WO2015093035A1 - 基板位置合わせ装置及び基板位置合わせ装置の制御方法 - Google Patents

基板位置合わせ装置及び基板位置合わせ装置の制御方法 Download PDF

Info

Publication number
WO2015093035A1
WO2015093035A1 PCT/JP2014/006234 JP2014006234W WO2015093035A1 WO 2015093035 A1 WO2015093035 A1 WO 2015093035A1 JP 2014006234 W JP2014006234 W JP 2014006234W WO 2015093035 A1 WO2015093035 A1 WO 2015093035A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
support claw
substrates
support
rotation angle
Prior art date
Application number
PCT/JP2014/006234
Other languages
English (en)
French (fr)
Inventor
崇行 福島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020167015623A priority Critical patent/KR101836320B1/ko
Priority to CN201480068130.7A priority patent/CN105981155B/zh
Priority to US15/105,283 priority patent/US10181418B2/en
Publication of WO2015093035A1 publication Critical patent/WO2015093035A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/54486Located on package parts, e.g. encapsulation, leads, package substrate

Definitions

  • the present invention relates to a substrate alignment apparatus that aligns the rotation angle positions of a plurality of substrates, and a control method for the substrate alignment apparatus.
  • a substrate alignment device that aligns the rotation angle positions of a plurality of semiconductor wafers with a reference rotation angle position is used to align the crystal directions of the semiconductor wafers. For this reason, the semiconductor wafer is provided with a notch that is a mark in the crystal direction of the semiconductor wafer.
  • An example of this substrate alignment apparatus is disclosed in Patent Document 1.
  • three support poles are erected along the circumferential direction from the peripheral edge of one turntable, and each support pole is vertically spaced from each other at equal intervals.
  • One support pin is provided. The periphery of one semiconductor wafer is supported by three support pins positioned at the same height of the three support poles.
  • Three scooping poles are provided on the outside of the three support poles so that they can be moved up and down and can be moved close to and away from the rotation center axis of the turntable.
  • a scooping pin is provided. The vertical distance between adjacent scoop pins is set smaller than the vertical distance between adjacent support pins.
  • sensor poles provided with sensors for detecting notches of five semiconductor wafers supported by the support pins.
  • each semiconductor wafer is supported by three support pins having the same height.
  • the turntable is rotated once, and the notch is detected by the sensor, thereby detecting the rotation angle position of all the semiconductor wafers, that is, the deviation angle from the reference rotation angle position, and the memory.
  • the turntable is rotated based on the rotation angle position stored in the memory, and the rotation angle position of the lowest semiconductor wafer is adjusted to the reference rotation angle position.
  • the three scooping poles are moved inward toward the turntable, and each scooping pole is raised so that the scooping pins lift up the lowest semiconductor wafer that has been aligned.
  • the vertical distance between adjacent scoop pins is smaller than the vertical distance between adjacent support pins, so that the remaining four semiconductor wafers are placed on the support pins while only the lowest semiconductor wafer is scooped up. Can be left alone.
  • the turntable is rotated to align the second-stage semiconductor wafer from the bottom to the reference rotational angle position, and the semiconductor wafer is scooped with the scooping pins as described above. increase. In this manner, the rotation angle positions of the five semiconductor wafers are sequentially adjusted to the reference rotation angle position.
  • An object of the present invention is to provide a substrate alignment apparatus capable of aligning rotation angle positions of substrates in an arbitrary order, and a method for controlling the substrate alignment apparatus.
  • a substrate alignment apparatus is arranged to be spaced apart from each other in the vertical direction so as to hold a plurality of substrates horizontally and vertically so as to be spaced apart from each other, and extend in the vertical direction.
  • a plurality of turntables rotatably provided around one axis, a rotation drive device that rotates the plurality of turntables in synchronization, and a plurality of rotation tables that are respectively held and rotated by the plurality of turntables.
  • a plurality of mark position detectors for detecting a rotation angle position of a mark on the substrate; a plurality of support claw sets configured to support peripheral edges of a plurality of substrates to be held on the plurality of turntables; A plurality of support claw sets are individually supported and configured to individually move between an inner position located inside the outer periphery of the substrate and an outer position located outside the outer periphery of the substrate.
  • Multiple support claw sets It comprises a driving structure, and a lifting mechanism for lifting collectively in between the high position and a low position in the plurality of supporting pawls set driving structure a predetermined height range.
  • the high position and the low position are respectively a position higher and lower than the substrate held on the turntable corresponding to each of the plurality of support claw sets, and are detected by the plurality of mark position detection units, respectively.
  • the mark of the plurality of substrates is positioned at a reference rotation angle position by operating the rotation driving device, the support claw set driving structure, and the elevating mechanism based on the mark positions of the plurality of substrates. Has been.
  • the rotation angle of the marks such as notches and orientation flats of the plurality of substrates respectively held on the plurality of turntables by the plurality of mark position detection units while the plurality of turntables are rotated synchronously by the rotation driving device.
  • the position is detected, and the rotation angle position of the mark on one substrate is first adjusted to the reference rotation angle position (hereinafter referred to as alignment).
  • the support claw set corresponding to the aligned substrate is positioned in the inward position by the corresponding support claw set driving structure, and the support claw set corresponding to all the substrates that are not aligned is respectively supported.
  • the claw set driving structures are respectively positioned at the outward positions.
  • the substrate lifting only the substrate that has been aligned is lifted from the turntable (hereinafter referred to as substrate lifting). Thereafter, when this alignment and substrate lifting are sequentially performed on the remaining substrates, all the substrates are aligned. In this manner, the marks can be aligned in any order with respect to the plurality of substrates. Accordingly, by selecting the optimum order of alignment according to the rotation angle positions of the plurality of substrate marks detected by the plurality of mark position detecting units, the alignment of the plurality of substrate marks can be performed in the shortest time. Can do.
  • a rotation angle position of the mark on the substrate detected by the mark position detection unit is input, and a control unit and a storage unit for controlling the rotation driving device, the support claw set driving structure, and the lifting mechanism are provided.
  • the control unit synchronously rotates the plurality of turntables by the rotation driving device and detects marks of a plurality of substrates respectively held on the plurality of turntables detected by the plurality of mark position detection units.
  • the rotation angle position of the mark on the substrate is positioned at the reference rotation angle position.
  • corresponding support claw sets Positioning for rotating the plurality of turntables synchronously by the rotation driving device, and supporting claw sets corresponding to the substrates for which the positioning has been completed, corresponding support claw sets
  • the support claw sets corresponding to all the substrates that are positioned at the inner position by the moving structure and not aligned are respectively positioned at the outer positions by the corresponding support claw set driving structures, and then
  • the plurality of support claw set driving structures are collectively positioned at the high position by the lifting mechanism, and the substrate lifting for lifting only the aligned substrates from the turntable is sequentially performed on the plurality of substrates.
  • the substrate alignment operation may be performed sequentially.
  • the rotation angle alignment of the plurality of substrates can be automatically performed sequentially under the control of the control unit.
  • the control unit is configured to position the plurality of support claw set drive structures at the high position by the lifting mechanism and to move the plurality of support claw sets to the inside by the corresponding support claw set drive structures.
  • a substrate holding operation for holding the plurality of substrates on the plurality of turntables by positioning the structure at the low position, and after the substrate holding operation, the mark position detection operation and the sequential substrate alignment operation It may be configured to perform.
  • control unit minimizes the amount of rotation of the turntable necessary for performing the alignment of all the substrates based on the rotation angle positions of the marks of the plurality of substrates stored in the storage unit.
  • the alignment order for a plurality of substrates may be calculated, and the alignment may be performed on the plurality of substrates in the calculated order in the sequential substrate alignment operation.
  • the substrates can be aligned in a minimum time with respect to the order of the plurality of substrates.
  • the elevating mechanism includes a plurality of support columns provided on a virtual circle centered on the one axis line so as to extend in the vertical direction at intervals in the circumferential direction, and the plurality of turntables on each of the support columns.
  • a plurality of individual support claw drive structures provided at respective height positions corresponding to each of the plurality of support claw driving structures, and a lifting device that moves the plurality of columns in synchronization with each other, and each of the support claw sets corresponds to each of them.
  • a plurality of support claws configured to respectively support a plurality of peripheral portions in the circumferential direction of the substrate to be held by the turntable.
  • Each of the support claw set driving structures individually supports a plurality of support claws constituting the corresponding support claw set and synchronizes with each other between the inner position and the outer position.
  • the plurality of individual support claw drive structures configured to move each of them may be configured.
  • the plurality of rotations can be rotated around one axis that is separated from each other in the vertical direction and extends in the vertical direction so as to hold the plurality of substrates horizontally and vertically spaced apart from each other.
  • a base that supports the base, one rotational drive source, and a rotational drive force of the rotational drive source that are provided on the base are transmitted to the plurality of rotary bases so that the plurality of rotary bases rotate in synchronization with each other.
  • a rotational driving force transmission mechanism is transmitted to the plurality of rotary bases so that the plurality of rotary bases rotate in synchronization with each other.
  • the rotation drive source of the turntable can be disposed at a spatial position away from the turntable.
  • the degree of freedom in design when providing the rotational drive source is increased.
  • a method for controlling a substrate alignment apparatus wherein a plurality of substrates are horizontally spaced apart from each other and are vertically spaced apart from each other.
  • a plurality of turntables rotatably provided around one axis extending in a direction, a rotation drive device that rotates the plurality of turntables in synchronization, and a plurality of turntables that are held and rotated respectively.
  • a plurality of mark position detectors for detecting rotation angle positions of the marks on the plurality of substrates, and a plurality of support claw sets configured to support the peripheral portions of the plurality of substrates to be held on the plurality of turntables, respectively.
  • Each of the plurality of support claw sets is individually supported and moved individually between an inward position located inside the outer periphery of the substrate and an outer position located outside the outer periphery of the substrate.
  • the holding claw set driving structure that collectively moves the plurality of supporting claw set driving structures between a high position and a low position in a predetermined height range, and the mark position detection unit A rotation angle position of a mark of the substrate to be input, and a control unit that controls the rotation driving device, the support claw set driving structure, and the lifting mechanism, and a storage unit, the high position and the low position Are used in a substrate alignment apparatus in which the plurality of support claw sets are at a position higher and lower than a substrate held by a corresponding turntable.
  • the controller rotates the plurality of turntables in synchronization with the rotation driving device, and rotates the marks on the plurality of substrates respectively held on the plurality of turntables detected by the plurality of mark position detection units.
  • the rotation angle position of the mark on the substrate is positioned at the reference rotation angle position.
