WO2015087872A1 - 排ガス浄化用触媒 - Google Patents

排ガス浄化用触媒 Download PDF

Info

Publication number
WO2015087872A1
WO2015087872A1 PCT/JP2014/082540 JP2014082540W WO2015087872A1 WO 2015087872 A1 WO2015087872 A1 WO 2015087872A1 JP 2014082540 W JP2014082540 W JP 2014082540W WO 2015087872 A1 WO2015087872 A1 WO 2015087872A1
Authority
WO
WIPO (PCT)
Prior art keywords
coat layer
exhaust gas
ceo
catalyst
lowermost
Prior art date
Application number
PCT/JP2014/082540
Other languages
English (en)
French (fr)
Inventor
悟司 松枝
章雅 平井
健一 滝
将 星野
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to EP14869605.7A priority Critical patent/EP3034165B1/en
Priority to US14/914,829 priority patent/US9675970B2/en
Priority to JP2015552458A priority patent/JP6611611B2/ja
Priority to CN201480049426.4A priority patent/CN105517706B/zh
Publication of WO2015087872A1 publication Critical patent/WO2015087872A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9025Three layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine.
  • exhaust gas discharged from an engine such as an automobile contains components such as hydrocarbon (HC), carbon monoxide (CO), nitrogen oxide (NOx) and the like.
  • An exhaust gas purifying catalyst for purifying these components from the exhaust gas is disposed in the exhaust passage of the internal combustion engine.
  • Such an exhaust gas purifying catalyst is constituted by forming a catalyst coat layer on the surface of a substrate. This catalyst coat layer is composed of a noble metal catalyst and a carrier supporting the noble metal catalyst.
  • a so-called three-way catalyst is used as an exhaust gas purification catalyst of this type (especially an exhaust gas purification catalyst for a gasoline engine).
  • platinum (Pt), rhodium (Rh), palladium (Pd) or the like is used as the noble metal catalyst.
  • Pt and Pd mainly contribute to hydrocarbon (HC) and carbon monoxide (CO) purification performance (oxidation purification ability), and Rh mainly contains nitrogen oxide (NOx) purification performance (reduction purification). Function).
  • the three-way catalyst is set to function effectively in an exhaust gas atmosphere (hereinafter also referred to as “stoichiometric atmosphere”) burned at an air-fuel ratio in the vicinity of stoichiometric (theoretical air-fuel ratio). Therefore, exhaust gas with a richer atmosphere (that is, exhaust gas generated by combustion of an air-fuel mixture with a rich air-fuel ratio) or exhaust gas with a lean atmosphere (that is, air-fuel ratio with lean air-fuel ratio) is burned. In the case of the exhaust gas generated as a result, the performance of the three-way catalyst is inferior to the stoichiometric atmosphere.
  • stoichiometric atmosphere an exhaust gas atmosphere (hereinafter also referred to as “stoichiometric atmosphere”) burned at an air-fuel ratio in the vicinity of stoichiometric (theoretical air-fuel ratio). Therefore, exhaust gas with a richer atmosphere (that is, exhaust gas generated by combustion of an air-fuel mixture with a rich air-fuel ratio) or exhaust gas
  • an oxygen storage / release material containing a CeO 2 component (hereinafter also referred to as an OSC (Oxygen Storage Capacity) material) is used as a carrier.
  • the OSC material occludes oxygen in an exhaust gas atmosphere containing oxygen in excess of the stoichiometric atmosphere (hereinafter also referred to as “lean atmosphere”).
  • the OSC material releases oxygen in an exhaust gas atmosphere (hereinafter also referred to as “rich atmosphere”) generated by burning in a state of excessive fuel and low oxygen. For this reason, it is effective to stably maintain the inside of the catalyst in a stoichiometric atmosphere.
  • Patent Documents 1 to 4 are cited as prior art documents relating to such an exhaust gas purification catalyst.
  • the exhaust gas purifying catalyst described in Patent Document 1 includes a first catalyst coat layer that is formed on a substrate and contains a noble metal catalyst such as Pt or Pd and an OSC material such as CeO 2 .
  • a second catalyst coat layer containing Rh is provided in a partial region of the first catalyst coat layer.
  • the 1st catalyst coat layer has the former part with much content of OSC material, and the latter part with little content.
  • the exhaust gas purifying catalyst having such a configuration can obtain a high NOx reduction (purification) capability during normal traveling.
  • eco-cars such as hybrid cars and idling stop cars having a function of stopping the engine when idling have been developed for the purpose of improving the fuel efficiency of vehicles such as automobiles.
  • the engine frequently stops during running and during a temporary stop such as waiting for a signal.
  • the exhaust gas purification catalyst tends to have a lean atmosphere. That is, the state where oxygen is occluded in the OSC material in the catalyst may continue.
  • the present invention has been created in order to solve the above-described problems, and its purpose is to maintain the catalytic ability during normal driving while at the time of engine restart in an eco-car where engine stop and restart are frequently performed.
  • An object of the present invention is to provide an exhaust gas purifying catalyst capable of improving the NOx reduction (purification) ability of NOx.
  • the exhaust gas purifying catalyst according to the present invention is an exhaust gas purifying catalyst that is disposed in an exhaust passage of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine.
  • the exhaust gas-purifying catalyst includes a porous base material and a catalyst coat layer formed on the porous base material.
  • the catalyst coat layer includes a carrier and a noble metal catalyst supported on the carrier.
  • the carrier includes an OSC material containing at least a CeO 2 component.
  • the catalyst coat layer is composed of at least two coat layers having different structures in the thickness direction.
  • the uppermost coat layer which is the uppermost layer located at the outermost portion of the plurality of coat layers, with respect to the overall length along the exhaust gas flow direction of the uppermost coat layer, at least from the end on the exhaust gas inlet side
  • the upstream portion of the top coat layer containing 20% does not contain the CeO 2 component or the content thereof is the end on the exhaust gas outlet side with respect to the overall length along the exhaust gas flow direction of the top coat layer. It includes at least 20% parts, less than CeO 2 component content in the top coat layer downstream section containing the CeO 2 component.
  • the end on the exhaust gas outlet side with respect to the overall length along the exhaust gas flow direction of the lowermost coat layer is an exhaust gas relative to the overall length along the exhaust gas flow direction of the lowermost coat layer. It includes at least 20% from the end portion on the inlet side, less than the CeO 2 component content in the lowermost coating layer upstream section containing the CeO 2 component.
  • the CeO 2 component content in the uppermost coat layer upstream portion is less than the CeO 2 component content in the uppermost coat layer downstream portion.
  • the CeO 2 component is not included in the upstream portion of the uppermost coat layer or the content thereof is less than the CeO 2 component content in the downstream portion of the uppermost coat layer.
  • the exhaust gas can be maintained in a stoichiometric atmosphere by the oxygen releasing ability of the CeO 2 component (OSC material) at the uppermost coat layer downstream portion and the lowermost coat layer upstream portion. Therefore, the NOx reduction (purification) performance during normal running can be maintained and improved in the uppermost coat layer downstream portion and the lowermost coat layer upstream portion.
  • the CeO 2 component content in the downstream portion of the lowermost coat layer is less than the CeO 2 component content in the upstream portion of the lowermost coat layer.
  • the CeO 2 component is not included in the downstream portion of the lowermost coat layer or the content thereof is less than the CeO 2 component content in the upstream portion of the lowermost coat layer.
  • the HC purification performance during normal traveling can be improved.
  • the NOx reduction (purification) ability at the time of engine restart is maintained in an eco-car in which the engine is frequently stopped and restarted while maintaining the catalyst capacity at the time of normal traveling. Can be improved.
  • the CeO 2 component content in the catalyst coat layer per liter of the catalyst volume is 10 g / L to 40 g / L.
  • the catalyst function can be exhibited at a high level.
  • the CeO 2 component content in the upstream portion of the top coat layer per 1 L of catalyst volume is 0 g / L to 2 g / L. is there.
  • the CeO 2 component content in the downstream portion of the lowermost coat layer per 1 L of catalyst volume is 0 g / L to 2 g / L. It is. As a result, the HC purification performance can be preferably improved.
  • the CeO 2 component content in the uppermost coat layer downstream portion and the lowermost coat layer upstream portion per 1 L of catalyst volume is as follows: Each is 4 g / L or more. This makes it possible to suitably adjust the exhaust gas atmosphere by the OSC material during normal running. As a result, the NOx reduction (purification) performance and other exhaust gas purification performance can be suitably maintained or improved.
  • the total length of the uppermost coat layer in the exhaust gas flow direction is defined as 100, and the length of the uppermost coat layer upstream portion along the direction is The ratio (upstream / downstream) of the downstream portion of the uppermost coat layer along the direction is 20/80 to 80/20.
  • the overall length of the lowermost coat layer in the exhaust gas flow direction is defined as 100, along the upstream portion of the lowermost coat layer.
  • the ratio of the length to the length along the direction of the downstream portion of the lowermost coat layer (upstream portion / downstream portion) is 25/75 to 80/20.
  • the noble metal catalyst is at least one of Pt, Pd and Rh.
  • Pt and / or Pd having an excellent oxidation catalyst function as the noble metal catalyst, HC and CO contained in the exhaust gas can be suitably oxidized and purified.
  • Rh that is excellent in the reduction catalyst function as the noble metal catalyst, it is possible to suitably reduce and purify NOx contained in the exhaust gas.
  • the uppermost coating layer contains Pd and Rh as noble metal catalysts. According to such a configuration, it is possible to realize a suitable three-way catalyst function in the uppermost coat layer. That is, HC and CO contained in the exhaust gas can be oxidized and purified by Pd, and NOx contained in the exhaust gas can be suitably reduced and purified by Rh.
  • the upstream portion of the uppermost coat layer is the above.
  • the content of the CeO 2 component is less than 0.3.
  • the downstream part of the bottom coat layer when the content of CeO 2 component in the upstream part of the bottom coat layer is 1, the downstream part of the bottom coat layer The content of the CeO 2 component in is less than 0.3.
  • FIG. 1 is a diagram schematically illustrating an exhaust gas purification apparatus according to an embodiment.
  • FIG. 2 is a perspective view schematically showing the base material of the exhaust gas purifying catalyst.
  • FIG. 3 is an enlarged view schematically showing a cross-sectional configuration of the exhaust gas purifying catalyst according to the embodiment.
  • FIG. 4 is a diagram schematically showing an enlarged cross-sectional configuration of an exhaust gas purifying catalyst according to another embodiment.
  • FIG. 1 is a diagram schematically showing an exhaust gas purifying apparatus 1 according to the present embodiment. As shown in FIG. 1, the exhaust gas purification device 1 is provided in the exhaust system of the internal combustion engine 2.
  • the air-fuel mixture containing oxygen and fuel gas is supplied to the internal combustion engine (engine) 2 according to the present embodiment.
  • the internal combustion engine 2 burns this air-fuel mixture and converts the combustion energy into mechanical energy.
  • the air-fuel mixture combusted at this time becomes exhaust gas and is discharged to the exhaust system.
  • the internal combustion engine 2 having the configuration shown in FIG. 1 is mainly composed of an automobile gasoline engine.
  • the exhaust gas-purifying catalyst 7 disclosed here is mounted downstream of an internal combustion engine 2 of an eco-car such as a passenger car (idling stop car) having an idling stop function or a hybrid car among automobiles. This type of vehicle is suitable for the implementation of the present invention because the engine frequently stops during traveling (and during a temporary stop).
  • An exhaust manifold 3 is connected to an exhaust port (not shown) that allows the internal combustion engine 2 to communicate with the exhaust system.
  • the exhaust manifold 3 is connected to an exhaust pipe 4 through which exhaust gas flows.
  • the exhaust manifold 3 and the exhaust pipe 4 form the exhaust passage of this embodiment.
  • the arrow in a figure has shown the distribution direction of waste gas.
  • the exhaust gas purification device 1 purifies harmful components (for example, carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx)) contained in the exhaust gas discharged from the internal combustion engine 2.
  • the exhaust gas purification apparatus 1 includes an ECU 5 and an exhaust gas purification catalyst 7.
  • the ECU 5 is an engine control unit that performs control between the internal combustion engine 2 and the exhaust gas purification device 1.
  • the ECU 5 includes a digital computer and other electronic devices as components as in a general control device.
  • the ECU 5 is provided with an input port (not shown), and is electrically connected to a sensor (for example, a pressure sensor 8) installed in each part of the internal combustion engine 2 or the exhaust gas purification device 1. Yes.
  • a sensor for example, a pressure sensor 8
  • the ECU 5 is provided with an output port (not shown).
  • the ECU 5 is connected to each part of the internal combustion engine 2 and the exhaust gas purification device 1 via the output port, and controls the operation of each part by transmitting a control signal.
  • the exhaust gas purifying catalyst 7 is disposed in the exhaust passage of the internal combustion engine 2 and purifies the exhaust gas discharged from the internal combustion engine 2.
  • the exhaust gas purifying catalyst 7 is provided in the exhaust pipe 4 through which the exhaust gas flows. Specifically, the exhaust gas purifying catalyst 7 is provided on the downstream side of the exhaust pipe 4 as shown in FIG.
  • FIG. 2 is a perspective view schematically showing the base material 10 of the exhaust gas purifying catalyst 7.
  • FIG. 3 is a diagram schematically showing an enlarged cross-sectional configuration of the exhaust gas-purifying catalyst 7. As shown in FIGS. 2 and 3, the exhaust gas-purifying catalyst 7 includes a base material 10 and a catalyst coat layer 30.
  • the base material 10 is a porous base material.
  • the substrate 10 is preferably made of a heat-resistant material having a porous structure. Examples of such heat-resistant materials include cordierite, silicon carbide (silicon carbide: SiC), aluminum heat-resistant metal such as aluminum titanate, silicon nitride, and stainless steel, and alloys thereof.
  • a substrate 10 having a honeycomb structure having an outer shape of a cylindrical shape and comprising regularly arranged cells (space portions) 12 and cordierite partition walls 16 separating the cells 12 is illustrated.
  • the outer shape of the entire substrate 10 is not particularly limited, and an elliptical cylindrical shape, a polygonal cylindrical shape, or the like may be adopted.
  • the capacity of the substrate 10 (total volume of cells, overall bulk volume) is usually 0.1 L or more (preferably 0.5 L or more), for example, 5 L or less (preferably 3 L or less, more preferably 2 L or less, for example, 1L or less). Further, the total length of the base material 10 in the extending direction (the total length in the exhaust gas flow direction) is usually about 10 mm to 500 mm (typically 50 mm to 300 mm, for example, 100 mm to 200 mm).
  • the catalyst coat layer 30 is formed on the substrate 10.
  • the catalyst coat layer 30 is formed on the partition wall 16 that partitions adjacent cells 12 (see FIG. 2).
  • the catalyst coat layer 30 includes a carrier and a noble metal catalyst supported on the carrier.
  • the exhaust gas discharged from the internal combustion engine 2 is brought into contact with the catalyst coat layer 30 to purify harmful components.
