WO2015097488A1 - Procede de laminage a chaud - Google Patents

Procede de laminage a chaud Download PDF

Info

Publication number
WO2015097488A1
WO2015097488A1 PCT/IB2013/002865 IB2013002865W WO2015097488A1 WO 2015097488 A1 WO2015097488 A1 WO 2015097488A1 IB 2013002865 W IB2013002865 W IB 2013002865W WO 2015097488 A1 WO2015097488 A1 WO 2015097488A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
friction
coefficient
parameters
cage
Prior art date
Application number
PCT/IB2013/002865
Other languages
English (en)
Inventor
Christian Moretto
Nicolas PETHE
Andrey COUTURIER
Original Assignee
Arcelormittal Investigación Y Desarrollo Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020177037905A priority Critical patent/KR102110645B1/ko
Priority to US15/108,132 priority patent/US10870138B2/en
Priority to PCT/IB2013/002865 priority patent/WO2015097488A1/fr
Priority to AU2013409182A priority patent/AU2013409182B2/en
Priority to CA2935193A priority patent/CA2935193C/fr
Priority to KR1020167019708A priority patent/KR20160101153A/ko
Priority to EP13824153.4A priority patent/EP3086889B1/fr
Application filed by Arcelormittal Investigación Y Desarrollo Sl filed Critical Arcelormittal Investigación Y Desarrollo Sl
Priority to HUE13824153 priority patent/HUE044992T2/hu
Priority to PL13824153T priority patent/PL3086889T3/pl
Priority to CN201380081821.6A priority patent/CN105916603B/zh
Priority to UAA201608117A priority patent/UA117508C2/uk
Priority to BR112016014762-6A priority patent/BR112016014762B1/pt
Priority to MX2016008454A priority patent/MX2016008454A/es
Priority to JP2016542726A priority patent/JP6342003B2/ja
Priority to RU2016130269A priority patent/RU2670630C9/ru
Priority to ES13824153T priority patent/ES2724456T3/es
Priority to MA39044A priority patent/MA39044B1/fr
Publication of WO2015097488A1 publication Critical patent/WO2015097488A1/fr
Priority to ZA2016/03733A priority patent/ZA201603733B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/20Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/06Product speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates

Definitions

  • the invention relates to the hot rolling of metallurgical products. More specifically, it relates to a method of controlling at least one parameter of the hot rolling process.
  • hot-rolled steel strips are manufactured according to the following scheme:
  • a finishing mill comprising a plurality of cages (for example six or seven) in which the strip is simultaneously present, so as to give it a thickness of 1, 5 to 10 mm, and then put of the web in the form of a reel.
  • the hot-rolled strip thus obtained can then be subjected to heat or mechanical treatments which will give it its final properties, or undergo a cold rolling which will further reduce its thickness before the completion of the final heat or mechanical treatments.
  • the steel strip is subjected to a specific thermal and mechanical path (reduction, temperature) which is influenced by the friction between the working rolls and the band in the gap between the rollers.
  • This path has a major influence on the quality of the band (surface appearance and metallurgical properties).
  • the regulation of the coefficient of friction is in particular ensured by the lubrication process.
  • lubrication is generally carried out at each roll stand by injecting an emulsion composed of water and a lubricating fluid, usually oil, onto the cylinder at the gap, see for example the US-A-3605473.
  • THR Very High Strength, generally between 450 and 900 MPa
  • UHR Ultra High Strength, generally greater than 900 MPa
  • new formats for example band thicknesses less than 3mm.
  • these steels such as USIBOR® or Dual Phase steels are naturally harder and require the application of a greater rolling force, which reduces the capacity of the rolling mill.
  • These steels may also have a surface composition such that it has less scale which usually acts as the first lubricating element.
  • JP-A-2008264828 discloses a hot rolling method in which the working rolls are coated with a coating layer of specific composition to ensure a certain coefficient of friction value.
  • JP-A-2005146094 discloses a hot rolling method wherein slip of the strip would be avoided by using a lubricating oil of particular composition.
  • JPH-A-1156410 discloses a method in which the clamping force of the applied rolling rolls would be measured by sensor, then the amount of lubricating oil injected would be adjusted so that the measured rolling force is equal to a target value.
  • This solution aims to adjust the coefficient of friction during the process but does not take into account all the parameters on which the coefficient of friction depends, which makes it inefficient.
  • this solution involves significant risks of instabilities of the rolling process, such as. variations in speed or traction, if the amount of lubricant to be supplied to achieve the required force is important.
  • the object of the invention is therefore to provide a rolling method in which the coefficient of friction is reliably and effectively controlled during production in order to avoid rolling incidents and to obtain optimum performance.
  • the object of the invention is also preferably to provide a method reducing the instabilities of the rolling process and allowing lubrication over the entire length of the strip.
  • the invention firstly relates to a control method according to claim 1.
  • This control method may also include the features of claims 2 to 7, singly or in combination.
  • the invention also relates to a rolling method according to claim 8.
  • This rolling method may also include the features of claims 9 to 13, taken alone or in combination.
  • the invention also relates to a hot rolling mill according to claim 14.
  • This mill may also include the features of claim 15.
  • the invention also relates to a computer program product according to claim 16.
  • FIG. 1 represents a mill with two cages equipped with an embodiment of a regulating device according to the invention
  • FIG. 2 represents the different variables used in one embodiment of a regulation method according to the invention
  • FIG. 3 represents a control scheme according to a first embodiment of the invention
  • FIG. 4 represents a control scheme according to a second embodiment of the invention
  • FIG. 5 represents the start of oil injection and the engine torque as a function of time during a test using a control method according to the invention
  • FIG. 6 represents the thickness of the rolled strip at the exit of the cage as a function of time during a test using a control method according to the invention
  • FIG. 1 shows a metal strip B during rolling in a rolling mill comprising two cages 1, 2 in which the strip B is simultaneously under the influence, for example a finishing mill for the hot rolling of the steel strips.
  • Rolling mills of this type generally have 5, 6 or 7 cages.
  • Each of the cages 1, 2 comprises, conventionally, two working rolls 1a, 1a 'and 2a, 2a' and two support rollers b, 1b 'and 2b, 2b'.
  • Each cage is activated by a motor torque C ⁇ C 2 (not shown).
  • the distance between the two working cylinders, respectively 1a -1a 'and 2a-2a' is called the air gap S (not shown) and is adjusted by means of clamping screws 7.
  • the lubrication of the cylinders is ensured at each of the cages by an injection device 3, such as for example projection nozzles for projecting an emulsion of oil and water.
  • a speed measuring device 4 is disposed at the exit of the first cage in the running direction of the strip, this device 4 makes it possible to measure the speed of the strip at the exit of the strip.
  • cage v SO rtie- This device can be, for example, an optical measuring device such as a laser velocimeter. This measurement of the speed makes it possible to calculate in real time the forward sliding (FWS for ForWard Slip ratio in English) from the following formula:
  • - output is the speed of the band leaving the cage, for example measured using the device 4.
  • R being the radius of the working cylinder and ⁇ the angular speed of the working cylinders measured for example by a pulse generator
  • the velocities v SO rte and v cag e can be expressed in any unit of speed, provided both are expressed in that same unit. Similarly, the unit in which is expressed the angular velocity ⁇ to be consistent with that of VAC g e.
  • a device 5 for measuring force to measure in real time the clamping force F of the working rolls is also provided at each cage.
  • These devices may for example be strain gauges installed on the cage uprights or under the clamping screws 7.
  • the measured data of clamping force F and of the speed of the web at the exit of the cage v SO rte are transmitted to a processing unit 6 which can then, according to these measurements and other parameters previously recorded, send instructions.
  • a processing unit 6 which can then, according to these measurements and other parameters previously recorded, send instructions.
  • a processing unit 6 for implementing a first embodiment of the regulation method according to the invention is described below with reference to FIG.
  • the speed of the belt at the exit of the cage v SO rte and the angular velocity of the working cylinders ⁇ are measured in line and their values are sent to a first calculator 8.
  • This first calculator 8 comprises at least one internal memory on which the value of the radius R of the working rolls is stored, which makes it possible to calculate the linear speed of the working rolls and then the value of the working ratio.
  • forward slip FWS according to formula 1.
  • the calculated value FWS is then transmitted to a second computer 9 which also receives as input the value of the clamping force F measured in real time by the sensor 5.
  • This second computer comprises at least one internal memory on which are stored the parameters Pi. These parameters Pi depend on the model chosen for the calculation of the coefficient of friction ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • Orowan model As an example we will describe below the use for the purposes of the invention Orowan model, but other models known to those skilled in the art may be used, such as the model of SIMS or Bland & Ford.
  • the general theory of each of these three models is described for example in "The calculation of roll pressure in hot and cold flat rolling", E.Orowan, Proceedings of the Institute of Mechanical Engineers, June 1943, vol.150, No. 1 140-167 for the Orowan model, "The calculation of roll and torque in hot rolling mills," RB Sims, Proceedings of the Institute of Mechanical Engineers, June 1954, vol.168, No. 1 191-200 for the Sims model, "The Calculation of Roll and Torque Force in Cold Rolling Strip with Tensions," DR Bland and H. Ford, Proceedings of the Institute of Mechanical Engineers, June 1948, vol.149, p.144, for the model of Bland & Ford.
  • Pi model is an input thicknesses tree and output e SO rt of the strip, the input pull-in tree and G SO output of the band, these parameters being in the present example set at the beginning of rolling but can also be estimated or measured in real time. These parameters are illustrated in Figure 2. From these data the second computer 9 thus calculates the real coefficient of friction i given to a processor 10.
  • the calculation time of Préei is less than or equal to 100ms and preferably less than or equal to 50ms.
  • the input data processor 10 are p r IEE a target value of coefficient of friction C p j b ie determined from graphs or modeling, depending on the steel grade of the rolled strip, the number of kilometers of rolled strips on the installation in question, the wear of the rollers, the type of oil used, etc. as well as a parameter a 0 .
  • This parameter is the initial value of the process parameter that will be used to regulate the SOE friction coefficient i.
  • This parameter can be for example the injection rate Q hU iie of the lubricating oil.
  • the initial value can be determined for example using charts or by modeling.
  • the value of p r IEE friction coefficient is then compared with the target value of friction coefficient c i EU If the absolute value of the difference between these two values
  • the injection flow rate Qhuiie of the lubricating oil can be reduced or increased. It is preferable to keep the flow of water in the emulsion constant for thermal considerations of cylinder cooling and smooth operation to ensure that the injected emulsion covers a large part of the cylinder.
  • the time that elapses between the measurement of the output speed of the Vsortie band and the reception of the setpoint a n is less than or equal to 500 ms and preferably less than or equal to 150 ms.
  • FIG. 4 represents a control scheme according to a second embodiment of the invention.
  • the Orowan model parameters P 2 are the input thicknesses e en try and output e SO rt of the strip, the input pull-in tree and released SO rt of the web, the radius R of the rollers, which parameters are in this example set at the beginning of rolling, but can also be estimated or measured in real time.
  • P2 also includes the milling module M of the mill stand considered. This module, generally expressed in t / mm, characterizes the elastic deformation of the cage related to the rolling force.
  • the processor calculates for example the rolling force value F 'which should be applied to obtain the thickness e SO
  • - F is the value of the rolling force measured by the sensor 5.
  • the units of these three quantities must be coherent with each other and may for example be in Newton for the forces F and F 'and in N / mm for the curing module M.
  • the processing units described above with reference to FIGS. 3 and 4 contain various elements such as computers or processors, but it would be possible to envisage a single processor making it possible to carry out the various calculation operations and instructions, or any other possible configuration enabling calculation steps and instructions.
  • a hot rolling method according to the invention was made with a Drawn and Wall Ironed (DWI) steel strip, the lubricating oil used being a commercial standard oil.
  • DWI Drawn and Wall Ironed
  • the injection flow rate Qh U is zero during the rolling of the strip head. This is voluntary this test being mainly devoted to the lubrication of the tail of tape.
  • FIG. 6 represents the thickness of the strip at the cage exit e SO as a function of the rolling time.
  • This thickness e SO rt After 10 seconds, this decline corresponds to what has been explained above.
  • the modification of the injected oil flow Qhuiie causes a change in the force F applied and in this case a significant decrease in the thickness e SO r of the band at the exit of the cage. Thanks to the regulation illustrated in FIG. 4, a new clamping force F 'is calculated and the air gap S modified accordingly in order to obtain an output thickness e SO that corresponds to the customer's expectations.
  • the increase and the maintenance of the thickness e SO rce are visible in this figure 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

Procédé de régulation d'au moins l'un des paramètres (a) d'un procédé de laminage à chaud d'un demi-produit métallique dans au moins une cage de laminoir comprenant au moins deux cylindres de travail, le procédé de régulation comprenant les étapes suivantes de calcul d'un ratio de glissement vers l'avant (FWS) à l'aide de l'équation suivante : FWS = (a) où vsortie est la vitesse du demi-produit à la sortie de ladite cage et νcage est la vitesse linéaire des cylindres de travail; le calcul d'une estimation d'un coefficient de friction(μréel) en fonction d'une valeur mesurée de la force de serrage (F) desdits cylindres de travail dans la cage et du ratio de glissement vers l'avant (FWS) précédemment calculé; et la régulation d'au moins l'un des paramètres (a) à partir de l'estimation calculée du coefficient de friction (μréel). Procédé de laminage, laminoir et produit programme d'ordinateur associés.

