WO2015098237A1 - 縦型半導体装置 - Google Patents

縦型半導体装置 Download PDF

Info

Publication number
WO2015098237A1
WO2015098237A1 PCT/JP2014/077090 JP2014077090W WO2015098237A1 WO 2015098237 A1 WO2015098237 A1 WO 2015098237A1 JP 2014077090 W JP2014077090 W JP 2014077090W WO 2015098237 A1 WO2015098237 A1 WO 2015098237A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
conductivity type
peripheral
semiconductor substrate
electrode
Prior art date
Application number
PCT/JP2014/077090
Other languages
English (en)
French (fr)
Inventor
佐智子 青井
渡辺 行彦
順 斎藤
巨裕 鈴木
Original Assignee
トヨタ自動車株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社デンソー filed Critical トヨタ自動車株式会社
Publication of WO2015098237A1 publication Critical patent/WO2015098237A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/041Making n- or p-doped regions
    • H01L21/0415Making n- or p-doped regions using ion implantation
    • H01L29/0619
    • H01L29/0623
    • H01L29/063
    • H01L29/66068
    • H01L29/7397
    • H01L29/7811
    • H01L29/7813
    • H01L29/0634
    • H01L29/0638

Definitions

  • the present specification discloses a vertical semiconductor device that can change the resistance between the front surface electrode formed on the surface of the semiconductor substrate and the back surface electrode formed on the back surface of the semiconductor substrate.
  • a vertical semiconductor device is disclosed that includes an element region in which a semiconductor structure for changing the resistance is formed, and a peripheral region that goes around the element region when the surface of the semiconductor substrate is viewed in plan.
  • a vertical semiconductor device in which the resistance between the front electrode and the back electrode changes depending on the voltage applied to the gate electrode.
  • MOS a body region that separates a source region and a drift region and a gate electrode that faces the body region through a gate insulating film are provided.
  • the IGBT includes a body region that separates the emitter region and the drift region, and a gate electrode that faces the body region via a gate insulating film.
  • Each of the vertical semiconductor devices includes a second conductivity type region (body region) that separates the front surface side first conductivity type region (source region or emitter region) and the back surface side first conductivity type region (drift region), and the second A gate electrode is provided opposite to the conductive type region via a gate insulating film.
  • the semiconductor structure formed in the element region By simply improving the semiconductor structure formed in the element region, if the voltage applied between the front electrode and the back electrode is increased, a current flows between the front electrode and the back electrode via the peripheral region of the semiconductor substrate. . In order to improve the breakdown voltage, the semiconductor structure in the peripheral region needs to be improved.
  • Patent Documents 1 and 2 disclose a technique for forming a second conductivity type impurity region in a range that faces the surface of a semiconductor substrate and goes around the device region.
  • the second conductivity type impurity region has a ring shape because it goes around the device region.
  • a plurality of ring-shaped regions are arranged in a multiple manner around the element region.
  • this technique is called a guard ring structure.
  • the guard ring structure is arranged in the peripheral region, the breakdown voltage in the peripheral region is improved.
  • Patent Document 1 discloses a technique for forming a P + potential fixing region).
  • a plurality of second conductivity type regions are arranged in a discrete manner (that is, at positions separated from each other).
  • a second conductivity type impurity region (referred to as RESURF layer in Patent Document 2) is provided in a range facing the surface of the semiconductor substrate. Techniques for forming the are disclosed.
  • Both the RESURF layer and the guard ring are of the second conductivity type, but the RESURF layer and the guard ring are distinguished from each other because the former impurity concentration is lower than the latter impurity concentration.
  • a guard ring structure is formed within a range covered by the RESURF layer.
  • the breakdown voltage of the element region ⁇ the breakdown voltage of the peripheral region.
  • the breakdown voltage when the breakdown voltage is broken, a relationship in which the breakdown voltage is broken in the element region can be obtained.
  • the area of the element region is larger than the area of the peripheral region.
  • the semiconductor device disclosed in this specification includes an element region and a peripheral region that goes around the element region when the semiconductor substrate is viewed in plan.
  • a front surface electrode formed on the surface of the semiconductor substrate, a back surface electrode formed on the back surface of the semiconductor substrate, and a first conductive type region on the surface side that conducts to the front surface electrode (source region in the case of MOS)
  • a back side first conductivity type region drift region conducting to the back electrode
  • a front side first conductivity type region and a back side first conductivity type region are separated.
  • a gate electrode is provided opposite to the second conductivity type region (body region) and the second conductivity type region in a range separating the first conductivity type region on the front surface side and the first conductivity type region on the back surface side through a gate insulating film. .
  • the resistance between the front electrode and the back electrode changes depending on the voltage of the gate electrode.
  • the second conductivity type impurity low-concentration region formed in a range facing the surface of the semiconductor substrate and the element region are cycled in a range facing the surface of the semiconductor substrate.
  • a multiple structure of the second conductivity type high-concentration ring-shaped region and a second conductivity type floating region formed at an intermediate depth of the first conductivity type region on the back surface side are provided.
  • Both the second conductivity type region and the second conductivity type ring-shaped region formed in the peripheral region contain the second conductivity type impurity, but the former impurity concentration is lower than the latter impurity concentration.
  • the former is referred to as a second conductivity type impurity low concentration region
  • the latter is referred to as a second conductivity type impurity high concentration ring region.
  • the second conductivity type floating region continuously extends from a position inside the innermost peripheral second conductivity type impurity high concentration ring-shaped region toward the outer periphery of the semiconductor substrate.
  • “extending continuously toward the outer periphery of the semiconductor substrate” means “extending continuously without being divided into a plurality of regions”, and “extending to the outer periphery of the semiconductor substrate”. Not including the case.
  • a combination of “second conductivity type impurity low concentration region + second conductivity type impurity high concentration ring region + second conductivity type floating region” is formed in the peripheral region.
  • the depletion layer develops from the interface between the backside first conductivity type region (drift region) and the second conductivity type impurity low concentration region, but also the backside first conductivity type region (drift region) and the second A depletion layer develops also from the interface of the two-conductivity floating region, and a wide range of the peripheral region is depleted and the breakdown voltage is improved. Further, the degree of concentration in the electric field concentration region formed around the depletion layer is relaxed, and the breakdown voltage is improved by the action.
  • the relationship of “breakdown voltage of element region ⁇ breakdown voltage of peripheral region” can be obtained.
  • the relationship is obtained, when the breakdown voltage is broken, a relationship in which the breakdown voltage is broken in the element region can be obtained.
  • the area of the element region is larger than the area of the peripheral region.
  • the semiconductor substrate is made of SiC
  • the defect density is high and the resistance of the p-type SiC region is high. Therefore, it is difficult to ensure the breakdown voltage in the peripheral region with the conventional peripheral breakdown voltage structure.
  • the conventional peripheral voltage structure in which the floating region is formed in a discrete manner functions effectively for Si, but does not function effectively for SiC. .
  • the intermediate depth of the first conductivity type region (drift region) on the back surface side is directed from the inner position to the outer periphery of the semiconductor substrate from the innermost second conductivity type impurity high-concentration ring-shaped region. It is particularly effective to form the second conductive type floating region extending continuously.