  • CO or HC contained in the exhaust gas can be oxidized by the catalyst coat layer 30 and converted (purified) into water (H 2 O), carbon dioxide (CO 2 ), or the like.
  • NOx can be reduced by the catalyst coat layer 30 and converted (purified) into nitrogen (N 2 ).
  • the catalyst coat layer 30 includes, as a carrier, an OSC material (oxygen storage / release material) containing a CeO 2 component at least in part. Since the CeO 2 component has an oxygen absorption / release capability, the air-fuel ratio of the exhaust gas can be stably maintained.
  • the OSC material containing the CeO 2 component is not particularly limited. For example, ceria alone or ceria-zirconia composite oxide (CZ composite oxide) containing a CeO 2 component as a solid solution may be used. From the viewpoint of improving physical (mechanical) characteristics, an OSC material made of a CZ composite oxide is preferable.
  • the shape (outer shape) of the carrier is not particularly limited, but it is more preferable that the carrier has a shape that increases the specific surface area.
  • the specific surface area of the carrier is preferably 20 m 2 / g to 100 m 2 / g, more preferably 40 m 2 / g to 80 m 2 / g.
  • a shape suitable for realizing the carrier having such a specific surface area a powder form (particulate form) can be mentioned.
  • the average particle size of the powdered CZ composite oxide is preferably 5 nm to 20 nm, preferably Is preferably 7 nm to 12 nm.
  • the dispersibility of the noble metal tends to be lowered when the noble metal catalyst is supported on the carrier, and the purification performance of the catalyst may be lowered. obtain.
  • the particle size of the particles is too small (or the specific surface area is too large)
  • the heat resistance of the support itself may be lowered, and the heat resistance characteristics of the catalyst may be lowered.
  • the catalyst coat layer 30 may have another inorganic compound as a carrier together with an OSC material (for example, CZ composite oxide) containing a CeO 2 component.
  • OSC material for example, CZ composite oxide
  • Other inorganic compounds preferably have a relatively large specific surface area.
  • Preferable examples include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), and titania (TiO 2 ).
  • Carrier particles, from the viewpoint of heat resistance and structural stability, specific surface area may is 20m 2 / g ⁇ 200m 2 / g approximately.
  • the average particle size of the carrier particles (eg, the average particle size of primary particles based on SEM or TEM observation) is typically about 1 nm to 500 nm (eg, 10 nm to 200 nm).
  • rare earth elements such as lanthanum (La) and yttrium (Y), alkaline earth elements such as calcium, and other transition metal elements.
  • rare earth elements such as lanthanum and yttrium are suitable as stabilizers because they can improve the specific surface area at high temperatures without impairing the catalytic function.
  • the noble metal catalyst supported on the carrier of the catalyst coat layer 30 is preferably at least one of platinum (Pt), palladium (Pd), and rhodium (Rh).
  • Pt platinum
  • Pd palladium
  • Rh rhodium
  • the catalyst coat layer 30 may include a noble metal catalyst other than Pt, Pd, and Rh constituting the three-way catalyst.
  • noble metals other than Pt, Pd, and Rh include ruthenium (Ru), iridium (Ir), and osmium (Os).
  • the catalyst coat layer 30 is composed of two or more coat layers having different structures in the thickness direction. In other words, the catalyst coat layer 30 is divided into a plurality of layers in the thickness direction. In the present embodiment, the catalyst coat layer 30 is composed of two layers, a bottom coat layer 40 and a top coat layer 50.
  • the lowermost coat layer 40 is a layer (lowermost layer) closest to the substrate 10 (typically, the partition wall 16) among the plurality of coat layers.
  • the average thickness of the lowermost coat layer 40 is suitably about 20 ⁇ m to 500 ⁇ m, and preferably about 50 ⁇ m to 200 ⁇ m, for example.
  • the lowermost coat layer 40 includes a lowermost coat layer upstream portion 41 and a lowermost coat layer downstream portion 42.
  • the lowermost coat layer upstream portion 41 includes at least 20% from the end on the exhaust gas inlet side with respect to the entire length of the lowermost coat layer 40 along the exhaust gas flow direction. Preferably, the lowermost coat layer upstream portion 41 occupies 25% to 80% from the end portion on the inlet side of the exhaust gas with respect to the entire length of the lowermost coat layer 40 along the flow direction. % ⁇ 10% or so.
  • the lowermost coat layer upstream portion 41 includes an OSC material containing a CeO 2 component.
  • the lowermost coat layer downstream portion 42 includes at least 20% from the end portion on the exhaust gas outlet side with respect to the entire length of the lowermost coat layer 40 along the exhaust gas flow direction.
  • the lowermost coat layer downstream portion 42 occupies 20% to 75% from the end portion on the outlet side of the exhaust gas with respect to the entire length of the lowermost coat layer 40 along the flow direction. % ⁇ 10% or so.
  • the ratio of the length along the direction of the lowermost coat layer upstream portion 41 to the length along the direction of the lowermost coat layer downstream portion 42 (upstream portion / The downstream portion is preferably 25/75 to 80/20.
  • the lowermost coat layer downstream portion 42 preferably does not contain a CeO 2 component, or even if it contains a CeO 2 component, its content is preferably significantly lower than that of the lowermost coat layer upstream portion 41.
  • CeO 2 component content of the bottom coat layer upstream section 41 CeO 2 component content of less than 0.5 of the lowermost coating layer downstream section 42, typically less than 0.3, For example, 0 to 0.29 is preferable.
  • the NOx reduction (purification) ability at the time of engine restart can be further enhanced. Therefore, the effect of the present invention can be exhibited more remarkably.
  • the noble metal catalyst supported on the carrier of the bottom coat layer 40 is not particularly limited.
  • Pd, Pt, Rh, etc. constituting the three-way catalyst can be supported.
  • the content of the noble metal catalyst (for example, Rh) in the lowermost coat layer 40 per liter of the catalyst volume is approximately 0.001 g / L to 2 g / L (typically 0.01 g / L to 1 g / L, for example, 0 .1 g / L to 0.5 g / L).
  • the uppermost coat layer 50 is the uppermost layer located at the outermost portion of the plurality of coat layers. In the case of the catalyst coat layer 30 having a two-layer structure as in this embodiment, the uppermost coat layer 50 is formed on the lowermost coat layer 40 formed on the partition wall 16.
  • the average thickness of the top coat layer 50 is suitably about 20 ⁇ m to 500 ⁇ m, and preferably about 50 ⁇ m to 200 ⁇ m, for example.
  • the top coat layer 50 has a top coat layer upstream portion 51 and a top coat layer downstream portion 52.
  • the uppermost coat layer upstream portion 51 includes at least 20% from the end on the inlet side of the exhaust gas with respect to the entire length of the uppermost coat layer 50 along the exhaust gas flow direction.
  • the uppermost coat layer upstream portion 51 occupies 20% to 80% from the end portion on the inlet side of the exhaust gas with respect to the overall length of the uppermost coat layer 50 along the flow direction, for example, 50% ⁇ It can be 10%.
  • the uppermost coat layer upstream portion 51 preferably does not contain a CeO 2 component, or even if it contains a CeO 2 component, its content is preferably significantly lower than that of the uppermost coat layer downstream portion 52.
  • CeO 2 component content of the top coat layer upstream section 51 is less than 0.5, typically less than 0.3, for example 0 It is good to be ⁇ 0.29. As a result, the NOx reduction (purification) ability at the time of engine restart can be further enhanced. Therefore, the effect of the present invention can be exhibited more remarkably.
  • the uppermost coat layer downstream portion 52 includes at least 20% from the end portion on the outlet side of the exhaust gas with respect to the entire length of the uppermost coat layer 50 along the exhaust gas flow direction.
  • the uppermost coat layer downstream portion 52 occupies 20% to 80% from the end portion on the outlet side of the exhaust gas with respect to the entire length of the uppermost coat layer 50 along the flow direction, for example, 50% ⁇ It can be on the order of 10%.
  • Ratio of the length along the direction of the uppermost coat layer upstream portion 51 and the length along the direction of the uppermost coat layer downstream portion 52 (upstream portion / downstream portion) where the overall length of the uppermost coat layer 50 in the exhaust gas flow direction is 100 Is preferably 20/80 to 80/20.
  • the uppermost coat layer downstream portion 51 includes an OSC material containing a CeO 2 component.
  • the noble metal catalyst supported on the carrier of the top coat layer 50 is not particularly limited.
  • Pd, Pt, Rh, etc. constituting the three-way catalyst can be used.
  • the noble metal catalyst preferably contains Pd having a high oxidation activity and Rh having a high reduction activity.
  • the content of the noble metal catalyst (for example, Pd) in the uppermost coat layer 50 per 1 L of the catalyst volume is preferably about 0.001 g / L to 10 g / L (typically 0.01 g / L to 5 g / L). .
  • the content of the noble metal catalyst (for example, Pd) in the uppermost coat layer upstream portion 51 and the uppermost coat layer downstream portion 52 per 1 L of catalyst volume is approximately 0.001 g / L to 5 g / L (preferably, 0 0.005 g / L to 2.5 g / L).
  • the content of the reduction catalyst (for example, Rh) in the uppermost coat layer 50 per 1 L of catalyst volume is approximately 0. 0.001 g / L to 5 g / L (typically 0.01 g / L to 2.5 g / L).
  • the CeO 2 component content in the catalyst coat layer 30 per 1 L of catalyst volume is preferably about 10 g / L to 40 g / L.
  • the catalyst function can be exhibited at a high level.
  • sintering performance and grain growth of the noble metal catalyst can be suppressed, and excellent catalyst performance can be exhibited over a longer period.
  • the CeO 2 component content in the uppermost coat layer upstream portion 51 is smaller than the CeO 2 component content in the uppermost coat layer downstream portion 52.
  • the CeO 2 component content in the lowermost coat layer downstream portion 42 is smaller than the CeO 2 component content in the lowermost coat layer upstream portion 41.
  • the CeO 2 component content in the uppermost coat layer upstream portion 51 is less than the CeO 2 component content in the lowermost coat layer upstream portion 41 of the lowermost coat layer 40.
  • the CeO 2 component content in the lowermost coat layer downstream portion 42 is less than the CeO 2 component content in the uppermost coat layer downstream portion 52.
  • each of CeO 2 component content in the top coat layer downstream section 52 and the bottom coat layer upstream section 41, each of the CeO 2 component contained in the top coat layer upstream section 51 and the bottom coating layer downstream section 42 Can be more than the amount.
  • the CeO 2 component contents in the uppermost coat layer upstream portion 51 and the lowermost coat layer downstream portion 42 may be the same or different.
  • CeO 2 component content in the top coat layer downstream section 52 of the catalyst per volume of 1L, and, CeO 2 component content in the lowermost coating layer upstream section 41 is preferably 4g / L or more.
  • each CeO 2 component content in the uppermost coat layer downstream portion 52 and the lowermost coat layer upstream portion 41 per 1 L of catalyst volume is not particularly limited, but is 20 g / L or less (for example, 10 g / L or less for each). It is preferable that However, the CeO 2 component contents in the uppermost coat layer downstream portion 52 and the lowermost coat layer upstream portion 41 may be the same or different.
  • the inside of the exhaust passage becomes a lean atmosphere when the engine is restarted.
  • the uppermost coat layer upstream portion 51 does not contain CeO 2 component or the content thereof (here, 0 g / L to 2 g / L per 1 L of catalyst volume) contains CeO 2 component in the uppermost coat layer downstream portion 52. Less than the amount (here, 4 g / L or more per 1 L of catalyst volume). This reduces the amount of oxygen stored in the CeO 2 component in the uppermost coat layer upstream portion 51 when the engine is restarted. As a result, the inside of the catalyst can be quickly changed to a stoichiometric atmosphere. Therefore, even when the engine is restarted in the eco-car, NOx can be highly suppressed from being discharged to the outside in the uppermost coat layer upstream portion 51.
  • CeO 2 component content in the top coat layer downstream section 52 more than CeO 2 component content in the top coat layer upstream section 51, CeO 2 component content in the lowermost coating layer upstream section 41, the outermost More than the CeO 2 component content in the lower coat layer downstream portion 42.
  • the exhaust gas introduced into the catalyst can be maintained in a stoichiometric atmosphere during normal traveling by the oxygen releasing ability of the CeO 2 component contained in the uppermost coat layer downstream portion 52 and the lowermost coat layer upstream portion 41. That is, the NOx reduction (purification) performance during normal traveling can be maintained in the uppermost coat layer downstream portion 52 and the lowermost coat layer upstream portion 41.
  • the CeO 2 component is not contained in the lowermost coat layer downstream portion 42 or the content thereof is less than the CeO 2 component content in the lowermost coat layer upstream portion 41. For this reason, in the lowermost coat layer downstream portion 42, the suppression of CO adsorption can be improved and the selective reactivity with respect to HC can be increased. As a result, the HC purification performance can be improved in the lowermost coat layer downstream portion 42. From the above, according to the exhaust gas purification catalyst disclosed herein, it is possible to improve the NOx reduction (purification) capability at the time of engine restart while maintaining the catalyst capability at the time of normal traveling.
  • the exhaust gas purifying catalyst 7 according to a preferred embodiment of the present invention has been described above.
  • the exhaust gas purifying catalyst according to the present invention is not limited to the above form.
  • an exhaust gas purifying catalyst 7A as shown in FIG. 4 may be used.
  • the exhaust gas purifying catalyst 7A according to the present embodiment has a catalyst coat layer 30A having a three-layer structure (or more layers) (or a multilayer structure having more layers).
  • the catalyst coat layer 30A includes a lowermost coat layer 40, an uppermost coat layer 50, and an intermediate coat layer 60 formed therebetween.
  • the intermediate coat layer 60 preferably includes an OSC material having at least a CeO 2 component.
  • the CeO 2 component is preferably present as, for example, a CZ composite oxide.
  • the CeO 2 component content in the intermediate coat layer 60 is not particularly limited, but the CeO 2 component content in the catalyst coat layer 30A per 1 L of catalyst volume, that is, the lowermost coat layer 40, the uppermost coat layer 50, and the intermediate coat layer.
  • the total content of CeO 2 components with 60 is preferably about 10 g / L to 40 g / L.
  • the catalyst supported on the intermediate coat layer 60 is not particularly limited, and examples thereof include Pt, Pd, and Rh that constitute a three-way catalyst.
  • test examples related to the present invention will be described.
  • the exhaust gas purifying catalyst according to the present invention is not intended to be limited to those shown in the following test examples.
  • test examples catalyst samples of exhaust gas purifying catalysts according to Examples 1 to 12 and Comparative Examples 1 to 11 are prepared.
  • each example and each comparative example will be described.
  • the exhaust gas purifying catalyst of Example 1 has a two-layer structure. First, as a substrate, a substrate having a cell number of 900 cpsi (cells per square inch), a volume (referring to the total catalyst volume including the volume of the cell passage) of 1 L, and a total length of 100 mm was prepared.
  • 50 g of alumina as a carrier and a rhodium nitrate aqueous solution having an Rh content of 0.2 g were mixed to prepare a slurry for the lowermost coat layer downstream portion.
  • alumina as a carrier, a palladium nitrate aqueous solution with a Pd content of 1 g, and a rhodium nitrate aqueous solution with a Rh content of 0.05 g were mixed to prepare a slurry for the uppermost coat layer upstream portion. .