Description

Procédé de laminage à chaud
L'invention concerne le laminage à chaud des produits métallurgiques. Plus précisément, elle concerne un procédé de régulation d'au moins un paramètre du procédé de laminage à chaud.
Dans la suite du texte on prendra l'exemple du laminage à chaud des bandes d'acier mais l'invention est applicable au laminage à chaud d'autres produits métallurgiques, notamment l'aluminium ou ses alliages.
Habituellement, les bandes d'acier laminées à chaud sont fabriquées selon le schéma suivant:
- coulée continue d'une brame d'épaisseur allant de 200 à 260 mm;
- réchauffage de la brame à une température d'environ 1100-1200°C;
- passage de la brame dans un laminoir dégrossisseur comportant une cage réversible unique ou une pluralité de cages indépendantes (par exemple au nombre de cinq) disposées les unes à la file des autres, de manière à obtenir une bande ayant une épaisseur de 30 à 50 mm environ;
- passage de la bande dans un laminoir finisseur comportant une pluralité de cages (par exemple au nombre de six ou sept) dans lesquelles la bande est simultanément présente, de manière à lui conférer une épaisseur de 1 ,5 à 10 mm environ, puis mise de la bande sous forme d'une bobine.
La bande laminée à chaud ainsi obtenue peut ensuite être soumise à des traitements thermiques ou mécaniques qui lui conféreront ses propriétés définitives, ou subir un laminage à froid qui réduira encore davantage son épaisseur avant l'accomplissement des ultimes traitements thermiques ou mécaniques.
Pendant le laminage à chaud de bandes d'acier, dans chaque cage du train finisseur, la bande d'acier est soumise à un chemin thermique et mécanique bien déterminé (réduction, température) qui est influencé par le frottement entre les rouleaux de travail et la bande dans l'entrefer entre les rouleaux. Ce chemin a une influence majeure sur la qualité de la bande (aspect de surface et propriétés métallurgiques).
Il est donc primordial de pouvoir contrôler et maîtriser le frottement dans l'entrefer des rouleaux (ou cylindres). Un coefficient de frottement trop élevé conduit à une consommation d'énergie trop importante, une dégradation rapide des rouleaux ainsi que des défauts de surface sur la bande. A l'inverse, un coefficient de frottement trop faible provoque des problèmes de glissement et de guidage de la bande ainsi que des problèmes d'engagement de celle-ci dans la cage.
La régulation du coefficient de frottement est notamment assurée par le processus de lubrification.
Actuellement la lubrification est généralement réalisée au niveau de chaque cage du laminoir par injection d'une émulsion composée d'eau et d'un fluide lubrifiant, habituellement de l'huile, sur le cylindre au niveau de l'entrefer, voir par exemple le document US-A-3605473.
La nécessité d'avoir une lubrification performante est encore accrue avec le laminage des nouvelles nuances d'acier THR (Très Haute Résistance, généralement comprise entre 450 et 900 MPa) ou UHR (Ultra Haute Résistance, généralement supérieure à 900 MPa) et/ou des nouveaux formats, par exemple des épaisseurs de bande inférieures à 3mm. En effet ces aciers tels que l'USIBOR® ou les aciers Dual Phase sont naturellement plus durs et nécessitent l'application d'une force de laminage plus importante, ce qui réduit la capacité du laminoir. Ces aciers peuvent aussi avoir une composition de surface telle qu'elle présente moins de calamine qui agit habituellement comme premier élément de lubrification.
De plus dans les procédés de laminage actuels, pour éviter le risque de non engagement de la bande dans l'entrefer des cylindres lié à un coefficient de frottement trop élevé, l'injection d'émulsion lubrifiante est désactivée lors du laminage du début de la bande. De la même façon pour éviter que la bande suivante refuse de s'engager à cause de la présence d'émulsion lubrifiante sur les cylindres, l'injection d'émulsion lubrifiante est désactivée lors du laminage de la queue de la bande précédente. Ces deux portions qui sont donc laminées sans lubrifiant doivent être éliminées car n'ayant pas l'épaisseur requise, ce qui représente une perte de plusieurs mètres de bande (de 5 à 10 mètres de bande par cage) et donc une perte non négligeable en terme de perte de productivité.
Afin d'assurer une lubrification efficace et par conséquent réguler le coefficient de friction de sorte à éviter des incidents de laminage tels que glissements ou non engagement de la bande de nombreuses solutions ont été proposées.
Le document JP-A-2008264828 décrit un procédé de laminage à chaud dans lequel les cylindres de travail sont recouverts d'une couche de revêtement de composition spécifique afin de garantir une certaine valeur de coefficient de frottement.
Le document JP-A-2005146094 décrit un procédé de laminage à chaud dans lequel le glissement de la bande serait évité en utilisant une huile lubrifiante de composition particulière.
Cependant ces solutions ne permettent pas de réguler le coefficient de frottement en continu en cours de laminage. En effet, le coefficient de frottement dépend entre autres de la nature du matériau constituant la bande à laminer, de l'état des cylindres de travail (rugosité, dégradation, calamine, etc.), de la vitesse de laminage et du pourcentage de réduction à atteindre. Ainsi, l'efficacité de lubrification peut être très différente entre le début et la fin d'une campagne de laminage, et même d'un train à l'autre et d'une cage à l'autre dans le même train. Or les deux solutions proposées ne permettent pas de prendre en compte les variations de ces paramètres au cours du procédé.
Le document JPH-A-1156410 décrit un procédé dans lequel la force de serrage des cylindres de laminage appliquée serait mesurée par capteur, puis la quantité d'huile lubrifiante injectée serait ajustée de sorte que la force de laminage mesurée soit égale à une valeur cible.
Cette solution vise à ajuster le coefficient de frottement en cours de procédé mais ne prend pas en compte l'ensemble des paramètres dont dépend le coefficient de frottement, ce qui la rend peu efficace. De plus cette solution implique des risques importants d'instabilités du procédé de laminage, telles que . des variations de vitesse ou de traction, si la quantité de lubrifiant à apporter pour atteindre la force requise est importante.
Le but de l'invention est donc de fournir un procédé de laminage dans lequel le coefficient de frottement est régulé de façon fiable et efficace en cours de production afin d'éviter les incidents de laminage et d'obtenir un rendement optimal. Le but de l'invention est également de façon préférentielle de fournir un procédé réduisant les instabilités du procédé de laminage et permettant de lubrifier sur toute la longueur de la bande.
A cet effet l'invention a pour premier objet un procédé de régulation selon la revendication 1.
Ce procédé de régulation peut également comprendre les caractéristiques des revendications 2 à 7, prises isolément ou en combinaison.
L'invention a également pour objet un procédé de laminage selon la revendication 8.