  • the support claw sets corresponding to all the substrates that have been positioned and have not been aligned are respectively moved to the outer positions by the corresponding support claw set driving structures.
  • the plurality of support claw set driving structures are collectively positioned at the high position by the lifting mechanism, and the plurality of substrate lifts for lifting only the aligned substrates from the turntable A sequential substrate alignment operation is sequentially performed on the substrates.
  • the present invention by selecting the optimal order of alignment according to the rotation angle positions of the marks on the plurality of substrates detected by the plurality of mark position detection units, the shortest It is possible to align the marks on a plurality of substrates in time.
  • FIG. 1 is a plan view showing an overall configuration of a substrate processing system in which a substrate alignment apparatus according to a first embodiment of the present invention is used.
  • (a), (b) is a top view which shows the example of the mark of a semiconductor wafer. It is a top view which shows the whole structure of a board
  • (a), (b) is an enlarged view of a support nail.
  • (a), (b) is an enlarged view which shows the up-and-down positional relationship of a support
  • the vertical direction refers to the vertical direction.
  • the disk-shaped semiconductor wafer is illustrated as a board
  • the substrate may be a glass substrate for a thin liquid crystal display or an organic EL display processed by a semiconductor process.
  • a semiconductor wafer is a substrate material for semiconductor devices, and includes a silicon wafer, a silicon carbide wafer, a sapphire wafer, and the like.
  • FIG. 1 is a plan view showing the overall configuration of a substrate processing system 100 in which the substrate alignment apparatus according to the first embodiment of the present invention is used.
  • a substrate processing system 100 includes a storage unit 110 that stores a plurality of semiconductor wafers 9, a substrate alignment apparatus 1 that adjusts the rotation angle position of the semiconductor wafer 9 to a reference rotation angle position, and a semiconductor wafer.
  • the semiconductor wafer 9 includes a processing apparatus 120 that performs predetermined processing such as heat treatment and thin film formation processing, and a transfer robot 130 that transfers the semiconductor wafer 9 among the storage unit 110, the substrate alignment apparatus 1, and the processing apparatus 120.
  • the transfer robot 130 and the substrate alignment apparatus 1 are disposed between the processing apparatus 120 and the storage unit 110.
  • the semiconductor wafer 9 in the storage unit 110 is not initially aligned in the rotational angle position and is not subjected to a predetermined process.
  • the transfer robot 130 is configured by connecting a base 140 and a plurality of mutually rotatable arms, provided on the base 140 so as to be rotatable in a horizontal plane, and provided at the tip of the arm body 150. And a hand 160 for holding a plurality of semiconductor wafers 9 in a state of being vertically separated from each other.
  • the transfer robot 130 rotates the arm body 150 to take out a plurality of unprocessed semiconductor wafers 9 from the storage unit 110 with the hand 160 and transfer the plurality of semiconductor wafers 9 to the substrate alignment apparatus 1. Thereafter, the transfer robot 130 leaves the hand 160 from the substrate alignment apparatus 1.
  • the substrate alignment apparatus 1 rotates the semiconductor wafer 9 to rotate the rotation angle of the plurality of semiconductor wafers 9. Adjust the position to the reference rotation angle position.
  • the transfer robot 130 takes out the plurality of semiconductor wafers 9 whose rotation angle positions are adjusted from the substrate alignment apparatus 1 by the hand 160 and transfers them to the processing apparatus 120.
  • the transfer robot 130 takes out the semiconductor wafer 9 with the hand 160 and returns it to the storage unit 110.
  • the substrate alignment apparatus 1 aligns the rotation angle positions of the five semiconductor wafers 9 with the reference rotation angle position, but the number of semiconductor wafers 9 is not limited to five.
  • the semiconductor wafer 9 is provided with a mark indicating the crystal direction of the semiconductor wafer 9.
  • the mark includes a notch 90 that is a V-shaped notch provided on the periphery of the semiconductor wafer 9, or as shown in FIG. 2 (b).
  • the mark detector examples include a translucent sensor and a reflective sensor.
  • the angle of rotation angle of the original semiconductor wafer 9 is shifted from the reference rotation angle position by any angle. You can see if Based on this shift amount, the semiconductor wafer 9 is rotated so that the notches 90 or the orientation flats 91 of the respective semiconductor wafers 9 are aligned with the reference rotation angle position.
  • the notch 90 is illustrated as a mark.
  • the mark only needs to indicate a predetermined posture (rotation angle) in the rotation direction for performing a specific process on the substrate.
  • the substrate alignment apparatus 1 is circumferentially spaced on a base 10 placed on the floor and a virtual circle centered on one axis L extending vertically on the base 10. Can be rotated about the axis L, and three pillars 3 provided so as to extend up and down, a sensor pole 11 provided with a plurality of sensors for detecting the notch 90 of the semiconductor wafer 9 in the vertical direction, and the axis L Rotation drive device 2 that is provided on the upper and lower sides of the rotary table 4 that are spaced apart from each other, a support pole 6 that is positioned outside the rotary table 4, and the five rotary tables 4. And is configured.
  • the center of the semiconductor wafer 9 coincides with the axis L. .
  • the support pole 6 is located outside the semiconductor wafer 9 on the turntable 4.
  • the rotary drive device 2 is provided on the outer side of the support column 3 and extends up and down, and rotates one of the two rotation columns 20 via an intermediate gear 21 1. It comprises a motor M that is one rotational drive source, two rotating columns 20 and an endless timing belt 22 that is mounted on each turntable 4. Five timing belts 22 are provided vertically corresponding to the five turntables 4, and the timing belt 22 constitutes the “rotational driving force transmission mechanism” of the present invention.
  • the motor M is constituted by a servo motor, for example.
  • FIG. 4 is a perspective view of the turntable 4. As shown in FIG. 4, a receiving table 40 is provided below the rotating table 4, and the rotating table 4 is rotatable with respect to the receiving table 40.
  • a plurality of receiving protrusions 41 are provided from the upper surface of the turntable 4, and the semiconductor wafer 9 is placed on the upper surface of the receiving protrusion 41. With the semiconductor wafer 9 placed on the upper surface of the receiving projection 41, a vertical gap is formed between the back surface of the semiconductor wafer 9 and the upper surface of the turntable 4.
  • FIG. 5 is a side view of the support pole 6 as viewed from the direction A1 in FIG. For convenience of illustration, only two turntables 4 are shown from the bottom, but as described above, five turntables 4 are provided on the top and bottom.
  • the bracket 60 protrudes from the support pole 6 toward the cradle 40 corresponding to each height of the five cradle 40.
  • a cradle 40 is attached to the tip of each bracket 60, and each cradle 40 and the turntable 4 are supported by the corresponding bracket 60 in a cantilever state. Since the bracket 60 is located below the turntable 4, it does not interfere with the semiconductor wafer 9 transferred to the turntable 4. As shown in FIG.
  • the motor M can be provided at a spatial position away from the turntable 4. Thereby, the space where the motor M is provided can be afforded, that is, the degree of freedom in design when the motor M is provided is increased.
  • FIG. 6 is a side view of the support column 3 and the turntable 4 and shows two support columns 3 for convenience of explanation.
  • each support column 3 receives and supports the peripheral edge of the semiconductor wafer 9 to be held on the turntable 4, and a support claw drive structure for moving each support claw 50 in the horizontal direction.
  • a body 70 is provided.
  • the support claw drive structure 70 is constituted by an air cylinder, for example. That is, each support column 3 is provided with five support claws 50 corresponding to the height of the turntable 4, and each support claw 50 is provided with five support claw driving structures provided corresponding to the height of the turntable 4. It is driven horizontally by the body 70 individually.
  • one support claw set 5 is constituted by three support claws 50 located at the same height, and three support claw drive structures located at the same height.
  • One support claw set drive structure 7 is constituted by 70.
  • An elevating device 30 is provided at the lower end of each support column 3, and the three elevating devices 30 elevate and lower the three support columns 3, the five support claw sets 5, and the five support claw set drive structures 7 in synchronization.
  • Examples of the lifting device 30 include, but are not limited to, a motor incorporating an air cylinder or a rack mechanism.
  • the three struts 3, the support claw set drive structure 7, and the lifting device 30 constitute the lifting mechanism 300 of the present invention.
  • the lifting mechanism 300 is not limited to this.
  • the three support columns 3 are fixed, and the three support columns 3 are each provided with an elevating device for elevating and lowering the five support claw driving structures 70 individually, and these elevating devices respectively support the corresponding support claw drive.
  • You may comprise so that the structure 70 may be raised / lowered synchronizing with each other.
  • the five support claws 50 are individually driven horizontally by the support claw driving structure 70, but are attached to the support column 3, so that they are lifted and lowered together with the support column 3. In other words, the support claws 50 can move individually but cannot move up and down.
  • FIGS. 7A and 7B are enlarged views of the support claw 50 driven by the individual support claw drive structure 70.
  • the support claw 50 has a horizontal upper surface and a receiving piece 51 that receives the lower surface of the peripheral edge of the semiconductor wafer 9, and is erected from the outer end of the receiving piece 51.
  • a vertical wall 52 that suppresses the horizontal outward displacement of the wafer 9 and a claw body 53 that is fitted in the support claw driving structure 70 so as to be able to protrude and retract in the horizontal direction are integrally provided.
  • the support claw 50 is supported by the support claw driving structure 70, and as shown in FIG. As shown in FIG. 3, the tip of the receiving piece 51 is individually driven between the outer position of the semiconductor wafer 9 and the outer position.
  • FIGS. 8A and 8B are enlarged views showing the vertical positional relationship between the support column 3 and the support claw 50 that are moved up and down by the lifting device 30 and the turntable 4, and show the lowest support claw 50.
  • the vertical positional relationship between the other support claws 50 and the turntable 4 is the same.
  • the upper surface of the receiving piece 51 is held on the turntable 4 corresponding to each support claw 50 by the operation of the lifting device 30 moving the support column 3 up and down.
  • the lower position (see FIG. 8A) located below the lower surface of the semiconductor wafer 9 and the upper surface of the receiving piece 51 are located above the lower surface of the semiconductor wafer 9 held by the turntable 4. Move between high positions (see Fig. 8 (b)).
  • the lifting device 30 raises the support claw 50 to a high position in a state where the support claw 50 corresponding to the support claw driving structure 70 is set to the inward position, as shown in FIG.
  • the claw 50 lifts the corresponding semiconductor wafer 9 on the turntable 4 from the turntable 4.
  • the tip of the receiving piece 51 is located outside the outer periphery of the semiconductor wafer 9.
  • the support claw 50 does not lift the corresponding semiconductor wafer 9 from the turntable 4.
  • the semiconductor wafer 9 remains mounted on the turntable 4. That is, by driving the support claw driving structure 70 and the lifting device 30 in synchronization, when the column 3 is lifted, any support claw 50 lifts the semiconductor wafer 9 from the corresponding turntable 4 and does not lift it.
  • the state can be switched.
  • FIG. 9 is an enlarged side view of the sensor pole 11.
  • five dents 12 into which the peripheral edge of the semiconductor wafer 9 is fitted are opened up and down corresponding to the height of the semiconductor wafer 9.
  • Each recess 12 has an opening directed to the axis L so that the semiconductor wafer 9 transported to the turntable 4 by the hand 160 can enter.
  • the recess 12 is provided with a sensor 13 that detects a notch 90 (see FIG. 2A) of the semiconductor wafer 9.
  • the sensor 13 is configured, for example, as a translucent sensor including a light emitting element 14 and a light receiving element 15 that are positioned above and below each other with the peripheral edge of the semiconductor wafer 9 interposed therebetween.
  • the position where the notch 90 is detected by the sensor 13 is the rotational angle position of the notch 90. That is, by detecting the rotation angle of the turntable 4 from when the semiconductor wafer 9 is initially placed on the turntable 4 until the sensor 13 detects the notch 90, the original semiconductor wafer becomes the reference rotation angle. You can see how much the angle deviates from the position.