  • the relationship between the formation range of the second conductivity type impurity low concentration region and the second conductivity type impurity high concentration ring-shaped region formed at a position facing the surface of the semiconductor substrate is either of the following.
  • the latter extends outside the former. That is, the outermost peripheral ring-shaped region is formed outside the second conductivity type impurity low concentration region.
  • the second conductivity type floating region extends to the outside from the outer peripheral side position of the second conductivity type impurity low concentration region.
  • the former extends outward beyond the latter. That is, the outermost peripheral ring-shaped region is formed inside the second conductivity type impurity low concentration region.
  • the second conductivity type floating region extends outward from the position of the outermost peripheral ring-shaped region. That is, the second conductivity type floating region extends to the outside from the outer peripheral side position of the region where both the second conductivity type impurity low concentration region and the second conductivity type impurity high concentration ring-shaped region multiple structure are arranged. Preferably it is.
  • the effect of improving the breakdown voltage of the peripheral region is significantly exhibited by forming the second conductivity type floating region.
  • the second conductivity type floating region is preferably formed at an intermediate depth of the back side first conductivity type region. That is, when the thickness from the depth on the front surface side to the depth on the rear surface side of the first conductivity type region on the back surface side is divided into 10 equal parts, it is formed on the front surface side from a level at a position of 8/10 from the front surface side. It is preferable.
  • the second conductivity type floating region is H1 + 0.8 ⁇ ( It is preferably formed on the surface side from the depth of H2-H1).
  • the second conductivity type floating region may be formed of one layer, but may be divided into a plurality of layers. That is, the second conductivity type floating region may be formed at a plurality of intermediate depths. By forming a plurality of second conductivity type floating regions, the effect of improving the breakdown voltage in the peripheral region is improved.
  • the semiconductor substrate is SiC
  • the semiconductor device is MOS.
  • the first conductivity type is n-type
  • the second conductivity type is p-type.
  • the front surface side first conductivity type region n type source region
  • the second conductivity type region p type body region
  • the back surface side first conductivity type region n type.
  • a trench is formed from the surface of the semiconductor substrate to reach the n-type drift region through the n-type source region and the p-type body region.
  • a wall surface of the trench is covered with a gate insulating film, and a trench gate electrode is filled inside.
  • the second conductivity type (p-type) impurity low concentration region formed in the peripheral region is continuous with the p-type body region and is called a RESURF layer.
  • the second conductivity type impurity high-concentration ring-shaped region surrounds the element region in multiple layers and is called a guard ring.
  • the second conductivity type floating region is formed at an intermediate depth of the n-type drift region in the peripheral region.
  • FIG. 1 shows a cross-sectional view of a range from the element region 4 to the peripheral region 6 of the vertical semiconductor device 2 of the first embodiment operating as a MOS.
  • Reference numeral 8 indicates the outer periphery of the semiconductor substrate 9.
  • the element region 4 extends continuously on the left side of FIG.
  • the semiconductor substrate 9 is made of SiC.
  • Reference numeral 10 denotes a surface electrode formed on the surface of the semiconductor substrate 9 and serves as a MOS source electrode.
  • Reference numeral 18 denotes a back electrode formed on the back surface of the semiconductor substrate 9 and serves as a MOS drain electrode.
  • a trench extends from the front surface to the back surface of the semiconductor substrate.
  • a wall surface of the trench is covered with a gate insulating film 24, and a gate electrode 26 is filled therein.
  • a stacked structure in which the source region 20, the body region 12, and the drift region 14 are stacked in this order from the surface side of the semiconductor substrate is formed at a position facing the side surface of the gate electrode 26 with the gate insulating film 24 interposed therebetween.
  • the first conductivity type is n-type
  • the second conductivity type is p-type.
  • the source region 20 is n-type and is an embodiment of the surface side first conductivity type region.
  • the body region 12 is p-type and is an example of the second conductivity type region.
  • the drift region 14 is n-type, and is an embodiment of the back side first conductivity type region.
  • a drain region 16 is formed between the drift region 14 and the back electrode (drain electrode) 18.
  • the drain region 16 is n-type and is an embodiment of the first conductivity type region.
  • the body region 12 that separates the source region 20 and the drift region 14 via the gate insulating film 24 faces the side surface of the gate electrode 26.
  • Reference numeral 22 denotes a body contact region that is in ohmic contact with the surface electrode (source electrode) 10 and maintains the potential of the body region 12 at the source potential.
  • the impurity concentration of the source region 20 is high enough to make ohmic contact with the surface electrode (source electrode) 10.
  • the impurity concentration in the body region 12 is so thin that when a positive voltage is applied to the gate electrode 26, the range facing the side surface of the gate electrode 26 via the gate insulating film 24 is inverted to n-type.
  • the impurity concentration of the drift region 14 is so thin that a depletion layer spreads over a wide range of the drift region 14 from the interface between the body region 12 and the drift region 14 when no voltage is applied to the gate electrode 26.
  • the impurity concentration of the drain region 16 is high enough to make ohmic contact with the back electrode (drain electrode) 18.
  • the body region 12 in a range facing the side surface of the gate electrode 26 through the gate insulating film 24 is inverted to n-type, and the surface The resistance between the electrode (source electrode) 10 and the back electrode (drain electrode) 18 decreases.
  • a depletion layer extends from the interface between the body region 12 and the drift region 14 to a wide range of the body region 12 and the drift region 14, and a high breakdown voltage can be obtained.
  • a peripheral breakdown voltage structure is formed on the outer peripheral side of the semiconductor substrate 9 with respect to the outermost peripheral trench.
  • a range on the inner side of the outermost trench is referred to as an element region 4
  • a range on the outer peripheral side is referred to as a peripheral region 6, and a boundary thereof is indicated by a reference sign B.
  • the RESURF layer 32, the guard ring group 30, and the floating layer 40 are formed in the peripheral region 6, the RESURF layer 32, the guard ring group 30, and the floating layer 40 are formed.
  • reference numeral 30 is given only to some guard rings.
  • the RESURF layer 32 is p-type and has a lower impurity concentration than the guard ring group 30.
  • the RESURF layer 32 is an example of the second conductivity type impurity low concentration region.
  • the impurity concentration of the RESURF layer 32 may be uniform, but may gradually decrease as the outer periphery 8 of the semiconductor substrate is approached.
  • Each guard ring 30 is also p-type, and is an embodiment of the second conductivity type impurity high-concentration ring-shaped region.
  • a plurality of guard rings are formed.
  • a plurality of guard rings 30 surround the element region 4 in multiple layers.
  • the outermost guard ring 30 b is formed outside the RESURF layer 32. There may be no guard ring formed outside the RESURF layer 32, or one or more guard rings may be formed.
  • p-type layer 40 is formed at an intermediate depth of n-type drift region 14. The p-type layer 40 is surrounded by the n-type drift region 14 and is in a floating state.
  • the p-type layer 40 is an example of a second conductivity type floating region.
  • the p-type layer 40 is continuously formed from the boundary position B between the element region 4 and the peripheral region 6 to the existing position D2 of the outermost guard ring 30b.
  • the surface of the semiconductor substrate 9 is covered with an insulating film 28.
  • An n-type impurity high concentration region 36 is formed on the surface side of the semiconductor substrate 0 at a position in contact with the outer periphery 8.