  • the slurry for the upstream part of the lowermost coat layer in the range from the exhaust gas inlet side end surface to the exhaust gas outlet side end surface of the base material up to 50 mm and drying it at 250 ° C. for 1 hour.
  • the uppermost portion of the lowermost coat layer was formed on the substrate by firing for 1 hour at 500 ° C.
  • the slurry for the downstream part of the lowermost coat layer was applied in a total amount in the range from the exhaust gas outlet side end surface to the exhaust gas inlet side end surface of the base material up to 50 mm, and dried at 250 ° C. for 1 hour.
  • the lowermost coat layer downstream part was formed in the base material by baking for 1 hour on 500 degreeC temperature conditions.
  • Example 2 In the production process of the exhaust gas purifying catalyst in Example 1, it was produced in the same manner as in Example 1 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Example 2.
  • a mixture of 05 g of a rhodium nitrate aqueous solution was used as the uppermost coating layer upstream portion slurry.
  • Example 3 In the production process of the exhaust gas purifying catalyst in Example 1, it was produced in the same manner as in Example 1 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Example 3.
  • a mixture of 05 g of a rhodium nitrate aqueous solution was used as the uppermost coating layer upstream portion slurry.
  • Example 4 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Example 4.
  • a mixture of 05 g of a rhodium nitrate aqueous solution was used as the slurry for the lowermost coat layer downstream portion.
  • Example 5 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Example 5.
  • Example 6 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Example 6.
  • Example 7 In the production process of the exhaust gas purifying catalyst in Example 1, it was produced in the same manner as in Example 1 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Example 7.
  • Example 8 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Example 8.
  • the entire amount of the slurry for the uppermost part of the lowermost coat layer was applied in the range from the exhaust gas inlet side end surface to the exhaust gas outlet side end surface of the base material up to 80 mm.
  • the lowermost coat layer downstream portion slurry was applied in a total amount in a range of 20 mm from the exhaust gas outlet side end surface of the substrate toward the exhaust gas inlet side end surface.
  • the uppermost coat layer upstream portion slurry was applied in a total amount in a range of 20 mm from the exhaust gas inlet side end surface of the substrate toward the exhaust gas outlet side end surface.
  • the entire amount of the slurry for the uppermost coat layer downstream portion was applied in a range of 80 mm from the exhaust gas outlet side end surface of the substrate toward the exhaust gas inlet side end surface.
  • Example 9 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Example 9.
  • the slurry for the uppermost part of the lowermost coat layer was applied in a range from the end surface on the exhaust gas inlet side of the substrate to the end surface on the exhaust gas outlet side up to 25 mm.
  • the lowermost coat layer downstream portion slurry was applied in a total amount in the range of 75 mm from the exhaust gas outlet side end surface of the substrate toward the exhaust gas inlet side end surface.
  • the uppermost coat layer upstream portion slurry was applied in a total amount in a range of 80 mm from the exhaust gas inlet side end surface of the substrate toward the exhaust gas outlet side end surface.
  • the uppermost coat layer downstream portion slurry was applied in a total amount in a range of 20 mm from the exhaust gas outlet side end surface of the substrate toward the exhaust gas inlet side end surface.
  • Example 10 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Example 10.
  • the Rh content of the rhodium nitrate aqueous solution was 0.25 g.
  • the rhodium nitrate aqueous solution was not mixed in the slurry for the uppermost coat layer upstream portion and the slurry for the uppermost coat layer downstream portion.
  • Example 11 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Example 11.
  • a dinitrodiammine platinum aqueous solution having a Pt content of 0.1 g was further mixed.
  • the Pd content of the palladium nitrate aqueous solution was 0.9 g.
  • Example 12 The exhaust gas purifying catalyst of Example 12 has a three-layer structure.
  • the base material made from cordierite similar to Example 1 was prepared as a base material.
  • 15 g (CeO 2 component content) of CZ composite oxide (CeO 2 : ZrO 2 : La 2 O 3 5: 90: 5 (wt%)) mixed with La 2 O 3 as a support.
  • the slurry for the upstream part of the lowermost coat layer in the range from the exhaust gas inlet side end surface to the exhaust gas outlet side end surface of the base material up to 50 mm and drying it at 250 ° C. for 1 hour.
  • the uppermost portion of the lowermost coat layer was formed on the substrate by firing for 1 hour at 500 ° C.
  • the slurry for the downstream part of the lowermost coat layer was applied in a total amount in the range from the exhaust gas outlet side end surface to the exhaust gas inlet side end surface of the base material up to 50 mm, and dried at 250 ° C. for 1 hour.
  • the lowermost coat layer downstream part was formed in the base material by baking for 1 hour on 500 degreeC temperature conditions.
  • the entire amount of the slurry for the intermediate coat layer is applied to the entire upper part of the lowermost coat layer and the lower part of the lowermost coat layer formed on the base material, and dried at 250 ° C. for 1 hour. Then, an intermediate coat layer was formed on the substrate by baking for 1 hour at a temperature of 500 ° C. Next, after applying the slurry for the upstream part of the uppermost coat layer in the range from the exhaust gas inlet side end surface to the exhaust gas outlet side end surface of the base material up to 50 mm and drying it at 250 ° C. for 1 hour. The uppermost coat layer upstream portion was formed on the base material by firing for 1 hour at a temperature of 500 ° C.
  • Example 1 In the production process of the exhaust gas purifying catalyst in Example 1, it was produced in the same manner as in Example 1 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 1.
  • a mixture of 05 g of a rhodium nitrate aqueous solution was used as the uppermost coating layer upstream portion slurry.
  • Example 2 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 2.
  • the slurry for the lowermost coat layer downstream portion in Example 3 was used as the slurry for the lowermost coat layer upstream portion.
  • the slurry for the uppermost coat layer upstream portion in Example 3 was used as the slurry for the uppermost coat layer downstream portion.
  • Example 3 In the production process of the exhaust gas purifying catalyst in Example 1, it was produced in the same manner as in Example 1 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 3.
  • the mixture was used as the slurry for the uppermost part of the lowermost coat layer.
  • Example 5 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 5.
  • the slurry for the uppermost part of the lowermost coat layer was applied in a total amount in a range of 90 mm from the exhaust gas inlet side end surface of the substrate toward the exhaust gas outlet side end surface.
  • the lowermost coat layer downstream portion slurry was applied in a total amount in a range of 10 mm from the exhaust gas outlet side end surface of the substrate toward the exhaust gas inlet side end surface.
  • the uppermost coat layer upstream portion slurry was applied in a total amount in a range of 10 mm from the exhaust gas inlet side end surface of the substrate toward the exhaust gas outlet side end surface.
  • the uppermost coat layer downstream portion slurry was applied in a total amount in the range of 90 mm from the exhaust gas outlet side end surface of the substrate toward the exhaust gas inlet side end surface.
  • Example 6 In the production process of the exhaust gas purifying catalyst in Example 2, it was produced in the same manner as in Example 2 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 6.
  • the slurry for the uppermost part of the lowermost coat layer was applied in a total amount in a range of 15 mm from the exhaust gas inlet side end surface to the exhaust gas outlet side end surface of the substrate.
  • the lowermost coat layer downstream portion slurry was applied in a total amount in a range of 85 mm from the exhaust gas outlet side end surface of the substrate toward the exhaust gas inlet side end surface.
  • the uppermost coat layer upstream portion slurry was applied in a total amount in a range of 90 mm from the exhaust gas inlet side end surface of the substrate toward the exhaust gas outlet side end surface.
  • the entire amount of the slurry for the downstream part of the uppermost coating layer was applied in a range of 10 mm from the exhaust gas outlet side end surface of the substrate toward the exhaust gas inlet side end surface.
  • Comparative Example 8 In the production process of the exhaust gas-purifying catalyst in Comparative Example 4, it was produced in the same manner as in Comparative Example 4 except for the following.
  • the exhaust gas purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 8.
  • a dinitrodiammine platinum aqueous solution having a Pt content of 0.1 g was further mixed.
  • the Pd content of the palladium nitrate aqueous solution was 0.9 g.
  • the exhaust gas purifying catalyst of Comparative Example 9 has a three-layer structure.
  • the exhaust gas purification catalyst production process of Example 12 was produced in the same manner as in Example 12 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 9.
  • the slurry for the lowermost coat layer downstream portion in Example 12 was used as the slurry for the lowermost coat layer upstream portion.
  • a mixture of 05 g of a rhodium nitrate aqueous solution was used as the uppermost coating layer upstream portion slurry.
  • the slurry for the uppermost coat layer upstream portion in Example 12 was used as the slurry for the uppermost coat layer downstream portion.
  • Comparative Example 10 The exhaust gas purifying catalyst of Comparative Example 10 has the same CeO 2 component content in the uppermost coat layer upstream portion and the uppermost coat layer downstream portion.
  • Comparative Example 10 in the production process of the exhaust gas purifying catalyst in Example 1, it was produced in the same manner as in Example 1 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 10.
  • Comparative Example 11 The exhaust gas purifying catalyst of Comparative Example 11 has the same CeO 2 component content in the upstream portion of the lowermost coat layer and the downstream portion of the lowermost coat layer.
  • the exhaust gas purification catalyst production process in Example 1 was produced in the same manner as in Example 1 except for the following.
  • the exhaust gas-purifying catalyst obtained by the production was used as a catalyst sample of Comparative Example 11.
  • a mixture of a nitrate aqueous solution was used.
  • Table 1 shows an outline of catalyst samples of the exhaust gas purifying catalysts in Examples 1 to 12 and Comparative Examples 1 to 11.
  • the CeO 2 content is the CeO 2 content per 1 L of catalyst capacity, and the unit is g / L.
  • the uppermost coating layer which represents the ratio of CeO 2 content of the upstream portion to the CeO 2 content in the downstream portion (upstream portion / downstream section).
  • the lowermost coating layer shows the ratio of CeO 2 content downstream portion (downstream portion / the upstream portion) for CeO 2 content of the upstream portion.
  • the CeO 2 content of the catalyst coat layer refers to the respective CeO 2 contents in the uppermost coat layer upstream portion, the lowermost coat layer downstream portion, the uppermost coat layer upstream portion, and the uppermost coat layer downstream portion. It is the sum.
  • each emission value of NMHC and NOx is 0.01 g / km or less, it is evaluated that the performance of the catalyst is good.
  • Table 2 the following conditions (1) and (2): (1) The CeO 2 component content in the uppermost coat layer upstream portion is smaller than the CeO 2 component content in the uppermost coat layer downstream portion; (2) The CeO 2 component content in the lowermost coat layer downstream portion is smaller than the CeO 2 component content in the lowermost coat layer upstream portion; In all of Examples 1 to 7 and 10 to 12 satisfying all of the above, each emission value is less than 0.01 g / km. On the other hand, in Comparative Examples 4 and 7 to 11 that do not satisfy (1) and / or (2), each emission value exceeds 0.01 g / km.
  • each emission value is 0.01 g. / Km below.
  • Comparative Examples 1 and 4 in which the content of each CeO 2 component in the upstream portion of the uppermost coat layer and the downstream portion of the lowermost coat layer is 4 g / L per 1 L of catalyst volume, each emission value exceeds 0.01 g / km. ing. This is considered to be because the NOx purification performance in the upstream portion of the uppermost coat layer is low and the HC purification performance in the downstream portion of the lowermost coat layer is low when the engine is restarted.
  • NOx purification performance (NOx purification at the time of engine restart) is achieved by setting each CeO 2 component content in the uppermost coat layer upstream portion and the lowermost coat layer downstream portion to 0 g / L to 2 g / L per 1 L of catalyst volume. Performance) and HC purification performance can be increased.
  • Example 4 the CeO 2 component content in the lowermost coat layer upstream portion and the uppermost coat layer downstream portion is 4 g / L per 1 L of catalyst volume, and each emission value at this time is 0.01 g / km. It is below.
  • each CeO 2 component content in the lowermost coat layer upstream portion and the uppermost coat layer downstream portion is 2 g / L or less per liter of catalyst volume, and each emission value at this time is 0.01 g. / Km. This is thought to be because the NOx purification performance and the HC purification performance are lowered during normal traveling because the CeO 2 component content in the upstream portion of the lowermost coat layer and the downstream portion of the uppermost coat layer is small.
  • the CeO 2 component content of the catalyst coat layer is 40 g / L or less, and the respective emission values at this time are less than 0.01 g / km.
  • the CeO 2 component content of the catalyst coat layer is 50 g / L, and each emission value at this time exceeds 0.01 g / km.
  • the CeO 2 component content in the uppermost coat layer upstream portion and the uppermost coat layer downstream portion is preferably 4 g / L or more per liter of catalyst volume, and the catalyst coat layer contains CeO 2 component.
  • the amount is preferably 40 g / L or less.
  • the length ratio between the upstream part and the downstream part will be examined.
  • the length in the exhaust gas flow direction in the upstream portion of the top coat layer occupies 20% to 80% from the end portion on the inlet side of the exhaust gas with respect to the overall length along the direction of the top coat layer.
  • the length in the exhaust gas flow direction in the downstream portion of the uppermost coat layer occupies 20% to 80% from the end on the exhaust gas outlet side with respect to the overall length.
  • the length in the exhaust gas flow direction in the upstream portion of the lowermost coat layer is 25% to the entire length of the lowermost coat layer along the direction from the end on the exhaust gas inlet side.
  • each emission value is less than 0.01 g / km.
  • each emission value exceeds 0.01 g / km. Therefore, the NOx purification performance and the HC purification performance can be enhanced by setting the length of each part of the catalyst coat layer within the above range.
  • Example 12 and Comparative Example 9 even in the exhaust gas purifying catalyst having the catalyst coat layer having a three-layer structure, the CeO 2 component content in each upstream portion and downstream portion is within the above-described range. Thus, the same effect can be obtained.
  • Exhaust gas purification device 1
  • Internal combustion engine 3
  • Exhaust manifold 4
  • Exhaust pipe 5
  • ECU 7A
  • Exhaust gas purification catalyst 10
  • Base material 10
  • cells 16 partition walls 30 and 30A catalyst coat layer 40
  • bottom coat layer upstream part 42
  • bottom coat layer downstream part 50
  • top coat layer 51
  • top coat layer upstream part 52
  • top coat layer downstream part 60
  • intermediate coat layer 60