  • the sensor 13 constitutes the “marking position detection unit” of the present invention, and the vertical positions of the light emitting element 14 and the light receiving element 15 may be opposite to the positions shown in FIG.
  • the senor 13 may be configured as a reflective sensor that includes a light emitting unit and a light receiving unit on one side and a reflecting plate on the other side.
  • the vertical length of the recess 12 is set to a length that does not contact the light emitting element 14 or the light receiving element 15 even when the semiconductor wafer 9 moves up and down between the low position and the high position.
  • FIG. 10 is a block diagram showing a peripheral configuration of the control unit 8 that controls the control operation of the substrate alignment apparatus 1.
  • the control unit 8 is configured by, for example, one CPU, but may be a combination of a plurality of CPUs, and is disposed in the base 10, for example.
  • the control unit 8 may use a combination of a CPU and an ASIC (Application Specific Integrated Circuit).
  • the control unit 8 includes a storage unit 80 that is a memory that stores the rotation angle position of the semiconductor wafer 9, and a ROM 81 that stores an operation program.
  • a RAM 82 serving as a work memory for temporarily recording information is connected.
  • Each of the five turntables 4 is assigned an identification number, and this identification number is stored in the RAM 82, for example.
  • the control unit 8 operates the motor M to temporarily rotate all the turntables 4, and the sensor 13 detects the notches 90 from the state where all the semiconductor wafers 9 are initially placed on the turntable 4.
  • the rotation angle of the turntable 4 up to the reference rotation angle position is detected.
  • the rotation angle is detected by, for example, a rotation angle sensor such as a rotary encoder attached to the main shaft of the motor M, and this detected value is input to the control unit 8.
  • the control unit 8 initially stores the value of how much the semiconductor wafer 9 placed on the turntable 4 is shifted from the reference rotation angle position in the storage unit 80 for each turntable 4. .
  • the control unit 8 operates the lifting device 30 to collectively place all the support claw set drive structures 7 at a high position and to set all the support claw sets 5 respectively.
  • the corresponding support claw set drive structure 7 is positioned in the inward position (see FIG. 8B).
  • this operation is referred to as a substrate receiving operation.
  • the transfer robot 130 causes the hand 160 to enter the substrate alignment apparatus 1, and a plurality of (here, five) support claw sets 5 are placed on a plurality of semiconductor wafers 9 (here, five). ) Are transported and placed.
  • the control unit 8 operates the lifting device 30 to collectively place all the support claw set drive structures 7 at a low position, and a plurality of (here, five) turntables 4.
  • a plurality of substrates are respectively held in the substrate.
  • this operation is referred to as a substrate holding operation.
  • alignment will be described with reference to FIGS. 6 and 11 to 13. In the initial state shown in FIG.
  • the rotation angle positions of the semiconductor wafers 9 are varied, that is, the semiconductor wafers 9 are at the reference rotation angle. It is not aligned.
  • the rotation angle position of the semiconductor wafer 9 on the turntable 4 with an arbitrary identification number can be adjusted to the reference rotation angle position. Matching the rotation angle position of the semiconductor wafer 9 to the reference rotation angle position is called “positioning”.
  • positioning Matching the rotation angle position of the semiconductor wafer 9 to the reference rotation angle position.
  • the control unit 8 operates the motor M to rotate all the turntables 4 once, and detects notches 90 of all the semiconductor wafers 9 by all the sensors 13. Then, the rotational angle position of the notch 90 is detected based on the rotational angle of the motor M detected by the rotational angle sensor when the notch 90 is detected. Thereafter, the control unit 8 stops all the turntables 4 and calculates the deviation between the reference rotation angle position and the rotation angle position at which the notch 90 is detected for all the semiconductor wafers 9. Each identification number of the turntable 4 corresponding to the semiconductor wafer 9 is stored in the storage unit 80. This is called a “marker position detection operation”.
  • control unit 8 reads the amount of angular deviation between the initial rotation angle position of the uppermost semiconductor wafer 9 and the reference rotation angle position from the storage unit 80, and rotates all the turntables 4 by this angle deviation amount. Thereby, only the rotation angle position of the uppermost semiconductor wafer 9 is adjusted to the reference rotation angle position. That is, the uppermost semiconductor wafer 9 is “aligned”.
  • the control unit 8 drives the support claw set driving structure 7 so that only the uppermost support claw set 5 is positioned in the inward position, and the other support claw set 5 is moved. Position it in the outward position.
  • the lifting device 30 is operated to set all the support claw sets 5 to the high position. Since only the uppermost support claw set 5 is located at the inner position and the other support claw sets 5 are located at the outer position, the uppermost semiconductor wafer whose rotation angle position is adjusted to the reference rotation angle position. Only 9 is lifted from the turntable 4, and the other semiconductor wafers 9 are kept on the turntable 4. This is called “substrate lifting operation”.
  • the control unit 8 reads the amount of angular deviation of the second semiconductor wafer 9 from the top from the storage unit 80 with all the support claw sets 5 set to the high position.
  • the control unit 8 adjusts the amount of rotation of the uppermost turntable 4 rotated previously and the amount of angular deviation of the second semiconductor wafer 9 from the top, so that the semiconductor wafer on the second turntable 4 from the top is adjusted.
  • the amount of rotation angle required to adjust 9 to the reference rotation angle position is calculated.
  • the control unit 8 operates the motor M to rotate all the turntables 4 by the calculated rotation angle amount, and rotates the semiconductor wafer 9 on the second turntable 4 from the top in the same procedure as described above. Adjust the angular position to the reference rotational angular position.
  • the control unit 8 operates the support claw set driving structure 7 in the second stage from the top, and positions the support claw set 5 in the second stage from the top in the inward position.
  • the uppermost support claw set 5 remains in the inward position, and the support claw sets 5 other than the uppermost and second-stage support claw set 5 remain in the outer position.
  • the control part 8 operates the raising / lowering apparatus 30, raises the three support
  • the uppermost semiconductor wafer 9 whose rotation angle position is matched with the reference rotation angle position and the second-stage semiconductor wafer 9 from the top are lifted to a high position. In other words, the “substrate lifting operation” is performed again.
  • the same procedure is repeated, and the rotation angle positions of all the semiconductor wafers 9 are adjusted to the reference rotation angle position. That is, “alignment” of one semiconductor wafer, “substrate lifting operation” of the semiconductor wafer, “alignment” of the next semiconductor wafer, “temporary holding operation of one semiconductor wafer”, one semiconductor wafer and the next The “substrate lifting operation” of the semiconductor wafer is repeated until the final rotation angle alignment operation of the semiconductor wafer is completed. Thereafter, the transfer robot 130 takes out all the semiconductor wafers 9 from the substrate alignment apparatus 1 with the hand 160.
  • “positioning” of the plurality of semiconductor wafers 9 can be performed in a short time.
  • the procedure of “positioning” a plurality of semiconductor wafers 9 held up and down in order is shown.
  • the semiconductor wafers 9 can be aligned in any order. This arbitrary order may be determined manually by the operator or by the control unit 8 generating a random number related to the identification number.
  • the substrate alignment apparatus 1 according to the second embodiment of the present invention it is possible to align with the reference rotation angle position in order from the semiconductor wafer 9 having a small angle deviation from the reference rotation angle position.
  • the control unit 8 operates the motor M to temporarily rotate all the turntables 4, and the value of how much the initial rotation angle position is deviated from the reference rotation angle position for all the semiconductor wafers 9. Is stored in the storage unit 80 for each identification number of the turntable 4 (step S1). That is, the “marker position detection operation” is performed.
  • the control unit 8 detects the turntable 4 having the identification number on which the semiconductor wafer 9 having the smallest rotation angle position shift amount is mounted from the rotation angle position shift amount stored in the storage unit 80.
  • the identification numbers of the turntable 4 are rearranged in order of increasing angular deviation of the rotational angle position (step S2).
  • the control unit 8 reads the smallest amount of angular deviation from the storage unit 80 and rotates all the turntables 4 by this angular deviation amount. As a result, only the semiconductor wafer 9 with the smallest amount of angular deviation of the rotational angle position is aligned with the reference rotational angle position, that is, “aligned” (step S3).
  • the control unit 8 drives the support claw set driving structure 7 so that only the support claw set 5 corresponding to the semiconductor wafer 9 having the smallest angular deviation of the rotational angle position is positioned at the inward position.
  • the support nail set 5 is positioned in the outward position.
  • the lifting device 30 is operated to set all the support claw sets 5 to the high position. That is, the “substrate lifting operation” is performed on the semiconductor wafer 9 having the smallest amount of angular deviation of the rotational angle position (step S4).
  • the control unit 8 reads out the next smallest angular deviation amount from the storage unit 80, operates all the turntables 4 by operating the motor M with all the support claw sets 5 set to the high position. Just rotate. That is, “positioning” is performed again (step S5). Since the first aligned semiconductor wafer 9 is lifted by the corresponding support claw set 5, the semiconductor wafer 9 does not rotate even if all the turntables 4 rotate.
  • the controller 8 stops all the turntables 4 after aligning the semiconductor wafer 9 having the next smallest angular deviation amount with the reference rotation angle position. In a state in which all the turntables 4 are stopped, the control unit 8 drives the lifting device 30 to set all the support claw sets 5 to the low position, and the semiconductor wafer 9 that has been initially aligned is set. Is temporarily placed on the corresponding turntable 4. That is, the “substrate temporary holding operation” is performed (step S6).
  • the control unit 8 drives the support claw set driving structure 7 corresponding to the semiconductor wafer 9 having the next smallest angular deviation, and positions the support claw set 5 corresponding to the semiconductor wafer 9 at the inward position. .
  • the controller 8 drives the elevating device 30 to set all the support claw sets 5 to the high position, and the first semiconductor wafer 9 whose rotation angle position is adjusted to the reference rotation angle position and the second alignment.
  • the formed semiconductor wafer 9 is lifted to a high position.
  • the “substrate lifting operation” is performed again (step S7).
  • the above operation is performed for all the semiconductor wafers 9 (step S8). After all the semiconductor wafers 9 are aligned, all the semiconductor wafers 9 are taken out from the substrate alignment apparatus 1 by the hand 160.
  • the control unit 8 can adjust the reference rotation angle position in order from the semiconductor wafer 9 having a small amount of angular deviation from the reference rotation angle position by the control operation. As a result, the time required for the alignment operation of all the semiconductor wafers 9 can be minimized, and the alignment operation can be automatically performed without human intervention. If the sensor 13 is set to the reference rotation angle position and the rotation of the semiconductor wafer 9 is stopped when the sensor 13 detects the notch 90, the semiconductor wafer 9 is adjusted to the reference rotation angle position. In this case, it is not necessary to store the amount of angular deviation of the semiconductor wafer 9 in the storage unit 80.
  • the semiconductor wafer 9 is not placed on the support claw set 5 at the high position and the inward position, but the support claw set 5 is moved to the outer position. It may be positioned and placed on the turntable 4.
  • the lower surface of the peripheral edge of the semiconductor wafer 9 is supported by the receiving piece 51 of the support claw 50 as shown in FIG.
  • the receiving piece 51 is formed such that the inner surface is continuous with the first inclined surface 58 and the second inclined surface 59 having a gentler slope than the first inclined surface 58.
  • the periphery of the semiconductor wafer 9 may be supported at the boundary SM between 58 and 59.
  • the present invention is useful when used in a substrate alignment apparatus that aligns the rotation angle positions of a plurality of substrates and a method for controlling the substrate alignment apparatus.