  • the p-type region for example, the body contact region 22, the body region 12, the RESURF layer 32, the guard ring group 30, and the floating layer 40 can be formed by implanting phosphorus. It can also be formed by implanting boron.
  • the breakdown voltage in the peripheral region 6 is improved.
  • the breakdown voltage of the peripheral region 6 when the RESURF layer 32 and the guard ring group 30 were formed and the floating layer 40 was not formed was 1050 volts.
  • the breakdown voltage of the peripheral region 6 when the RESURF layer 32, the guard ring group 30, and the floating layer 40 are all formed is 1470 volts. By adding the floating layer 40, the breakdown voltage increased by 420 volts.
  • the breakdown voltage is improved by the floating layer 40.
  • the effect is remarkably obtained.
  • the inner circumferential side position E of the floating layer 40 is on the inner side of the position C where the innermost guard ring 30a is present, and satisfies the above conditions.
  • the breakdown voltage improvement effect by the floating layer 40 is remarkably obtained.
  • the outer peripheral side position D of the surface side peripheral pressure resistance structure refers to the outer peripheral side position of the region where both the RESURF layer 32 and the guard ring group 30 are formed.
  • the outer peripheral side position D1 of the RESURF layer 32 is the outer peripheral side position D of the surface side peripheral pressure resistance structure. It becomes.
  • the position D2 of the outermost peripheral guard ring 30b is inside the outer peripheral side position D1 of the RESURF layer 32, the position D2 of the outermost peripheral guard ring 30b is the outer peripheral side position D of the surface side peripheral pressure resistant structure. It becomes.
  • the outer peripheral side position F of the floating layer 40 extends to the outer side of the outer peripheral side position D of the surface side peripheral withstand voltage structure, which satisfies the above conditions. If the floating layer 40 continuously extends between the position C where the innermost guard ring 30a is present and the outer peripheral side position D of the surface side peripheral breakdown voltage structure, the effect of improving the breakdown voltage by the floating layer 40 can be obtained remarkably. .
  • the floating layer is different for each embodiment, the numbers 40, 50, 60, 70, 80, and 90 are used.
  • the formation range of the floating layer 50 is not limited to the position from B to D2 shown in FIG.
  • the innermost position E of the floating layer 50 is outside the boundary B between the element region 4 and the peripheral region 6. Even if the inner circumferential position E is outside the boundary B, the floating layer 50 can improve the breakdown voltage of the peripheral region 6 if the inner circumferential position E is inside the innermost guard ring 30a formation position C.
  • the outer peripheral side position F of the floating layer 50 extends to the outer side from the outer peripheral side position D of the peripheral withstand voltage structure formed in the range facing the surface of the semiconductor substrate 9.
  • the outermost peripheral guard ring 30 b is formed outside the RESURF layer 32
  • the outer peripheral side position D of the surface side peripheral withstand voltage structure is the outer peripheral side position D1 of the RESURF layer 32.
  • the outer peripheral side position D of the surface side peripheral pressure resistant structure is the position D2 of the outermost peripheral guard ring 30b.
  • the vertical axis in FIG. 7 indicates the breakdown voltage of the peripheral region, and the level 90 indicates the breakdown voltage when the RESURF layer 32 and the guard ring group 30 are formed and the floating layer is not formed.
  • the abscissa in FIG. 7 shows the positional relationship between the outer peripheral side position F of the floating layer and the outer peripheral side position D of the peripheral withstand voltage structure formed in the range facing the surface of the semiconductor substrate. The case where the position F is outside the position D is positive.
  • the breakdown voltage is improved by adding the floating layer, but the breakdown voltage improvement effect varies depending on the outer peripheral side position F where the floating layer extends, and the breakdown voltage increases as the position F is located outside the position D. It can be seen that the improvement effect increases.
  • FIG. 7 shows the breakdown voltage of the peripheral region, and the level 90 indicates the breakdown voltage when the RESURF layer 32 and the guard ring group 30 are formed and the floating layer is not formed.
  • the abscissa in FIG. 7 shows the positional relationship between the outer peripheral side position F of the
  • the zero point indicates the inner side of the positions D1 and D2.
  • the position of 5 ⁇ m indicates the outer side of the positions D1 and D2.
  • the floating layer extends to a position D where both the RESURF layer 32 and the guard ring group 30 are formed, and preferably, the position where either the RESURF layer 32 and the guard ring group 30 are formed (of D1 and D2) It is preferable that it extends to the outer side.
  • the inner peripheral side position E of the floating layer has a small influence on the breakdown voltage improvement effect, and as shown in FIG. 2, the innermost peripheral guard ring 30a is formed even if it is outside the boundary B. If it is on the inner side than C, the required withstand voltage improvement effect can be obtained.
  • guard ring group 30 potentials are sequentially shared from the innermost guard ring 30 a toward the outer guard ring.
  • the floating layer is formed continuously from the position inside the formation position C of the innermost guard ring 30a toward the outside, the potential can be efficiently shared by the floating layer.
  • the innermost position E of the floating layer 60 may be inside the boundary B. That is, the floating layer 60 may enter the element region 4. Also in this case, the effect of improving the breakdown voltage due to the floating layer 60 can be obtained. If the floating layer 60 penetrates into the element region 4, the on-resistance of the element region may increase. However, if the penetration distance is small, the influence on the on-resistance can be ignored.
  • symbol A indicates the formation position of the second gate electrode inward from the outermost peripheral gate electrode. If the inner peripheral position E of the floating layer 60 is between A and C (within the connecting region Z), it is possible to improve the breakdown voltage in the peripheral region while preventing the on-resistance of the element region from increasing. it can.
  • openings 70 a to 70 d may be formed in the inner portion of the floating layer 70.
  • the openings 70 a to 70 d may go around the device region 4 or may extend in parallel with the gate electrode 26. If the inner peripheral side position E of the floating layer 70 is outside the position A, it is possible to prevent the ON resistance of the element region from increasing. If the floating layer 70 is continuous outside the C position (that is, if no opening is formed outside the C position), the floating layer 70 can improve the breakdown voltage in the peripheral region. When the openings 70 a to 70 d are formed, the inner peripheral side position E of the floating layer 70 can be deeply penetrated into the element region 4. That is, it can be brought close to the A position.
  • the floating layer is formed as a single layer. However, as shown in FIG. 5, a plurality of floating layers 80a and 80b may be formed. That is, the floating layer may be formed at a plurality of intermediate depths of the drift layer 14. In the case of FIG. 5, each floating layer extends continuously from at least position C to position D. Instead, it may be configured to continuously extend from position C to position D when the formation ranges of the individual floating layers are overlapped.
  • FIG. 6 shows a MOS that uses the planar gate electrode 26.
  • the same reference numerals are assigned to the same or equivalent members as in the trench gate type MOS shown in FIGS.
  • the floating region 90 that extends to the periphery, the breakdown voltage of the peripheral region can be improved.
  • the present invention has been described in detail above, but these are merely examples and do not limit the scope of the claims.
  • the technology described in the claims includes various modifications and changes of the specific examples illustrated above.
  • the first conductivity type may be p-type and the second conductivity type may be n-type.
  • it can be applied to IGBT instead of MOS.
  • the technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing.
  • the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】半導体装置2の周辺領域6の耐圧を高める。 【解決手段】周辺領域6では、半導体基板の表面に臨む位置に、リサーフ領域32とガードリング30・・を形成し、さらにドリフト領域14の中間深さにドリフト領域14と反対導電型のフローティング領域40を形成する。フローティング領域40は、最内周のガードリング30aより内側の位置から半導体基板の外周8に向けて連続的に延びている。リサーフ領域32とドリフト領域14の界面から空乏層が広がるとともにドリフト領域14とフローティング領域40の界面からも空乏層が広がり、周辺領域6での耐圧が向上する。