Ce procédé de laminage peut également comprendre les caractéristiques des revendications 9 à 13, prises isolément ou en combinaison.
L'invention a également pour objet un laminoir à chaud selon la revendication 14.
Ce laminoir peut également comprendre les caractéristiques de la revendication 15.
L'invention a également pour objet un produit programme d'ordinateur selon la revendication 16.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre.
Afin d'illustrer l'invention, des essais ont été réalisés et vont être décrits à titre d'exemples non limitatifs, notamment en référence aux figures qui représentent :
- La figure 1 représente un laminoir à deux cages équipées d'un mode de réalisation d'un dispositif de régulation selon l'invention, - La figure 2 représente les différentes variables utilisées dans un mode de réalisation d'un procédé de régulation selon l'invention
- La figure 3 représente un schéma de régulation selon un premier mode de réalisation de l'invention
- La figure 4 représente un schéma de régulation selon un second mode de réalisation de l'invention
- La figure 5 représente le début d'injection d'huile et le couple moteur en fonction du temps lors d'un essai utilisant un procédé de régulation selon l'invention
- La figure 6 représente l'épaisseur de la bande laminée en sortie de cage en fonction du temps lors d'un essai utilisant un procédé de régulation selon l'invention
La figure 1 montre une bande métallique B en cours de laminage dans un laminoir comprenant deux cages 1 , 2 dans lesquelles la bande B est simultanément sous emprise, par exemple un laminoir finisseur pour le laminage à chaud des bandes d'acier. Les laminoirs de ce type comportent généralement 5, 6 ou 7 cages. Chacune des cages 1 , 2 comprend, classiquement, deux cylindres de travail 1a, 1a' et 2a, 2a' et deux cylindres de soutien b, 1 b' et 2b, 2b'. Chaque cage est activée par un couple moteur C^ C2 (non représentés). La distance entre les deux cylindres de travail, respectivement 1a -1a' et 2a-2a' se nomme l'entrefer S (non représenté) et est réglé à l'aide de vis de serrage 7.
La lubrification des cylindres est assurée au niveau de chacune des cages par un dispositif d'injection 3, tel que par exemple des buses de projection permettant de projeter une émulsion d'huile et d'eau.
Selon un mode de réalisation de l'invention, un dispositif 4 de mesure de vitesse est disposé à la sortie de la première cage dans le sens de défilement de la bande, ce dispositif 4 permet de mesurer la vitesse de la bande en sortie de la cage vSOrtie- Ce dispositif peut être, à titre d'exemple, un dispositif à mesure optique tel qu'un vélocimètre laser. Cette mesure de la vitesse permet de calculer en temps réel le glissement vers l'avant (FWS pour ForWard Slip ratio en anglais) à partir de la formule suivante :
Figure imgf000008_0001
Dans laquelle :
- sortie est la vitesse de la bande en sortie de la cage, par exemple mesurée à l'aide du dispositif 4.
- Vcage est la vitesse linéaire des cylindres de travail calculée selon la formule suivante :
Vcage = <»R (Formule 2)
R étant le rayon du cylindre de travail et ω la vitesse angulaire des cylindres de travail mesurée par exemple par un générateur à Impulsion)
Les vitesses vSOrtie et vcage peuvent être exprimées en n'importe quelle unité de vitesse, sous réserve d'être exprimées toutes deux dans cette même unité. De même l'unité dans laquelle est exprimée la vitesse angulaire ω doit être cohérente avec celle de vcage.
Toujours selon un mode de réalisation de l'invention un dispositif 5 de mesure de force permettant de mesurer en temps réel la force de serrage F des cylindres de travail est également prévu au niveau de chaque cage. Ces dispositifs bien connus de l'homme du métier peuvent être par exemple des jauges de contraintes installées sur les montants de cage ou sous les vis de serrage 7.
Les données mesurées de force de serrage F et de vitesse de la bande en sortie de cage vSOrtie sont transmises à une unité de traitement 6 qui peut ensuite, en fonction de ces mesures et d'autres paramètres enregistrés au préalable, envoyer des consignes par exemple aux buses d'injection d'émulsion lubrifiante 3 ou aux vis de serrage 7.
Une unité de traitement 6 permettant de mettre en œuvre un premier mode de réalisation du procédé de régulation selon l'invention est décrite ci-dessous en référence à la figure 3.
La vitesse de la bande en sortie de la cage vSOrtie et la vitesse angulaire des cylindres de travail ω sont mesurées en ligne et leurs valeurs sont envoyées à un premier calculateur 8. Ce premier calculateur 8 comprend au moins une mémoire interne sur laquelle est stockée la valeur du rayon R des cylindres de travail, ce qui permet de calculer la vitesse linéaire des cylindres de travail vcage et ensuite la valeur du ratio de glissement vers l'avant FWS selon la formule 1.
La valeur calculée FWS est ensuite transmise à un second calculateur 9 qui reçoit également en donnée d'entrée la valeur de la force de serrage F mesurée en temps réel par le capteur 5. Ce second calculateur comprend au moins une mémoire interne sur laquelle sont stockés les paramètres P-i . Ces paramètres Pi dépendent du modèle choisi pour le calcul du coefficient de frottement Γέβι·
Différents modèles simplifiés peuvent être adaptés pour obtenir le calcul du coefficient de frottement préei à partir des valeurs de ratio de glissement vers l'avant FWS et de force de serrage F. Ces modèles sont connus dans leur généralité mais pas dans leur application particulière telle que décrite dans l'invention.
A titre d'exemple nous allons décrire ci-après l'utilisation aux fins de l'invention du modèle d'Orowan, mais d'autres modèles connus de l'homme du métier pourront être utilisés, tel que le modèle de SIMS ou Bland & Ford. La théorie générale de chacun de ces trois modèles est décrite par exemple dans « The calculation of roll pressure in hot and cold flat rolling », E.Orowan, Proceedings of the Institute of Mechanical Engineers, June 1943, vol.150, n°1 140-167 pour le modèle d'Orowan, « The calculation of roll force and torque in hot rolling mills », R.B. Sims, Proceedings of the Institute of Mechanical Engineers, June 1954, vol.168, n°1 191-200 pour le modèle de Sims, "The Calculation of Roll Force and Torque in Cold Strip Rolling with Tensions », D.R. Bland et H. Ford, Proceedings of the Institute of Mechanical Engineers, June 1948, vol.149, p.144, pour le modèle de Bland & Ford.
Pour calculer en temps réel le coefficient de frottement préei en utilisant le modèle d'Orowan les paramètres Pi sont les épaisseurs d'entrée eentrée et de sortie eSOrtie de la bande, les tractions d'entrée aentrée et de sortie GSOrtie de la bande, ces paramètres étant dans l'exemple présent fixés en début de laminage mais peuvent également être estimés ou mesurés en temps réel. Ces paramètres sont illustrés en figure 2. A partir de ces données le second calculateur 9 calcule ainsi le coefficient de frottement réei, donnée transmise à un processeur 10. Le temps de calcul de Préei est inférieur ou égal à 100ms et de préférence inférieur ou égal à 50ms.