Abstract

基板位置合わせ装置(1)は、複数枚の基板を水平に且つ上下に保持し、且つ軸線の周りを回転する複数の回転台(4)と、複数の回転台(4)を同期して回転させる回転駆動装置(2)と、複数の回転台(4)に夫々保持される基板のノッチ(90)を検出するセンサ(13)と、回転台(4)上の基板の周縁部を支持する複数の支持爪(50)と、複数の支持爪(50)を内方位置と外方位置との間にて個別に水平移動させる支持爪駆動構造体(70)と、複数の支持爪駆動構造体を高位置と低位置との間にて一括で昇降させる昇降装置(30)とを備える。基板位置合わせ装置(1)は、センサ(13)で夫々検出されるノッチ(90)の位置に基づいて回転駆動装置(2)、支持爪駆動駆動構造体(70)及び昇降装置(30)に、位置合わせが済んだ基板のみを前記回転台から持ち上げる基板持ち上げを含む所定の動作をさせることで、複数の基板のノッチ(90)を基準回転角度位置に位置させる。

Description

基板位置合わせ装置及び基板位置合わせ装置の制御方法
 本発明は、複数枚の基板の回転角度位置を合せる基板位置合わせ装置、及び基板位置合わせ装置の制御方法に関する。
 半導体の製造工程においては、半導体ウエハの結晶方向を揃えるべく、複数枚の半導体ウエハの回転角度位置を基準回転角度位置に合わせる基板位置合わせ装置(アライナ)が用いられている。このため、半導体ウエハには半導体ウエハの結晶方向の目印であるノッチが設けられている。この基板位置合わせ装置の一例が特許文献1に開示されている。
特許文献1の基板位置合わせ装置にあっては、1台のターンテーブルの周縁から3本の支持ポールを周方向に沿って立設し、各支持ポールには互いに等間隔に上下に離間した5つの支持ピンが設けられている。3本の支持ポールの同じ高さに位置する3つの支持ピンにて、1枚の半導体ウエハの周縁部を支持する。3本の支持ポールの外側には、3本の掬い上げポールが昇降自在且つターンテーブルの回転中心軸に接近離間可能に設けられ、各掬い上げポールには互いに等間隔に上下に離間した5つの掬い上げピンが設けられている。隣接する掬い上げピンの上下間隔は、隣接する支持ピンの上下間隔よりも小さく設定されている。3本の支持ポールの外側には、また支持ピンに支持された5枚の半導体ウエハのノッチを検出するセンサを設けたセンサポールが設けられている。
 当初、各半導体ウエハは、同じ高さの3つの支持ピンにて支持されている。基板位置合わせ動作時には、先ずターンテーブルを1回転させ、センサにてノッチを検出することにより、全ての半導体ウエハのノッチの回転角度位置、即ち基準回転角度位置からのずれ角度を検出して、メモリに回転角度位置を記憶させる。メモリに記憶した回転角度位置に基づいてターンテーブルを回転させ、最下位の半導体ウエハの回転角度位置を基準回転角度位置に合わせる。次に、3本の掬い上げポールをターンテーブルに向かって内向きに移動させて、位置合わせが終了した最下位の半導体ウエハを掬い上げピンが持ち上げるように、各掬い上げポールを上昇させる。前記の如く、隣接する掬い上げピンの上下間隔は、隣接する支持ピンの上下間隔よりも小さいから、最下位の半導体ウエハのみを掬い上げたまま、残り4枚の半導体ウエハを支持ピン上に載せたままとすることができる。次に記憶した回転角度位置に基づき、ターンテーブルを回転させ、下から2段目の半導体ウエハの基準回転角度位置への位置合わせを行って、上記と同様に掬い上げピンにて半導体ウエハを掬い上げる。このようにして、5枚の半導体ウエハの回転角度位置を順に基準回転角度位置に合わせる。
日本国特許公開2000―294619号公報
 特許文献1に係る装置では、複数枚の半導体ウエハは下位に位置するものから順に回転角度位置が位置合わせされる。即ち、特許文献1に係る装置では、任意の順序で半導体ウエハの回転角度位置の位置合わせを行うことができない。
しかし、実際には複数枚の半導体ウエハのずれ角度にはバラつきがある。従って、特許文献1に係る装置では、複数枚の半導体ウエハについて、位置合わせ動作の開始から終了までに時間がかかる場合があった。
本発明の目的は、任意の順序で基板の回転角度位置の位置合わせを行うことができる基板位置合わせ装置、及び基板位置合わせ装置の制御方法を提供することにある。
本発明の或る態様に係る基板位置合わせ装置は、複数の基板を夫々水平に且つ上下方向に互いに離間して並ぶように保持するよう上下方向に互いに離間して配置され、且つ上下方向に延びた1つの軸線の周りを回転可能に設けられた複数の回転台と、前記複数の回転台を同期して回転させる回転駆動装置と、前記複数の回転台に夫々保持されて回転される複数の基板の目印の回転角度位置を検出する複数の目印位置検出部と、前記複数の回転台にそれぞれ保持されるべき複数の基板の周縁部を支持するよう構成された複数の支持爪セットと、前記複数の支持爪セットを、個別に支持し且つ前記基板の外周より内側に位置する内方位置と前記基板の外周より外側に位置する外方位置との間にて個別に移動させるよう構成された複数の支持爪セット駆動構造体と、前記複数の支持爪セット駆動構造体を所定の高さ範囲における高位置と低位置との間にて一括して昇降させる昇降機構と、を備えている。
前記高位置及び低位置は、夫々、前記複数の支持爪セットが夫々に対応する回転台に保持される基板より高い位置及び低い位置であり、且つ前記複数の目印位置検出部で夫々検出される前記複数の基板の目印位置に基づいて前記回転駆動装置、前記支持爪セット駆動構造体、及び前記昇降機構を動作させることによって、前記複数の基板の目印を基準回転角度位置に位置させるように構成されている。
 この構成に従えば、回転駆動装置によって複数の回転台を同期して回転させるとともに複数の目印位置検出部によって複数の回転台に夫々保持された複数の基板のノッチやオリフラなどの目印の回転角度位置を検出し、先ず1つの基板の目印の回転角度位置を基準回転角度位置に合わせる(以下、位置合わせするという)。この位置合わせした基板に対応する支持爪セットをその対応する支持爪セット駆動構造体によって内方位置に位置させるとともに、位置合わせしていない全ての基板に対応する支持爪セットを夫々に対応する支持爪セット駆動構造体によって夫々外方位置に位置させる。その後、昇降機構によって複数の支持爪セット駆動構造体を一括して高位置に位置させると、位置合わせが終了した基板のみが回転台から持ち上げられる(以下、基板持ち上げという)。その後、この位置合わせ及び基板持ち上げを残りの基板について順次行うと、全ての基板が位置合わせされる。このようにして、複数の基板について、任意の順序で目印の位置合わせを行うことができる。従って、複数の目印位置検出部で検出した複数の基板の目印の回転角度位置に応じて位置合わせの最適な順序を選択することにより、最短の時間で複数の基板の目印の位置合わせを行うことができる。
 更に、前記目印位置検出部で検出される基板の目印の回転角度位置が入力され、前記回転駆動装置と前記支持爪セット駆動構造体と前記昇降機構とを制御する制御部と記憶部とを備え、前記制御部は、前記回転駆動装置によって前記複数の回転台を同期して回転させるとともに前記複数の目印位置検出部によって検出される前記複数の回転台に夫々保持された複数の基板の目印の回転角度位置を前記記憶部に記憶させる目印位置検出動作と、前記記憶部に記憶された基板の目印の回転角度位置を用いて、ある基板の目印の回転角度位置が前記基準回転角度位置に位置するよう前記回転駆動装置によって前記複数の回転台を同期して回転させる位置合わせと、この位置合わせが済んだ基板に対応する支持爪セットをその対応する支持爪セット駆動構造体によって前記内方位置に位置させるとともに位置合わせが済んでいない全ての基板に対応する支持爪セットを夫々に対応する支持爪セット駆動構造体によって夫々前記外方位置に位置させ、その後、前記昇降機構によって前記複数の支持爪セット駆動構造体を一括して前記高位置に位置させて、位置合わせが済んだ基板のみを前記回転台から持ち上げる基板持ち上げと、を前記複数の基板について順次行う順次基板位置合わせ動作と、を行うよう構成されてもよい。
 この構成に従えば、制御部の制御により、複数枚の基板の回転角度位置合わせを順次自動的に行うことができる。
更に、前記制御部は、前記昇降機構によって前記複数の支持爪セット駆動構造体を前記高位置に位置させるとともに前記複数の支持爪セットを夫々に対応する前記支持爪セット駆動構造体によって前記内方位置に位置させる基板受け取り動作と、当該基板受け取り動作が終了した状態における前記複数の支持爪セットに複数の基板が夫々搬送されて載置された後、前記昇降機構によって前記複数の支持爪セット駆動構造体を前記低位置に位置させて前記複数の回転台に前記複数の基板をそれぞれ保持させる基板保持動作とを行い、当該基板保持動作の後、前記目印位置検出動作と前記順次基板位置合わせ動作とを行うように構成されてもよい。
 この構成に従えば、制御部の制御により、基板の受け取り及び回転台への基板の配置を自動的に行うことができる。
 更に、前記制御部は、前記記憶部に記憶された複数の基板の目印の回転角度位置に基づいて全ての基板の前記位置合わせを行うのに必要な前記回転台の回転量が最小となる前記複数の基板における位置合わせの順序を演算し、前記順次基板位置合わせ動作において、この演算した順序で前記複数の基板に対して前記位置合わせを行ってもよい。
 この構成によれば、複数の基板の順序に関して最小の時間で、基板の位置合わせを行うことができる。
 更に、前記昇降機構は、前記1つの軸線を中心とした仮想円上に周方向に間隔を置いて上下方向に延びるように設けられた複数の支柱と、夫々の前記支柱に前記複数の回転台に対応する高さ位置にそれぞれ設けられた複数の個別支持爪駆動構造体と、前記複数の支柱を同期して前記昇降させる昇降装置と、を備え、夫々の前記支持爪セットは、夫々に対応する前記回転台に保持されるべき基板の周方向における複数の周縁部をそれぞれ支持するよう構成された複数の支持爪を含んでいる。
夫々の前記支持爪セット駆動構造体は、夫々に対応する前記支持爪セットを構成する複数の支持爪を、個別に支持し且つ前記内方位置と前記外方位置との間にて互いに同期して夫々移動させるよう構成された前記複数の個別支持爪駆動構造体によって構成されてもよい。
 この構成によれば、前記と同様に、最短の時間で複数の基板の目印の位置合わせを行うことができる。
更に、前記複数の基板を夫々水平に且つ上下方向に互いに離間して並ぶように保持するよう上下方向に互いに離間し、且つ上下方向に延びた1つの軸線の周りを回転可能に前記複数の回転台を支持する基体と、1つの回転駆動源と、前記基体に設けられ、前記回転駆動源の回転駆動力を前記複数の回転台に当該複数の回転台が互いに同期して回転するよう伝達する回転駆動力伝達機構と、を備えてもよい。
 この構成によれば、回転駆動力伝達機構を設けることにより、回転台の回転駆動源を回転台と離れた空間位置に配置することができる。これにより、回転駆動源を設ける空間に余裕ができる。換言すれば、回転駆動源を設ける際の設計の自由度が高まる。
本発明の或る態様に係る基板位置合わせ装置の制御方法は、複数の基板を夫々水平に且つ上下方向に互いに離間して並ぶように保持するよう上下方向に互いに離間して配置され、且つ上下方向に延びた1つの軸線の周りを回転可能に設けられた複数の回転台と、前記複数の回転台を同期して回転させる回転駆動装置と、前記複数の回転台に夫々保持されて回転される複数の基板の目印の回転角度位置を検出する複数の目印位置検出部と、前記複数の回転台にそれぞれ保持されるべき複数の基板の周縁部を支持するよう構成された複数の支持爪セットと、前記複数の支持爪セットを、個別に支持し且つ前記基板の外周より内側に位置する内方位置と前記基板の外周より外側に位置する外方位置との間にて個別に移動させるよう構成された複数の支持爪セット駆動構造体と、前記複数の支持爪セット駆動構造体を所定の高さ範囲における高位置と低位置との間にて一括して昇降させる昇降機構と、前記目印位置検出部で検出される基板の目印の回転角度位置が入力され、前記回転駆動装置と前記支持爪セット駆動構造体と前記昇降機構とを制御する制御部と、記憶部と、を備え、前記高位置及び低位置は、夫々、前記複数の支持爪セットが夫々に対応する回転台に保持される基板より高い位置及び低い位置である、基板位置合わせ装置に用いられる。
前記制御部は、前記回転駆動装置によって前記複数の回転台を同期して回転させるとともに前記複数の目印位置検出部によって検出される前記複数の回転台に夫々保持された複数の基板の目印の回転角度位置を前記記憶部に記憶させる目印位置検出動作と、前記記憶部に記憶された基板の目印の回転角度位置を用いて、ある基板の目印の回転角度位置が前記基準回転角度位置に位置するよう前記回転駆動装置によって前記複数の回転台を同期して回転させる位置合わせと、この位置合わせが済んだ基板に対応する支持爪セットをその対応する支持爪セット駆動構造体によって前記内方位置に位置させるとともに位置合わせが済んでいない全ての基板に対応する支持爪セットを夫々に対応する支持爪セット駆動構造体によって夫々前記外方位置に位置させ、その後、前記昇降機構によって前記複数の支持爪セット駆動構造体を一括して前記高位置に位置させて、位置合わせが済んだ基板のみを前記回転台から持ち上げる基板持ち上げと、を前記複数の基板について順次行う順次基板位置合わせ動作と、を行う。