Description

縦型半導体装置
 本明細書では、半導体基板の表面に形成されている表面電極と半導体基板の裏面に形成されている裏面電極の間の抵抗を変えることができる縦型半導体装置を開示する。特に、前記抵抗を変える半導体構造が形成されている素子領域と、半導体基板の表面を平面視したときに素子領域を一巡する周辺領域を備えている縦型半導体装置を開示する。
 ゲート電極に印加する電圧によって表面電極と裏面電極の間の抵抗が変化する縦型半導体装置が知られている。MOSの場合、ソース領域とドリフト領域を分離するボディ領域と、そのボディ領域にゲート絶縁膜を介して対向するゲート電極を備えている。あるいはIGBTの場合、エミッタ領域とドリフト領域を分離するボディ領域と、そのボディ領域にゲート絶縁膜を介して対向するゲート電極を備えている。いずれの縦型半導体装置も、表面側第1導電型領域(ソース領域あるいはエミッタ領域)と裏面側第1導電型領域(ドリフト領域)を分離する第2導電型領域(ボディ領域)と、第2導電型領域にゲート絶縁膜を介して対向するゲート電極を備えている。ゲート電極にオン電圧を印加し、ゲート絶縁膜を介してゲート電極に対向する範囲の第2導電型領域(ボディ領域)に反転層を形成すると、表面電極と裏面電極の間の抵抗が低下する。
 表面電極と裏面電極の間に加える電圧を高めると、ゲート電極にオン電圧を印加しないにも関わらず、表面電極と裏面電極の間を電流が流れてしまう現象が生じる。本明細書では、この現象を耐圧が破れるという。耐圧を高めるために、素子領域に形成する半導体構造に様々の改良が加えられている。
 素子領域に形成する半導体構造を改善するだけでは、表面電極と裏面電極の間に加える電圧を高めた場合に、半導体基板の周辺領域を介して表面電極と裏面電極の間を電流が流れてしまう。耐圧向上のためには、周辺領域の半導体構造にも改善を要する。
 特許文献1と2に、半導体基板の表面に臨むとともに素子領域を一巡する範囲に、第2導電型不純物領域を形成する技術が開示されている。その第2導電型不純物領域は、素子領域を一巡することからリング形状をしている。特許文献1と2の技術では、素子領域の周りに複数個のリング状領域を多重に配置する。本明細書では、この技術をガードリング構造という。周辺領域にガードリング構造を配置すると、周辺領域での耐圧が向上する。
 特許文献1の図9には、周辺領域での耐圧をさらに向上させるために、ガードリング構造に加えて、裏面側第1導電型領域(ドリフト領域)の中間深さに第2導電型領域(特許文献1ではP+電位固定領域と称している)を形成する技術を開示している。特許文献1の技術では、複数個の第2導電型領域をとびとびに(すなわち相互に離反した位置に)配置する。
 特許文献2には、周辺領域での耐圧を向上させるために、ガードリング構造に加えて、半導体基板の表面に臨む範囲に第2導電型不純物領域(特許文献2ではリサーフ層と称している)を形成する技術が開示されている。リサーフ層もガードリングも第2導電型であるが、前者の不純物濃度が後者の不純物濃度より薄いことから、リサーフ層とガードリングが区別される。特許文献2では、リサーフ層に包まれる範囲内にガードリング構造が形成されている。
特開2007-311822号公報 特開2003-101039号公報
 半導体装置を破壊から保護するためには、「素子領域の耐圧<周辺領域の耐圧」の関係であるが好ましい。その関係が得られると、耐圧が破れる場合には素子領域で耐圧が破れる関係を得ることができる。素子領域の面積は周辺領域の面積より広い。広い領域で耐圧が破れる場合には、狭い領域で耐圧が破れる場合に比して、電流密度を下げることができ、半導体装置が破壊されないようにすることができる。半導体装置が破壊されないうちに、耐圧が破れるような異常事象に対する処理を実施することが可能となる。
 特許文献1に記載されている「ガードリング構造+裏面側第1導電型領域の中間深さに複数個の第2導電型領域をとびとびに配置する」構造では、とびとびに配置されている第2導電型領域と裏面側第1導電型領域の界面から空乏層が十分に発達しない。「素子領域の耐圧<周辺領域の耐圧」の関係を得ることが難しい。
 特許文献2に記載されている「リサーフ領域の内部にガードリング構造を配置する」構造でも、「素子領域の耐圧<周辺領域の耐圧」の関係を得ることが難しい。
 本明細書では、「素子領域の耐圧<周辺領域の耐圧」の関係を得ることができる半導体構造を提案する。
 本明細書で開示する半導体装置は、半導体基板を平面視したときに、素子領域と、素子領域を一巡する周辺領域を備えている。
 素子領域では、半導体基板の表面に形成されている表面電極と、半導体基板の裏面に形成されている裏面電極と、表面電極に導通する表面側第1導電型領域(MOSの場合にはソース領域であり、IGBTの場合にはエミッタ領域)と、裏面電極に導通する裏面側第1導電型領域(ドリフト領域)と、表面側第1導電型領域と裏面側第1導電型領域を分離する第2導電型領域(ボディ領域)と、表面側第1導電型領域と裏面側第1導電型領域を分離する範囲の第2導電型領域にゲート絶縁膜を介して対向するゲート電極を備えている。上記の半導体構造を備えていると、ゲート電極の電圧によって表面電極と裏面電極の間の抵抗が変化する。
 本明細書で開示する半導体装置の周辺領域では、半導体基板の表面に臨む範囲に形成されている第2導電型不純物低濃度領域と、半導体基板の表面に臨む範囲において素子領域を一巡している第2導電型不純物高濃度リング状領域の多重構造と、裏面側第1導電型領域の中間深さに形成されている第2導電型フローティング領域を備えている。周辺領域に形成されている第2導電型領域と第2導電型リング状領域はともに第2導電型不純物を含んでいるが、前者の不純物濃度の方が後者の不純物濃度より薄い。そこで本明細書では、前者を第2導電型不純物低濃度領域と称し、後者を第2導電型不純物高濃度リング状領域と称する。第2導電型フローティング領域は、最内周の第2導電型不純物高濃度リング状領域より内側の位置から半導体基板の外周に向けて連続的に延びている。ここでいう「半導体基板の外周に向けて連続的に延びている」は、「複数個の領域に分割されずに連続的に延びている」ことを意味し、「半導体基板の外周には達していない」場合を含む。
 上記の半導体装置では、周辺領域に、「第2導電型不純物低濃度領域+第2導電型不純物高濃度リング状領域+第2導電型フローティング領域」の組み合わせが形成されている。上記構造によると、裏面側第1導電型領域(ドリフト領域)と第2導電型不純物低濃度領域の界面から空乏層が発達するのみならず、裏面側第1導電型領域(ドリフト領域)と第2導電型フローティング領域の界面からも空乏層が発達し、周辺領域の広い範囲が空乏化して耐圧が向上する。また空乏層の周囲に形成される電界集中領域での集中度が緩和され、その作用によっても耐圧が向上する。その結果、主として第2導電型領域と裏面側第1導電型領域の界面から発達する空乏層によって耐圧を確保する素子領域よりも高い耐圧を確保することができる。すなわち、「素子領域の耐圧<周辺領域の耐圧」の関係を得ることができる。その関係が得られると、耐圧が破れる場合には素子領域で耐圧が破れる関係を得ることができる。素子領域の面積は周辺領域の面積より広い。広い領域で耐圧が破れる場合には、狭い領域で耐圧が破れる場合に比して、電流密度を下げることができ、半導体装置が破壊されないようにすることができる。半導体装置が破壊されないうちに、耐圧が破れるような異常事象に対する処理を施すことが可能となる。
 半導体基板がSiCで形成されている場合、欠陥密度が高いことと、p型のSiC領域の抵抗が高いことから、従来の周辺耐圧構造では、周辺領域での耐圧を確保することが難しい。特に、ソース領域とドリフト領域を分離するボディ領域がゲート絶縁膜を介してゲート電極に対向しており、ドリフト領域と裏面電極の間にドレイン領域が形成されているMOSの場合、周辺領域での耐圧を確保することが難しい。SiCはSiに比して欠陥密度が高いために、フローティング領域がとびとびに形成されている従来の周辺耐圧構造は、Siに対しては有効に機能するけれども、SiCに対しては有効に機能しない。
 SiCでMOSを形成する場合、裏面側第1導電型領域(ドリフト領域)の中間深さを最内周の第2導電型不純物高濃度リング状領域より内側の位置から半導体基板の外周に向けて連続的に延びている第2導電型フローティング領域を形成することが特に効果的である。
 ともに半導体基板の表面に臨む位置に形成されている第2導電型不純物低濃度領域と第2導電型不純物高濃度リング状領域の形成範囲の関係は次のいずれかである。
