-01-23 東洋紡株式会社 熱可塑性ポリエステルエラストマー樹脂組成物およびその発泡成形体
JP2021105161A (ja) * 2019-12-26 2021-07-26 東レ・デュポン株式会社 熱可塑性エラストマー樹脂組成物
WO2021172348A1 (ja) * 2020-02-26 2021-09-02 東洋紡株式会社 ポリエステルエラストマー樹脂組成物
JP2021147551A (ja) * 2020-03-23 2021-09-27 セメダイン株式会社 硬化性樹脂組成物、硬化物および構造接着剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094000A (ja) * 2009-10-29 2011-05-12 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー組成物
WO2018174129A1 (ja) * 2017-03-24 2018-09-27 東洋紡株式会社 ポリエステルエラストマー樹脂組成物
JP2020012040A (ja) * 2018-07-17 2020-01-23 東洋紡株式会社 熱可塑性ポリエステルエラストマー樹脂組成物およびその発泡成形体
JP2021105161A (ja) * 2019-12-26 2021-07-26 東レ・デュポン株式会社 熱可塑性エラストマー樹脂組成物
WO2021172348A1 (ja) * 2020-02-26 2021-09-02 東洋紡株式会社 ポリエステルエラストマー樹脂組成物
JP2021147551A (ja) * 2020-03-23 2021-09-27 セメダイン株式会社 硬化性樹脂組成物、硬化物および構造接着剤

Similar Documents

Publication Publication Date Title
EP2411471B1 (en) Polyester blends
JP7063263B2 (ja) ポリエステルエラストマー樹脂組成物
KR101650923B1 (ko) 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
EP1460106A1 (en) Thermoplastic resin composition
KR101801702B1 (ko) 내충격성 및 내열성이 우수한 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
JPH05194829A (ja) 改良耐衝撃性をもつ耐溶剤性ポリカーボネート−ポリエステルブレンド
JP5472545B1 (ja) ポリエステルエラストマ樹脂組成物及びそれを用いてなる成形体
JP2011132380A (ja) ポリアリレート樹脂、ポリアリレート樹脂組成物および該ポリアリレート樹脂組成物からなる成形体
WO2023167108A1 (ja) 熱可塑性ポリエステルエラストマー樹脂組成物及びそれからなる成形体
JPH0414132B2 (ja)
JP3516788B2 (ja) 耐衝撃性に優れたポリエステル樹脂組成物
JP6511852B2 (ja) バリア性に優れた熱可塑性樹脂組成物
JP7129236B2 (ja) 熱可塑性エラストマー樹脂及びその成形体
KR101405869B1 (ko) 색상 안정성이 우수한 폴리에스테르/폴리카보네이트블렌드의 제조방법
WO1999019402A1 (en) Thermotropic liquid crystalline polymers as stabilizers in thermoplastic polyesters
WO2022158385A1 (ja) 樹脂組成物および電気電子部品封止体
JP5991312B2 (ja) フレキシブルブーツ用ポリエステルブロック共重合体組成物
WO2022158384A1 (ja) 樹脂組成物および電気電子部品封止体
KR102297622B1 (ko) 접착력이 우수한 열가소성 폴리에스테르계 엘라스토머 수지 조성물 및 이를 포함하는 성형품
JP7448740B2 (ja) 樹脂組成物および成形品
WO2022209605A1 (ja) 熱可塑性ポリエステルエラストマー、かかるエラストマーを含有する樹脂組成物、及びそれらから得られる成形品
WO1993022384A1 (en) Clear copolyester/polycarbonate blends
JP2006219611A (ja) ポリブチレンテレフタレート樹脂組成物及びこれから得られる成形品
EP4321575A1 (en) Flame-retardant thermoplastic polyester elastomer resin composition and molded article obtained therefrom
JPH11315192A (ja) 熱可塑性ポリエステルエラストマー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024504665

Country of ref document: JP