Les données d'entrée de processeur 10 sont préei, une valeur cible de coefficient de frottement pCjbie déterminée à partir d'abaques ou de modélisation, en fonction de la nuance d'acier de la bande laminée, du nombre de kilomètres de bandes laminées sur l'installation considérée, de l'usure des rouleaux, du type d'huile utilisée, etc.. ainsi qu'un paramètre a0. Ce paramètre est la valeur initiale du paramètre de procédé a qui sera utilisé pour réguler le coefficient de friction réei.
Ce paramètre peut être à titre d'exemple le débit d'injection QhUiie de l'huile lubrifiante. La valeur initiale peut être déterminée par exemple à l'aide d'abaques ou par modélisation.
La valeur du coefficient de frottement préei est ensuite comparée à la valeur cible de coefficient de frottement ic ue- Si la valeur absolue de la différence entre ces deux valeurs | /dWe - μκε1 \ est supérieure à une valeur prédéterminée Δ, une nouvelle valeur du paramètre an est alors calculée puis appliquée afin que la valeur du coefficient de frottement calculée préei soit ramenée à une valeur plus proche de la valeur cible pCibie, et ce afin d'éviter un refus d'engagement et de glissement de la bande si préei< Mdbie+ A ou une usure prématurée des cylindres de travail et des défauts de surface dans le cas contraire. On pourra par exemple réduire ou augmenter le débit d'injection Qhuiie de l'huile lubrifiante. Il est préférable de garder le débit d'eau dans l'émulsion constant pour des considérations thermiques de refroidissement du cylindre et de bon fonctionnement afin de s'assurer que l'émulsion injectée couvre une grande partie du cylindre.
Le temps qui s'écoule entre la mesure de la vitesse de sortie de la bande Vsortie et la réception de la consigne an est inférieur ou égal à 500 ms et de préférence inférieur ou égal à 150 ms.
Cette succession de mesures, calculs et régulations peut ainsi être répétée jusqu'à la fin du laminage de la bande considérée et jusqu'à la fin de la campagne de laminage. La figure 4 représente un schéma de régulation selon un second mode de réalisation de l'invention.
La différence avec le premier mode de réalisation décrit précédemment et illustré en figure 3 est que les valeurs FWS et préei calculées respectivement par les calculateurs 8 et 9 sont transmises à un second processeur 11. Les données d'entrée de ce second processeur sont donc FWS, préei ainsi qu'un ensemble de paramètres P2. Ces paramètres P2 dépendent du modèle choisi pour le calcul du coefficient de frottement préei-
Si l'on utilise comme dans le mode de réalisation précédent le modèle d'Orowan les paramètres P2 sont les épaisseurs d'entrée eentrée et de sortie eSOrtie de la bande, les tractions d'entrée aentrée et de sortie aSOrtie de la bande, le rayon R des rouleaux, ces paramètres étant dans l'exemple présent fixés en début de laminage, mais peuvent également être estimés ou mesurés en temps réel. P2 inclut aussi le module de cédage M de la cage du laminoir considérée. Ce module, généralement exprimé en t/mm, caractérise la déformation élastique de la cage liée à l'effort de laminage.
A partir de ces données le processeur calcule par exemple la valeur de force de laminage F' qui devrait être appliquée pour obtenir l'épaisseur eSOrtie
En effet la nouvelle valeur du paramètre a peut générer des modifications sur d'autres paramètres et ainsi créer des problèmes par exemple de sous épaisseur en sortie de la cage.
En effet si l'on modifie le débit d'huile injecté QhUiie on modifie le coefficient de frottement préei et par conséquent la force F appliquée par le rouleau sur la bande. Cela se traduit alors par une modification de l'épaisseur eSOrtie de la bande en sortie de la cage, comme illustré en figure 5. On peut donc obtenir des épaisseurs en sortie de cage non conformes. Si ce problème se présente on peut alors utiliser le même modèle que celui utilisé pour calculer préei mais en sens inverse. Dans le cas présent du modèle d'Orowan on reprend les paramètres d'entrée d'épaisseur eentrée, eSOrtie, de traction aentrée, <?sortie, de diamètre D, le coefficient de frottement cible Maimed, et le ratio de glissement calculé FWS et on obtient ainsi la force F' à appliquer sur la bande, et la variation nécessaire de l'entrefer AS selon la formule 3 ci-dessous et on corrige alors en conséquence les positions de vis de serrage 7 qui définissent l'entrefer.
F'— F
Δ£≡—— (Formule 3)
M
Dans laquelle :
- F' est la valeur de la force de laminage calculée par le processeur 11.
- F est la valeur de la force de laminage mesurée par le capteur 5.
- M est le module de cédage de la cage considérée
Les unités de ces trois grandeurs doivent être cohérentes entre elles et peuvent par exemple être en Newton pour les forces F et F' et en N/mm pour le module de cédage M.
On pourra utiliser ce même principe de calcul par modèle inversé pour contrôler d'autres paramètres du procédé de laminage tel que les tractions amont et aval de la cage Gentrée, amortie afin d'éviter des perturbations de la vitesse de la bande en sortie de laminage.
Les unités de traitement décrites précédemment en référence aux figures 3 et 4 contiennent différents éléments tels que des calculateurs ou des processeurs mais on pourrait envisager un seul et même processeur permettant de réaliser les différentes opérations de calcul et consignes, ou tout autre configuration possible permettant des étapes de calcul et consignes.
Essai
Un procédé de laminage à chaud selon l'invention a été réalisé avec une bande d'acier DWI (Drawn and Wall Ironed), l'huile de lubrification utilisée étant une huile standard commerciale.
Les résultats sont illustrés en figures 5 et 6.
Comme illustré en figure 5, le débit d'injection QhUne est nul lors du laminage de la tête de bande. Ceci est volontaire cet essai étant principalement consacré à la lubrification de la queue de bande.
Par contre on constate que le débit d'injection d'huile QhUiie a été régulé jusqu'à la fin du laminage de la bande, ce qui signifie que la queue de bande a également été laminée en présence de lubrifiant, ce qui n'était pas le cas dans l'art antérieur.
La figure 6 représente l'épaisseur de la bande en sortie de cage eSOrtie en fonction du temps de laminage. On observe une chute de cette épaisseur eSOrtie après 10 secondes, cette baisse correspond à ce qui a été expliqué précédemment. La modification du débit d'huile injecté Qhuiie entraîne une modification de la force F appliquée et dans le cas présent une diminution importante de l'épaisseur eSOrtie de la bande en sortie de la cage. Grâce à la régulation illustrée en figure 4 une nouvelle force de serrage F' est calculée et l'entrefer S modifié en conséquence afin d'obtenir une épaisseur de sortie eSOrtie conforme aux attentes du client. L'augmentation et le maintien de l'épaisseur eSOrtie sont visibles sur cette figure 6.
Ni glissement, ni refus d'engagement de la bande suivante ne se sont produits lors de cet essai, ce qui signifie que le coefficient de frottement a été régulé de façon fiable et efficace. De plus, la queue de bande a pu être laminée en présence de lubrifiant sans incidence sur le laminage de la bande suivante.