(1)後者が前者よりも外側にまで延びている。すなわち最外周リング状領域が第2導電型不純物低濃度領域の外側に形成されている。この場合は、第2導電型フローティング領域が第2導電型不純物低濃度領域の外周側位置より外側まで延びていることが好ましい。
(2)前者が後者よりも外側にまで延びている。すなわち最外周リング状領域が第2導電型不純物低濃度領域の内部に形成されている。この場合は、第2導電型フローティング領域が最外周リング状領域の位置より外側まで延びていることが好ましい。
 すなわち、第2導電型フローティング領域が、第2導電型不純物低濃度領域と第2導電型不純物高濃度リング状領域の多重構造の両者が配置されている領域の外周側位置より外側にまで延びていることが好ましい。
 上記の関係を満たしていると、第2導電型フローティング領域を形成することで周辺領域の耐圧が向上する効果が顕著に発揮される。
 第2導電型フローティング領域は、裏面側第1導電型領域の中間深さに形成されていることが好ましい。すなわち、裏面側第1導電型領域の表面側の深さから裏面側の深さまでの厚みを10等分したときに、表面側から8/10の位置にあるレベルより表面側に形成されていることが好ましい。裏面側第1導電型領域の表面側の深さをH1とし、裏面側第1導電型領域の裏面側の深さをH2としたときに、第2導電型フローティング領域が、H1+0.8×(H2-H1)の深さより表面側に形成されていることが好ましい。この条件を満たしていると、第2導電型フローティング領域による耐圧向上効果が効果的に発揮される。
 第2導電型フローティング領域は、一層で形成されていてもよいが、複数層に分割されていてもよい。すなわち、複数個の中間深さに第2導電型フローティング領域が形成されていてもよい。複数枚の第2導電型フローティング領域を形成することによって、周辺領域での耐圧向上効果が改善される。
第1実施例の半導体装置の素子領域から周辺領域に亘る範囲の断面図。 第2実施例の半導体装置の素子領域から周辺領域に亘る範囲の断面図。 第3実施例の半導体装置の素子領域から周辺領域に亘る範囲の断面図。 第4実施例の半導体装置の素子領域から周辺領域に亘る範囲の断面図。 第5実施例の半導体装置の素子領域から周辺領域に亘る範囲の断面図。 第6実施例の半導体装置の素子領域から周辺領域に亘る範囲の断面図。 周辺領域の耐圧と、第2導電型フローティング領域の形成範囲の関係を示す図。
 以下、本明細書で開示する技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。
(第1特徴)半導体基板はSiCであり、半導体装置はMOSである。本明細書でいう第1導電型はn型であり、第2導電型はp型である。素子領域では、半導体基板の表面から裏面に向けて、表面側第1導電型領域(n型ソース領域)と第2導電型領域(p型ボディ領域)と裏面側第1導電型領域(n型ドリフト領域)と第1導電型領域(n型ドレイン領域)の順に積層されている積層構造が形成されている。半導体基板の表面から、n型ソース領域とp型ボディ領域を貫通してn型ドリフト領域に達するトレンチが形成されている。トレンチの壁面はゲート絶縁膜によって被覆されており、その内側にトレンチゲート電極が充填されている。
(第2特徴)周辺領域に形成されている第2導電型(p型)不純物低濃度領域は、p型ボディ領域に連続しており、リサーフ層と称される。第2導電型不純物高濃度リング状領域は、素子領域の周囲を多重に取り囲んでおり、ガードリングと称される。第2導電型フローティング領域は、周辺領域におけるn型ドリフト領域の中間深さに形成されている。
 図1は、MOSとして動作する第1実施例の縦型半導体装置2の素子領域4から周辺領域6に亘る範囲の断面図を示している。参照番号8は半導体基板9の外周を示している。図1の左方には素子領域4が連続して延びている。半導体基板9はSiCで形成されている。
 参照番号10は半導体基板9の表面に形成されている表面電極であり、MOSのソース電極となる。参照番号18は半導体基板9の裏面に形成されている裏面電極であり、MOSのドレイン電極となる。
 半導体基板の表面から裏面に向かってトレンチが延びている。トレンチの壁面はゲート絶縁膜24で覆われ、その内部にゲート電極26が充填されている。
 ゲート絶縁膜24を介してゲート電極26の側面に対向する位置には、半導体基板の表面側からソース領域20とボディ領域12とドリフト領域14の順に積層された積層構造が形成されている。本実施例では、第1導電型がn型であり、第2導電型がp型である。ソース領域20はn型であり、表面側第1導電型領域の実施例である。ボディ領域12はp型であり、第2導電型領域の実施例である。ドリフト領域14はn型であり、裏面側第1導電型領域の実施例である。ドリフト領域14と裏面電極(ドレイン電極)18の間にドレイン領域16が形成されている。ドレイン領域16はn型であり、第1導電型領域の実施例である。ゲート電極26の側面には、ゲート絶縁膜24を介してソース領域20とドリフト領域14を分離しているボディ領域12が対向している。参照番号22は、ボディコンタクト領域であり、表面電極(ソース電極)10にオーミック接触し、ボディ領域12の電位をソース電位に維持する。
 ソース領域20の不純物濃度は表面電極(ソース電極)10にオーミック接触する程度に濃い。ボディ領域12の不純物濃度は、ゲート電極26に正電圧を印加すると、ゲート絶縁膜24を介してゲート電極26の側面に対向する範囲がn型に反転する程度に薄い。また、ドリフト領域14の不純物濃度は、ゲート電極26に電圧を印加しないと、ボディ領域12とドリフト領域14の界面からドリフト領域14の広い範囲に空乏層が広がる程度に薄い。ドレイン領域16の不純物濃度は裏面電極(ドレイン電極)18にオーミック接触する程度に濃い。
 上記の半導体構造を備えていると、ゲート電極26に正電圧を印加した状態では、ゲート絶縁膜24を介してゲート電極26の側面に対向する範囲のボディ領域12がn型に反転し、表面電極(ソース電極)10と裏面電極(ドレイン電極)18間の抵抗が低下する。ゲート電極26に正電圧を印加しない状態では、ボディ領域12とドリフト領域14の界面からボディ領域12とドリフト領域14の広い範囲に空乏層が広がり、高い耐圧を得ることができる。
 最外周のトレンチよりも半導体基板9の外周側には、周辺耐圧構造が形成されている。本明細書では、最外周のトレンチよりも内側の範囲を素子領域4といい、外周側の範囲を周辺領域6といい、その境界を参照符号Bで示す。
 周辺領域6では、リサーフ層32とガードリング群30とフローティング層40が形成されている。図示の便宜上、一部のガードリングに対してのみ、参照番号30が付されている。リサーフ層32はp型であり、ガードリング群30よりも不純物濃度が低い。リサーフ層32は、第2導電型不純物低濃度領域の実施例である。リサーフ層32の不純物濃度は一様であってもよいが、半導体基板の外周8に近づくほど徐々に薄くなってもよい。個々のガードリング30もp型であり、第2導電型不純物高濃度リング状領域の実施例である。複数本のガードリングが形成されている。複数本のガードリング30が素子領域4の周囲を多重に取り囲んでいる。最外周のガードリング30bは、リサーフ層32の外側に形成されている。リサーフ層32の外側に形成されているガードリングはなくてもよいし、1本以上を形成してもよい。周辺領域6では、n型ドリフト領域14の中間深さにp型層40が形成されている。p型層40はn型のドリフト領域14によって取り囲まれており、フローティング状態にある。p型層40は、第2導電型フローティング領域の実施例である。p型層40は、素子領域4と周辺領域6の境界位置Bから、最外周のガードリング30bの存在位置D2まで、連続的に形成されている。周辺領域6では、半導体基板9の表面が絶縁膜28で覆われている。また半導体基板0の外周8に接する位置の表面側には、n型の不純物高濃度領域36が形成されている。
 p型の領域、例えばボディコンタクト領域22、ボディ領域12、リサーフ層32、ガードリング群30、フローティング層40は、リンを注入して形成することができる。ボロンを注入して形成することもできる。
 周辺領域6に、リサーフ層32と、ガードリング群30と、フローティング層40が形成されていると、周辺領域6における耐圧が向上する。本実施例の場合、リサーフ層32とガードリング群30を形成してフローティング層40を形成しない場合の周辺領域6の耐圧は1050ボルトであった。それに対して、リサーフ層32とガードリング群30とフローティング層40の全部を形成した場合の周辺領域6の耐圧は1470ボルトであった。フローティング層40を追加することで、耐圧が420ボルト上昇した。