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)

Abstract

 通常走行時の触媒能力を維持しつつ、エンジン再始動時のNOx還元能力を向上させた排ガス浄化用触媒を提供する。本発明により、基材10と、CeO成分を含む触媒コート層30と、を備えた排ガス浄化用触媒7が提供される。触媒コート層30は、厚み方向に複数のコート層によって構成される。最表部に位置する最上コート層50では、最上コート層上流部51のCeO成分含有量が最上コート層下流部52のCeO成分含有量よりも少ない。基材10に近接する最下コート層40では、最下コート層下流部42のCeO成分含有量が最下コート層上流部41のCeO成分含有量よりも少ない。

Description

排ガス浄化用触媒
 本発明は、内燃機関から排出される排ガスを浄化する排ガス浄化用触媒に関する。
 なお、本国際出願は2013年12月13日に出願された日本国特許出願2013-258649号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 一般に、自動車等のエンジンから排出される排ガスには、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の成分が含まれている。そして、これらの成分を排ガスから浄化するための排ガス浄化用触媒が内燃機関の排気通路に配置されている。かかる排ガス浄化用触媒は、基材表面に触媒コート層が形成されることによって構成されている。この触媒コート層は、貴金属触媒と該貴金属触媒を担持する担体とから構成されている。
 この種の排ガス浄化用触媒(特にガソリンエンジン用の排ガス浄化用触媒)として、いわゆる三元触媒が用いられている。かかる三元触媒では、上記貴金属触媒として、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)等が使用されている。該貴金属触媒のうち、PtおよびPdは主として炭化水素(HC)および一酸化炭素(CO)の浄化性能(酸化浄化能)に寄与し、Rhは主として窒素酸化物(NOx)の浄化性能(還元浄化能)に寄与する。
 三元触媒はストイキ(理論空燃比)近傍の空燃比で燃焼された排ガス雰囲気(以下「ストイキ雰囲気」ともいう。)において有効に機能するように設定されている。そのため、これよりもリッチ雰囲気の排ガス(つまり、空燃比がリッチである混合気が燃焼して生じた排ガス)や、その反対のリーン雰囲気の排ガス(つまり、空燃比がリーンである混合気が燃焼して生じた排ガス)では、三元触媒の性能がストイキ雰囲気よりも劣る。
 そこで、排ガス浄化用触媒内の雰囲気を調節(変動緩衝)するために、担体として、CeO成分を含む酸素吸放出材(以下、OSC(Oxygen Storage Capacity)材ともいう。)が用いられている。OSC材は、ストイキ雰囲気よりも過剰に酸素のある排ガス雰囲気(以下「リーン雰囲気」ともいう。)において酸素を吸蔵する。また、OSC材は、燃料過多となり酸素が少ない状態で燃焼して生じた排ガス雰囲気(以下「リッチ雰囲気」ともいう。)において酸素を放出する。このため、上記触媒内を安定的にストイキ雰囲気に維持するために有効である。
 かかる排ガス浄化用触媒に関する先行技術文献として、例えば特許文献1~4が挙げられる。特許文献1に記載の排ガス浄化用触媒は、基材上に形成され、PtやPd等の貴金属触媒およびCeO等のOSC材を含有する第1触媒コート層を備えている。また、該第1触媒コート層の一部の領域に、Rhを含有する第2触媒コート層を備えている。そして、第1触媒コート層は、OSC材の含有量が多い前段部と、該含有量が少ない後段部と、を有している。特許文献1の記載によれば、かかる構成の排ガス浄化用触媒は、通常走行時において高いNOx還元(浄化)能力を得ることができる。
日本国特許出願公開2011-212639号公報 日本国特許出願公開2007-38072号公報 日本国特許出願公開2007-21456号公報 日本国特許出願公開2012-40547号公報
 ところで、近年、自動車等の車両の燃費向上を目的として、ハイブリッド車や、アイドル時にエンジンを停止させる機能を有するアイドリングストップ車のような所謂エコカーの開発が行われている。これらエコカーでは、走行中および信号待ちなどの一時停止中に頻繁にエンジンが停止する。このことにより、排ガス浄化用触媒中がリーン雰囲気になりがちである。すなわち、上記触媒中のOSC材に酸素が吸蔵された状態が続くことがある。
 また、エンジンが再始動した際には、リッチ雰囲気の排ガスが発生する。かかるリッチ雰囲気の排ガスが基材上の触媒コート層に到達すると、OSC材に吸蔵されていた酸素が貴金属触媒(PGM)に提供されてしまう。その結果、NOxの還元能力が低下してエミッションが発生することがあり得る。したがって、運転中(走行中)にエンジンの停止や再始動が頻繁に行われるエコカーでは、エンジンの再始動時のNOx還元(浄化)能力の向上が求められている。
 本発明は、上述した課題を解決すべく創出されたものであり、その目的は、通常走行時の触媒能力を維持しつつ、エンジンの停止や再始動が頻繁に行われるエコカーにおけるエンジン再始動時のNOx還元(浄化)能力を向上し得る排ガス浄化用触媒を提供することにある。
 本発明者らは様々な角度から鋭意検討を重ね、上記目的を実現することのできる本発明を創出するに至った。
 本発明に係る排ガス浄化用触媒は、内燃機関の排気通路に配置され、該内燃機関から排出される排ガスを浄化する排ガス浄化用触媒である。上記排ガス浄化用触媒は、多孔質基材と、該多孔質基材上に形成された触媒コート層と、を備える。上記触媒コート層は、担体と、該担体に担持されている貴金属触媒と、を有する。上記担体は、少なくともCeO成分を含むOSC材を備える。上記触媒コート層は、厚み方向に少なくとも2層の相互に構成が異なる複数のコート層によって構成されている。ここで、上記複数のコート層のうちの最表部に位置する最上層である最上コート層において、該最上コート層の排ガス流動方向に沿う全体長に対して、排ガス入口側の端部から少なくとも20%を包含する最上コート層上流部には、上記CeO成分が含まれていないか若しくはその含有量が、該最上コート層の排ガス流動方向に沿う全体長に対して、排ガス出口側の端部から少なくとも20%を包含し、上記CeO成分を含む最上コート層下流部におけるCeO成分含有量よりも少ない。また、上記複数のコート層のうちの上記多孔質基材に近接する最下層である最下コート層において、該最下コート層の排ガス流動方向に沿う全体長に対して、排ガス出口側の端部から少なくとも20%を包含する最下コート層下流部には上記CeO成分が含まれていないか若しくはその含有量が、該最下コート層の排ガス流動方向に沿う全体長に対して、排ガス入口側の端部から少なくとも20%を包含し、上記CeO成分を含む最下コート層上流部におけるCeO成分含有量よりも少ない。
 上記排ガス浄化用触媒では、最上コート層上流部のCeO成分含有量が最上コート層下流部のCeO成分含有量未満である。換言すれば、最上コート層上流部には、CeO成分が含まれていないか若しくはその含有量が最上コート層下流部におけるCeO成分含有量よりも少ない。かかる構成によれば、エンジンの再始動時に、最上コート層上流部でCeO成分を含むOSC材に吸蔵される酸素の量が少なくなる。そのため、最上コート層上流部における排ガスの空燃比を、エンジン再始動後に出来るだけ早くストイキ雰囲気にすることができる。したがって、例えば走行中にエンジンの停止や再始動が頻繁に行われるエコカーのエンジン再始動時に、NOxが外部に排出されることを抑制することができる。
 また、上記排ガス浄化用触媒によれば、最上コート層下流部および最下コート層上流部で、CeO成分(OSC材)の酸素放出能により、排ガスをストイキ雰囲気に維持することができる。そのため、最上コート層下流部および最下コート層上流部において、通常走行時のNOx還元(浄化)性能を維持向上させることができる。
 また、上記排ガス浄化用触媒では、最下コート層下流部のCeO成分含有量が最下コート層上流部のCeO成分含有量未満である。換言すれば、最下コート層下流部には、CeO成分が含まれていないか若しくはその含有量が最下コート層上流部におけるCeO成分含有量よりも少ない。このことによって、最下コート層下流部において、COの吸着抑制を向上させると共に、HCに対する選択反応性を高めることができる。その結果、通常走行時のHC浄化性能を向上させることができる。
 以上のことから、上記排ガス浄化用触媒によれば、通常走行時の触媒能力を維持しつつ、エンジンの停止や再始動が頻繁に行われるエコカーにおいてエンジン再始動時のNOx還元(浄化)能力を向上することができる。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい一態様では、触媒容積1Lあたりの上記触媒コート層における上記CeO成分含有量は、10g/L~40g/Lである。このことによって、触媒機能を高いレベルで発揮することができる。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、触媒容積1Lあたりの上記最上コート層上流部における上記CeO成分含有量は、0g/L~2g/Lである。このことによって、最上コート層上流部において、エコカー等におけるエンジン再始動時のNOx還元(浄化)能力を好適に向上することができる。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、触媒容積1Lあたりの上記最下コート層下流部における上記CeO成分含有量は、0g/L~2g/Lである。このことによって、HC浄化性能を好適に向上させることができる。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、触媒容積1Lあたりの上記最上コート層下流部および上記最下コート層上流部における上記CeO成分含有量は、それぞれ4g/L以上である。このことによって、通常走行時のOSC材による排ガス雰囲気の好適な調整が図られる。その結果、NOx還元(浄化)性能その他の排ガス浄化性能を好適に維持あるいは向上することができる。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、上記最上コート層の排ガス流動方向の全体長を100として、上記最上コート層上流部の該方向に沿う長さと、上記最上コート層下流部の該方向に沿う長さとの比率(上流部/下流部)は20/80~80/20である。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、上記最下コート層の排ガス流動方向の全体長を100として、上記最下コート層上流部の該方向に沿う長さと、上記最下コート層下流部の該方向に沿う長さとの比率(上流部/下流部)は25/75~80/20である。
 このことによって、エコカー等におけるエンジン再始動時のNOxの排出を抑制しつつ、通常走行時にはNOx浄化性能を好適に維持向上することができる。さらに、HC浄化性能をも好適に向上することができる。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、貴金属触媒は、Pt、PdおよびRhのうちの少なくとも一種である。貴金属触媒として酸化触媒機能に優れるPtおよび/またはPdを用いることにより、排ガスに含まれるHC、COを好適に酸化して浄化させることができる。また、貴金属触媒として、還元触媒機能に優れるRhを用いることにより、排ガスに含まれるNOxを好適に還元して浄化することができる。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、最上コート層は、貴金属触媒としてPdおよびRhを含む。かかる構成によると、最上コート層において、好適な三元触媒機能の発揮を実現できる。すなわち、Pdによって排ガスに含まれるHC、COを酸化浄化させることができると共に、Rhによって排ガスに含まれるNOxを好適に還元浄化させることができる。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、上記最上コート層下流部におけるCeO成分の含有量を1としたときに、上記最上コート層上流部における上記CeO成分の含有量が0.3未満である。
 また、ここで開示される本発明の排ガス浄化用触媒の好ましい他の一態様では、上記最下コート層上流部におけるCeO成分の含有量を1としたときに、上記最下コート層下流部における上記CeO成分の含有量が0.3未満である。
 このことによって本発明の効果をより高いレベルで発揮することができる。
図1は、一実施形態に係る排ガス浄化装置を模式的に示す図である。 図2は、排ガス浄化用触媒の基材を模式的に示す斜視図である。 図3は、一実施形態に係る排ガス浄化用触媒の断面構成を拡大し、模式的に示した図である。 図4は、他の一実施形態に係る排ガス浄化用触媒の断面構成を拡大し、模式的に示した図である。
 以下、図面を参照しつつ本発明の実施形態を説明する。以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。また、各図における寸法関係(長さ、幅、厚み等)は、実際の寸法関係を必ずしも反映するものではない。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術知識とに基づいて実施することができる。
 先ず、本発明の典型的な一実施形態に係る排ガス浄化用触媒7が設けられた排ガス浄化装置1について説明する。
 図1は、本実施形態に係る排ガス浄化装置1を模式的に示す図である。図1に示すように、排ガス浄化装置1は、内燃機関2の排気系に設けられている。
 本実施形態に係る内燃機関(エンジン)2には、酸素と燃料ガスとを含む混合気が供給される。内燃機関2は、この混合気を燃焼させ、燃焼エネルギーを力学的エネルギーに変換する。このときに燃焼された混合気は排ガスとなって排気系に排出される。図1に示す構成の内燃機関2は、自動車のガソリンエンジンを主体として構成されている。ここで開示される排ガス浄化用触媒7は、特に自動車のうちアイドリングストップ機能付きの乗用車(アイドリングストップ車)やハイブリッド車のようなエコカーの内燃機関2の下流に搭載される。この種の車両は、走行中(および一時停止中)に頻繁にエンジンが停止するため、本発明の実施に好適である。
 次に、内燃機関2の排気系について説明する。内燃機関2を排気系に連通させる排気ポート(図示せず)には、エキゾーストマニホールド3が接続されている。エキゾーストマニホールド3は、排ガスが流通する排気管4に接続されている。ここでは、エキゾーストマニホールド3と排気管4とによって、本実施形態の排気通路が形成されている。なお、図中の矢印は、排ガスの流通方向を示している。
 排ガス浄化装置1は、内燃機関2から排出された排ガスに含まれる有害成分(例えば、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx))を浄化する。ここでは、排ガス浄化装置1は、ECU5と、排ガス浄化用触媒7とを備えている。
 ECU5は、内燃機関2と排ガス浄化装置1との間の制御を行うエンジンコントロールユニットである。ECU5は、一般的な制御装置と同様にデジタルコンピュータおよびその他の電子機器を構成要素として含んでいる。ここでは、ECU5には、入力ポート(図示せず)が設けられており、内燃機関2や排ガス浄化装置1の各部位に設置されているセンサ(例えば圧力センサ8)と電気的に接続されている。このことによって、各々のセンサで検知した情報が上記入力ポートを介して電気信号としてECU5に伝達される。また、ECU5には出力ポート(図示せず)が設けられている。ECU5は、該出力ポートを介して内燃機関2および排ガス浄化装置1の各部位に接続され、制御信号を送信することによって各部位の稼働を制御している。