Claims

REVENDICATIONS
1. Procédé de régulation d'au moins l'un des paramètres (a) d'un procédé de laminage à chaud d'un demi-produit métallique dans au moins une cage de laminoir comprenant au moins deux cylindres de travail,
le procédé de régulation comprenant les étapes suivantes :
- le calcul d'un ratio de glissement vers l'avant (FWS) à l'aide de l'équation suivante :
Ffffg V — V
— I sortie ' cage |
V
cage
où sortie est la vitesse du demi-produit à la sortie de ladite cage et ν∞9β est la vitesse linéaire des cylindres de travail ;
- le calcul d'une estimation d'un coefficient de friction (μΓββι) en fonction d'une valeur mesurée de la force de serrage (F) desdits cylindres de travail dans la cage et du ratio de glissement vers l'avant (FWS) précédemment calculé ; et
- la régulation d'au moins l'un des paramètres (a) à partir de l'estimation calculée du coefficient de friction (μΓββι)·
2. Procédé de régulation selon la revendication 1 , dans lequel :
- lors de l'étape de calcul de l'estimation du coefficient de friction (μΓββι) , une valeur cible du coefficient de friction (μ^ΐθ) est prédéterminée, et le coefficient de friction (μΓ6βι) est calculé en temps réel ;
- lors de l'étape de régulation, si
Figure imgf000014_0001
- ree/ 1 est supérieure à une valeur prédéterminée (Δ), le paramètre de procédé (a) correspondant est ajusté de telle sorte que
Figure imgf000014_0002
devienne inférieure ou égale à la valeur prédéterminée (Δ).
3. Procédé de laminage selon la revendication 1 ou 2, dans lequel avant le calcul du ratio de glissement vers l'avant (FWS), on mesure la vitesse (vSOrtie) du demi-produit à la sortie de la cage est mesurée, et le temps entre ladite mesure de (vSOrtie) et le calcul du coefficient de friction (préei) est inférieur ou égal à 100ms..
4. Procédé de laminage selon la revendication 3, dans lequel le temps entre la mesure de vsortie et le calcul de Γβθι à est inférieur ou égal à 50ms.
5. Procédé de laminage selon l'une des revendications précédentes, dans lequel le temps entre la mesure de vSOrtie et la régulation de l'au moins l'un des paramètres du procédé de laminage à chaud (a) est inférieur ou égal à 500ms.
6. Procédé de régulation selon l'une quelconque des revendications précédentes comprenant une étape de correction, ultérieure à l'étape de régulation de l'au moins un des paramètres a du procédé, qui consiste à réguler la force de serrage F en fonction des valeurs de ratio de glissement vers l'avant (FWS) et de coefficient de frottement (préei) calculées.
7. Procédé de régulation selon l'une quelconque des revendications précédentes comprenant une étape de correction, ultérieure à l'étape de régulation d'au moins un des paramètres a du procédé, qui consiste à réguler les tractions d'entrée (aentrée) et de sortie (aSOrtie) de la bande en fonction des valeurs du ratio de glissement vers l'avant (FWS) et du coefficient de frottement ( réei) calculées.
8. Procédé de laminage à chaud d'un demi-produit métallique dans au moins une cage de laminage comprenant au moins deux cylindres de travail dans lequel au moins l'un des paramètres a du procédé est régulé à l'aide d'un procédé de régulation conforme à l'une quelconque des revendications précédentes.
9. Procédé de laminage selon la revendication 8, dans lequel une émulsion lubrifiante composée d'huile et d'eau est injectée au niveau de l'entrefer des cylindres de travail et dans lequel l'au moins un des paramètres de procédé a est le débit d'injection de ladite huile (Qhuiie)-
10. Procédé de laminage selon l'une des revendications 8 ou 9, dans lequel le demi-produit métallique laminé est une bande d'aluminium.
11. Procédé de laminage selon l'une des revendications 8 ou 9, dans lequel le demi-produit métallique laminé est une bande d'acier.
12. Procédé de laminage selon la revendication 11 , dans lequel la bande d'acier laminée est une bande d'acier à très haute résistance ou à Ultra Haute résistance.
13. Procédé de laminage selon la revendication 11 ou 12, dans lequel la bande d'acier laminée à une épaisseur à la fin du laminage inférieure ou égale à 3 mm.
14. Laminoir à chaud pour la mise en œuvre du procédé de laminage selon l'une quelconque des revendications 8 à 11.
15. Laminoir à chaud selon la revendication 12 dans lequel la vitesse du demi- produit sortie en sortie de la cage de laminoir est mesurée à l'aide d'un vélocimètre laser.
16. Produit programme d'ordinateur comportant des instructions logicielles qui, lorsqu'elles sont mises en œuvre par un ordinateur, mettent en œuvre le procédé de régulation selon l'une quelconque des revendications 1 à 7.
PCT/IB2013/002865 2013-12-24 2013-12-24 Procede de laminage a chaud WO2015097488A1 (fr)

Priority Applications (18)

Application Number Priority Date Filing Date Title
PL13824153T PL3086889T3 (pl) 2013-12-24 2013-12-24 Sposób walcowania na gorąco, walcownia gorąca i program komputerowy do wykonywania takiego sposobu
PCT/IB2013/002865 WO2015097488A1 (fr) 2013-12-24 2013-12-24 Procede de laminage a chaud
AU2013409182A AU2013409182B2 (en) 2013-12-24 2013-12-24 Hot rolling method
CA2935193A CA2935193C (fr) 2013-12-24 2013-12-24 Procede de laminage a chaud
KR1020167019708A KR20160101153A (ko) 2013-12-24 2013-12-24 열간 압연 방법
EP13824153.4A EP3086889B1 (fr) 2013-12-24 2013-12-24 Procédé de laminage à chaud, laminoir à chaud et produit programme d'ordinateur pour la mise en oeuvre d'un tel procédé
CN201380081821.6A CN105916603B (zh) 2013-12-24 2013-12-24 热轧方法
HUE13824153 HUE044992T2 (hu) 2013-12-24 2013-12-24 Meleghengerlési eljárás, meleghengersor és számítógépi program az eljárás végrehajtására
MA39044A MA39044B1 (fr) 2013-12-24 2013-12-24 Procede de laminage a chaud
KR1020177037905A KR102110645B1 (ko) 2013-12-24 2013-12-24 열간 압연 방법
UAA201608117A UA117508C2 (uk) 2013-12-24 2013-12-24 Спосіб гарячої прокатки
BR112016014762-6A BR112016014762B1 (pt) 2013-12-24 2013-12-24 Método de regulação de pelo menos um dos parâmetros alfa de um processo de laminação a quente, método de laminação a quente de um produto de metal semiacabado, laminador a quente e memória legível por computador
MX2016008454A MX2016008454A (es) 2013-12-24 2013-12-24 Metodo de laminacion en caliente.
JP2016542726A JP6342003B2 (ja) 2013-12-24 2013-12-24 熱間圧延方法
RU2016130269A RU2670630C9 (ru) 2013-12-24 2013-12-24 Способ горячей прокатки
ES13824153T ES2724456T3 (es) 2013-12-24 2013-12-24 Procedimiento de laminación en caliente, laminador en caliente y producto de programa informático para la implementación de tal procedimiento
US15/108,132 US10870138B2 (en) 2013-12-24 2013-12-24 Hot rolling method
ZA2016/03733A ZA201603733B (en) 2013-12-24 2016-06-01 Hot rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2013/002865 WO2015097488A1 (fr) 2013-12-24 2013-12-24 Procede de laminage a chaud

Publications (1)

Publication Number Publication Date
WO2015097488A1 true WO2015097488A1 (fr) 2015-07-02

Family

ID=50001027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/002865 WO2015097488A1 (fr) 2013-12-24 2013-12-24 Procede de laminage a chaud

Country Status (17)