 詳しくは後記するように、フローティング層40が最内周のガードリング30aの存在位置Cより内側の位置から半導体基板9の外周8に向けて連続的に延びていると、フローティング層40による耐圧向上効果が顕著に得られる。第1実施例では、フローティング層40の内周側位置Eが、最内周のガードリング30aの存在位置Cよりも内側にあり、上記条件を満たしている。
 また、フローティング層40が表面側周辺耐圧構造の外周側位置Dまで連続的に延びていると、フローティング層40による耐圧向上効果が顕著に得られる。表面側周辺耐圧構造の外周側位置Dは、リサーフ層32とガードリング群30の両者が形成されている領域の外周側位置のことをいう。図1に示すように、最外周ガードリング30bの位置D2がリサーフ層32の外周側位置D1より外側にある場合は、リサーフ層32の外周側位置D1が表面側周辺耐圧構造の外周側位置Dとなる。図3に示すように、最外周ガードリング30bの位置D2がリサーフ層32の外周側位置D1より内側にある場合は、最外周ガードリング30bの位置D2が表面側周辺耐圧構造の外周側位置Dとなる。第1実施例では、フローティング層40の外周側位置Fが、表面側周辺耐圧構造の外周側位置Dの外側まで延びており、上記条件を満たしている。
 フローティング層40が、最内周のガードリング30aの存在位置Cと表面側周辺耐圧構造の外周側位置Dの間を連続的に延びていると、フローティング層40による耐圧向上効果が顕著に得られる。
(第2実施例)
 以下では、図2以降を参照して第2実施例以降を説明する。第1実施例と同じ部分については同じ参照番号を使うことによって重複説明を省略する。なお、フローティング層に関しては、実施例毎に相違するので、40,50,60,70,80,90の番号を使用する。
 フローティング層50の形成範囲は、図1に示したBからD2の位置までには限定されない。図2に示す第2実施例では、フローティング層50の最も内側の位置Eは、素子領域4と周辺領域6の境界Bよりも外側にある。内周側位置Eが境界Bより外側であっても、内周側位置Eが最内周ガードリング30aの形成位置Cよりも内側にあれば、フローティング層50によって周辺領域6の耐圧向上効果が得られる。また、フローティング層50の外周側位置Fは、半導体基板9の表面に臨む範囲に形成されている周辺耐圧構造の外周側位置Dより外側にまで延びていることが好ましい。図2の場合、リサーフ層32の外側に最外周ガードリング30bが形成されており、表面側周辺耐圧構造の外周側位置Dはリサーフ層32の外周側位置D1となる。図3に示すように、リサーフ層32の外側にガードリングが形成されていない場合は、表面側周辺耐圧構造の外周側位置Dは最外周ガードリング30bの位置D2となる。
 図7の縦軸は周辺領域の耐圧を示し、レベル90は、リサーフ層32とガードリング群30を形成してフローティング層を形成しない場合の耐圧を示している。図7の横軸は、フローティング層の外周側位置Fと、半導体基板の表面に臨む範囲に形成されている周辺耐圧構造の外周側位置Dとの位置関係を示している。位置Fが位置Dより外側にある場合をプラスとしている。図7に示すように、フローティング層を追加することで耐圧が向上するが、その耐圧向上効果はフローティング層が延びている外周側位置Fによって変化し、位置Fが位置Dより外側にあるほど耐圧向上効果が増大することがわかる。
 図7において、ゼロの点は、位置D1とD2のうちの内側の方を示している。5μmの位置は、位置D1とD2のうちの外側の方を示している。フローティング層は、リサーフ層32とガードリング群30の双方が形成されている位置Dまでは延び、好ましくは、リサーフ層32とガードリング群30いずれかが形成されている位置(D1とD2のうちの外側の方)まで延びていることが好ましい。
 それに対して、フローティング層の内周側位置Eについては、耐圧向上効果に与える影響が小さく、図2に示すように、境界Bよりも外側にあっても、最内周ガードリング30aの形成位置Cよりも内側にあれば、必要な耐圧向上効果を得ることができる。ガードリング群30では、最内周のガードリング30aから外周側のガードリングに向けて順々に電位が分担されている。フローティング層が最内周ガードリング30aの形成位置Cより内側の位置から外側に向かって連続的に形成されていると、フローティング層によって効率よく電位分担することができる。
(第3実施例)
 図3に示すように、フローティング層60の最も内側の位置Eが、境界Bよりも内側にあってもよい。すなわちフローティング層60が素子領域4内にまで入り込んでいてもよい。その場合も、フローティング層60による耐圧向上効果を得ることができる。フローティング層60が素子領域4内にまで入り込んでいると、素子領域のオン抵抗が増大する可能性があるが、その侵入距離が小さければオン抵抗に与える影響を無視することができる。図3において、記号Aは、最外周のゲート電極から内側に2本目のゲート電極の形成位置を示している。フローティング層60の内周側位置Eが、AとCの間(つなぎ領域Z内)にあれば、素子領域のオン抵抗が増大するのを防止しながら、周辺領域での耐圧を向上させることができる。
(第4実施例)
 図4に示すように、フローティング層70の内側部分に、開孔70a~70dを形成してもよい。開孔70a~70dは、素子領域4を一巡していてもよいし、ゲート電極26と平行に延びていてもよい。フローティング層70の内周側位置Eが、Aの位置より外側にあれば、素子領域のオン抵抗が増大するのを防止できる。フローティング層70がC位置より外側で連続していれば(すなわちC位置より外側では開口が形成されていなければ)、フローティング層70によって周辺領域での耐圧を向上させることができる。開孔70a~70dを形成する場合には、フローティング層70の内周側位置Eを素子領域4に深く侵入させることができる。すなわちA位置に近づけることができる。
(第5実施例)
 図1~図4の実施例では、フローティング層が一層で形成されているが、図5に示すように、複数のフローティング層80a,80bが形成されていてもよい。すなわち、ドリフト層14の複数個の中間深さにフローティング層を形成してもよい。図5の場合、それぞれのフローティング層が、少なくとも位置Cから位置Dにまで連続的に延びている。それに代え、個々のフローティング層の形成範囲を重複させたときに、位置Cから位置Dにまで連続的に延びる構成としてもよい。
(第6実施例)
 図6は、プレーナ-ゲート電極26を利用するMOSを示す。図1~5に示したトレンチゲート型MOSと、同等または均等の部材には同じ参照番号を付して重複記載を省略する。プレーナ-ゲート電極26を利用する縦型半導体装置の場合でも、最内周ガードリング30aの形成位置Cより内側の位置から、表面側周辺対圧構造の外周側位置Dに一致するかあるいはその外側まで伸びるフローティング領域90を形成することで、周辺領域の耐圧を向上させることができる。
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 例えば、第1導電型をp型として第2導電型をn型とすることができる。また、MOSに代えてIGBTに適用することもできる。
 また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:MOSとして動作する縦型半導体装置
4:素子領域
6:周辺領域
8:半導体基板の外周
9:半導体基板
10:表面電極(ソース電極)
12:第2導電型領域(p型ボディ領域)
14:裏面側第1導電型領域(n型ドリフト領域)
16:第1導電型領域(n型ドレイン領域)
18:裏面電極(ドレイン電極)
20:表面側第1導電型領域(n型ソース領域)
22:ボディコンタクト領域
24:ゲート絶縁膜
26:ゲート電極
30:第2導電型不純物高濃度リング状領域(ガードリング)
32:第2導電型不純物低濃度領域(リサーフ層)
36:第1導電型領域
40,50,60,70,80,90:第2導電型フローティング領域(p型フローティング層)
A:最外周ゲート電極から内側に2本目のゲート電極の形成位置
B:素子領域と周辺領域の境界:最外周ゲート電極の形成位置
C:最内周ガードリングの形成位置
D1;リサーフ層の外周側位置
D2:最外周ガードリングの形成位置
D:表面側周辺耐圧構造の外周側位置(D1とD2のうちの内側の位置)
E:フローティング領域の内周側位置
F:フローティング領域の外周側位置