 次に、ここで提案される排ガス浄化用触媒7について詳しく説明する。排ガス浄化用触媒7は、内燃機関2の排気通路に配置され、内燃機関2から排出される排気ガスを浄化する。排ガス浄化用触媒7は、排気ガスが流通する排気管4に設けられている。具体的には、排ガス浄化用触媒7は、図1に示すように、排気管4の下流側に設けられている。
 図2は、排ガス浄化用触媒7の基材10を模式的に示す斜視図である。図3は、排ガス浄化用触媒7の断面構成を拡大し、模式的に示した図である。図2および図3に示すように、排ガス浄化用触媒7は、基材10と、触媒コート層30とを備える。
<基材10>
 図2に示すように、基材10は、多孔質基材である。基材10としては、従来この種の用途に用いられる種々の素材および形態のものを採用することができる。基材10は、多孔質構造を有した耐熱性素材で構成されていると好ましい。かかる耐熱性素材としては、コージェライト、炭化ケイ素(シリコンカーバイト:SiC)、チタン酸アルミニウム、窒素ケイ素、ステンレス鋼等の耐熱性金属やその合金等が挙げられる。ここでは、一例として外形が円筒形状であり、規則的に配列するセル(空間部)12とセル12間を隔離するコージェライト製の隔壁16とからなるハニカム構造の基材10が例示されている。ただし、基材10全体の外形については、特に限定されず、楕円筒形状、多角筒形状等を採用してもよい。
 基材10の容量(セルの総体積、全体の嵩容積)は、通常0.1L以上(好ましくは0.5L以上)であり、例えば5L以下(好ましくは3L以下、より好ましくは2L以下、例えば1L以下)であるとよい。また、基材10の延伸方向の全長(排ガス流動方向の全長)は、通常10mm~500mm(典型的には50mm~300mm、例えば100mm~200mm)程度とすることができる。
<触媒コート層30>
 触媒コート層30は、基材10上に形成される。図3に示す例では、触媒コート層30は、隣接するセル12(図2参照)間を仕切る隔壁16上に形成されている。触媒コート層30は、担体と該担体に担持されている貴金属触媒とを有する。内燃機関2から排出された排ガスは、触媒コート層30に接触することによって有害成分が浄化される。例えば、排ガスに含まれるCOやHCは、触媒コート層30によって酸化され、水(HO)や二酸化炭素(CO)等に変換(浄化)され得る。また、NOxは、触媒コート層30によって還元され、窒素(N)に変換(浄化)され得る。
 触媒コート層30は、担体として、少なくとも一部にCeO成分を含むOSC材(酸素吸放出材)を備えている。CeO成分は、酸素吸放出能をもつため、排ガスの空燃比を安定に維持することができる。なお、CeO成分を含むOSC材は、特に限定されない。例えばセリア単独であっても良いし、固溶体としてCeO成分を含むセリア-ジルコニア複合酸化物(CZ複合酸化物)であっても良い。物理的(機械的)な特性を向上する観点からは、CZ複合酸化物からなるOSC材が好ましい。また、担体の形状(外形)は特に限定されないが、比表面積が大きくなるような形状を有しているとより好ましい。例えば、上記担体の比表面積(BET法により測定される比表面積。以下同じ。)は、20m/g~100m/gが好ましく、40m/g~80m/gがより好ましい。このような比表面積の担体を実現するために好適な形状としては、粉末状(粒子状)が挙げられる。より好適な比表面積を有する担体を実現するためには、例えば、粉末状のCZ複合酸化物の平均粒径(例えばSEMまたはTEM観察に基づく一次粒子の平均粒径)が、5nm~20nm、好ましくは7nm~12nmであるとよい。上記粒子の平均粒径が大きすぎる(または比表面積が小さすぎる)場合は、担体に貴金属触媒を担持させる際に貴金属の分散性が低下する傾向があり、触媒の浄化性能が低下することがあり得る。一方、上記粒子の粒径が小さすぎる(または比表面積が大きすぎる)場合は、上記担体自体の耐熱性が低下し、触媒の耐熱特性が低下することがあり得る。
 触媒コート層30は、担体として、CeO成分を含むOSC材(例えばCZ複合酸化物)と併せて他の無機化合物を有していてもよい。他の無機化合物としては、比表面積が比較的大きなものであることが好ましい。好適例として、アルミナ(Al)、ジルコニア(ZrO)、シリカ(SiO)、チタニア(TiO)が挙げられる。担体粒子は、耐熱性や構造安定性の観点から、比表面積が20m/g~200m/g程度であるとよい。また、担体粒子の平均粒径(例えばSEMまたはTEM観察に基づく一次粒子の平均粒径)は、典型的には1nm~500nm(例えば10nm~200nm)程度であるとよい。
 また、触媒コート層30の担体には、副成分として他の材料が添加されていてもよい。上記担体に添加し得る物質としては、ランタン(La)、イットリウム(Y)等の希土類元素、カルシウム等のアルカリ土類元素、その他遷移金属元素等が挙げられる。上記の中でも、ランタン、イットリウム等の希土類元素は、触媒機能を阻害せずに高温における比表面積を向上できるため、安定化剤として好適である。
 触媒コート層30の担体に担持される貴金属触媒としては、白金(Pt)、パラジウム(Pd)およびロジウム(Rh)のうちの少なくとも一種が好ましい。例えばPdおよびRhを含む三元触媒が好ましい。なお、触媒コート層30は、かかる三元触媒を構成するPt、PdおよびRh以外の貴金属触媒を含んでいてもよい。Pt、Pd、Rh以外の貴金属としては、例えば、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)等が挙げられる。
 触媒コート層30は、厚み方向に2層以上の相互に構成が異なる複数のコート層によって構成されている。換言すると、触媒コート層30は、厚み方向に複数の層に分割されている。本実施形態において、触媒コート層30は、最下コート層40と最上コート層50の2層で構成されている。
<最下コート層40>
 最下コート層40は、複数のコート層のうちで最も基材10(典型的には、隔壁16)に近接する層(最下層)である。特に限定するものではないが、最下コート層40の平均厚みは、20μm~500μm程度が適当であり、例えば50μm~200μm程度であることが好ましい。最下コート層40は、最下コート層上流部41と、最下コート層下流部42とを有する。
 最下コート層上流部41は、最下コート層40の排ガス流動方向に沿う全体長に対して、排ガスの入口側の端部から少なくとも20%を包含する。好ましくは、最下コート層上流部41は、最下コート層40の上記流動方向に沿う全体長に対して、排ガスの入口側の端部から25%~80%を占めており、例えば、50%±10%程度であり得る。
 最下コート層上流部41は、CeO成分を包含するOSC材を含む。
 最下コート層下流部42は、最下コート層40の排ガス流動方向に沿う全体長に対して、排ガスの出口側の端部から少なくとも20%を包含する。好ましくは、最下コート層下流部42は、最下コート層40の上記流動方向に沿う全体長に対して、排ガスの出口側の端部から20%~75%を占めており、例えば、50%±10%程度であり得る。
 最下コート層40の排ガス流動方向の全体長を100として、最下コート層上流部41の該方向に沿う長さと最下コート層下流部42の該方向に沿う長さとの比率(上流部/下流部)は25/75~80/20であることが好ましい。
 最下コート層下流部42はCeO成分が含まないことが好ましく、あるいはCeO成分を含む場合であってもその含有量が最下コート層上流部41に比べて顕著に少ないことが好ましい。例えば、最下コート層上流部41のCeO成分含有量を1としたときに、最下コート層下流部42のCeO成分含有量が0.5未満、典型的には0.3未満、例えば0~0.29であるとよい。このことにより、エンジン再始動時のNOx還元(浄化)能力をより高めることができる。したがって、本発明の効果をより顕著に発揮することができる。
 最下コート層40(最下コート層上流部41および最下コート層下流部42)の担体に担持される貴金属触媒は特に限定されない。例えば、三元触媒を構成するPd、Pt、Rh等を担持することができる。ここでは、貴金属触媒として、Rhのような還元活性の高い触媒を含むことが好ましい。触媒容積1Lあたりの最下コート層40における貴金属触媒(例えばRh)の含有量は、概ね0.001g/L~2g/L(典型的には0.01g/L~1g/L、例えば、0.1g/L~0.5g/L)であるとよい。
<最上コート層50>
 最上コート層50は、複数のコート層のうちの最表部に位置する最上層である。本実施形態のような2層構造の触媒コート層30の場合、最上コート層50は、隔壁16上に形成された最下コート層40上に形成される。特に限定するものではないが、最上コート層50の平均厚みは、20μm~500μm程度が適当であり、例えば50μm~200μm程度であることが好ましい。最上コート層50は、最上コート層上流部51と、最上コート層下流部52とを有する。
 最上コート層上流部51は、最上コート層50の排ガス流動方向に沿う全体長に対して、排ガスの入口側の端部から少なくとも20%を包含する。好ましくは、最上コート層上流部51は、最上コート層50の上記流動方向に沿う全体長に対して、排ガスの入口側の端部から20%~80%を占めており、例えば、50%±10%であり得る。
 最上コート層上流部51はCeO成分を含まないことが好ましく、あるいはCeO成分を含む場合であってもその含有量が最上コート層下流部52に比べて顕著に少ないことが好ましい。例えば、最上コート層下流部52のCeO成分含有量を1としたときに、最上コート層上流部51のCeO成分含有量が0.5未満、典型的には0.3未満、例えば0~0.29であるとよい。このことにより、エンジン再始動時のNOx還元(浄化)能力をより高めることができる。したがって、本発明の効果をより顕著に発揮することができる。
 最上コート層下流部52は、最上コート層50の排ガス流動方向に沿う全体長に対して、排ガスの出口側の端部から少なくとも20%を包含する。好ましくは、最上コート層下流部52は、最上コート層50の上記流動方向に沿う全体長に対して、排ガスの出口側の端部から20%~80%を占めており、例えば、50%±10%程度であり得る。
 最上コート層50の排ガス流動方向の全体長を100として、最上コート層上流部51の該方向に沿う長さと最上コート層下流部52の該方向に沿う長さとの比率(上流部/下流部)は20/80~80/20であることが好ましい。
 最上コート層下流部51は、CeO成分を包含するOSC材を含む。
 最上コート層50(最上コート層上流部51および最上コート層下流部52)の担体に担持される貴金属触媒としては特に限定されない。例えば、三元触媒を構成するPd、Pt、Rh等を用いることができる。ここでは、貴金属触媒として、酸化活性の高いPdと、還元活性の高いRhとを含むことが好ましい。触媒容積1Lあたりの最上コート層50における貴金属触媒(例えばPd)の含有量は、概ね0.001g/L~10g/L(典型的には0.01g/L~5g/L)であるとよい。このとき、触媒容積1Lあたりの最上コート層上流部51および最上コート層下流部52における貴金属触媒(例えばPd)の含有量は、それぞれ、概ね0.001g/L~5g/L(好ましくは、0.005g/L~2.5g/L)であるとよい。また、Pdのような酸化活性の高い触媒に加えてRh等の還元活性の高い触媒を含む場合、触媒容積1Lあたりの最上コート層50における当該還元触媒(例えばRh)の含有量は、概ね0.001g/L~5g/L(典型的には0.01g/L~2.5g/L)であるとよい。
<CeO成分含有量>
 次に、触媒コート層30におけるOSC材としてのCeO成分の含有量について説明する。触媒容積1Lあたりの触媒コート層30におけるCeO成分含有量は、好ましくは10g/L~40g/L程度である。このことによって、触媒機能を高いレベルで発揮することができる。また、貴金属触媒のシンタリングや粒成長を抑制して、より長期間にわたって優れた触媒性能を発揮することができる。更に、コスト低減や省資源の点からも好ましい。
 上述したように、本発明では最上コート層上流部51におけるCeO成分含有量が、最上コート層下流部52におけるCeO成分含有量よりも少ない。また、最下コート層下流部42におけるCeO成分含有量は、最下コート層上流部41におけるCeO成分含有量よりも少ない。一例では、最上コート層上流部51におけるCeO成分含有量は、最下コート層40の最下コート層上流部41におけるCeO成分含有量よりも少ない。他の一例では、最下コート層下流部42におけるCeO成分含有量は、最上コート層下流部52におけるCeO成分含有量よりも少ない。これらを換言すると、最上コート層下流部52および最下コート層上流部41におけるそれぞれのCeO成分含有量は、最上コート層上流部51および最下コート層下流部42におけるそれぞれのCeO成分含有量よりも多くなり得る。
 触媒容積1Lあたりの最上コート層上流部51におけるCeO成分含有量、および、最下コート層下流部42におけるCeO成分含有量は、それぞれ0g/L~2g/L程度が好ましい。最上コート層上流部51および最下コート層下流部42におけるそれぞれのCeO成分含有量は、同じであってもよいし、異なっていてもよい。また、触媒容積1Lあたりの最上コート層下流部52におけるCeO成分含有量、および、最下コート層上流部41におけるCeO成分含有量は、好ましくは4g/L以上である。なお、触媒容積1Lあたりの最上コート層下流部52および最下コート層上流部41における各CeO成分含有量の上限値は特に限定されないが、それぞれ20g/L以下(例えばそれぞれ10g/L以下)であることが好ましい。ただし、最上コート層下流部52および最下コート層上流部41におけるそれぞれのCeO成分含有量は、同じであってもよいし、異なっていてもよい。
 ここで開示される排ガス浄化用触媒7が搭載されたエコカーでは、エンジン再始動時に排気通路内がリーン雰囲気となる。最上コート層上流部51には、CeO成分が含まれていないか若しくはその含有量(ここでは、触媒容積1Lあたり0g/L~2g/L)が最上コート層下流部52におけるCeO成分含有量(ここでは、触媒容積1Lあたり4g/L以上)より少ない。このことによって、エンジン再始動時において、最上コート層上流部51のCeO成分に吸蔵される酸素の量が少なくなる。その結果、当該触媒内を迅速にストイキ雰囲気に変えることができる。したがって、エコカーにおけるエンジン再始動時であっても、最上コート層上流部51において、NOxが外部に排出されるのを高度に抑制することができる。
 その一方において、最上コート層下流部52におけるCeO成分含有量は、最上コート層上流部51におけるCeO成分含有量よりも多く、最下コート層上流部41におけるCeO成分含有量は、最下コート層下流部42におけるCeO成分含有量よりも多い。このため、最上コート層下流部52および最下コート層上流部41に含まれるCeO成分の酸素放出能によって、通常走行時には、触媒内に導入される排ガスをストイキ雰囲気に維持することができる。つまり、最上コート層下流部52および最下コート層上流部41において、通常走行時のNOx還元(浄化)性能を維持することができる。
 また、最下コート層下流部42には、CeO成分が含まれていないか若しくはその含有量が、最下コート層上流部41におけるCeO成分含有量よりも少ない。このため、最下コート層下流部42において、COの吸着抑制を向上させると共に、HCに対する選択反応性を高めることができる。その結果、最下コート層下流部42において、HC浄化性能を向上させることができる。
 以上のことから、ここで開示される排ガス浄化用触媒によれば、通常走行時の触媒能力を維持しつつ、エンジン再始動時のNOx還元(浄化)能力を向上することができる。
 以上、本発明の好適な一実施形態に係る排ガス浄化用触媒7について説明した。しかし、本発明に係る排ガス浄化用触媒は、上記形態に限られない。例えば、他の実施形態として、図4に示すような排ガス浄化用触媒7Aであってもよい。図4に示すように、本実施形態に係る排ガス浄化用触媒7Aは、3層構造(若しくはそれ以上の層)の(若しくはそれ以上の多層構造の)触媒コート層30Aを有する。