Country Link
US (1) US10870138B2 (fr)
EP (1) EP3086889B1 (fr)
JP (1) JP6342003B2 (fr)
KR (2) KR20160101153A (fr)
CN (1) CN105916603B (fr)
AU (1) AU2013409182B2 (fr)
BR (1) BR112016014762B1 (fr)
CA (1) CA2935193C (fr)
ES (1) ES2724456T3 (fr)
HU (1) HUE044992T2 (fr)
MA (1) MA39044B1 (fr)
MX (1) MX2016008454A (fr)
PL (1) PL3086889T3 (fr)
RU (1) RU2670630C9 (fr)
UA (1) UA117508C2 (fr)
WO (1) WO2015097488A1 (fr)
ZA (1) ZA201603733B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032949A (zh) * 2015-07-09 2015-11-11 首钢总公司 一种控制高线盘条尾部圈形的夹持方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638639B2 (ja) * 2016-12-19 2020-01-29 トヨタ自動車株式会社 差厚金属板の製造方法、プレス部品の製造方法及び加工機
CN108655176B (zh) * 2017-03-31 2020-05-19 上海梅山钢铁股份有限公司 用于稳定轧制的冷轧前滑模型自适应计算方法
CN107537863B (zh) * 2017-10-13 2019-05-03 北京金自天正智能控制股份有限公司 一种h型钢开坯机区的全自动控制方法
EP3517228A1 (fr) * 2018-01-29 2019-07-31 Primetals Technologies Austria GmbH Règles d'un processus de laminage
JP7073983B2 (ja) 2018-08-21 2022-05-24 日本製鉄株式会社 冷間圧延方法
IT201900005442A1 (it) * 2019-04-09 2020-10-09 Danieli Off Mecc Processo di laminazione a freddo di un prodotto in alluminio e relativo impianto di laminazione a freddo
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US11969502B2 (en) 2019-12-09 2024-04-30 Nicoventures Trading Limited Oral products
US11872231B2 (en) 2019-12-09 2024-01-16 Nicoventures Trading Limited Moist oral product comprising an active ingredient
US11826462B2 (en) 2019-12-09 2023-11-28 Nicoventures Trading Limited Oral product with sustained flavor release
CN114850428B (zh) * 2022-05-09 2024-01-16 宝信软件(山西)有限公司 采用压下力补正立式连铸机拉矫主辊速度的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605473A (en) 1969-03-21 1971-09-20 Nat Steel Corp Method and apparatus for hot rolling ferrous metal workpieces
JPS60223601A (ja) * 1984-04-19 1985-11-08 Sumitomo Metal Ind Ltd 薄鋼帯の冷間圧延方法
JPH01156410A (ja) 1987-12-11 1989-06-20 Nkk Corp 高炉操業方法
JPH03151106A (ja) * 1989-11-08 1991-06-27 Kawasaki Steel Corp 冷間圧延における先進率制御方法
JP2005146094A (ja) 2003-11-14 2005-06-09 Daido Chem Ind Co Ltd アルミニウム及びアルミニウム合金用熱間圧延油および該圧延油を使用するアルミニウム及びアルミニウム合金の熱間圧延方法
EP1829623A1 (fr) * 2004-11-22 2007-09-05 Nippon Steel Corporation Procede d'alimentation en lubrifiant dans le cadre du laminage a froid
JP2008264828A (ja) 2007-04-19 2008-11-06 Fujikoo:Kk 熱間圧延用複合ロール、熱間圧延用複合ロールの製造方法及び熱間圧延方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010810B2 (ja) * 1975-08-25 1985-03-20 株式会社日立製作所 圧延機の板厚制御方法
JPS5788911A (en) * 1980-11-26 1982-06-03 Toshiba Corp Method for controlling rolling of hot rolling mill for aluminum
JPS57199501A (en) * 1981-06-02 1982-12-07 Kawasaki Steel Corp Hot oil-lubricated rolling method
JPS6015010A (ja) 1983-07-05 1985-01-25 Nippon Steel Corp 圧延における適応制御方法
AU576330B2 (en) * 1983-09-08 1988-08-25 John Lysaght (Australia) Limited Rolling mill strip thickness controller
JPS61103613A (ja) * 1984-10-29 1986-05-22 Nippon Kokan Kk <Nkk> 鋼ストリツプの板厚制御方法
JPH05337527A (ja) 1992-06-08 1993-12-21 Nkk Corp 鋼ストリップの圧延方法
JP3281682B2 (ja) * 1993-07-29 2002-05-13 新日本製鐵株式会社 レーザー速度計を用いた熱間粗圧延におけるスリップ予測制御装置
FR2735046B1 (fr) * 1995-06-08 1997-07-11 Lorraine Laminage Procede de laminage a froid avec compensation d'ovalisation des cylindres de laminage.
JPH09206809A (ja) 1996-01-31 1997-08-12 Sumitomo Metal Ind Ltd 連続圧延機における厚み制御方法
US6286354B1 (en) * 1996-04-03 2001-09-11 Hitachi, Ltd. Rolling mill and rolling method and rolling equipment
CN1093875C (zh) * 1996-12-20 2002-11-06 花王株式会社 用于钢板水分散冷轧油的润滑油
JP2969518B2 (ja) 1997-06-11 1999-11-02 東洋紡績株式会社 安全靴用軽量先芯
DE19744503A1 (de) * 1997-10-09 1999-04-15 Schloemann Siemag Ag Vorrichtung und Verfahren zur Beeinflussung der Reibungsverhältnisse zwischen einer oberen und einer unteren Walze eines Walzgerüstes
JP3495909B2 (ja) * 1998-03-30 2004-02-09 株式会社東芝 圧延ロールのプロフィール制御装置
JP3368841B2 (ja) 1998-09-14 2003-01-20 日本鋼管株式会社 冷間タンデムミルの圧延方法
JP2000288614A (ja) * 1999-04-09 2000-10-17 Toshiba Corp 圧延機の板厚制御装置
DE60030288T2 (de) * 2000-03-09 2007-10-31 Jfe Steel Corp. Walzölversorgungsverfahren zum kaltwalzen
JP3582455B2 (ja) 2000-05-19 2004-10-27 Jfeスチール株式会社 鋼帯の冷間圧延方法
RU2177847C1 (ru) 2000-12-19 2002-01-10 Муриков Сергей Анатольевич Способ регулирования процесса прокатки
CN1275711C (zh) * 2001-03-16 2006-09-20 株式会社中山制钢所 热轧设备及方法
DE10249923B4 (de) * 2002-10-26 2012-02-23 Sms Siemag Aktiengesellschaft Messgerät zum Messen der Reibungszahl μ in der Wirkfuge bei Metall-Umformverfahren
DE102006002505A1 (de) * 2005-10-31 2007-05-03 Sms Demag Ag Verfahren und Fertigwalzstraße zum Warmwalzen von Eingangsmaterial
FR2898523B1 (fr) * 2006-03-14 2009-02-27 Alstom Power Conversion Sa Procede de laminage d'une bande de tole.
DE102007032485A1 (de) 2006-12-15 2008-06-19 Sms Demag Ag Verfahren und Schmiermittelauftragsvorrichtung zum Regeln der Planheit und/oder der Rauheit eines Metallbandes
CN101616754B (zh) * 2007-02-02 2011-08-17 住友金属工业株式会社 具有微细铁素体组织的热轧钢板的制造方法及热轧钢板
WO2011065291A1 (fr) * 2009-11-24 2011-06-03 住友金属工業株式会社 Procédé de fabrication de tôles d'acier laminées à chaud et dispositif de fabrication de tôles d'acier laminées à chaud
KR101230151B1 (ko) * 2010-12-28 2013-02-15 주식회사 포스코 열간압연공정에서의 압연유량 제어방법
JP5633463B2 (ja) 2011-04-12 2014-12-03 新日鐵住金株式会社 冷間圧延機の潤滑油供給装置
US9095886B2 (en) * 2011-06-27 2015-08-04 University Of Central Florida Research Foundation, Inc. Mill control system and method for control of metal strip rolling
CN105514539A (zh) * 2016-01-27 2016-04-20 南京米乐为微电子科技有限公司 基于容性负载的超宽带定值移相器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605473A (en) 1969-03-21 1971-09-20 Nat Steel Corp Method and apparatus for hot rolling ferrous metal workpieces
JPS60223601A (ja) * 1984-04-19 1985-11-08 Sumitomo Metal Ind Ltd 薄鋼帯の冷間圧延方法
JPH01156410A (ja) 1987-12-11 1989-06-20 Nkk Corp 高炉操業方法
JPH03151106A (ja) * 1989-11-08 1991-06-27 Kawasaki Steel Corp 冷間圧延における先進率制御方法
JP2005146094A (ja) 2003-11-14 2005-06-09 Daido Chem Ind Co Ltd アルミニウム及びアルミニウム合金用熱間圧延油および該圧延油を使用するアルミニウム及びアルミニウム合金の熱間圧延方法
EP1829623A1 (fr) * 2004-11-22 2007-09-05 Nippon Steel Corporation Procede d'alimentation en lubrifiant dans le cadre du laminage a froid
JP2008264828A (ja) 2007-04-19 2008-11-06 Fujikoo:Kk 熱間圧延用複合ロール、熱間圧延用複合ロールの製造方法及び熱間圧延方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.R. BLAND; H. FORD: "The Calculation -of Roll Force and Torque in Cold Strip Rolling with Tensions", PROCEEDINGS OF THE INSTITUTE OF MECHANICAL ENGINEERS, vol. 149, June 1948 (1948-06-01), pages 144
E.OROWAN: "The calculation of roll pressure in hot and cold flat rolling", PROCEEDINGS OF THE INSTITUTE OF MECHANICAL ENGINEERS, vol. 150, no. 1, June 1943 (1943-06-01), pages 140 - 167
R.B. SIMS: "The calculation of roll force and torque in hot rolling mills", PROCEEDINGS OF THE INSTITUTE OF MECHANICAL ENGINEERS, vol. 168, no. 1, June 1954 (1954-06-01), pages 191 - 200