Claims (5)

  1.  半導体基板を平面視したときに素子領域と素子領域を一巡する周辺領域を備えており、
     素子領域では、半導体基板の表面に形成されている表面電極と、半導体基板の裏面に形成されている裏面電極と、前記表面電極に導通している表面側第1導電型領域と、前記裏面電極に導通している裏面側第1導電型領域と、前記表面側第1導電型領域と前記裏面側第1導電型領域を分離している第2導電型領域と、前記表面側第1導電型領域と前記裏面側第1導電型領域を分離している範囲の前記第2導電型領域にゲート絶縁膜を介して対向しているゲート電極が形成されており、前記ゲート電極の電圧によって前記表面電極と前記裏面電極の間の抵抗が変化し、
     周辺領域では、半導体基板の表面に臨む範囲に形成されている第2導電型不純物低濃度領域と、半導体基板の表面に臨む範囲において素子領域を一巡している第2導電型不純物高濃度リング状領域の多重構造と、前記裏面側第1導電型領域の中間深さに形成されている第2導電型フローティング領域を備えており、前記第2導電型フローティング領域が最内周の前記第2導電型不純物高濃度リング状領域より内側の位置から半導体基板の外周に向けて連続的に延びていることを特徴とする縦型半導体装置。
  2.  前記半導体基板がSiCで形成されており、前記表面側第1導電型領域がソース領域であり、前記第2導電型領域がボディ領域であり、前記裏面側第1導電型領域がドリフト領域であり、前記裏面側第1導電型領域と前記裏面電極の間に第1導電型のドレイン領域が形成されていることを特徴とする請求項1に記載の縦型半導体装置。
  3.  前記第2導電型フローティング領域が、前記第2導電型不純物低濃度領域と前記第2導電型不純物高濃度リング状領域の多重構造の両者が配置されている領域の外周側位置より外側にまで延びていることを特徴とする請求項1または2に記載の縦型半導体装置。
  4.  前記裏面側第1導電型領域の表面側の深さをH1とし、前記裏面側第1導電型領域の裏面側の深さをH2としたときに、前記第2導電型フローティング領域が、H1+0.8×(H2-H1)の深さより表面側に形成されていることを特徴とする請求項1~3のいずれかの1項に記載の縦型半導体装置。
  5.  前記第2導電型フローティング領域が、前記裏面側第1導電型領域の複数個の中間深さに形成されていることを特徴とする請求項1~4のいずれかの1項に記載の縦型半導体装置。
PCT/JP2014/077090 2013-12-27 2014-10-09 縦型半導体装置 WO2015098237A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013271576A JP6224454B2 (ja) 2013-12-27 2013-12-27 縦型半導体装置
JP2013-271576 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098237A1 true WO2015098237A1 (ja) 2015-07-02

Family

ID=53478116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077090 WO2015098237A1 (ja) 2013-12-27 2014-10-09 縦型半導体装置

Country Status (2)

Country Link
JP (1) JP6224454B2 (ja)
WO (1) WO2015098237A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160322491A1 (en) * 2015-04-30 2016-11-03 Infineon Technologies Austria Ag Semiconductor Devices and Methods for Forming a Semiconductor Device
CN110212014A (zh) * 2019-04-30 2019-09-06 上海功成半导体科技有限公司 超结器件终端结构及其制备方法
EP3739636A1 (en) * 2019-05-15 2020-11-18 Infineon Technologies Austria AG Semiconductor device
CN113491008A (zh) * 2019-02-13 2021-10-08 株式会社电装 半导体装置
EP4131422A1 (en) * 2021-08-03 2023-02-08 Infineon Technologies Austria AG Semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112353B (zh) * 2014-12-23 2020-12-22 Abb电网瑞士股份公司 反向传导半导体装置
JP6479615B2 (ja) 2015-09-14 2019-03-06 株式会社東芝 半導体装置の製造方法
DE102017127848B4 (de) * 2017-11-24 2024-10-17 Infineon Technologies Ag Siliziumcarbid-Halbleiterbauelement mit Randabschlussstruktur
JP7127389B2 (ja) * 2018-06-28 2022-08-30 富士電機株式会社 炭化珪素半導体装置
JP6549291B2 (ja) * 2018-07-10 2019-07-24 株式会社東芝 半導体装置
JP2023008548A (ja) * 2021-07-06 2023-01-19 株式会社デンソー 半導体装置と半導体装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343967A (ja) * 2001-05-14 2002-11-29 Toyota Central Res & Dev Lab Inc 半導体装置
JP2003101039A (ja) * 2001-07-17 2003-04-04 Toshiba Corp 高耐圧半導体装置
JP2008016461A (ja) * 2006-06-30 2008-01-24 Toshiba Corp 半導体装置
JP2009088345A (ja) * 2007-10-01 2009-04-23 Toshiba Corp 半導体装置
JP2011512676A (ja) * 2008-02-14 2011-04-21 マックスパワー・セミコンダクター・インコーポレイテッド ブレークダウン電圧を向上するエッジ終端
JP2011181805A (ja) * 2010-03-03 2011-09-15 Toshiba Corp 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914226B2 (ja) * 2004-09-29 2007-05-16 株式会社東芝 高耐圧半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343967A (ja) * 2001-05-14 2002-11-29 Toyota Central Res & Dev Lab Inc 半導体装置
JP2003101039A (ja) * 2001-07-17 2003-04-04 Toshiba Corp 高耐圧半導体装置
JP2008016461A (ja) * 2006-06-30 2008-01-24 Toshiba Corp 半導体装置
JP2009088345A (ja) * 2007-10-01 2009-04-23 Toshiba Corp 半導体装置
JP2011512676A (ja) * 2008-02-14 2011-04-21 マックスパワー・セミコンダクター・インコーポレイテッド ブレークダウン電圧を向上するエッジ終端
JP2011181805A (ja) * 2010-03-03 2011-09-15 Toshiba Corp 半導体装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160322491A1 (en) * 2015-04-30 2016-11-03 Infineon Technologies Austria Ag Semiconductor Devices and Methods for Forming a Semiconductor Device
US20190115467A1 (en) * 2015-04-30 2019-04-18 Infineon Technologies Austria Ag Semiconductor Devices and Methods for Forming a Semiconductor Device
US10770578B2 (en) 2015-04-30 2020-09-08 Infineon Technologies Austria Ag Semiconductor devices and methods for forming a semiconductor device
US11515414B2 (en) 2015-04-30 2022-11-29 Infineon Technologies Austria Ag Semiconductor devices and methods for forming a semiconductor device
CN113491008A (zh) * 2019-02-13 2021-10-08 株式会社电装 半导体装置
CN113491008B (zh) * 2019-02-13 2024-01-16 株式会社电装 半导体装置
CN110212014A (zh) * 2019-04-30 2019-09-06 上海功成半导体科技有限公司 超结器件终端结构及其制备方法
EP3739636A1 (en) * 2019-05-15 2020-11-18 Infineon Technologies Austria AG Semiconductor device
US11296218B2 (en) 2019-05-15 2022-04-05 Infineon Technologies Austria Ag Semiconductor device
EP4131422A1 (en) * 2021-08-03 2023-02-08 Infineon Technologies Austria AG Semiconductor device

Also Published As

Publication number Publication date
JP6224454B2 (ja) 2017-11-01
JP2015126192A (ja) 2015-07-06

Similar Documents

Publication Publication Date Title
JP6224454B2 (ja) 縦型半導体装置
JP4265684B1 (ja) 半導体装置
US7893467B2 (en) Silicon carbide semiconductor device having junction barrier Schottky diode
TWI538162B (zh) 超接合半導體裝置
JP5136578B2 (ja) 半導体装置
JP6659516B2 (ja) 半導体装置
JP6231396B2 (ja) 半導体装置及び半導体装置の製造方法
JP5758824B2 (ja) 半導体装置および半導体装置の製造方法
JP2015162610A (ja) 半導体装置
WO2016046900A1 (ja) 炭化ケイ素半導体装置、炭化ケイ素半導体装置の製造方法及び炭化ケイ素半導体装置の設計方法
JP2015126193A (ja) 縦型半導体装置
JP2018060984A (ja) 半導体装置
WO2010067430A1 (ja) 半導体装置
JP2018010988A (ja) 半導体装置とその製造方法
JP2017191817A (ja) スイッチング素子の製造方法
JP5422930B2 (ja) 半導体装置
JP7091714B2 (ja) 半導体装置
JP7052315B2 (ja) 半導体装置
JP7090073B2 (ja) 半導体装置
NL2018610B1 (en) Power semiconductor device and method of manufacturing power semiconductor device
WO2018143050A1 (ja) 半導体装置
US20160013266A1 (en) Vertical semiconductor device
JP2014229794A (ja) Igbt
JP7263978B2 (ja) 半導体装置
WO2021111528A1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874576

Country of ref document: EP

Kind code of ref document: A1