 すなわち、図4に示すように、本実施形態に係る触媒コート層30Aは、最下コート層40と、最上コート層50と、それらの間に形成された中間コート層60とを備える。
 中間コート層60は、好ましくは少なくともCeO成分を有するOSC材を含む。CeO成分は、例えばCZ複合酸化物として存在するものが好ましい。なお、中間コート層60におけるCeO成分含有量は特に限定されないが、触媒容積1Lあたりの触媒コート層30AのCeO成分含有量、すなわち、最下コート層40と最上コート層50と中間コート層60とのCeO成分含有量の合計が、10g/L~40g/L程度であることが好ましい。
 中間コート層60に担持される触媒としては特に限定されないが、例えば三元触媒を構成するPt、Pd、Rh等が挙げられる。
 次に、本発明に関する試験例について説明する。ただし、本発明にかかる排ガス浄化用触媒は、以下の試験例に示すものに限定することを意図したものではない。ここでは、試験例として、実施例1~12および比較例1~11に係る排ガス浄化用触媒の触媒サンプルを用意している。以下、各実施例および各比較例を説明する。
<実施例1>
 実施例1の排ガス浄化用触媒は2層構造である。
 先ず、基材として、セル数900cpsi(cells per square inch)、容積(セル通路の容積も含めた全体の触媒容積をいう)1L、全長100mmの基材を準備した。
 次に、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=28:65:2:5(wt%))を25g(CeO成分含有量:7g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合し、最下コート層上流部用スラリーを調製した。
 次に、担体であるアルミナを50gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合し、最下コート層下流部用スラリーを調製した。
 次に、担体であるアルミナを50gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合し、最上コート層上流部用スラリーを調製した。
 次に、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=28:65:2:5(wt%))を25g(CeO成分含有量:7g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合し、最上コート層下流部用スラリーを調製した。
 その後、上記最下コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって50mmまでの範囲に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に最下コート層上流部を形成した。
 次に、上記最下コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって50mmまでの範囲に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に最下コート層下流部を形成した。
 次に、上記最上コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって50mmまでの範囲に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に最上コート層上流部を形成した。
 そして、上記最上コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって50mmまでの範囲に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に最上コート層下流部を形成した。
 以上のようにして得られた排ガス浄化用触媒を実施例1の触媒サンプルとした。
<実施例2>
 実施例1における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例1と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例2の触媒サンプルとした。
・最下コート層下流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=4:90:3:3(wt%))を25g(CeO成分含有量:1g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを最下コート層下流部用スラリーとした。
・最上コート層上流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=4:90:3:3(wt%))を25g(CeO成分含有量:1g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層上流部用スラリーとした。
<実施例3>
 実施例1における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例1と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例3の触媒サンプルとした。
・最下コート層下流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=8:86:3:3(wt%))を25g(CeO成分含有量:2g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを最下コート層下流部用スラリーとした。
・最上コート層上流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=8:86:3:3(wt%))を25g(CeO成分含有量:2g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層上流部用スラリーとした。
<実施例4>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例4の触媒サンプルとした。
・最下コート層上流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=16:78:3:3(wt%))を25g(CeO成分含有量:4g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを最下コート層上流部用スラリーとした。
・最上コート層下流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=16:78:3:3(wt%))を25g(CeO成分含有量:4g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層下流部用スラリーとした。
<実施例5>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例5の触媒サンプルとした。
・最下コート層上流部用スラリーを調製する工程において、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=44:49:2:5(wt%))を25g(CeO成分含有量:11g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを最下コート層上流部用スラリーとした。
・最上コート層下流部用スラリーを調製する工程において、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=44:49:2:5(wt%))を25g(CeO成分含有量:11g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層下流部用スラリーとした。
<実施例6>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例6の触媒サンプルとした。
・最下コート層上流部用スラリーを調製する工程において、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=64:29:2:5(wt%))を25g(CeO成分含有量:16g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを最下コート層上流部用スラリーとした。
・最上コート層下流部用スラリーを調製する工程において、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=64:29:2:5(wt%))を25g(CeO成分含有量:16g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層下流部用スラリーとした。
<実施例7>
 実施例1における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例1と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例7の触媒サンプルとした。
・最下コート層上流部用スラリーを調製する工程において、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=80:13:2:5(wt%))を25g(CeO成分含有量:20g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを最下コート層上流部用スラリーとした。
・最上コート層下流部用スラリーを調製する工程において、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=80:13:2:5(wt%))を25g(CeO成分含有量:20g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層下流部用スラリーとした。
<実施例8>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例8の触媒サンプルとした。
・最下コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって80mmまでの範囲に全量塗布した。
・最下コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって20mmまでの範囲に全量塗布した。
・最上コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって20mmまでの範囲に全量塗布した。
・最上コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって80mmまでの範囲に全量塗布した。
<実施例9>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例9の触媒サンプルとした。
・最下コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって25mmまでの範囲に全量塗布した。
・最下コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって75mmまでの範囲に全量塗布した。
・最上コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって80mmまでの範囲に全量塗布した。
・最上コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって20mmまでの範囲に全量塗布した。
<実施例10>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例10の触媒サンプルとした。
・最下コート層上流部用スラリーおよび最下コート層下流部用スラリーにおいて、ロジウム硝酸塩水溶液のRh含有量を0.25gとした。
・最上コート層上流部用スラリーおよび最上コート層下流部用スラリーにおいて、ロジウム硝酸塩水溶液を混合しないようにした。
<実施例11>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を実施例11の触媒サンプルとした。
・最下コート層上流部用スラリーおよび最下コート層下流部用スラリーにおいて、さらに、Pt含有量0.1gであるジニトロジアンミン白金水溶液を混合した。
・最上コート層上流部用スラリーおよび最上コート層下流部用スラリーにおいて、パラジウム硝酸塩水溶液のPd含有量を0.9gとした。
<実施例12>
 実施例12の排ガス浄化用触媒は、3層構造である。
 先ず、基材として、実施例1と同様のコーディエライト製の基材を準備した。
 次に、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=28:65:2:5(wt%))を25g(CeO成分含有量:7g)と、アルミナを25gと、Rh含有量が0.1gであるロジウム硝酸塩水溶液とを混合し、最下コート層上流部用スラリーを調製した。
 次に、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=4:90:3:3(wt%))を25g(CeO成分含有量:1g)と、アルミナを25gと、Rh含有量が0.1gであるロジウム硝酸塩水溶液とを混合したものを最下コート層下流部用スラリーとした。
 次に、担体であり、Laと混合されたCZ複合酸化物(CeO:ZrO:La=5:90:5(wt%))を15g(CeO成分含有量:0.8g)と、アルミナを15gと、Rh含有量が0.1gであるロジウム硝酸塩水溶液とを混合し、中間コート層用スラリーを調製した。
 次に、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=4:90:3:3(wt%))を25g(CeO成分含有量:1g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層上流部用スラリーとした。
 次に、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=28:65:2:5(wt%))を25g(CeO成分含有量:7g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合し、最上コート層下流部用スラリーを調製した。
 その後、上記最下コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって50mmまでの範囲に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に最下コート層上流部を形成した。
 次に、上記最下コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって50mmまでの範囲に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に最下コート層下流部を形成した。
 次に、上記中間コート層用スラリーを、基材上に形成された最下コート層上流部および最下コート層下流部上の全体に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に中間コート層を形成した。
 次に、上記最上コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって50mmまでの範囲に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に最上コート層上流部を形成した。