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032949A (zh) * 2015-07-09 2015-11-11 首钢总公司 一种控制高线盘条尾部圈形的夹持方法
CN105032949B (zh) * 2015-07-09 2017-02-01 首钢总公司 一种控制高线盘条尾部圈形的夹持方法

Also Published As

Publication number Publication date
US20160318080A1 (en) 2016-11-03
US10870138B2 (en) 2020-12-22
RU2670630C9 (ru) 2018-11-26
HUE044992T2 (hu) 2019-11-28
KR20180004332A (ko) 2018-01-10
MX2016008454A (es) 2016-10-14
BR112016014762B1 (pt) 2022-03-15
BR112016014762A2 (fr) 2017-08-08
ES2724456T3 (es) 2019-09-11
CN105916603B (zh) 2018-09-07
RU2016130269A (ru) 2018-01-30
AU2013409182A1 (en) 2016-07-14
MA39044B1 (fr) 2018-11-30
CA2935193A1 (fr) 2015-07-02
KR20160101153A (ko) 2016-08-24
AU2013409182B2 (en) 2017-08-31
ZA201603733B (en) 2017-07-26
EP3086889B1 (fr) 2019-02-06
RU2670630C2 (ru) 2018-10-24
CA2935193C (fr) 2018-12-04
PL3086889T3 (pl) 2019-08-30
EP3086889A1 (fr) 2016-11-02
JP2017500208A (ja) 2017-01-05
UA117508C2 (uk) 2018-08-10
JP6342003B2 (ja) 2018-06-13
KR102110645B1 (ko) 2020-05-14
CN105916603A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
EP3086889B1 (fr) Procédé de laminage à chaud, laminoir à chaud et produit programme d&#39;ordinateur pour la mise en oeuvre d&#39;un tel procédé
CA2690096C (fr) Procede de laminage d&#39;une bande metallique avec regulation de sa position laterale d&#39;une bande et laminoir adapte
JP7049520B6 (ja) 冷間連続圧延機の振動を抑制するためのエマルションフロー最適化方法
FR2925530A1 (fr) Installation et procede pour le decapage en continu de bandes d&#39;acier
WO2020020192A1 (fr) Procédé d&#39;optimisation de système de tension pour supprimer les vibrations d&#39;un laminoir tandem à froid
EP1466675A1 (fr) Procédé et dispositif de régulation de l&#39;épaisseur d&#39;un produit laminé
EP0928644B1 (fr) Procédé de pilotage d&#39;une opération d&#39;écrouissage en continu d&#39;une bande métallique
EP1996347A1 (fr) Procede de laminage d&#39;une bande de tole
JP6358222B2 (ja) 連続冷間圧延における走間板厚変更時のパススケジュール決定方法
EP2958687B1 (fr) Méthode de laminage d&#39;une bande métallique
FR2792857A1 (fr) Procede de fabrication, en continu, d&#39;une bande metallique
EP0000454B1 (fr) Procédé de controle de la tension de produits épais laminés à chaud en prise entre deux cages successives
JP7076039B2 (ja) 冷間連続圧延ミルセットのためのエマルション濃度最適化の方法
EP2172282A1 (fr) Procédé de contrôle du laminage d&#39;une bande de tôle
EP0466570B1 (fr) Procédé de laminage réversible
RU2701916C1 (ru) Способ прокатки прокатываемого материала
JPH08238506A (ja) 再使用圧延ロール組み込み時の通板方法
FR2966888A1 (fr) Thermocompresseur, systeme de controle associe et procede de controle du fonctionnement de ce thermocompresseur
Fabris et al. Advanced solutions for bar and wire-rod mills

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 39044

Country of ref document: MA

REEP Request for entry into the european phase

Ref document number: 2013824153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013824153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 139550140003003649

Country of ref document: IR

ENP Entry into the national phase

Ref document number: 2935193

Country of ref document: CA

Ref document number: 2016542726

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/008454

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15108132

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016014762

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013409182

Country of ref document: AU

Date of ref document: 20131224

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167019708

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201608117

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2016130269

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016014762

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160622