 以上の説明から明らかなように、本発明によれば、複数の目印位置検出部で検出した複数の基板の目印の回転角度位置に応じて位置合わせの最適な順序を選択することにより、最短の時間で複数の基板の目印の位置合わせを行うことができる。
本発明の第1実施形態に係る基板位置合わせ装置が用いられる基板処理システムの全体構成を示す平面図である。 (a)、(b)は半導体ウエハの目印の例を示す平面図である。 基板位置合わせ装置の全体構成を示す平面図である。 回転台の斜視図である。 支持ポールを図3のA1方向から見た側面図である。 支柱及び回転台の側面図である。 (a)、(b)は支持爪の拡大図である。 (a)、(b)は、支柱及び支持爪と回転台の上下位置関係を示す拡大図である。 センサポールの拡大側面図である。 制御部の周辺構成を示すブロック図である。 支柱及び回転台の側面図であって、基板持ち上げ動作を示す。 支柱及び回転台の側面図であって、基板保持動作を示す。 支柱及び回転台の側面図であって、再度の基板持ち上げ動作を示す。 第2実施形態に係る基板位置合わせ装置の動作を示すフローチャートである。 支持爪の変形例を示す図である。
 以下、本発明の実施形態を、図を用いて詳述する。なお、以下の記載では同一又は対応する要素には全ての図を通じて同一の符号を付し、重複する説明を省略する。また、以下の記載では、上下方向とは鉛直方向を指すものとする。
更に、基板として円盤状の半導体ウエハを例示するが、この基板は半導体ウエハに限定されない。例えば、基板は、半導体プロセスによって処理される薄型液晶ディスプレイ、有機ELディスプレイ用のガラス基板であってもよい。また、半導体ウエハは、半導体デバイスの基板材料であり、シリコンウエハ、シリコンカーバイドウエハ、サファイアウエハ等を含む。半導体ウエハには結晶方向があり、半導体プロセスによって処理されるには結晶方向を一定方向に揃える必要がある。半導体ウエハ処理時に基準となる回転角度位置を、基準回転角度位置という。
(第1実施形態)
<基板処理システムの全体構成>
 図1は、本発明の第1実施形態に係る基板位置合わせ装置が用いられる基板処理システム100の全体構成を示す平面図である。
図1に示すように、基板処理システム100は、複数枚の半導体ウエハ9を収納する収納部110と、半導体ウエハ9の回転角度位置を基準回転角度位置に合わせる基板位置合わせ装置1と、半導体ウエハ9に熱処理、薄膜形成処理等の所定の処理を施す処理装置120と、収納部110と基板位置合わせ装置1と処理装置120との間で半導体ウエハ9を搬送する搬送ロボット130を備える。搬送ロボット130と基板位置合わせ装置1は、処理装置120と収納部110との間に配置される。収納部110内の半導体ウエハ9は当初回転角度位置が合せられておらず、また所定の処理もされていない。
 搬送ロボット130は、基台140と、複数の相互に回転可能なアームを連結して構成され基台140に水平面内を回転可能に設けられたアーム体150と、アーム体150の先端部に設けられて複数枚の半導体ウエハ9を上下に離間した状態で保持するハンド160とを備えて構成される。搬送ロボット130はアーム体150を回転させて、収納部110内から未処理の複数枚の半導体ウエハ9をハンド160にて取り出し、複数枚の半導体ウエハ9を基板位置合わせ装置1に搬送する。その後に、搬送ロボット130はハンド160を基板位置合わせ装置1から退出させる。基板位置合わせ装置1に、複数枚の半導体ウエハ9が上下に間隔を空けた状態で収納された後に、基板位置合わせ装置1は半導体ウエハ9を回転させて、複数枚の半導体ウエハ9の回転角度位置を基準回転角度位置に合わせる。搬送ロボット130はハンド160にて、回転角度位置が合わせられた複数枚の半導体ウエハ9を基板位置合わせ装置1から取り出し、処理装置120に搬送する。処理装置120にて半導体ウエハ9に処理が施された後に、搬送ロボット130はハンド160にて半導体ウエハ9を取り出して、収納部110に戻す。以下の記載では、基板位置合わせ装置1は5枚の半導体ウエハ9の回転角度位置を基準回転角度位置に合わせると例示するが、半導体ウエハ9の枚数は5枚に限定されない。
 基板位置合わせ装置1が、半導体ウエハ9の回転角度位置を基準回転角度位置に合わせるために、半導体ウエハ9には半導体ウエハ9の結晶方向を示す目印が設けられている。この目印には、例えば図2(a)に示すように、半導体ウエハ9の周縁に設けられた1つの平面視V字形の切欠きであるノッチ90、又は図2(b)に示すように、半導体ウエハ9の周縁に設けられた直線状の切欠きであるオリフラ(orientation flat)91とがある。半導体ウエハ9をその延在面内で回転させながら、この目印を基準回転角度位置に設定した目印検出器にて検出した時点で半導体ウエハ9の回転を停止させれば、半導体ウエハ9は基準回転角度位置に合わせられる。目印検出器として、例えば透光型センサ又は反射型センサが例示される。
或いは、半導体ウエハ9を水平面内で1回転させながら、この目印を目印検出器にて検知することにより、当初の半導体ウエハ9の回転角度位置が、基準回転角度位置から、どれだけの角度だけずれているかが判る。このずれ量に基づいて、各半導体ウエハ9のノッチ90又はオリフラ91が、基準回転角度位置に揃うように、半導体ウエハ9を回転させる。以下の記載では、目印としてノッチ90を例示する。なお、基板が半導体ウエハ以外である場合、目印は、基板に特定の処理を施すための回転方向における所定の姿勢(回転角度)を示すものであればよい。
<基板位置合わせ装置の全体構成>
 図3は、基板位置合わせ装置1の全体構成を示す平面図である。図3に示すように、基板位置合わせ装置1は、床面に載置される基体10と、基体10上にて上下に延びた1つの軸線Lを中心とした仮想円上に周方向に間隔を置いて上下に延びるように設けられた3本の支柱3と、上下に亘って半導体ウエハ9のノッチ90を検出する複数のセンサが設けられたセンサポール11と、軸線Lを中心として回転可能に設けられて、上下に互いに間隔を空けて配置された5つの回転台4と、回転台4の外側に位置する支持ポール6と、5つの回転台4を同期して回転させる回転駆動装置2とを備えて構成される。各回転台4の上に、ハンド160によって搬送された半導体ウエハ9が載置され、半導体ウエハ9が正しく回転台4上に載置された状態では、半導体ウエハ9の中心は軸線Lに一致する。支持ポール6は、回転台4上の半導体ウエハ9の外側に位置する。
 回転駆動装置2は、支柱3の外側に設けられて上下に延びた2本の回転柱20と、2本の回転柱20のうち、一方の回転柱20を中間ギア21を介して回転させる1つの回転駆動源であるモータMと、2本の回転柱20と各回転台4に夫々架けられた無端のタイミングベルト22を備えて構成される。タイミングベルト22は5つの回転台4に対応して上下に5本設けられ、タイミングベルト22によって、本発明の「回転駆動力伝達機構」が構成される。モータMは例えば、サーボモータによって構成される。
図4は、回転台4の斜視図である。図4に示すように、回転台4の下方には受け台40が設けられ、回転台4は受け台40に対して回転可能である。回転台4の上面からは、複数の受け突起41が設けられ、半導体ウエハ9は受け突起41の上面に載置される。半導体ウエハ9が受け突起41の上面に載置された状態で、半導体ウエハ9の裏面と回転台4の上面との間に、上下隙間が形成される。
 図5は、支持ポール6を図3のA1方向から見た側面図である。図示の便宜上、下から2つの回転台4のみを示すが、前記の如く、回転台4は上下に5つ設けられる。
図5に示すように、支持ポール6からは、5つの受け台40の各高さに対応して、ブラケット60が受け台40に向けて突出している。各ブラケット60の先端部に受け台40が取り付けられて、各受け台40及び回転台4は対応するブラケット60に片持ち状態で支持される。ブラケット60は回転台4の下側に位置するから、回転台4に搬送される半導体ウエハ9とは干渉しない。
図3に示すように、タイミングベルト22にて回転動力を回転台4に伝えることによって、モータMを回転台4から離れた空間位置に設けることができる。これにより、モータMを設ける空間に余裕ができる、即ち、モータMを設ける際の設計の自由度が高まる。
 図6は、支柱3及び回転台4の側面図であり、説明の便宜上、2本の支柱3を示す。図6に示すように、各支柱3は回転台4に夫々保持されるべき半導体ウエハ9の周縁部を受けて支持する支持爪50と、各支持爪50を水平方向に移動させる支持爪駆動構造体70を備えて構成される。支持爪駆動構造体70は、例えばエアシリンダで構成される。即ち、各支柱3は回転台4の高さに対応して上下に5つの支持爪50を備え、各支持爪50は回転台4の高さに対応して設けられた5つの支持爪駆動構造体70によって個別に水平に駆動される。支柱3は前記の如く3つ設けられているから、同じ高さに位置する3つの支持爪50にて1つの支持爪セット5が構成され、同じ高さに位置する3つの支持爪駆動構造体70によって1つの支持爪セット駆動構造体7が構成される。
各支柱3の下端部には、昇降装置30が設けられ、3つの昇降装置30は3本の支柱3、5つの支持爪セット5及び5つの支持爪セット駆動構造体7を同期して昇降させる。昇降装置30は、例えばエアシリンダ又はラック機構を内蔵したモータが挙げられるが、これらに限定されない。3本の支柱3と、支持爪セット駆動構造体7と、昇降装置30とによって本発明の昇降機構300が構成される。なお、昇降機構300は、これには限定されない。例えば、3本の支柱3を固定し、3本の支柱3に、それぞれ、個別に5つの支持爪駆動構造体70を昇降させる昇降装置を設け、これらの昇降装置が夫々に対応する支持爪駆動構造体70を互いに同期して昇降させるよう構成してもよい。
5つの支持爪50は支持爪駆動構造体70によって、個別に水平駆動されるが、支柱3に取り付けられているので、支柱3と一体に昇降する。即ち、支持爪50は個別に水平に移動することはできても、昇降することはできない。
 図7(a)、(b)は、個別の支持爪駆動構造体70によって駆動される支持爪50の拡大図である。図7(a)、(b)に示すように、支持爪50は上面が水平で半導体ウエハ9の周縁部下面を受ける受け片51と、受け片51の外側の端部から立設されて半導体ウエハ9の水平方向外向きのずれを抑える縦壁52と、支持爪駆動構造体70に水平方向に出没自在に嵌まった爪本体53を一体に備えて構成される。支持爪50は支持爪駆動構造体70によって、図7(a)に示すように、受け片51の先端部が半導体ウエハ9の外周よりも内側に位置する内方位置と、図7(b)に示すように、受け片51の先端部が半導体ウエハ9の外周よりも外側に位置する外方位置との間を個別に駆動される。
 図8(a)、(b)は、昇降装置30によって昇降される支柱3及び支持爪50と回転台4の上下位置関係を示す拡大図であり、最下位の支持爪50を示す。しかし、他の支持爪50と回転台4の上下位置関係も同様である。
図8(a)、(b)に示すように、支持爪50は昇降装置30が支柱3を昇降させる動作によって、受け片51の上面が、各支持爪50に対応する回転台4に保持された半導体ウエハ9の下面よりも下側に位置する低位置(図8(a)参照)と、受け片51の上面が、回転台4に保持された半導体ウエハ9の下面よりも上側に位置する高位置(図8(b)参照)との間を移動する。従って、支持爪駆動構造体70が対応する支持爪50を内方位置に設定した状態で、昇降装置30が支持爪50を高位置に上昇させると、図8(b)に示すように、支持爪50は対応する回転台4上の半導体ウエハ9を回転台4から持ち上げる。これにより、回転台4が回転しても半導体ウエハ9は回転しない。
これに対し、支持爪駆動構造体70が対応する支持爪50を外方位置に設定した状態では、受け片51の先端部が半導体ウエハ9の外周よりも外側に位置しているので、昇降装置30が支持爪50を高位置に上昇させても、支持爪50は対応する半導体ウエハ9を回転台4から持ち上げない。半導体ウエハ9は回転台4に載置されたままである。
即ち、支持爪駆動構造体70と昇降装置30を同期させて駆動することにより、支柱3が上昇する時に、任意の支持爪50が半導体ウエハ9を対応する回転台4から、持ち上げる状態と持ち上げない状態とを切り換えることができる。
 図9は、センサポール11の拡大側面図である。図9に示すように、センサポール11の側面には、半導体ウエハ9の周縁部が嵌まる5つの凹み12が半導体ウエハ9の高さに対応して上下に亘って開設されている。各凹み12はハンド160によって回転台4に搬送される半導体ウエハ9が進入できるように、開口を軸線Lに向けている。凹み12には、半導体ウエハ9のノッチ90(図2(a)参照)を検出するセンサ13が設けられている。センサ13は、例えば、半導体ウエハ9の周縁部を挟んで互いに上下に位置する発光素子14と受光素子15を備えた透光型センサとして構成される。半導体ウエハ9の回転時に、発光素子14からの光が受光素子15に達すると、ノッチ90がセンサ13を通過したことが判る。ノッチ90がセンサ13に検知される位置が、ノッチ90の回転角度位置である。
即ち、当初に半導体ウエハ9が回転台4に載置された状態から、センサ13がノッチ90を検出するまでの回転台4の回転角度を検出することにより、当初の半導体ウエハが、基準回転角度位置から、どれだけの角度だけずれているかが判る。センサ13は、本発明の「目印位置検出部」を構成し、発光素子14と受光素子15の上下位置は図9に示す位置と逆であってもよい。また、センサ13は一方に発光部と受光部を備え、他方に反射板を設けて構成された反射型センサとして構成されてもよい。また、凹み12の上下長さは、半導体ウエハ9が低位置と高位置との間を昇降しても、発光素子14又は受光素子15に接触しない長さに設定されている。
 図10は、基板位置合わせ装置1の制御動作を司る制御部8の周辺構成を示すブロック図である。制御部8は、例えば1つのCPUで構成されるが、複数のCPUの組み合わせであってもよく、例えば基体10内に配置される。また、制御部8はCPUとASIC(Application Specific Integrated Circuit)とを組み合わせて用いてもよい。
制御部8には、センサ13、昇降装置30、支持爪駆動構造体70、モータMの他に、半導体ウエハ9の回転角度位置を記憶するメモリである記憶部80、動作プログラムが格納されたROM81、一時的に情報を記録するワークメモリとして働くRAM82が接続されている。5つの回転台4には夫々識別番号が付され、この識別番号は、例えばRAM82に格納されている。制御部8は、モータMを作動させて、全ての回転台4を一旦回転させ、全ての半導体ウエハ9について、当初に回転台4に載置された状態から、センサ13がノッチ90を検出する基準回転角度位置までの回転台4の回転角度を検出する。回転角度は、例えば、モータMの主軸に取り付けられたロータリエンコーダ等の回転角度センサによって検出され、この検出値が制御部8に入力される。次に、制御部8は当初、回転台4に載置された半導体ウエハ9が、基準回転角度位置から、どれだけの角度だけずれているかの値を回転台4ごとに記憶部80に記憶させる。この値は、後記の位置合わせ動作時に用いる。
<基板位置合わせ装置の動作>
 最初に、図6及び図8(a)、(b)を参照して、基板受け取り動作を説明する。図8(b)に示すように、制御部8は、昇降装置30を作動させて全ての支持爪セット駆動構造体7を一括して高位置に位置させるとともに全ての支持爪セット5を夫々に対応する支持爪セット駆動構造体7によって内方位置に位置させる(図8(b)参照)。以下、この動作を基板受け取り動作という。この基板受け取り動作が終了した状態において、搬送ロボット130がハンド160を基板位置合わせ装置1に進入させて、複数(ここでは5つ)の支持爪セット5に複数の半導体ウエハ9(ここでは5枚)を夫々搬送して載置する。
その後、図6に示すように、制御部8は昇降装置30を作動させて全ての支持爪セット駆動構造体7を一括して低位置に位置させて複数(ここでは5台)の回転台4に複数の基板をそれぞれ保持させる。以下、この動作を基板保持動作といいう。
次に、図6及び図11乃至図13を参照して位置合わせを説明する。上述のようにして、全ての回転台4に半導体ウエハ9が載置された図6に示す初期状態では、半導体ウエハ9の回転角度位置はバラ付いている、即ち、半導体ウエハ9は基準回転角度位置に揃えられていない。本実施形態に係る基板位置合わせ装置1にあっては、任意の識別番号の回転台4上の半導体ウエハ9の回転角度位置を基準回転角度位置に合わせることができる。この半導体ウエハ9の回転角度位置を基準回転角度位置に合わせることを「位置合わせ」するという。以下の説明では、図6に示す最上位の半導体ウエハ9から順に回転角度位置を基準回転角度位置に合わせる位置合わせ動作を説明する。
図6に示す状態から、制御部8はモータMを作動させて全ての回転台4を1回転させて、全てのセンサ13にて全ての半導体ウエハ9のノッチ90を検出する。そして、ノッチ90を検出した時点において回転角度センサによって検出されるモータMの回転角度に基づいて、ノッチ90の回転角度位置を検出する。その後、制御部8は全ての回転台4を停止させて、全ての半導体ウエハ9について、基準回転角度位置とノッチ90が検出された回転角度位置とのずれを演算し、この角度ずれ量を各半導体ウエハ9に対応した回転台4の識別番号ごとに記憶部80に記憶させる。これを「目印位置検出動作」という。次に、制御部8は最上位の半導体ウエハ9の当初の回転角度位置と基準回転角度位置との角度ずれ量を記憶部80から読み出し、全ての回転台4をこの角度ずれ量だけ回転させる。これにより、最上位の半導体ウエハ9の回転角度位置だけが、基準回転角度位置に合わせられる。即ち、最上位の半導体ウエハ9が「位置合わせ」される。
 次に、図11に示すように、制御部8は支持爪セット駆動構造体7を駆動して、最上位の支持爪セット5のみを内方位置に位置させるとともに、他の支持爪セット5を外方位置に位置させる。この状態で昇降装置30を作動させて、全ての支持爪セット5を高位置に設定する。最上位の支持爪セット5のみが内方位置に位置し、他の支持爪セット5は外方位置に位置しているから、回転角度位置が基準回転角度位置に合わせられた最上位の半導体ウエハ9のみが回転台4から持ち上げられ、他の半導体ウエハ9は回転台4に載置された状態を保つ。これを「基板持ち上げ動作」という。
 次に、全ての支持爪セット5を高位置に設定した状態のまま、制御部8は記憶部80から上から2番目の半導体ウエハ9の角度ずれ量を読み出す。制御部8は、先に回転させた最上位の回転台4の回転量と上から2番目の半導体ウエハ9の角度ずれ量とを加減して、上から2番目の回転台4上の半導体ウエハ9を基準回転角度位置に合わるために必要な回転角度量を演算する。制御部8は、モータMを作動させて全ての回転台4を演算した回転角度量だけ回転させて、上記と同様の手順にて、上から2番目の回転台4上の半導体ウエハ9の回転角度位置を基準回転角度位置に合わせる。即ち、再度「位置合わせ」を行う。最上位の半導体ウエハ9は最上位の支持爪セット5によって持ち上げられているから、全ての回転台4が回転しても回転しない。上から2番目の半導体ウエハ9が基準回転角度位置に合わさった後に、全ての回転台4を停止させる。
この全ての回転台4が停止している状態にて、制御部8は昇降装置30を作動させて、図12に示すように、3本の支柱3を下降させて、全ての支持爪セット5を低位置に設定し、最上位の半導体ウエハ9を一旦最上位の回転台4上に載置する。これを「基板一時保持動作」という。
 この状態で、制御部8は上から2段目の支持爪セット駆動構造体7を作動させて、上から2段目の支持爪セット5を内方位置に位置させる。最上位の支持爪セット5は内方位置に位置したままであり、最上位及び上から2段目の支持爪セット5以外の支持爪セット5は外方位置に位置したままである。
次に制御部8は昇降装置30を作動させて、図13に示すように、3本の支柱3を上昇させて、全ての支持爪セット5を高位置に設定する。回転角度位置が基準回転角度位置に合わせられた最上位の半導体ウエハ9及び上から2段目の半導体ウエハ9が高位置に持ち上げられる。換言すれば、再度「基板持ち上げ動作」を行う。
以下、同様の手順を繰り返し、全ての半導体ウエハ9の回転角度位置を基準回転角度位置に合わせる。即ち、1の半導体ウエハの「位置合わせ」、半導体ウエハの「基板持ち上げ動作」、次の半導体ウエハの「位置合わせ」、1の半導体ウエハの「基板一時保持動作」、1の半導体ウエハと次の半導体ウエハの「基板持ち上げ動作」を最後の半導体ウエハの回転角度位置合わせ動作が終了するまで繰り返す。この後に、搬送ロボット130が、ハンド160によって全ての半導体ウエハ9を基板位置合わせ装置1から取り出す。
 複数枚の半導体ウエハ9の回転角度位置に応じて「位置合わせ」の最適な順序を選択することにより、短い時間で複数枚の半導体ウエハ9の「位置合わせ」を行うことができる。
なお、上記の実施形態では、上下に保持された複数枚の半導体ウエハ9を上から順に「位置合わせ」する手順を示したが、任意の順序で半導体ウエハ9を位置合わせすることもできる。この任意の順番は、作業者が手入力しても、制御部8が識別番号に関する乱数を発生させて決定してもよい。
(第2実施形態)
 本発明の第2実施形態の基板位置合わせ装置1にあっては、基準回転角度位置からの角度ずれ量が小さい半導体ウエハ9から順に、基準回転角度位置に合わせることができる。これにより、全ての半導体ウエハ9の位置合わせ動作に要する時間を最短にすることができる。以下にこの動作を、図14のフローチャートを用いて説明する。
制御部8はモータMを作動させて、全ての回転台4を一旦回転させ、全ての半導体ウエハ9について、当初の回転角度位置が基準回転角度位置から、どれだけの角度だけずれているかの値を回転台4の識別番号ごとに記憶部80に記憶させる(ステップS1)。即ち、「目印位置検出動作」を行う。次に、制御部8は記憶部80に記憶された回転角度位置のずれ量から、最も回転角度位置の角度ずれ量が小さい半導体ウエハ9が載置された識別番号の回転台4を検出し、以下、回転角度位置の角度ずれ量が大きくなる順に回転台4の識別番号を並び替える(ステップS2)。
 制御部8は、最も小さい角度ずれ量を記憶部80から読み出し、全ての回転台4をこの角度ずれ量だけ回転させる。これにより、最も回転角度位置の角度ずれ量が小さい半導体ウエハ9だけが、基準回転角度位置に合わせられる、即ち「位置合わせ」される(ステップS3)。
次に、制御部8は支持爪セット駆動構造体7を駆動して、最も回転角度位置の角度ずれ量が小さい半導体ウエハ9に対応した支持爪セット5のみを内方位置に位置させるとともに、他の支持爪セット5を外方位置に位置させる。この状態で昇降装置30を作動させて、全ての支持爪セット5を高位置に設定する。即ち、最も回転角度位置の角度ずれ量が小さい半導体ウエハ9について「基板持ち上げ動作」を行う(ステップS4)。
 制御部8は、次に小さい角度ずれ量を記憶部80から読み出し、全ての支持爪セット5を高位置に設定した状態のまま、モータMを作動させて全ての回転台4をこの角度ずれ量だけ回転させる。即ち、再度「位置合わせ」を行う(ステップS5)。最初に位置合わせされた半導体ウエハ9は対応する支持爪セット5によって持ち上げられているから、半導体ウエハ9は全ての回転台4が回転しても回転しない。
制御部8は、次に小さい角度ずれ量の半導体ウエハ9を基準回転角度位置に合わせた後に、全ての回転台4を停止させる。
この全ての回転台4が停止している状態にて、制御部8は昇降装置30を駆動して、全ての支持爪セット5を低位置に設定し、最初に位置合わせがされた半導体ウエハ9を一旦対応する回転台4上に載置する。即ち、「基板一時保持動作」を行う(ステップS6)。
 この状態で、制御部8は次に小さい角度ずれ量の半導体ウエハ9に対応した支持爪セット駆動構造体7を駆動して、半導体ウエハ9に対応した支持爪セット5を内方位置に位置させる。
次に制御部8は昇降装置30を駆動して、全ての支持爪セット5を高位置に設定し、回転角度位置が基準回転角度位置に合わせられた最初の半導体ウエハ9及び2番目に位置合わせされた半導体ウエハ9を高位置に持ち上げる。換言すれば、再度「基板持ち上げ動作」を行う(ステップS7)。
上記の動作を、全ての半導体ウエハ9について行う(ステップS8)。全ての半導体ウエハ9が位置合わせされた後に、ハンド160によって全ての半導体ウエハ9が基板位置合わせ装置1から取り出される。
 本実施形態に係る基板位置合わせ装置1にあっては、制御部8の制御動作によって、基準回転角度位置からの角度ずれ量が小さい半導体ウエハ9から順に、基準回転角度位置に合わせることができる。これにより、全ての半導体ウエハ9の位置合わせ動作に要する時間を最短にすることができ、且つ位置合わせ動作を人手を介さずに自動で行うことができる。
尚、センサ13を基準回転角度位置に設定し、センサ13がノッチ90を検出した時点で半導体ウエハ9の回転を停止させれば、半導体ウエハ9は基準回転角度位置に合わせられる。この場合、記憶部80に半導体ウエハ9の角度ずれの量を記憶させる必要はない。
また、ハンド160が複数枚の半導体ウエハ9を搬送した際に、高位置且つ内方位置にある支持爪セット5に半導体ウエハ9を載置するのではなく、支持爪セット5を外方位置に位置させて、回転台4上に載置してもよい。
<支持爪の変形例>
 上記記載では、図7(a)に示すように、半導体ウエハ9は支持爪50の受け片51にて周縁部下面が支持されるとした。しかし、これに代えて、図15に示すように、受け片51を内面が第1斜面58と第1斜面58よりも勾配の緩やかな第2斜面59とが連続するように形成し、両斜面58、59の境目SMにて半導体ウエハ9の周縁を支持してもよい。
図15に示す構成であれば、半導体ウエハ9は受け片51に保持される際には、受け片51の第1斜面58を滑って境目SMに載置される。これにより、半導体ウエハ9の水平位置及び水平姿勢が矯正されて安定に保持される。また、受け片51と半導体ウエハ9は線接触するから、受け片51と半導体ウエハ9との接触面積が小さい。これにより、半導体ウエハ9への異物付着が減少する。
本発明は、複数枚の基板の回転角度位置を合せる基板位置合わせ装置、及び基板位置合わせ装置の制御方法に用いると有用である。
1  基板位置合わせ装置
2  回転駆動装置
3  支柱
4  回転台
5  支持爪セット
7  支持爪セット駆動構造体
8  制御部
9  半導体ウエハ
30 昇降装置
50 支持爪
70 支持爪駆動構造体
80 記憶部
300 昇降機構

Claims (8)

  1. 複数の基板を夫々水平に且つ上下方向に互いに離間して並ぶように保持するよう上下方向に互いに離間して配置され、且つ上下方向に延びた1つの軸線の周りを回転可能に設けられた複数の回転台と、
    前記複数の回転台を同期して回転させる回転駆動装置と、
    前記複数の回転台に夫々保持されて回転される複数の基板の目印の回転角度位置を検出する複数の目印位置検出部と、
    前記複数の回転台にそれぞれ保持されるべき複数の基板の周縁部を支持するよう構成された複数の支持爪セットと、
    前記複数の支持爪セットを、個別に支持し且つ前記基板の外周より内側に位置する内方位置と前記基板の外周より外側に位置する外方位置との間にて個別に移動させるよう構成された複数の支持爪セット駆動構造体と、
     前記複数の支持爪セット駆動構造体を所定の高さ範囲における高位置と低位置との間にて一括して昇降させる昇降機構と、を備え、
     前記高位置及び低位置は、夫々、前記複数の支持爪セットが夫々に対応する回転台に保持される基板より高い位置及び低い位置であり、且つ
     前記複数の目印位置検出部で夫々検出される前記複数の基板の目印位置に基づいて前記回転駆動装置、前記支持爪セット駆動構造体、及び前記昇降機構を動作させることによって、前記複数の基板の目印を基準回転角度位置に位置させるように構成されている、基板位置合わせ装置。
  2.  前記目印位置検出部で検出される基板の目印の回転角度位置が入力され、前記回転駆動装置と前記支持爪セット駆動構造体と前記昇降機構とを制御する制御部と記憶部とをさらに備え、
    前記制御部は、前記回転駆動装置によって前記複数の回転台を同期して回転させるとともに前記複数の目印位置検出部によって検出される前記複数の回転台に夫々保持された複数の基板の目印の回転角度位置を前記記憶部に記憶させる目印位置検出動作と、
     前記記憶部に記憶された基板の目印の回転角度位置を用いて、ある基板の目印の回転角度位置が前記基準回転角度位置に位置するよう前記回転駆動装置によって前記複数の回転台を同期して回転させる位置合わせと、この位置合わせが済んだ基板に対応する支持爪セットをその対応する支持爪セット駆動構造体によって前記内方位置に位置させるとともに位置合わせが済んでいない全ての基板に対応する支持爪セットを夫々に対応する支持爪セット駆動構造体によって夫々前記外方位置に位置させ、その後、前記昇降機構によって前記複数の支持爪セット駆動構造体を一括して前記高位置に位置させて、位置合わせが済んだ基板のみを前記回転台から持ち上げる基板持ち上げと、を前記複数の基板について順次行う順次基板位置合わせ動作と、を行うよう構成されている、請求項1に記載の基板位置合わせ装置。
  3.  前記制御部は、前回の基板持ち上げの後、前記昇降機構によって前記複数の支持爪セット駆動構造体を一括して前記低位置に位置させ、その後、前記支持爪セット駆動構造体及び前記昇降機構によって、位置合わせが済んだ基板のみを前記回転台から持ち上げるようにして2回目以降の前記基板持ち上げを行うよう構成されている、請求項2に記載の基板位置合わせ装置。
  4. 前記制御部は、前記昇降機構によって前記複数の支持爪セット駆動構造体を前記高位置に位置させるとともに前記複数の支持爪セットを夫々に対応する前記支持爪セット駆動構造体によって前記内方位置に位置させる基板受け取り動作と、当該基板受け取り動作が終了した状態における前記複数の支持爪セットに複数の基板が夫々搬送されて載置された後、前記昇降機構によって前記複数の支持爪セット駆動構造体を前記低位置に位置させて前記複数の回転台に前記複数の基板をそれぞれ保持させる基板保持動作とを行い、当該基板保持動作の後、前記目印位置検出動作と前記順次基板位置合わせ動作とを行うよう構成されている、請求項2又は3に記載の基板位置合わせ装置。
  5. 前記制御部は、前記記憶部に記憶された複数の基板の目印の回転角度位置に基づいて全ての基板の前記位置合わせを行うのに必要な前記回転台の回転量が最小となる前記複数の基板における位置合わせの順序を演算し、前記順次基板位置合わせ動作において、この演算した順序で前記複数の基板に対して前記位置合わせを行う、請求項2乃至4の何れかに記載の基板位置合わせ装置。
  6.  前記昇降機構は、前記1つの軸線を中心とした仮想円上に周方向に間隔を置いて上下方向に延びるように設けられた複数の支柱と、夫々の前記支柱に前記複数の回転台に対応する高さ位置にそれぞれ設けられた複数の個別支持爪駆動構造体と、前記複数の支柱を同期して前記昇降させる昇降装置と、を備え、
     夫々の前記支持爪セットは、夫々に対応する前記回転台に保持されるべき基板の周方向における複数の周縁部をそれぞれ支持するよう構成された複数の支持爪を含み、
    夫々の前記支持爪セット駆動構造体は、夫々に対応する前記支持爪セットを構成する複数の支持爪を、個別に支持し且つ前記内方位置と前記外方位置との間にて互いに同期して夫々移動させるよう構成された前記複数の個別支持爪駆動構造体によって構成されている、請求項1乃至5の何れかに記載の基板位置合わせ装置。
  7. 前記複数の基板を夫々水平に且つ上下方向に互いに離間して並ぶように保持するよう上下方向に互いに離間し、且つ上下方向に延びた1つの軸線の周りを回転可能に前記複数の回転台を支持する基体と、
    1つの回転駆動源と、
    前記基体に設けられ、前記回転駆動源の回転駆動力を前記複数の回転台に当該複数の回転台が互いに同期して回転するよう伝達する回転駆動力伝達機構と、を備える、請求項1乃至6の何れかに記載の基板位置合わせ装置。
  8. 複数の基板を夫々水平に且つ上下方向に互いに離間して並ぶように保持するよう上下方向に互いに離間して配置され、且つ上下方向に延びた1つの軸線の周りを回転可能に設けられた複数の回転台と、前記複数の回転台を同期して回転させる回転駆動装置と、前記複数の回転台に夫々保持されて回転される複数の基板の目印の回転角度位置を検出する複数の目印位置検出部と、前記複数の回転台にそれぞれ保持されるべき複数の基板の周縁部を支持するよう構成された複数の支持爪セットと、前記複数の支持爪セットを、個別に支持し且つ前記基板の外周より内側に位置する内方位置と前記基板の外周より外側に位置する外方位置との間にて個別に移動させるよう構成された複数の支持爪セット駆動構造体と、前記複数の支持爪セット駆動構造体を所定の高さ範囲における高位置と低位置との間にて一括して昇降させる昇降機構と、前記目印位置検出部で検出される基板の目印の回転角度位置が入力され、前記回転駆動装置と前記支持爪セット駆動構造体と前記昇降機構とを制御する制御部と、記憶部と、を備え、前記高位置及び低位置は、夫々、前記複数の支持爪セットが夫々に対応する回転台に保持される基板より高い位置及び低い位置である、基板位置合わせ装置の制御方法であって、
    前記制御部は、前記回転駆動装置によって前記複数の回転台を同期して回転させるとともに前記複数の目印位置検出部によって検出される前記複数の回転台に夫々保持された複数の基板の目印の回転角度位置を前記記憶部に記憶させる目印位置検出動作と、
     前記記憶部に記憶された基板の目印の回転角度位置を用いて、ある基板の目印の回転角度位置が前記基準回転角度位置に位置するよう前記回転駆動装置によって前記複数の回転台を同期して回転させる位置合わせと、この位置合わせが済んだ基板に対応する支持爪セットをその対応する支持爪セット駆動構造体によって前記内方位置に位置させるとともに位置合わせが済んでいない全ての基板に対応する支持爪セットを夫々に対応する支持爪セット駆動構造体によって夫々前記外方位置に位置させ、その後、前記昇降機構によって前記複数の支持爪セット駆動構造体を一括して前記高位置に位置させて、位置合わせが済んだ基板のみを前記回転台から持ち上げる基板持ち上げと、を前記複数の基板について順次行う順次基板位置合わせ動作と、を行う、基板位置合わせ装置の制御方法。
PCT/JP2014/006234 2013-12-16 2014-12-15 基板位置合わせ装置及び基板位置合わせ装置の制御方法 WO2015093035A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167015623A KR101836320B1 (ko) 2013-12-16 2014-12-15 기판 정렬 장치 및 기판 정렬 장치의 제어 방법
CN201480068130.7A CN105981155B (zh) 2013-12-16 2014-12-15 基板对准装置及基板对准装置的控制方法
US15/105,283 US10181418B2 (en) 2013-12-16 2014-12-15 Substrate position alignment device and control method of substrate position alignment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-258768 2013-12-16
JP2013258768A JP6263017B2 (ja) 2013-12-16 2013-12-16 基板位置合わせ装置及び基板位置合わせ装置の制御方法

Publications (1)

Publication Number Publication Date
WO2015093035A1 true WO2015093035A1 (ja) 2015-06-25

Family

ID=53402404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006234 WO2015093035A1 (ja) 2013-12-16 2014-12-15 基板位置合わせ装置及び基板位置合わせ装置の制御方法

Country Status (6)

Country Link
US (1) US10181418B2 (ja)
JP (1) JP6263017B2 (ja)
KR (1) KR101836320B1 (ja)
CN (1) CN105981155B (ja)
TW (1) TWI576950B (ja)
WO (1) WO2015093035A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11118267B2 (en) * 2018-05-22 2021-09-14 Tokyo Electron Limited Substrate processing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263017B2 (ja) * 2013-12-16 2018-01-17 川崎重工業株式会社 基板位置合わせ装置及び基板位置合わせ装置の制御方法
WO2017150551A1 (ja) * 2016-03-04 2017-09-08 川崎重工業株式会社 基板搬送装置及び基板搬送ロボットの教示方法
JP2018041910A (ja) * 2016-09-09 2018-03-15 東朋テクノロジー株式会社 基板支持装置
JP2019046941A (ja) 2017-08-31 2019-03-22 東芝メモリ株式会社 半導体製造装置、ウェハ搬送装置、およびウェハ搬送方法
JP2019067948A (ja) * 2017-10-02 2019-04-25 川崎重工業株式会社 基板搬送装置
KR20210021480A (ko) * 2018-06-22 2021-02-26 로제 가부시키가이샤 얼라이너 및 얼라이너의 보정값 산출 방법
EP3872840A4 (en) * 2018-10-23 2022-07-27 Tokyo Electron Limited SUBSTRATE TREATMENT DEVICE AND SUBSTRATE TREATMENT METHOD
KR102180211B1 (ko) * 2019-01-07 2020-11-18 주식회사 아바코 마스크 정렬장치용 기판 리프트 장치
CN113066746B (zh) * 2020-01-02 2022-03-22 长鑫存储技术有限公司 预对准装置及应用于该装置的预对准方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270530A (ja) * 1997-01-21 1998-10-09 Tokyo Electron Ltd 基板搬送処理装置
JPH1140652A (ja) * 1997-07-15 1999-02-12 Tokyo Electron Ltd 位置決め装置及び位置決め方法
JP2000294619A (ja) * 1999-04-07 2000-10-20 Kokusai Electric Co Ltd 半導体製造方法および半導体製造装置
JP2001053128A (ja) * 1999-08-13 2001-02-23 Hitachi Kokusai Electric Inc 基板処理方法および基板処理装置
JP2001267401A (ja) * 2000-01-13 2001-09-28 Applied Materials Inc 基板の方向を調整する方法及び装置
JP2002100664A (ja) * 2000-09-25 2002-04-05 Hitachi Kokusai Electric Inc 基板処理方法および装置
JP2008300609A (ja) * 2007-05-31 2008-12-11 Yaskawa Electric Corp ウェハのアライメント装置、それを備えた搬送装置、半導体製造装置
JP2011091275A (ja) * 2009-10-23 2011-05-06 Kawasaki Heavy Ind Ltd アライナ装置、及びそれを備える半導体処理設備
JP2011091276A (ja) * 2009-10-23 2011-05-06 Kawasaki Heavy Ind Ltd 多段アライナ装置
JP2012129248A (ja) * 2010-12-13 2012-07-05 Yaskawa Electric Corp アライメント装置及び半導体製造装置
JP2014138063A (ja) * 2013-01-16 2014-07-28 Sokudo Co Ltd 位置合わせ装置および基板処理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672634B1 (ko) * 2001-12-19 2007-02-09 엘지.필립스 엘시디 주식회사 액정표시소자의 기판 반송 장치 및 방법
JP4601698B2 (ja) * 2008-09-26 2010-12-22 株式会社日立国際電気 半導体製造方法及びその装置
KR101685150B1 (ko) * 2011-01-14 2016-12-09 주식회사 원익아이피에스 박막 증착 장치 및 이를 포함한 기판 처리 시스템
JP6263017B2 (ja) * 2013-12-16 2018-01-17 川崎重工業株式会社 基板位置合わせ装置及び基板位置合わせ装置の制御方法
KR101883804B1 (ko) * 2014-03-25 2018-07-31 카와사키 주코교 카부시키 카이샤 기판 각도정렬 장치, 기판 각도정렬 방법 및 기판 이송 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270530A (ja) * 1997-01-21 1998-10-09 Tokyo Electron Ltd 基板搬送処理装置
JPH1140652A (ja) * 1997-07-15 1999-02-12 Tokyo Electron Ltd 位置決め装置及び位置決め方法
JP2000294619A (ja) * 1999-04-07 2000-10-20 Kokusai Electric Co Ltd 半導体製造方法および半導体製造装置
JP2001053128A (ja) * 1999-08-13 2001-02-23 Hitachi Kokusai Electric Inc 基板処理方法および基板処理装置
JP2001267401A (ja) * 2000-01-13 2001-09-28 Applied Materials Inc 基板の方向を調整する方法及び装置
JP2002100664A (ja) * 2000-09-25 2002-04-05 Hitachi Kokusai Electric Inc 基板処理方法および装置
JP2008300609A (ja) * 2007-05-31 2008-12-11 Yaskawa Electric Corp ウェハのアライメント装置、それを備えた搬送装置、半導体製造装置
JP2011091275A (ja) * 2009-10-23 2011-05-06 Kawasaki Heavy Ind Ltd アライナ装置、及びそれを備える半導体処理設備
JP2011091276A (ja) * 2009-10-23 2011-05-06 Kawasaki Heavy Ind Ltd 多段アライナ装置
JP2012129248A (ja) * 2010-12-13 2012-07-05 Yaskawa Electric Corp アライメント装置及び半導体製造装置
JP2014138063A (ja) * 2013-01-16 2014-07-28 Sokudo Co Ltd 位置合わせ装置および基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11118267B2 (en) * 2018-05-22 2021-09-14 Tokyo Electron Limited Substrate processing method

Also Published As

Publication number Publication date
KR20160086381A (ko) 2016-07-19
CN105981155A (zh) 2016-09-28
JP2015115562A (ja) 2015-06-22
TWI576950B (zh) 2017-04-01
KR101836320B1 (ko) 2018-03-08
US10181418B2 (en) 2019-01-15
TW201535578A (zh) 2015-09-16
US20160322248A1 (en) 2016-11-03
CN105981155B (zh) 2018-09-28
JP6263017B2 (ja) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6263017B2 (ja) 基板位置合わせ装置及び基板位置合わせ装置の制御方法
JP6850725B2 (ja) 基板搬送ロボットおよび基板処理システム
JP5128148B2 (ja) 搬送装置
JP5387622B2 (ja) 搬送ロボット
JP4822085B2 (ja) 移送ロボットの制御方法
JP5189370B2 (ja) 基板交換装置及び基板処理装置並びに基板検査装置
JP5925217B2 (ja) ウエハ搬送装置
TW201700239A (zh) 基板搬送機器人及基板處理系統
TWI382904B (zh) 基板搬送方法
KR20210152550A (ko) 기판 반송로봇 및 기판 반송방법
TW201814813A (zh) 姿勢變更裝置
JPH11188669A (ja) 搬送装置
KR20230018449A (ko) 웨이퍼 반송 장치 및 웨이퍼 반송 방법
JP2000021956A (ja) ノッチ合わせ機
TW200942383A (en) Transfer robot diagnosis system
JP5452166B2 (ja) アライナ装置、及びそれを備える半導体処理設備
JP2011134820A (ja) ウェハー搬送ロボット、及び、それを備えた基板処理装置
JP5295259B2 (ja) プリアライナー装置
JP2011091276A (ja) 多段アライナ装置
TWI823237B (zh) 對準裝置及對準方法
JP2002151577A (ja) 基板のエッジ保持アライナー
JPH06124995A (ja) ウェハー搬送ロボット
JP4636934B2 (ja) 基板角度位置補正装置
KR101614201B1 (ko) 이송암 및 이를 포함하는 기판 이송장치
JPH09246357A (ja) 半導体ウエハの一斉方向合わせ方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015623

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15105283

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14870680

Country of ref document: EP

Kind code of ref document: A1