 そして、上記最上コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって50mmまでの範囲に全量塗布し、250℃の温度条件下で1時間乾燥させた後、500℃の温度条件下で1時間焼成することによって、基材に最上コート層下流部を形成した。
 以上のようにして得られた3層構造の排ガス浄化用触媒を実施例12の触媒サンプルとした。
<比較例1>
 実施例1における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例1と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例1の触媒サンプルとした。
・最下コート層下流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=16:78:3:3(wt%))を25g(CeO成分含有量:4g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを最下コート層下流部用スラリーとした。
・最上コート層上流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=16:78:3:3(wt%))を25g(CeO成分含有量:4g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層上流部用スラリーとした。
<比較例2>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例2の触媒サンプルとした。
・最下コート層上流部用スラリーを調製する工程において、実施例3における最下コート層下流部用スラリーを最下コート層上流部用スラリーとした。
・最上コート層下流部用スラリーを調製する工程において、実施例3における最上コート層上流部用スラリーを最上コート層下流部用スラリーとした。
<比較例3>
 実施例1における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例1と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例3の触媒サンプルとした。
・最下コート層上流部用スラリーを調製する工程において、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=83:10:2:5(wt%))を30.1g(CeO成分含有量:25g)と、アルミナを19.9gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを最下コート層上流部用スラリーとした。
・最上コート層下流部用スラリーを調製する工程において、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=83:10:2:5(wt%))を30.1g(CeO成分含有量:25g)と、アルミナを19.9gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層下流部用スラリーとした。
<比較例4>
 比較例1における排ガス浄化用触媒の作製工程において、以下のこと以外は比較例1と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例4の触媒サンプルとした。
・最下コート層上流部用スラリーを調製する工程において、実施例2における最下コート層下流部用スラリーを最下コート層上流部用スラリーとした。
・最上コート層下流部用スラリーを調製する工程において、実施例2における最上コート層上流部用スラリーを最上コート層下流部用スラリーとした。
<比較例5>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例5の触媒サンプルとした。
・最下コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって90mmまでの範囲に全量塗布した。
・最下コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって10mmまでの範囲に全量塗布した。
・最上コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって10mmまでの範囲に全量塗布した。
・最上コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって90mmまでの範囲に全量塗布した。
<比較例6>
 実施例2における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例2と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例6の触媒サンプルとした。
・最下コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって15mmまでの範囲に全量塗布した。
・最下コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって85mmまでの範囲に全量塗布した。
・最上コート層上流部用スラリーを、基材の排ガス入口側端面から排ガス出口側端面に向かって90mmまでの範囲に全量塗布した。
・最上コート層下流部用スラリーを、基材の排ガス出口側端面から排ガス入口側端面に向かって10mmまでの範囲に全量塗布した。
<比較例7>
 比較例4における排ガス浄化用触媒の作製工程において、以下のこと以外は比較例4と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例7の触媒サンプルとした。
・最下コート層上流部用スラリーおよび最下コート層下流部用スラリーにおいて、ロジウム硝酸塩水溶液のRh含有量を0.25gとした。
・最上コート層上流部用スラリーおよび最上コート層下流部用スラリーにおいて、ロジウム硝酸塩水溶液を混合しないようにした。
<比較例8>
 比較例4における排ガス浄化用触媒の作製工程において、以下のこと以外は比較例4と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例8の触媒サンプルとした。
・最下コート層上流部用スラリーおよび最下コート層下流部用スラリーにおいて、さらに、Pt含有量0.1gであるジニトロジアンミン白金水溶液を混合した。
・最上コート層上流部用スラリーおよび最上コート層下流部用スラリーにおいて、パラジウム硝酸塩水溶液のPd含有量を0.9gとした。
<比較例9>
 比較例9の排ガス浄化用触媒は、3層構造である。比較例9では、実施例12における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例12と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例9の触媒サンプルとした。
・最下コート層上流部用スラリーを調製する工程において、実施例12における最下コート層下流部用スラリーを最下コート層上流部用スラリーとした。
・最下コート層下流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=16:78:3:3(wt%))を25g(CeO成分含有量:4g)と、アルミナを25gと、Rh含有量が0.1gであるロジウム硝酸塩水溶液とを混合したものを最下コート層下流部用スラリーとした。
・最上コート層上流部用スラリーを調製する工程において、担体であり、LaおよびYと混合されたCZ複合酸化物(CeO:ZrO:La:Y=16:78:3:3(wt%))を25g(CeO成分含有量:4g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを最上コート層上流部用スラリーとした。
・最上コート層下流部用スラリーを調製する工程において、実施例12における最上コート層上流部用スラリーを最上コート層下流部用スラリーとした。
<比較例10>
 比較例10の排ガス浄化用触媒は、最上コート層上流部と最上コート層下流部でCeO成分含有量が同じである。比較例10では、実施例1における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例1と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例10の触媒サンプルとした。
・最上コート層下流部用スラリーおよび最上コート層下流部用スラリーとして、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=14:79:2:5(wt%))を25g(CeO成分含有量:3.5g)と、アルミナを25gと、Pd含有量が1gであるパラジウム硝酸塩水溶液と、Rh含有量が0.05gであるロジウム硝酸塩水溶液とを混合したものを用いた。
<比較例11>
 比較例11の排ガス浄化用触媒は、最下コート層上流部と最下コート層下流部でCeO成分含有量が同じである。比較例11では、実施例1における排ガス浄化用触媒の作製工程において、以下のこと以外は実施例1と同様に作製した。そして、該作製により得られた排ガス浄化用触媒を比較例11の触媒サンプルとした。
・最下コート層上流部用スラリーおよび最下コート層下流部用スラリーとして、担体であり、LaおよびNdと混合されたCZ複合酸化物(CeO:ZrO:La:Nd=14:79:2:5(wt%))を25g(CeO成分含有量:3.5g)と、アルミナを25gと、Rh含有量が0.2gであるロジウム硝酸塩水溶液とを混合したものを用いた。
 実施例1~12および比較例1~11における排ガス浄化用触媒の触媒サンプルの概要を表1に示す。なお、表1において、CeO含有量は、触媒容量1LあたりのCeO含有量であり、単位をg/Lとしている。また、最上コート層では、下流部のCeO含有量に対する上流部のCeO含有量の比(上流部/下流部)を示している。最下コート層では、上流部のCeO含有量に対する下流部のCeO含有量の比(下流部/上流部)を示している。また、触媒コート層のCeO含有量とは、最下コート層上流部と、最下コート層下流部と、最上コート層上流部と、最上コート層下流部とにおけるそれぞれのCeO含有量の合計である。
Figure JPOXMLDOC01-appb-T000001
[評価]
 実施例1~12および比較例1~11に係る排ガス浄化用触媒における約10万km走行の耐久後の各触媒サンプルを、排気量が1.0Lのエンジンを有するアイドリングストップ車に搭載した。そして、各触媒サンプルを搭載した車両を、JC08モードで走行させた。このときの各触媒サンプルにおけるNMHCおよびNOxの各エミッション値(g/km)を測定した。その結果を表2に示す。なお、NMHCとは、メタンが含まれていないHCのことである。
Figure JPOXMLDOC01-appb-T000002
 ここでは、NMHCおよびNOxの各エミッション値が0.01g/km以下の場合、触媒の性能が良いと評価している。
 先ず、最上コート層および最下コート層において、上流部と下流部の長さがそれぞれ等しい試験例について検討する。
 表2に示すように、以下の(1),(2)の条件:
(1)最上コート層上流部における前記CeO成分の含有量が、最上コート層下流部におけるCeO成分の含有量よりも小さい;
(2)最下コート層下流部における前記CeO成分の含有量が、最下コート層上流部におけるCeO成分の含有量よりも小さい;
をいずれも満たす実施例1~7,10~12は、すべて各エミッション値が0.01g/kmを下回っている。
 一方、上記(1)および/または(2)を満たさない比較例4,7~11では、各エミッション値が0.01g/kmを上回っている。
 また、最上コート層上流部および最下コート層下流部の各CeO成分含有量が、触媒容積1Lあたり0g/L~2g/Lである実施例1~3では、各エミッション値が0.01g/kmを下回っている。
 一方、最上コート層上流部および最下コート層下流部の各CeO成分含有量が、触媒容積1Lあたり4g/Lである比較例1および4では、各エミッション値が0.01g/kmを上回っている。これは、エンジン再始動時において、最上コート層上流部におけるNOx浄化性能が低いことと、最下コート層下流部におけるHC浄化性能が低いためであると考えられる。
 よって、最上コート層上流部および最下コート層下流部の各CeO成分含有量を、触媒容積1Lあたり0g/L~2g/Lとすることによって、NOx浄化性能(エンジン再始動時におけるNOx浄化性能)とHC浄化性能を高くすることができる。
 また、実施例4では、最下コート層上流部および最上コート層下流部の各CeO成分含有量が触媒容積1Lあたり4g/Lであり、このときの各エミッション値が0.01g/kmを下回っている。
 一方、比較例2および4では、最下コート層上流部および最上コート層下流部の各CeO成分含有量が触媒容積1Lあたり2g/L以下であり、このときの各エミッション値が0.01g/kmを上回っている。これは、最下コート層上流部および最上コート層下流部における各CeO成分含有量が少ないため、通常走行時において、NOx浄化性能とHC浄化性能が低くなるためだと考えられる。
 また、実施例5~7では、触媒コート層のCeO成分含有量が40g/L以下であり、このときの各エミッション値は、0.01g/kmを下回っている。
 しかし、比較例3では、触媒コート層のCeO成分含有量が50g/Lであり、このときの各エミッション値は、0.01g/kmを上回っている。
 これらのことから、最下コート層上流部および最上コート層下流部の各CeO成分含有量は、触媒容積1Lあたり4g/L以上であることがよく、かつ、触媒コート層のCeO成分含有量は、40g/L以下であることがよい。
 次に、上流部と下流部の長さの比について検討する。
 実施例8および9では、最上コート層上流部の排ガス流動方向の長さが、最上コート層の該方向に沿う全体長に対して、排ガスの入口側の端部から20%~80%を占めており、かつ、最上コート層下流部の排ガス流動方向の長さが、上記全体長に対して、排ガスの出口側の端部から20%~80%を占めている。また、実施例8および9では、最下コート層上流部の排ガス流動方向の長さが、最下コート層の該方向に沿う全体長に対して、排ガスの入口側の端部から25%~80%を占めており、かつ、最下コート層下流部の排ガス流動方向の長さが、最下コート層の該方向に沿う全体長に対して、排ガスの出口側の端部から20%~75%を占めている。このような範囲における実施例8および9では、各エミッション値は、0.01g/kmを下回っている。
 しかし、上記範囲外である比較例5および6では、各エミッション値は、0.01g/kmを上回っている。
 よって、触媒コート層の各部の長さを上記範囲とすることで、NOx浄化性能およびHC浄化性能を高くすることができる。
 なお、実施例10、11および比較例7、8に示すように、実施例2および比較例4における貴金属触媒の種類や含有量を変更した場合であっても、各上流部および下流部のCeO成分含有量を上述した範囲にすることで、同じような効果が得られる。
 また、実施例12および比較例9に示すように、触媒コート層を3層構造にした排ガス浄化用触媒であっても、各上流部および下流部のCeO成分含有量を上述した範囲にすることで、同じような効果が得られる。
 以上、本発明を詳細に説明したが、上記実施形態および試験例は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。
 1 排ガス浄化装置
 2 内燃機関(エンジン)
 3 エキゾーストマニホールド
 4 排気管
 5 ECU
 7、7A 排ガス浄化用触媒
10 基材(多孔質基材)
12 セル
16 隔壁
30、30A 触媒コート層
40 最下コート層
41 最下コート層上流部
42 最下コート層下流部
50 最上コート層
51 最上コート層上流部
52 最上コート層下流部
60 中間コート層

Claims (10)

  1.  内燃機関の排気通路に配置され、該内燃機関から排出される排ガスを浄化する排ガス浄化用触媒であって、
     多孔質基材と、該多孔質基材上に形成された触媒コート層と、を備え、
     前記触媒コート層は、担体と、該担体に担持されている貴金属触媒と、を有し、
     前記担体は、少なくともCeO成分を含むOSC材を備え、
     前記触媒コート層は、厚み方向に少なくとも2層の相互に構成が異なる複数のコート層によって構成されており、ここで、
     前記複数のコート層のうちの最表部に位置する最上層である最上コート層は、
      前記最上コート層の排ガス流動方向に沿う全体長に対して、排ガス入口側の端部から少なくとも20%を包含する最上コート層上流部と、
      前記最上コート層の排ガス流動方向に沿う全体長に対して、排ガス出口側の端部から少なくとも20%を包含する最上コート層下流部と、を有し、
     前記最上コート層下流部は前記CeO成分を含み、
     前記最上コート層上流部における前記CeO成分の含有量は、前記最上コート層下流部におけるCeO成分の含有量未満であり、
    かつ、
     前記複数のコート層のうちの前記多孔質基材に近接する最下層である最下コート層は、
      前記最下コート層の排ガス流動方向に沿う全体長に対して、排ガス入口側の端部から少なくとも20%を包含する最下コート層上流部と、
      前記最下コート層の排ガス流動方向に沿う全体長に対して、排ガス出口側の端部から少なくとも20%を包含する最下コート層下流部と、を有し、
     前記最下コート層上流部は前記CeO成分を含み、
     前記最下コート層下流部における前記CeO成分の含有量は、前記最下コート層上流部におけるCeO成分の含有量未満である、排ガス浄化用触媒。
  2.  触媒容積1Lあたりの前記触媒コート層における前記CeO成分の含有量は、10~40g/Lである、請求項1に記載された排ガス浄化用触媒。
  3.  触媒容積1Lあたりの前記最上コート層上流部における前記CeO成分の含有量は、0~2g/Lである、請求項1または2に記載された排ガス浄化用触媒。
  4.  触媒容積1Lあたりの前記最下コート層下流部における前記CeO成分の含有量は、0~2g/Lである、請求項1から3までの何れか一つに記載された排ガス浄化用触媒。
  5.  触媒容積1Lあたりの前記最上コート層下流部および前記最下コート層上流部における前記CeO成分の含有量は、それぞれ4g/L以上である、請求項1から4までの何れか一つに記載された排ガス浄化用触媒。
  6.  前記最上コート層の排ガス流動方向の全体長を100として、前記最上コート層上流部の前記排ガス流動方向に沿う長さと、前記最上コート層下流部の前記排ガス流動方向に沿う長さとの比率(上流部/下流部)は20/80~80/20である、請求項1から5までの何れか一つに記載された排ガス浄化用触媒。
  7.  前記最下コート層の排ガス流動方向の全体長を100として、前記最下コート層上流部の前記排ガス流動方向に沿う長さと、前記最下コート層下流部の前記排ガス流動方向に沿う長さとの比率(上流部/下流部)は25/75~80/20である、請求項1から6までの何れか一つに記載された排ガス浄化用触媒。
  8.  前記貴金属触媒は、Pt、PdおよびRhのうちの少なくとも一種である、請求項1から7までの何れか一つに記載された排ガス浄化用触媒。
  9.  前記最上コート層は、前記貴金属触媒としてPdおよびRhを含む、請求項8に記載された排ガス浄化用触媒。
  10.  前記最上コート層下流部におけるCeO成分の含有量を1としたときに、前記最上コート層上流部における前記CeO成分の含有量が0.3未満であり、かつ、
     前記最下コート層上流部におけるCeO成分の含有量を1としたときに、前記最下コート層下流部における前記CeO成分の含有量が0.3未満である、請求項1から9までの何れか一つに記載された排ガス浄化用触媒。
PCT/JP2014/082540 2013-12-13 2014-12-09 排ガス浄化用触媒 WO2015087872A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14869605.7A EP3034165B1 (en) 2013-12-13 2014-12-09 Exhaust system comprising an exhaust cleaning catalyst
US14/914,829 US9675970B2 (en) 2013-12-13 2014-12-09 Exhaust cleaning catalyst
JP2015552458A JP6611611B2 (ja) 2013-12-13 2014-12-09 排ガス浄化用触媒
CN201480049426.4A CN105517706B (zh) 2013-12-13 2014-12-09 排气净化用催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013258649 2013-12-13
JP2013-258649 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015087872A1 true WO2015087872A1 (ja) 2015-06-18

Family

ID=53371174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082540 WO2015087872A1 (ja) 2013-12-13 2014-12-09 排ガス浄化用触媒

Country Status (5)

Country Link
US (1) US9675970B2 (ja)
EP (1) EP3034165B1 (ja)
JP (1) JP6611611B2 (ja)
CN (1) CN105517706B (ja)
WO (1) WO2015087872A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200677A (ja) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 排ガス浄化触媒の製造方法及び排ガス浄化触媒
WO2017204008A1 (ja) * 2016-05-24 2017-11-30 株式会社キャタラー 排ガス浄化用触媒
WO2018199249A1 (ja) * 2017-04-28 2018-11-01 ユミコア日本触媒株式会社 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
JPWO2017159628A1 (ja) * 2016-03-18 2019-01-24 株式会社キャタラー 排ガス浄化用触媒
JP2020032306A (ja) * 2018-08-27 2020-03-05 ダイハツ工業株式会社 排ガス浄化用触媒
JP2020157263A (ja) * 2019-03-27 2020-10-01 株式会社キャタラー 排ガス浄化用触媒
JP2020157262A (ja) * 2019-03-27 2020-10-01 株式会社キャタラー 排ガス浄化用触媒
JP7061655B1 (ja) 2020-11-06 2022-04-28 株式会社キャタラー 排ガス浄化触媒装置
WO2024180849A1 (ja) * 2023-03-01 2024-09-06 株式会社キャタラー 排ガス浄化用触媒
WO2024180850A1 (ja) * 2023-03-01 2024-09-06 株式会社キャタラー 排ガス浄化用触媒

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213105A1 (ja) * 2016-06-07 2017-12-14 株式会社キャタラー 排ガス浄化用触媒
GB2560941A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc NOx Adsorber catalyst
GB2560940A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc Three layer NOx Adsorber catalyst
GB2560942A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc NOx Adsorber catalyst
JP6408062B1 (ja) * 2017-04-28 2018-10-17 株式会社キャタラー 排ガス浄化用触媒
CN109261220A (zh) * 2018-09-28 2019-01-25 昆明贵研催化剂有限责任公司 一种非均匀涂覆尾气净化催化剂的制备方法及应用
JP7288331B2 (ja) * 2019-03-29 2023-06-07 株式会社キャタラー 排ガス浄化触媒装置
JP2020163342A (ja) 2019-03-29 2020-10-08 株式会社キャタラー 排ガス浄化触媒装置
JP7386651B2 (ja) * 2019-09-02 2023-11-27 株式会社キャタラー 排ガス浄化用触媒
JP7235417B2 (ja) * 2020-08-28 2023-03-08 トヨタ自動車株式会社 排ガス浄化装置
EP4237141A1 (en) * 2020-10-30 2023-09-06 Johnson Matthey Public Limited Company Novel tri-metal pgm catalysts for gasoline engine exhaust gas treatments
JP7343718B2 (ja) * 2020-11-10 2023-09-12 株式会社キャタラー 排ガス浄化用触媒
EP4252890A1 (en) * 2022-03-30 2023-10-04 Dinex A/S Catalyst article for oxidation, adsorption and desorption reactions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021456A (ja) 2005-07-21 2007-02-01 Cataler Corp 排ガス浄化用触媒
JP2007038072A (ja) 2005-08-01 2007-02-15 Cataler Corp 排ガス浄化用触媒
JP2011212639A (ja) 2010-04-02 2011-10-27 Toyota Motor Corp 自動車排ガス浄化用触媒
JP2012040547A (ja) 2010-07-23 2012-03-01 Toyota Motor Corp 排ガス浄化用触媒
JP2012086199A (ja) * 2010-10-22 2012-05-10 Toyota Motor Corp 排ガス浄化用触媒
WO2012069405A1 (en) * 2010-11-22 2012-05-31 Umicore Ag & Co. Kg Three-way catalytic system having an upstream multi - layer catalyst

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69435061T2 (de) * 1993-06-25 2008-12-18 Basf Catalysts Llc Katalysatorzusammensetzung
US20030175192A1 (en) * 2001-01-26 2003-09-18 Engelhard Corporation SOx trap for enhancing NOx trap performance and methods of making and using the same
US6777370B2 (en) * 2001-04-13 2004-08-17 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
US6764665B2 (en) * 2001-10-26 2004-07-20 Engelhard Corporation Layered catalyst composite
JP4062231B2 (ja) * 2003-10-16 2008-03-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7795172B2 (en) * 2004-06-22 2010-09-14 Basf Corporation Layered exhaust treatment catalyst
US7550124B2 (en) * 2006-08-21 2009-06-23 Basf Catalysts Llc Layered catalyst composite
US20080044330A1 (en) * 2006-08-21 2008-02-21 Shau-Lin Franklin Chen Layered catalyst composite
US7517510B2 (en) * 2006-08-21 2009-04-14 Basf Catalysts Llc Layered catalyst composite
US7758834B2 (en) * 2006-08-21 2010-07-20 Basf Corporation Layered catalyst composite
JP2008100152A (ja) * 2006-10-18 2008-05-01 Cataler Corp 排ガス浄化用触媒
JP5386121B2 (ja) * 2008-07-25 2014-01-15 エヌ・イーケムキャット株式会社 排気ガス浄化触媒装置、並びに排気ガス浄化方法
WO2010077843A2 (en) * 2008-12-29 2010-07-08 Basf Catalysts Llc Oxidation catalyst with low co and hc light-off and systems and methods
US10773209B2 (en) * 2009-02-20 2020-09-15 Basf Corporation Aging-resistant catalyst article for internal combustion engines
US8617496B2 (en) * 2011-01-19 2013-12-31 Basf Corporation Three way conversion catalyst with alumina-free rhodium layer
JP5232258B2 (ja) * 2011-02-25 2013-07-10 本田技研工業株式会社 内燃機関の排気浄化装置
CN102489322B (zh) * 2011-12-29 2013-12-11 重庆材料研究院 柴油汽车尾气净化催化剂及制备方法和净化装置
CN105517705B (zh) * 2013-12-13 2018-09-14 株式会社科特拉 排气净化用催化剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021456A (ja) 2005-07-21 2007-02-01 Cataler Corp 排ガス浄化用触媒
JP2007038072A (ja) 2005-08-01 2007-02-15 Cataler Corp 排ガス浄化用触媒
JP2011212639A (ja) 2010-04-02 2011-10-27 Toyota Motor Corp 自動車排ガス浄化用触媒
JP2012040547A (ja) 2010-07-23 2012-03-01 Toyota Motor Corp 排ガス浄化用触媒
JP2012086199A (ja) * 2010-10-22 2012-05-10 Toyota Motor Corp 排ガス浄化用触媒
WO2012069405A1 (en) * 2010-11-22 2012-05-31 Umicore Ag & Co. Kg Three-way catalytic system having an upstream multi - layer catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3034165A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017159628A1 (ja) * 2016-03-18 2019-01-24 株式会社キャタラー 排ガス浄化用触媒
US11110435B2 (en) 2016-03-18 2021-09-07 Cataler Corporation Exhaust gas purification catalyst
JP2017200677A (ja) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 排ガス浄化触媒の製造方法及び排ガス浄化触媒
US10960389B2 (en) 2016-05-24 2021-03-30 Cataler Corporation Exhaust gas purification catalyst
WO2017204008A1 (ja) * 2016-05-24 2017-11-30 株式会社キャタラー 排ガス浄化用触媒
JPWO2017204008A1 (ja) * 2016-05-24 2019-03-22 株式会社キャタラー 排ガス浄化用触媒
EP3466541A4 (en) * 2016-05-24 2019-04-10 Cataler Corporation EMISSION CONTROL CATALYST
WO2018199249A1 (ja) * 2017-04-28 2018-11-01 ユミコア日本触媒株式会社 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
JPWO2018199249A1 (ja) * 2017-04-28 2020-03-12 ユミコア日本触媒株式会社 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
US11149603B2 (en) 2017-04-28 2021-10-19 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2020032306A (ja) * 2018-08-27 2020-03-05 ダイハツ工業株式会社 排ガス浄化用触媒
JP7123698B2 (ja) 2018-08-27 2022-08-23 ダイハツ工業株式会社 排ガス浄化用触媒
WO2020195777A1 (ja) * 2019-03-27 2020-10-01 株式会社キャタラー 排ガス浄化用触媒
WO2020195778A1 (ja) * 2019-03-27 2020-10-01 株式会社キャタラー 排ガス浄化用触媒
JP2020157262A (ja) * 2019-03-27 2020-10-01 株式会社キャタラー 排ガス浄化用触媒
JP2020157263A (ja) * 2019-03-27 2020-10-01 株式会社キャタラー 排ガス浄化用触媒
JP7195995B2 (ja) 2019-03-27 2022-12-26 株式会社キャタラー 排ガス浄化用触媒
US12023652B2 (en) 2019-03-27 2024-07-02 Cataler Corporation Exhaust gas purification catalyst
JP7061655B1 (ja) 2020-11-06 2022-04-28 株式会社キャタラー 排ガス浄化触媒装置
WO2022097498A1 (ja) * 2020-11-06 2022-05-12 株式会社キャタラー 排ガス浄化触媒装置
JP2022075041A (ja) * 2020-11-06 2022-05-18 株式会社キャタラー 排ガス浄化触媒装置
WO2024180849A1 (ja) * 2023-03-01 2024-09-06 株式会社キャタラー 排ガス浄化用触媒
WO2024180850A1 (ja) * 2023-03-01 2024-09-06 株式会社キャタラー 排ガス浄化用触媒

Also Published As

Publication number Publication date
JPWO2015087872A1 (ja) 2017-03-16
EP3034165A4 (en) 2017-05-17
EP3034165B1 (en) 2022-02-09
US9675970B2 (en) 2017-06-13
EP3034165A1 (en) 2016-06-22
US20160199816A1 (en) 2016-07-14
CN105517706A (zh) 2016-04-20
JP6611611B2 (ja) 2019-11-27
CN105517706B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
JP6611611B2 (ja) 排ガス浄化用触媒
JP6487851B2 (ja) 排ガス浄化用触媒
JP6353919B2 (ja) 排ガス浄化用触媒
JP6527935B2 (ja) 排ガス浄化用触媒
JP6964580B2 (ja) 排ガス浄化用触媒
JP6472677B2 (ja) 排ガス浄化用触媒
JP6655060B2 (ja) 排ガス浄化用触媒
WO2016060049A1 (ja) 排ガス浄化用触媒
WO2016060048A1 (ja) 排ガス浄化用触媒
JP6539666B2 (ja) 排ガス浄化用触媒
JP7195995B2 (ja) 排ガス浄化用触媒
JP6748590B2 (ja) 排ガス浄化用触媒
JP6417333B2 (ja) 排ガス浄化用触媒
CN111148571A (zh) 排气净化用催化剂
WO2019012874A1 (ja) 排ガス浄化用触媒
US20220154621A1 (en) Exhaust Gas Purification Catalyst
JP6997838B1 (ja) 排ガス浄化用触媒
WO2024195310A1 (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914829

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015552458

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014869605

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE