WO2015064570A1 - 電池電極用バインダー、およびそれを用いた電極ならびに電池 - Google Patents

電池電極用バインダー、およびそれを用いた電極ならびに電池 Download PDF

Info

Publication number
WO2015064570A1
WO2015064570A1 PCT/JP2014/078629 JP2014078629W WO2015064570A1 WO 2015064570 A1 WO2015064570 A1 WO 2015064570A1 JP 2014078629 W JP2014078629 W JP 2014078629W WO 2015064570 A1 WO2015064570 A1 WO 2015064570A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
battery
acrylate
weight
monomer
Prior art date
Application number
PCT/JP2014/078629
Other languages
English (en)
French (fr)
Inventor
松尾 孝
倫之 矢野
康史 三木
克人 三浦
Original Assignee
ダイソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイソー株式会社 filed Critical ダイソー株式会社
Priority to CN201480059461.4A priority Critical patent/CN105830263B/zh
Priority to EP14858247.1A priority patent/EP3067974B1/en
Priority to US15/032,693 priority patent/US10003077B2/en
Priority to JP2015545003A priority patent/JP6164303B2/ja
Priority to KR1020167010390A priority patent/KR101931418B1/ko
Publication of WO2015064570A1 publication Critical patent/WO2015064570A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/287Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polypropylene oxide in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • C09J133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a binder used for an electrode of a battery, an electrode manufactured using the binder, and a battery manufactured using the electrode.
  • the battery includes an electrochemical capacitor and is a primary battery or a secondary battery.
  • Specific examples of the battery are a lithium ion secondary battery and a nickel metal hydride secondary battery.
  • Lithium ion secondary batteries have high energy density and high voltage, and are therefore used in electronic devices such as mobile phones, notebook computers, and camcorders. Recently, due to heightened awareness of environmental protection and the development of related laws, applications as in-vehicle applications such as electric vehicles and hybrid electric vehicles and storage batteries for household power storage are also progressing.
  • a lithium ion secondary battery is generally composed of a negative electrode, a positive electrode, a separator, an electrolytic solution, and a current collector.
  • the negative electrode is coated on a current collector typified by copper foil with a negative electrode active material such as graphite or hard carbon capable of inserting and removing lithium ions, a conductive additive, a binder, and a solvent. Obtained by drying.
  • a negative electrode active material such as graphite or hard carbon capable of inserting and removing lithium ions
  • a conductive additive such as graphite or hard carbon capable of inserting and removing lithium ions
  • a conductive additive such as graphite or hard carbon
  • a binder styrene-butadiene rubber
  • the positive electrode is made by mixing a layered positive electrode active material such as lithium cobaltate or spinel type lithium manganate with a conductive auxiliary such as carbon black, a binder such as polyvinylidene fluoride or polytetrafluoroethylene, and the like.
  • the coating liquid dispersed in such a polar solvent is manufactured by applying and drying on a current collector foil represented by an aluminum foil in the same manner as the negative electrode.
  • binders of lithium ion batteries need to increase the amount of the binder added in order to secure the binding force, and a decrease in performance due to this is a problem.
  • N-methylpyrrolidone is used as a slurry solvent, and an aqueous binder is desired from the viewpoint of recovery, cost, toxicity and environmental load.
  • the binder of the positive electrode still uses polyvinylidene fluoride or polytetrafluoroethylene using N-methylpyrrolidone as a dispersion solvent as a binder, and binds the current collector to the active material or between the active materials.
  • Patent Documents 1 and 2 disclose a binder containing a copolymer composed of aromatic vinyl, conjugated diene, ethylenically unsaturated carboxylic acid ester and unsaturated carboxylic acid (Patent Document 1), and A binder comprising a polymer aqueous dispersion selected from styrene-butadiene polymer latex and acrylic emulsion is proposed (Patent Document 2).
  • Patent Document 3 a binder (Patent Document 3) containing a copolymer composed of aromatic vinyl, conjugated diene, (meth) acrylic acid ester and ethylenically unsaturated carboxylic acid, and bifunctional (meta) ) Binder (Patent Document 4) containing a polymer containing acrylate is proposed.
  • these binders are used for electrodes (positive electrode and / or negative electrode), the capacity of the charge / discharge cycle decreases under high temperature conditions.
  • electrodes positive electrode and / or negative electrode
  • JP 2006-66400 A JP 2006-260782 A JP 11-025989 A JP 2001-256980 A
  • the present invention has been made in view of the above circumstances, and has a water-based binder with a low environmental load, which has excellent electrode slurry coating properties, high binding properties, and does not cause oxidative degradation in an electrode environment (especially in a positive electrode environment).
  • An object is to provide an electrode and a battery using the same.
  • the present inventors have found that a structural unit derived from a (meth) acrylic monomer having a hydroxyl group, a structural unit derived from a vinyl ester monomer, )
  • a binder containing a polymer containing a structural unit derived from an acrylate monomer By using a binder containing a polymer containing a structural unit derived from an acrylate monomer, the present inventors have found that the above problems can be solved, and have made the present invention. That is, the present invention relates to the following.
  • the (meth) acrylate monomer (A) having a hydroxyl group has the general formula: (Wherein R 1 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are each hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, and n is (It is an integer from 1 to 30.)
  • the binder for battery electrodes as described in [1] or [2] which is a compound shown by these.
  • the binder for battery electrodes according to any one of [1] to [3], wherein the polyfunctional (meth) acrylate monomer (C) is a bifunctional to pentafunctional (meth) acrylate.
  • the polyfunctional (meth) acrylate monomer (C) has the formula: (Wherein R 11 s are the same or different and each represents hydrogen or a methyl group; R 12 is a pentavalent or lower organic group having 2 to 100 carbon atoms, m is an integer of 5 or less.
  • the (meth) acrylic acid monomer has the formula: (In the formula, R 31 is hydrogen or a methyl group.)
  • a compound represented by The (meth) acrylic acid ester monomer has the formula: Wherein R 21 is hydrogen or a methyl group, R 22 is a hydrocarbon group having 1 to 50 carbon atoms.
  • the binder of this invention is excellent in binding property with an active material, a conductive support agent, and a current collector.
  • the excellent binding property strong binding property
  • the binder of the present invention provides an electrode having excellent flexibility.
  • the binder of the present invention is suppressed from being dissolved in the electrolytic solution and is not substantially dissolved in the electrolytic solution. This insolubility is considered to be due to a highly crosslinked structure by using a structural unit derived from a polyfunctional (meth) acrylate monomer as a crosslinking agent component.
  • the present invention can provide a battery having a high capacity and a long battery life, particularly a secondary battery.
  • the secondary battery is excellent in charge / discharge cycle characteristics.
  • the secondary battery is excellent in long-term cycle life and cycle charge / discharge characteristics at a high temperature (for example, 60 ° C.).
  • the secondary battery of the present invention can be used at a high voltage and has excellent heat resistance. Since the binder is water-based (the medium is water), the burden on the environment is small and no organic solvent recovery device is required.
  • the binder of the present invention is (I) a structural unit derived from a (meth) acrylate monomer (A) having a hydroxyl group; (II) General formula (1) (In the formula, R is a hydrocarbon group having 1 to 18 carbon atoms.) A structural unit derived from a vinyl ester monomer (B) represented by: (III) It is preferable that it is a battery electrode binder characterized by containing the polymer containing the structural unit induced
  • the (meth) acrylate monomer (A) having a hydroxyl group is preferably an alkylene glycol mono (meth) acrylate having a molecular weight (number average molecular weight) of 100 to 1000 (for example, 150 to 1000).
  • the (meth) acrylate monomer (A) having a hydroxyl group has a general formula: (Wherein R 1 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are each hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, and n is (It is an integer from 1 to 30.) It is preferable that it is a compound shown by these. n is an integer of 1 to 30. Preferably n is an integer of 2 to 25, more preferably 4 to 20.
  • the (meth) acrylate monomer (A) having a hydroxyl group include hydroxyethyl (meth) acrylate, diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, and Examples include polyethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate. These can be used alone or in combination of two or more.
  • tetraethylene glycol mono (meth) acrylate tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate are preferable.
  • R is a hydrocarbon group having 1 to 18 carbon atoms, particularly a linear or branched alkyl group. Preferably, it has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms.
  • vinyl ester monomers include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl trimethyl acetate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl palmitate, vinyl stearate and the like. These can be used alone or in combination of two or more. Among these, vinyl acetate and vinyl propionate are preferable.
  • the amount of the vinyl ester monomer may be 1 to 700 parts by weight, for example, 5 to 500 parts by weight, particularly 10 to 400 parts by weight with respect to 100 parts by weight of the structural unit (A) of the (meth) acrylate monomer having a hydroxyl group. .
  • the polyfunctional (meth) acrylate monomer (C) works as a crosslinking agent.
  • examples of the polyfunctional (meth) acrylate monomer include bifunctional to pentafunctional (meth) acrylate.
  • a bifunctional to pentafunctional cross-linking agent is excellent in dispersion by emulsion polymerization, and has excellent physical properties (flexibility and binding properties) as a binder.
  • the polyfunctional (meth) acrylate monomer is preferably a trifunctional or tetrafunctional (meth) acrylate.
  • the polyfunctional (meth) acrylate monomer (C) has the formula: (Wherein R 11 s are the same or different and each represents hydrogen or a methyl group; R 12 is a pentavalent or lower organic group having 2 to 100 carbon atoms, m is an integer of 5 or less. ) It is preferable that it is a compound shown by these.
  • R 12 is a divalent to pentavalent organic group, and m is an integer of 2 to 5. More preferably, R 12 is 3-5 valence, in particular 3-4 divalent organic group, m is 3-5 integer, in particular 3-4 integer.
  • R 12 is a hydrocarbon group, an oxyalkylene group (— (OA 1 ) —, A 1 is an alkylene group having 2 to 4 carbon atoms), a polyoxyalkylene group (— (OA 2 ) p —, and A 2 is a carbon number 2 to 4 alkylene groups, p is 2 to 30), or two or more of these may be included simultaneously.
  • R 12 may contain a substituent.
  • substituents include a hydroxyl group, a carboxylic acid group, a nitrile group, a fluorine atom, an amino group, a sulfonic acid group, a phosphoric acid group, an amide group, an isocyanuric acid group, an oxyalkylene group (-(OA 3 ) -H, A 3 is an alkylene group having 2 to 4 carbon atoms), a polyoxyalkylene group (— (OA 4 ) q —H, A 4 is an alkylene group having 2 to 4 carbon atoms, and q is 2 to 30), alkoxy An oxyalkylene group (-(A 5 -O) -B 1 , A 5 is an alkylene group having 2 to 4 carbon atoms, B 1 is an alkyl group having 1 to 4 carbon atoms), an alkoxy polyoxyalkylene group (-(A 6 -O) r -B 2 and A 6 are alkylene groups having 2 to 4 carbon atoms
  • bifunctional (meth) acrylate monomer examples include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol Examples include di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, dioxane glycol di (meth) acrylate, and bis (meth) acryloyloxyethyl phosphate.
  • trifunctional (meth) acrylate monomer examples include trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, trimethylolpropane PO-added tri (meth) acrylate, and pentaerythritol tri (meth).
  • tetrafunctional (meth) acrylate monomer examples include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and pentaerythritol EO-added tetra (meth) acrylate.
  • pentafunctional (meth) acrylate monomers include dipentaerythritol penta (meth) acrylate.
  • a polyfunctional (meth) acrylate monomer may be 1 type or can use 2 or more types together.
  • each of the monomers (A) to (D) may be one kind or a combination of two or more kinds.
  • the amount of the structural unit of the polyfunctional (meth) acrylate monomer (C) is 0.1 to 100 parts by weight, for example 0.5, with respect to 100 parts by weight of the structural unit of the (meth) acrylate monomer (A) having a hydroxyl group. It may be up to 80 parts by weight, in particular 1 to 70 parts by weight.
  • the polymer of the present invention is: (1) a structural unit derived from a (meth) acrylate monomer having a hydroxyl group (A), (2) a structural unit derived from a vinyl ester monomer (B) represented by the general formula (1), (3) In addition to the structural unit derived from the polyfunctional (meth) acrylate monomer (C), (4) You may have the structural unit induced
  • the polymer of the present invention may have the following structural units.
  • the acrylic monomer (D) is at least one monomer selected from the group consisting of (meth) acrylic acid monomers and (meth) acrylic acid ester monomers.
  • the (meth) acrylic acid monomer has the formula: (In the formula, R 31 is hydrogen or a methyl group.) It is preferable that it is a compound shown by these.
  • (meth) acrylic acid monomer examples include methacrylic acid and acrylic acid, which can be used alone or in combination. Two combinations of methacrylic acid and acrylic acid may be used in a weight ratio of 1:99 to 99: 1, for example 5:95 to 95: 5, in particular 20:80 to 80:20.
  • the (meth) acrylic acid ester monomer has the formula: Wherein R 21 is hydrogen or a methyl group, R 22 is a hydrocarbon group having 1 to 50 carbon atoms. ) It is preferable that it is a compound shown by these.
  • R 22 is a monovalent organic group, and may be a saturated or unsaturated aliphatic group (for example, a chain aliphatic group or a cyclic aliphatic group), an aromatic group, or an araliphatic group.
  • R 22 is preferably a saturated hydrocarbon group, particularly a saturated aliphatic group.
  • the R 22 group is particularly preferably a branched or straight chain alkyl group.
  • R 22 has 1 to 50 carbon atoms, such as 1 to 30, especially 1 to 20.
  • the (meth) acrylate monomer examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Such as isobutyl (meth) acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and dodecyl (meth) acrylate Examples include (meth) acrylic acid alkyl esters.
  • methyl (meth) acrylate Preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and isopropyl (meth) acrylate.
  • These (meth) acrylic acid ester monomers can be used alone or in combination of two or more.
  • Monomers other than the monomers (A), (B), (C) and (D), for example, vinyl monomers may be further used.
  • vinyl monomers include monomers that are gaseous at standard conditions, specifically ethylene, propylene, vinyl chloride, and monomers that are liquid or solid at standard conditions, particularly monomers (A), (B), ( (Meth) acrylic monomers other than (C) and (D), for example, (meth) acrylic monomers having a hydroxyl group, an amide group, a fluorine atom, a sulfonic acid group or the like as a substituent.
  • the monomers used that is, the monomers (A), (B), (C) and (D) and other monomers
  • the monomers (A), (B), (C) and (D) and other monomers) in addition to the ethylenically unsaturated double bond contained in the (meth) acryl group, It is preferable not to have a carbon-carbon double bond (and a carbon-carbon triple bond) including an aromatic carbon-carbon double bond.
  • the upper limit of the amount of structural units derived from the (meth) acrylic monomer (D) may be 40% by weight, for example 30% by weight, in particular 20% by weight.
  • a structural unit derived from a monomer (A) having a hydroxyl group a structural unit derived from a vinyl ester monomer (B), a structural unit derived from a polyfunctional (meth) acrylate (C), a (meth) acrylic monomer
  • the amount of structural units derived from (D) is For 100 parts by weight of the structural unit (A), Structural unit (B) 1 to 700 parts by weight, for example 5 to 500 parts by weight, in particular 10 to 400 parts by weight, Structural unit (C) 0.5 to 500 parts by weight, for example 0.5 to 80 parts by weight, in particular 1 to 70 parts by weight, and structural unit (D) 0 to 500 parts by weight, preferably 0.1 to 300 parts by weight. For example, it may be 0.5 to 200 parts by weight, particularly 1 to 70 parts by weight.
  • structural unit (D) derived from (meth) acrylic monomers, fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, crotonnitrile, ⁇ -Ethylacrylonitrile, ⁇ -cyanoacrylate, vinylidene cyanide, fumaronitrile, 2-methoxyethyl (meth) acrylate, and the like can be used.
  • a general emulsion polymerization method, a soap-free emulsion polymerization method, a seed polymerization method, a method in which a monomer or the like is swollen in seed particles, and the like can be used.
  • a composition containing a monomer, an emulsifier, a polymerization initiator, water, and a dispersant, a chain transfer agent, a pH adjuster, etc. at room temperature in an airtight container equipped with a stirrer and a heating device is an inert gas.
  • Monomers and the like are emulsified in water by stirring in an atmosphere.
  • a method using stirring, shearing, ultrasonic waves, or the like can be applied, and a stirring blade, a homogenizer, or the like can be used.
  • a spherical polymer latex in which the polymer is dispersed in water can be obtained.
  • the produced spherical polymer may be separately isolated and then dispersed in an organic solvent such as N-methylpyrrolidone using a dispersant or the like.
  • a latex of a polymer is obtained by again dispersing in water using a monomer, an emulsifier, a dispersant, or the like.
  • the monomer addition method at the time of polymerization may be monomer dropping, pre-emulsion dropping, or the like in addition to batch preparation, and two or more of these methods may be used in combination.
  • the particle structure of the polymer in the binder of the present invention is not particularly limited.
  • a latex of a polymer containing composite polymer particles having a core-shell structure produced by seed polymerization can be used.
  • the seed polymerization method for example, a method described in “Dispersion / Emulsification System Chemistry” (Publisher: Engineering Books Co., Ltd.) can be used. Specifically, this is a method in which a monomer, a polymerization initiator, and an emulsifier are added to a system in which seed particles produced by the above method are dispersed to grow core particles, and the above method may be repeated one or more times.
  • particles using the polymer of the present invention or a known polymer may be employed.
  • the known polymer include polyethylene, polypropylene, polyvinyl alcohol, polystyrene, poly (meth) acrylate, and polyether, but are not limited, and other known polymers can be used. Further, one kind of homopolymer or two or more kinds of copolymers or blends may be used.
  • the particle shape of the polymer in the binder of the present invention includes a plate shape, a hollow structure, a composite structure, a localized structure, a daruma-shaped structure, an octopus-like structure, a raspberry-like structure, and the like. Particles having two or more types of structures and compositions can be used without departing from the scope.
  • the emulsifier used in the present invention is not particularly limited, and nonionic emulsifiers and anionic emulsifiers generally used in emulsion polymerization methods can be used.
  • Nonionic emulsifiers include, for example, polyoxyethylene alkyl ether, polyoxyethylene alcohol ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene fatty acid ester and And polyoxyethylene sorbitan fatty acid esters.
  • anionic emulsifiers include alkyl benzene sulfonates, alkyl sulfate esters, polyoxyethylene alkyl ether sulfates, fatty acid salts, and the like. You may use above.
  • Representative examples of the anionic emulsifier include sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and triethanolamine dodecyl sulfate.
  • the amount of the emulsifier used in the present invention may be an amount generally used in the emulsion polymerization method. Specifically, it is in the range of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, and more preferably 0.05 to 3% by weight, based on the amount of monomer charged.
  • the polymerization initiator used in the present invention is not particularly limited, and a polymerization initiator generally used in an emulsion polymerization method can be used. Specific examples thereof include water-soluble polymerization initiators represented by persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate, and oil-soluble polymerization represented by cumene hydroperoxide and diisopropylbenzene hydroperoxide.
  • persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate
  • oil-soluble polymerization represented by cumene hydroperoxide and diisopropylbenzene hydroperoxide.
  • Initiator hydroperoxide, 4-4′-azobis (4-cyanovaleric acid), 2-2′-azobis [2- (2-imidazolin-2-yl) propane, 2-2′-azobis (propane- 2-Carboamidine) 2-2'-azobis [N- (2-carboxyethyl) -2-methylpropanamide, 2-2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazoline- 2-yl] propane ⁇ , 2-2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) and 2-2′-azobis ⁇ 2- And azo initiators such as methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propanamide ⁇ , redox initiators, and the like. These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used in the present invention may be an amount generally used in the emulsion polymerization method. Specifically, it is in the range of 0.01 to 5% by weight, preferably 0.05 to 3% by weight, more preferably 0.1 to 1% by weight, based on the amount of monomer charged.
  • the water used for producing the binder of the present invention is not particularly limited, and generally used water can be used. Specific examples thereof include tap water, distilled water, ion exchange water, and ultrapure water. Among these, distilled water, ion exchange water, and ultrapure water are preferable.
  • a dispersant can be used as necessary, and the kind and amount of use are not particularly limited, and a commonly used dispersant can be freely used in an arbitrary amount.
  • Specific examples include sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate and sodium polyacrylate.
  • a chain transfer agent can be used as necessary.
  • the chain transfer agent include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan, 2,4-diphenyl-4 -Xanthogen compounds such as methyl-1-pentene, 2,4-diphenyl-4-methyl-2-pentene, dimethylxanthogen disulfide, diisopropylxanthogen disulfide, terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram Thiuram compounds such as monosulfide, phenol compounds such as 2,6-di-t-butyl
  • Polymerization time and polymerization temperature are not particularly limited. Although it can be appropriately selected depending on the type of polymerization initiator used, etc., the polymerization temperature is generally 20 to 100 ° C., and the polymerization time is 0.5 to 100 hours.
  • the polymer obtained by the above method can be adjusted in pH by using a base as a pH adjuster as necessary.
  • a base include alkali metal (Li, Na, K, Rb, Cs) hydroxide, ammonia, an inorganic ammonium compound, an organic amine compound, and the like.
  • the pH range is from pH 1 to 11, preferably from pH 2 to 11, more preferably from pH 2 to 10, such as from pH 3 to 10, especially from pH 5 to 9.
  • the binder of the present invention may generally be a binder composition containing a polymer and water, particularly a binder composition in which the polymer is dispersed in water.
  • the content (solid content concentration) of the polymer in the binder of the present invention is 1 to 80% by weight, preferably 5 to 70% by weight, more preferably 10 to 60% by weight.
  • the particle diameter of the polymer in the binder of the present invention can be measured by a dynamic light scattering method, a transmission electron microscope method, an optical microscope method, or the like.
  • the average particle size calculated from the scattering intensity obtained using the dynamic light scattering method is 0.001 ⁇ m to 1 ⁇ m, preferably 0.001 ⁇ m to 0.500 ⁇ m.
  • Specific examples of the measuring device include Spectris Zetasizer Nano.
  • the method for preparing slurry for battery electrode using the binder of the present invention is not particularly limited, and the binder, active material, conductive additive, water, thickener as necessary, etc. of the present invention May be dispersed using an ordinary stirrer, disperser, kneader, planetary ball mill, homogenizer, or the like. In order to increase the efficiency of dispersion, heating may be performed within a range that does not affect the material.
  • an antifoaming agent may be added to the binder composition in advance or may be added to the battery electrode slurry liquid.
  • an antifoaming agent When an antifoaming agent is added, the dispersibility of each component is improved when the slurry for battery electrodes is prepared, and the coating property of the slurry is improved (where the bubbles remain in the coating), and bubbles remain on the electrode. Can be suppressed.
  • antifoaming agents include silicone-based antifoaming agents, mineral oil-based antifoaming agents, and polyether-based antifoaming agents. Silicone and mineral oil defoamers are preferred.
  • silicone-based antifoaming agent examples include dimethylsilicone-based, methylphenylsilicone-based, and methylvinylsilicone-based antifoaming agents, preferably dimethylsilicone-based. Moreover, it can be used as an emulsion type antifoaming agent formed by dispersing an antifoaming agent in water together with a surfactant. These antifoaming agents can be used alone or in admixture of two or more.
  • the production method of the battery electrode is not particularly limited, and a general method is used.
  • a preparation solution (coating solution) for a battery electrode slurry composed of a positive electrode active material or a negative electrode active material, a conductive additive, a binder, water, and a thickener as necessary is applied by a doctor blade method or a silk screen method. It is carried out by uniformly applying an appropriate thickness on the current collector surface.
  • a negative electrode active material powder, a positive electrode active material powder, a conductive additive, a binder, and the like are dispersed in water to form a slurry, which is applied to a metal electrode substrate, and then is more appropriate for a blade having a predetermined slit width. Uniform to thickness.
  • the electrode is dried in hot air at 100 ° C. or vacuum at 80 ° C., for example, in order to remove excess water and organic solvent after the active material is applied.
  • An electrode material is manufactured by press-molding the dried electrode with a pressing device. You may heat-process again after pressing, and may remove water, a solvent, an emulsifier, etc.
  • the positive electrode material is, for example, a metal electrode substrate as an electrode material substrate, a positive electrode active material on the metal electrode substrate, and a good ion exchange with the electrolyte layer, and the conductive auxiliary agent and the positive electrode active material are fixed to the metal substrate. It is made up of a binder.
  • aluminum is used for the metal electrode substrate, but is not limited thereto, and may be nickel, stainless steel, gold, platinum, titanium, or the like.
  • the positive electrode active material used in the present invention is a lithium metal-containing composite oxide powder having any composition of LiMO 2 , LiM 2 O 4 , Li 2 MO 3 , and LiMEO 4 .
  • M in the formula is mainly composed of a transition metal and includes at least one of Co, Mn, Ni, Cr, Fe, and Ti.
  • M is made of a transition metal, but Al, Ga, Ge, Sn, Pb, Sb, Bi, Si, P, B, etc. may be added in addition to the transition metal.
  • E contains at least one of P and Si.
  • the particle diameter of the positive electrode active material is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. These active materials have an electromotive force of 3 V (vs. Li / Li +) or more.
  • positive electrode active material examples include lithium cobaltate, lithium nickelate, nickel / manganese / lithium cobaltate (ternary system), spinel type lithium manganate, and lithium iron phosphate.
  • the negative electrode material is, for example, a metal electrode substrate as an electrode material substrate, a negative electrode active material on the metal electrode substrate, and exchange of good ions with the electrolyte layer, and the conductive auxiliary agent and the negative electrode active material are fixed to the metal substrate It is made up of a binder.
  • a metal electrode substrate as an electrode material substrate
  • a negative electrode active material on the metal electrode substrate and exchange of good ions with the electrolyte layer, and the conductive auxiliary agent and the negative electrode active material are fixed to the metal substrate It is made up of a binder.
  • copper is used for the metal electrode substrate, but the metal electrode substrate is not limited to this, and may be nickel, stainless steel, gold, platinum, titanium, or the like.
  • the negative electrode active material used in the present invention is a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (porous structure) capable of occluding and releasing lithium ions, or occluding and releasing lithium ions. It is a powder made of a metal such as lithium, aluminum-based compound, tin-based compound, silicon-based compound, and titanium-based compound. The particle diameter is preferably from 10 nm to 100 ⁇ m, more preferably from 20 nm to 20 ⁇ m. Moreover, you may use as a mixed active material of a metal and a carbon material. It is preferable to use a negative electrode active material having a porosity of about 70%.
  • the conductive aid include conductive carbon black such as graphite, furnace black, acetylene black, and ketjen black, or metal powder. These conductive aids may be used alone or in combination of two or more.
  • the thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, and sodium salts, ammonium salts, polyvinyl alcohol, and polyacrylates thereof. These thickeners may be used alone or in combination of two or more.
  • the following battery manufacturing method is mainly a lithium ion secondary battery manufacturing method.
  • the manufacturing method of the battery in particular, the secondary battery is not particularly limited, and includes a positive electrode, a negative electrode, a separator, an electrolytic solution, and a current collector, and is manufactured by a known method.
  • a positive electrode, a separator, and a negative electrode are inserted into an outer can. This is impregnated with an electrolytic solution. Then, it joins with a sealing body by tab welding etc., a sealing body is enclosed, and a storage battery is obtained by crimping.
  • the shape of the battery is not limited, but examples include a coin type, a cylindrical type, and a sheet type, and a structure in which two or more batteries are stacked may be used.
  • a positive electrode and a negative electrode are directly contacted to prevent a short circuit in the storage battery, and a known material can be used. Specifically, it is made of a porous polymer film such as polyolefin or paper. As the porous polymer film, a film such as polyethylene or polypropylene is preferable because it is not affected by the electrolytic solution.
  • the electrolytic solution is a solution comprising an electrolyte lithium salt compound and an aprotic organic solvent as a solvent.
  • the electrolyte lithium salt compound a lithium salt compound having a wide potential window, which is generally used in lithium ion batteries, is used.
  • aprotic organic solvents examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, Linear ethers such as dipropyl carbonate, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetic acid ester, propionic acid ester, diethyl ether can be used. Good.
  • a room temperature molten salt can be used as the solvent.
  • the room temperature molten salt refers to a salt that is at least partially in a liquid state at room temperature, and the room temperature refers to a temperature range in which a power supply is assumed to normally operate.
  • the temperature range in which the power supply is assumed to operate normally has an upper limit of about 120 ° C., in some cases about 60 ° C., and a lower limit of about ⁇ 40 ° C., in some cases about ⁇ 20 ° C.
  • the room temperature molten salt is also called an ionic liquid and is a “salt” composed of only ions (anions and cations), and in particular, a liquid compound is called an ionic liquid.
  • quaternary ammonium organic cation examples include imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, and piperidinium ions.
  • imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, and piperidinium ions.
  • an imidazolium cation is preferable.
  • tetraalkylammonium ions include, but are not limited to, trimethylethylammonium ion, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, and triethylmethylammonium ion. is not.
  • the alkylpyridinium ions include N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion, N-butylpyridinium ion, 1-ethyl-2methylpyridinium ion, 1-butyl-4-methyl Examples thereof include, but are not limited to, pyridinium ions and 1-butyl-2,4 dimethylpyridinium ions.
  • Examples of the imidazolium cation include 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- Examples include 2,3-dimethylimidazolium ion, but are not limited thereto.
  • anionic species include halide ions such as chloride ions, bromide ions and iodide ions, inorganic acids such as perchlorate ions, thiocyanate ions, tetrafluoroborate ions, nitrate ions, AsF 6 ⁇ and PF 6 ⁇
  • Organic acid ions such as ions, stearyl sulfonate ions, octyl sulfonate ions, dodecylbenzene sulfonate ions, naphthalene sulfonate ions, dodecyl naphthalene sulfonate ions, 7,7,8,8-tetracyano-p-quinodimethane ions Etc. are exemplified.
  • normal temperature molten salt may be used independently or may be used in mixture of 2 or more types.
  • flame retardants and flame retardants include brominated epoxy compounds, phosphazene compounds, tetrabromobisphenol A, halides such as chlorinated paraffin, antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, phosphate esters, Examples thereof include polyphosphate and zinc borate.
  • the negative electrode surface treatment agent include vinylene carbonate, fluoroethylene carbonate, and polyethylene glycol dimethyl ether.
  • the positive electrode surface treatment agent include inorganic compounds such as carbon and metal oxides (such as MgO and ZrO 2 ), and organic compounds such as ortho-terphenyl.
  • the overcharge inhibitor include biphenyl and 1- (p-tolyl) adamantane.
  • an electrode and a coin battery were produced using the binder of the present invention, and the bending test and adhesion test were performed as the evaluation of the electrode, and the charge / discharge cycle characteristic performance was evaluated as the evaluation of the coin battery in the following experiment.
  • Adhesion test (binding test) The adhesion test was performed by a cross cut test. Specifically, the electrode is cut to a width of 3 cm ⁇ length of 4 cm, and a grid pattern is cut with a cutter knife so that one side of one square is 1 mm, and from 25 squares of vertical 5 squares ⁇ horizontal 5 squares.
  • a tape cello tape (registered trademark): manufactured by Nichiban) was applied to the grid, and the tape was peeled off at a stretch with the electrode fixed, the number of cells remaining without being peeled off from the electrode was measured. The test was performed 5 times, and the average value was obtained.
  • Example of synthesis of binder composition [Exemplary Synthesis Example 1 of Binder Composition]
  • A 30 parts by weight of polypropylene glycol monoacrylate (manufactured by NOF: Blemmer AP-400),
  • B 15 parts by weight of vinyl acetate, 1.3 parts by weight of acrylic acid, 3.7% of methacrylic acid Parts by weight, 45 parts by weight of methyl methacrylate,
  • C 5 parts by weight of trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical: A-TMPT), 1 part by weight of sodium dodecyl sulfate as an emulsifier, 500 parts by weight of ion-exchanged water and polymerization After adding 1 part by weight of potassium persulfate as an initiator and sufficiently emulsifying using an ultrasonic homogenizer, the mixture was heated to 60 ° C.
  • the average particle diameter of the obtained polymer was 0.107 ⁇ m.
  • the average particle diameter of the obtained polymer was 0.098 ⁇ m.
  • the mixture was heated to 60 ° C. under a nitrogen atmosphere, polymerized for 5 hours, and then cooled. After cooling, the polymerization solution was adjusted to pH 8.2 using a 24% aqueous sodium hydroxide solution to obtain a binder composition C (polymerization conversion rate 99% or more) (solid content concentration 16 wt%).
  • the average particle diameter of the obtained polymer was 0.233 ⁇ m.
  • the polymerization solution was adjusted to pH 7.8 using a 24% aqueous sodium hydroxide solution to obtain a binder composition D (polymerization conversion rate 99% or more) (solid content concentration 17 wt%).
  • the average particle diameter of the obtained polymer was 0.098 ⁇ m.
  • the polymerization solution was adjusted to pH 7.8 using an aqueous sodium hydroxide solution to obtain a binder composition E (polymerization conversion rate of 99% or more) (solid content concentration 16 wt%).
  • the average particle diameter of the obtained polymer was 0.098 ⁇ m.
  • the polymerization solution was adjusted to pH 7.8 using a 24% aqueous sodium hydroxide solution to obtain a binder composition F (polymerization conversion rate 99% or more) (solid content concentration 18 wt%).
  • the average particle diameter of the obtained polymer was 0.120 ⁇ m.
  • Example of electrode production Of the binder composition A obtained in Example Synthesis Example 1 of 90.6 parts by weight of nickel / manganese / lithium cobaltate (ternary system) as a positive electrode active material, 6.4 parts by weight of acetylene black as a conductive additive, Add 1 part by weight of solid and 2 parts by weight of sodium salt of carboxymethylcellulose as a thickener, and add water as a solvent so that the solid content of the slurry is 35% by weight. By mixing, a positive electrode slurry was obtained. The obtained positive electrode slurry was coated on a 20 ⁇ m thick aluminum current collector using a 65 ⁇ m gap blade coater, dried at 110 ° C. in a vacuum state for 12 hours or more, and then pressed with a roll press machine. A positive electrode of 15 ⁇ m was produced. The evaluation results of flexibility and binding property are shown in Example 1 of Table 1.
  • Example 2 of electrode production A positive electrode was produced in the same manner as in Example 1 for producing electrodes except that the binder composition B obtained in Example 2 for binder synthesis was used. The thickness of the obtained positive electrode was 16 ⁇ m. The evaluation results of flexibility and binding property are shown in Example 2 of Table 1.
  • Example 3 of electrode production A positive electrode was produced in the same manner as in Example 1 for producing electrodes except that the binder composition C obtained in Example 3 for binder synthesis was used. The thickness of the positive electrode obtained was 17 ⁇ m. The evaluation results of flexibility and binding property are shown in Example 3 of Table 1.
  • a positive electrode was produced in the same manner as in Example 1 for producing electrodes except that the binder composition D obtained in Comparative Synthesis Example 1 for binder was used.
  • the thickness of the obtained positive electrode was 15 ⁇ m.
  • the evaluation results of flexibility and binding property are shown in Comparative Example 1 in Table 1.
  • a positive electrode was produced in the same manner as in Example 1 for producing electrodes except that the binder composition E obtained in Comparative Synthesis Example 2 for binder was used.
  • the thickness of the obtained positive electrode was 15 ⁇ m.
  • the evaluation results of flexibility and binding property are shown in Comparative Example 2 in Table 1.
  • a positive electrode was produced in the same manner as in Example 1 for producing electrodes except that the binder composition F obtained in Comparative Synthesis Example 3 for binder was used.
  • the thickness of the obtained positive electrode was 16 ⁇ m.
  • the evaluation results of flexibility and binding property are shown in Comparative Example 3 in Table 1.
  • Example of battery production [Example 1 of coin battery production (Example 1)]
  • the positive electrode obtained in Example 1 of electrode fabrication two 18 ⁇ m-thick polypropylene / polyethylene / polypropylene porous membranes as separators, and a 300 ⁇ m-thick metal lithium foil as a counter electrode
  • the laminated laminate was sufficiently impregnated with 1 mol / L of lithium hexafluorophosphate ethylene carbonate and dimethyl carbonate solution (volume ratio 1: 1) as an electrolytic solution and caulked to prepare a test 2032 type coin battery. Manufactured.
  • the evaluation results of the capacity retention rate after 100 cycles are shown in Example 1 of Table 1.
  • Example 2 of coin battery production Example 2 of coin battery production (Example 2)
  • Example of electrode production A coin battery was produced in the same manner as Example 1 of the coin battery except that the positive electrode obtained in Production Example 2 was used. The evaluation results of the capacity retention rate after 100 cycles are shown in Example 2 of Table 1.
  • Example 3 of manufacturing coin battery (Example 3)]
  • Example of electrode production A coin battery was produced in the same manner as Example 1 of the coin battery except that the positive electrode obtained in Production Example 3 was used. The evaluation results of the capacity retention rate after 100 cycles are shown in Example 3 of Table 1.
  • Table 1 shows examples and comparative examples.
  • the battery binder (lithium secondary battery binder) of the present invention is a water system with high binding power, small environmental load, and from the viewpoint that the performance does not affect the temperature, the lithium ion secondary battery using this binder is It can be suitably used for small-sized batteries such as mobile phones, notebook PCs, camcorders and other electronic devices, as well as for large-sized lithium ion secondary batteries such as electric vehicles and hybrid electric vehicles, and storage batteries for household power storage. is there.
  • Another aspect of the present invention is as follows. [1] (I) a structural unit derived from a (meth) acrylate monomer (A) having a hydroxyl group; (II) General formula (1) (In the formula, R is a linear or branched alkyl group having 1 to 18 carbon atoms.) A structural unit derived from an organic acid vinyl ester monomer (B) represented by: (III) A battery electrode binder comprising a polymer containing a structural unit derived from a polyfunctional (meth) acrylate monomer (C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(1)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と(2)ビニルエステルモノマー(B)から誘導される構成単位と、(3)多官能(メタ)アクリレートモノマー(C)から誘導される構成単位とを含む重合体を含有する電池電極用バインダーが開示されている。このバインダーを用いて、電極を作製し、リチウムイオン二次電池などの電池に採用する。結着性が高くかつ特に電極環境下で酸化劣化を起こさない、環境負荷の小さな水系バインダーおよびそれを用いた電極および電池が得られる。

Description

電池電極用バインダー、およびそれを用いた電極ならびに電池
 本発明は電池の電極に用いられるバインダー、該バインダーを用いて製造される電極、および該電極を用いて製造される電池に関する。本明細書において、電池とは、電気化学キャパシタを包含しており、一次電池または二次電池である。電池の具体例は、リチウムイオン二次電池およびニッケル水素二次電池である。
 電池の電極において、バインダーを用いることが知られている。バインダーを用いた電極を有する電池の代表例として、リチウムイオン二次電池が挙げられる。
 リチウムイオン二次電池はエネルギー密度が高く、高電圧であるため、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では環境保護への意識の高まりや関連法の整備により、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池としての応用も進んできている。
 リチウムイオン二次電池は一般的に負極、正極、セパレータ、電解液、集電体で構成される。電極に関して、負極はリチウムイオンの挿入脱離が可能なグラファイトやハードカーボンなどの負極活物質と導電助剤、バインダー、溶媒からなる塗工液を銅箔に代表される集電体上に塗布、乾燥して得られる。現在一般的には、バインダーとしてスチレン-ブタジエンゴム(以下、「SBR」と略す)を水に分散させたものが用いられている。
 一方、正極は層状のコバルト酸リチウムやスピネル型マンガン酸リチウム等の正極活物質とカーボンブラック等の導電助剤、ポリフッ化ビニリデンやポリ四フッ化エチレン等のバインダーを混合し、N-メチルピロリドンのような極性溶媒に分散させた塗工液をアルミニウム箔に代表される集電体箔上に負極と同様に塗布、乾燥して製造されている。
 これらのリチウムイオン電池のバインダーは、結着力を確保するためにバインダーの添加量を多くする必要があり、そのことによる性能の低下が課題として挙げられる。また、N-メチルピロリドンをスラリー溶媒に用いており、回収、コスト、毒性および環境負荷の観点から、水系バインダーが望まれている。しかしながら、水系であるSBR系バインダーを用いた場合では正極環境下において酸化劣化するといった課題が挙げられる。そのため、依然として正極のバインダーには現行のN-メチルピロリドンを分散溶媒に用いたポリフッ化ビニリデンやポリ四フッ化エチレンがバインダーとして用いられており、集電体と活物質や活物質同士の結着性に優れ、環境負荷が少ない水系であり、かつ耐酸化性の高い二次電池用の電極の製造に適したバインダーの開発が急務となっている。
 上記課題を解決するために、特許文献1および2では、芳香族ビニル、共役ジエン、エチレン性不飽和カルボン酸エステルおよび不飽和カルボン酸からなる共重合体を含有するバインダー(特許文献1)、およびスチレン-ブタジエン重合体ラテックスおよびアクリルエマルジョンから選択されるポリマー水分散体を含むバインダー(特許文献2)を提案している。
 さらに、特許文献3および4では、芳香族ビニル、共役ジエン、(メタ)アクリル酸エステルおよびエチレン性不飽和カルボン酸からなる共重合体を含有するバインダー(特許文献3)、および2官能性(メタ)アクリレートを含むポリマーを含有するバインダー(特許文献4)を提案している。
 しかしながら、これらのバインダーを電極(正極および/または負極)に用いた場合、高温条件下において、充放電サイクルの容量低下が起こる。特に、正極に用いた場合、高電圧条件下で耐酸化性に問題があり、電池特性が悪くなることが懸念される。
特開2006-66400 特開2006-260782号公報 特開平11-025989 特開2001-256980号公報
 本発明は上記事情に鑑みなされたものであり、電極スラリーの塗布性が優れ、結着性が高くかつ電極環境下(特に正極環境下)で酸化劣化を起こさない、環境負荷の小さな水系バインダーおよびそれを用いた電極および電池を提供することを目的とする。
 本発明者らは、上記目的を達成するために検討を重ねた結果、水酸基を有する(メタ)アクリルモノマーから誘導される構成単位と、ビニルエステルモノマーから誘導される構成単位と、多官能(メタ)アクリレートモノマーから誘導される構成単位とを含む重合体を含有するバインダーを用いることにより、上記課題を解決することを見出し、本発明をなすに至った。すなわち本発明は以下に関する。
[1]
(I)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と、
(II)一般式(1)
Figure JPOXMLDOC01-appb-C000006
  (式中、 Rは炭素数1~18の炭化水素基である。)
で表わされるビニルエステルモノマー(B)から誘導される構成単位と、
(III)多官能(メタ)アクリレートモノマー(C)から誘導される構成単位と
を含む重合体を含有することを特徴する電池電極用バインダー。
[2]
 水酸基を有する(メタ)アクリレートモノマー(A)の分子量が100~1000のアルキレングリコールモノ(メタ)アクリレートである[1]に記載の電池電極用バインダー。
[3]
 水酸基を有する(メタ)アクリレートモノマー(A)が、一般式:
Figure JPOXMLDOC01-appb-C000007

( 式中、Rは水素または炭素数1~4の直鎖もしくは分岐のアルキル基であり、RおよびRはそれぞれ水素、炭素数1~4の直鎖もしくは分岐のアルキル基、nは1~30の整数である。)
で示される化合物である[1]または[2]に記載の電池電極用バインダー。
[4]
 多官能(メタ)アクリレートモノマー(C)が2~5官能の(メタ)アクリレートである[1]~[3]のいずれかに記載の電池電極用バインダー。
[5]
 多官能(メタ)アクリレートモノマー(C)が、式:
Figure JPOXMLDOC01-appb-C000008
(式中、R11は、それぞれ同一または異なって、水素またはメチル基であり、
12は、5価以下の炭素数2~100の有機基であり、
mは5以下の整数である。)
で示される化合物である[1]~[4]のいずれかに記載の電池電極用バインダー。
[6]
 さらに、(メタ)アクリル酸モノマーおよび(メタ)アクリル酸エステルモノマーからなる群から選択された少なくとも一種のアクリルモノマー(D)から誘導される構成単位を有する[1]~[5]のいずれかに記載の電池電極用バインダー。
[7]
 (メタ)アクリル酸モノマーが、式:
Figure JPOXMLDOC01-appb-C000009
(式中、R31は水素またはメチル基である。)
で示される化合物であり、
(メタ)アクリル酸エステルモノマーが、式:
Figure JPOXMLDOC01-appb-C000010

(式中、R21は水素またはメチル基であり、
22は、炭素数1~50の炭化水素基である。)
で示される化合物である[6]に記載の電池電極用バインダー。
[8]
 水酸基を有するモノマー(A)から誘導される構成単位、有機酸ビニルエステルモノマー(B)から誘導される構成単位、多官能(メタ)アクリレート(C)から誘導される構造単位、(メタ)アクリル酸モノマー(D)から誘導される構造単位の量が、重合体に対して、(A)10~90重量%、(B)5~70重量%、(C)0.1~50重量%および(D)0~70重量%である[1]~[7]のいずれかに記載の電池電極用バインダー。
[9]
 電池が二次電池である[1]~[8]のいずれかに記載の電池電極用バインダー。
[10]
 [1]~[9]のいずれかに記載のバインダーと活物質とを含有することを特徴とする電池用電極。
[11]
 [10]に記載の電極を有することを特徴とする電池。
 本発明のバインダーは、活物質、導電助剤および集電体との結着性に優れる。優れた結着性(強い結着性)は、水に分散した重合体の微粒子の表面積が大きいこと、および水酸基を有するモノマーから誘導される構成単位を用いていることが原因していると考えられる。
 本発明のバインダーは、屈曲性に優れる電極を提供する。
 本発明のバインダーは、電解液への溶解が抑制されており、実質的に電解液に溶解しない。この非溶解性は、架橋剤成分に多官能(メタ)アクリレートモノマーから誘導される構成単位を用いることにより高度に架橋した構造であるためと考えられる。
 本発明は、高容量を有し、電池寿命が長い電池、特に二次電池を提供することができる。二次電池は充放電サイクル特性に優れている。特に、二次電池は、長期サイクル寿命と高温(例えば、60℃)でのサイクル充放電特性に優れている。
 本発明の二次電池は、高電圧で使用でき、かつ優れた耐熱性を有する。
 バインダーは、水系(媒体が水である。)であるので、環境への負荷が少なく、有機溶媒の回収装置を必要としない。
 本発明のバインダーは、
(I)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と、
(II)一般式(1)
Figure JPOXMLDOC01-appb-C000011
   (式中、Rは炭素数1~18の炭化水素基である。)
で表わされるビニルエステルモノマー(B)から誘導される構成単位と、
(III)多官能(メタ)アクリレートモノマー(C)から誘導される構成単位と
を含む重合体を含有することを特徴する電池電極用バインダー
であることが好ましい。
 以下に、本発明の重合体の構成単位について詳細に説明する。
 水酸基を有する(メタ)アクリレートモノマー(A)としては、分子量(数平均分子量)が100~1000(例えば、150~1000)のアルキレングリコールモノ(メタ)アクリレートが好ましい。
 水酸基を有する(メタ)アクリレートモノマー(A)は、一般式:
Figure JPOXMLDOC01-appb-C000012

( 式中、Rは水素または炭素数1~4の直鎖もしくは分岐のアルキル基であり、RおよびRはそれぞれ水素、炭素数1~4の直鎖もしくは分岐のアルキル基、nは1~30の整数である。)
で示される化合物であることが好ましい。nは1~30の整数である。好ましくはnが2~25、より好ましくは4~20の整数である。
 水酸基を有する(メタ)アクリレートモノマー(A)の具体例としては、ヒドロキシエチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、およびポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、およびポリプロピレングリコールモノ(メタ)アクリレートなどが挙げられる。これらは1種又は2種以上併用できる。これらの中でも、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートが好ましい。
 ビニルエステルモノマー(B)(特に、有機酸ビニルエステルモノマー)の一般式(1)において、Rは炭素数1~18の炭化水素基、特に直鎖もしくは分岐のアルキル基で表わされる。好ましくは、炭素数1~12、更に好ましくは、炭素数1~6である。
 ビニルエステルモノマーの具体例としては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、トリメチル酢酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルなどが挙げられる。これらは1種又は2種以上併用できる。これらの中でも、酢酸ビニル、プロピオン酸ビニルが好ましい。
 ビニルエステルモノマーの量は、水酸基を有する(メタ)アクリレートモノマーの構成単位(A)100重量部に対して1~700重量部、例えば5~500重量部、特に10~400重量部であってよい。
 多官能(メタ)アクリレートモノマー(C)は、架橋剤として働く。多官能(メタ)アクリレートモノマーとしては2官能~5官能(メタ)アクリレートが挙げられる。2官能~5官能の架橋剤では、乳化重合での分散が良好であり、バインダーとしての物性(屈曲性、結着性)が優れている。多官能(メタ)アクリレートモノマーは、好ましくは3官能または4官能(メタ)アクリレートである。
 多官能(メタ)アクリレートモノマー(C)は、式:
Figure JPOXMLDOC01-appb-C000013
(式中、R11は、それぞれ同一または異なって、水素またはメチル基であり、
12は、5価以下の炭素数2~100の有機基であり、
mは5以下の整数である。)
で示される化合物であることが好ましい。
 好ましくは、R12は、2~5価の有機基であり、mは2~5の整数である。さらに好ましくは、R12は、3~5価、特に3~4価の有機基であり、mは3~5の整数、特に3~4の整数である。
 R12は、炭化水素基、オキシアルキレン基(-(O-A1)-、A1は炭素数2~4のアルキレン基)、ポリオキシアルキレン基(-(O-A)p-、Aは炭素数2~4のアルキレン基、pは2~30である。)であってよく、またはこれらの2種以上を同時に含んでよい。R12は置換基を含有してよい。置換基の具体例としては、水酸基、カルボン酸基、ニトリル基、フッ素原子、アミノ基、スルホン酸基、リン酸基、アミド基、イソシアヌル酸基、オキシアルキレン基(-(O-A)-H、Aは炭素数2~4のアルキレン基)、ポリオキシアルキレン基(-(O-A)q-H、Aは炭素数2~4のアルキレン基、qは2~30である。)、アルコキシオキシアルキレン基(-(A-O)-B、Aは炭素数2~4のアルキレン基、Bは炭素数1~4のアルキル基)、アルコキシポリオキシアルキレン基(-(A6-O)r-B、Aは炭素数2~4のアルキレン基、rは1~30、B2は炭素数1~4アルキル基)等を挙げることができる。
 R12において、炭化水素基は、直鎖または分岐の炭化水素基であるが、分岐の炭化水素基であることが好ましい。炭化水素基の炭素数は、2~100、例えば3~50、特に4~30である。
 2官能(メタ)アクリレートモノマーの具体例としてはトリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ビス(メタ)アクリロイルオキシエチルフォスフェートなどが挙げられる。
 3官能(メタ)アクリレートモノマーの具体例としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、トリメチロールプロパンPO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2,2,2-トリス(メタ)アクリロイロキシメチルエチルコハク酸、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、グリセリンEO付加トリ(メタ)アクリレート、グリセリンPO付加トリ(メタ)アクリレートおよびトリス(メタ)アクリロイルオキシエチルフォスフェートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましい。
 4官能(メタ)アクリレートモノマーの具体例としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートおよびペンタエリスリトールEO付加テトラ(メタ)アクリレートなどが挙げられる。
 5官能(メタ)アクリレートモノマーの具体例としては、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 多官能(メタ)アクリレートモノマーは1種であってよく又は2種以上を併用できる。
 本発明において、モノマー(A)~(D)のそれぞれは、1種であってよくまたは2種以上を併用できる。
 多官能(メタ)アクリレートモノマー(C)の構成単位の量は、水酸基を有する(メタ)アクリレートモノマー(A)の構成単位100重量部に対して、0.1~100重量部、例えば0.5~80重量部、特に1~70重量部であってよい。
 本発明の重合体は、
(1)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と
(2)一般式(1)で表わされるビニルエステルモノマー(B)から誘導される構成単位と、
(3)多官能(メタ)アクリレートモノマー(C)から誘導される構成単位の他に、
(4)(メタ)アクリル酸モノマーおよび(メタ)アクリル酸エステルモノマーからなる群から選択された少なくとも一種のアクリルモノマー(D)から誘導される構成単位を有していてもよい。
 すなわち、本発明の重合体は、次のような構成単位を有していてよい。
  構成単位(A)+(B)+(C)
  構成単位(A)+(B)+(C)+(D)
 アクリルモノマー(D)は、(メタ)アクリル酸モノマーおよび(メタ)アクリル酸エステルモノマーからなる群から選択された少なくとも一種のモノマーである。
(メタ)アクリル酸モノマーは、式:
Figure JPOXMLDOC01-appb-C000014
(式中、R31は水素またはメチル基である。)
で示される化合物であることが好ましい。
 (メタ)アクリル酸モノマーの具体例としては、メタクリル酸、アクリル酸が挙げられ、1種または2種併用できる。メタクリル酸とアクリル酸の2種の組み合わせを重量比1:99~99:1、例えば5:95~95:5、特に20:80~80:20で使用してもよい。
 (メタ)アクリル酸エステルモノマーは、式:
Figure JPOXMLDOC01-appb-C000015

(式中、R21は水素またはメチル基であり、
22は、炭素数1~50の炭化水素基である。)
で示される化合物であることが好ましい。
 R22は、一価の有機基であり、飽和または不飽和の脂肪族基(例えば、鎖状脂肪族基または環状脂肪族基)、芳香族基または芳香脂肪族基であってよい。R22は飽和の炭化水素基、特に飽和の脂肪族基であることが好ましい。R22基は、分岐または直鎖のアルキル基であることが特に好ましい。R22の炭素数は、1~50、例えば1~30、特に1~20である。
 (メタ)アクリル酸エステルモノマーの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、および(メタ)アクリル酸ドデシルなどの(メタ)アクリル酸アルキルエステルが挙げられる。好ましくは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピルである。これら(メタ)アクリル酸エステルモノマーは1種または2種以上併用できる。
 モノマー(A)、(B)、(C)および(D)以外の他のモノマー、例えば、ビニルモノマーをさらに使用してもよい。ビニルモノマーの例としては、標準状態で気体であるモノマー、具体的には、エチレン、プロピレン、塩化ビニル、および標準状態で液体または固体であるモノマー、特に、モノマー(A)、(B)、(C)および(D)以外の(メタ)アクリル系モノマー、例えば、置換基として水酸基、アミド基、フッ素原子、スルホン酸基等を有する(メタ)アクリル系モノマーが挙げられる。
 本発明において、使用モノマー(即ち、モノマー(A)、(B)、(C)および(D)ならびに他のモノマー)は、(メタ)アクリル基に含まれるエチレン性不飽和二重結合以外に、芳香族の炭素-炭素二重結合を含む炭素-炭素二重結合(および炭素-炭素三重結合)を有しないことが好ましい。
 水酸基を有するモノマー(A)から誘導される構成単位、ビニルエステルモノマー(B)から誘導される構成単位、多官能(メタ)アクリレート(C)から誘導される構造単位、(メタ)アクリルモノマー(D)から誘導される構造単位の量が、重合体に対して、(A)10~90重量%、(B)5~70重量%、(C)0.1~50重量%および(D)0~70重量%であり、好ましくは(A)15~80重量%、(B)8~60重量%、(C)0.5~40重量%および(D)1~60重量%であり、更に好ましくは(A)20~70重量%、(B)10~55重量%、(C)1~30重量%および(D)2~50重量%であってよい。(メタ)アクリルモノマー(D)から誘導される構造単位の量の上限は、40重量%、例えば30重量%、特に20重量%であってよい。
 あるいは、水酸基を有するモノマー(A)から誘導される構成単位、ビニルエステルモノマー(B)から誘導される構成単位、多官能(メタ)アクリレート(C)から誘導される構造単位、(メタ)アクリルモノマー(D)から誘導される構造単位の量は、
構成単位(A)100重量部に対して、
構成単位(B)1~700重量部、例えば5~500重量部、特に10~400重量部、
構成単位(C)0.5~500重量部、例えば0.5~80重量部、特に1~70重量部、および
構成単位(D)0~500重量部、好ましくは0.1~300重量部、例えば0.5~200重量部、特に1~70重量部であってよい。
 (メタ)アクリルモノマーから誘導される構造単位(D)の他に、フマル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、α-エチルアクリロニトリル、α-シアノアクリレート、シアン化ビニリデン、フマロニトリル、(メタ)アクリル酸2-メトキシエチル等を用いることができる。
 本発明の重合体を得る方法としては一般的な乳化重合法、ソープフリー乳化重合法、シード重合法、シード粒子にモノマー等を膨潤させた後に重合する方法等を使用することができる。具体的には、攪拌機および加熱装置付きの密閉容器に室温でモノマー、乳化剤、重合開始剤、水、必要に応じて分散剤、連鎖移動剤、pH調整剤等を含んだ組成物を不活性ガス雰囲気下で攪拌することでモノマー等を水に乳化させる。乳化の方法は撹拌、剪断、超音波等による方法等が適用でき、撹拌翼、ホモジナイザー等を使用することができる。次いで、攪拌しながら温度を上昇させて重合を開始させることで、重合体が水に分散した球形の重合体のラテックスを得ることができる。また、生成した球形の重合体を別途単離した後に、分散剤等を用いてN-メチルピロリドン等の有機溶剤に分散させて使用してもよい。さらには、再度、モノマー、乳化剤や分散剤等を用いて水中に分散させて、重合体のラテックスを得る方法もある。重合時のモノマーの添加方法は、一括仕込みの他に、モノマー滴下やプレエマルジョン滴下等でもよく、これらの方法を2種以上併用してもよい。
 また本発明のバインダー中での重合体の粒子構造は特に限定されない。例えば、シード重合によって作製された、コア-シェル構造の複合重合体粒子を含む重合体のラテックスを用いることができる。シード重合法は、例えば、「分散・乳化系の化学」(発行元:工学図書(株))に記載された方法を用いることができる。具体的には、上記の方法で作製したシード粒子を分散した系にモノマー、重合開始剤、乳化剤を添加し、核粒子を成長させる方法であり、上記方法を1回以上繰り返してもよい。
 シード重合には本発明の重合体または公知のポリマーを用いた粒子を採用しても良い。公知のポリマーとしては、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリスチレン、ポリ(メタ)アクリレートおよびポリエーテルなどが例示できるが、限定されるものではなく、他の公知のポリマーを用いることができる。また、1種のホモポリマーまたは2種以上の共重合体またはブレンド体を用いても良い。
 本発明のバインダー中での重合体の粒子形状としては球形以外に、板状、中空構造、複合構造、局在構造、だるま状構造、いいだこ状構造、ラズベリー状構造等があげられ、本発明を逸脱しない範囲で2種類以上の構造および組成の粒子を用いることができる。
 本発明で用いられる乳化剤は特に限定されず、乳化重合法おいて一般的に用いられるノニオン性乳化剤およびアニオン性乳化剤等を使用することができる。ノニオン乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステル等があげられ、アニオン性乳化剤としては、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩等があげられ、これらを1種または2種以上用いてもよい。アニオン性乳化剤の代表例としてはドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸トリエタノールアミンが挙げられる。
 本発明で用いられる乳化剤の使用量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01~10重量%の範囲であり、好ましくは0.05~5重量%、更に好ましくは0.05~3重量%である。
 本発明で用いられる重合開始剤は特に限定されず、乳化重合法おいて一般的に用いられる重合開始剤を使用することができる。その具体例としては、過硫酸カリウム、過硫酸ナトリウムおよび過硫酸アンモニウムなどの過硫酸塩に代表される水溶性の重合開始剤、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドに代表される油溶性の重合開始剤、ハイドロパーオキサイド、4-4’-アゾビス(4-シアノ吉草酸)、2-2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン、2-2’-アゾビス(プロパン-2-カルボアミジン)2-2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロパンアミド、2-2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}、2-2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)および2-2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロパンアミド}などのアゾ系開始剤、レドックス開始剤等が挙げられる。これら重合開始剤は1種または2種以上組み合わせて用いてもよい。
 本発明で用いられる重合開始剤の使用量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01~5重量%の範囲であり、好ましくは0.05~3重量%、更に好ましくは0.1~1重量%である。
 本発明のバインダーを作製する際に用いる水は特に限定されず、一般的に用いられる水を使用することができる。その具体例としては水道水、蒸留水、イオン交換水および超純水などが挙げられる。その中でも、好ましくは蒸留水、イオン交換水および超純水である。
 本発明においては必要に応じて分散剤を用いることができ、種類および使用量は特に限定されず、一般的に用いられる分散剤を任意の量で自由に使用することができる。具体例としてはヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ピロリン酸ソーダおよびポリアクリル酸ソーダ等が挙げられる。
 本発明においては、必要に応じて連鎖移動剤を用いることができる。連鎖移動剤の具体例としては、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン、2,4-ジフェニル-4-メチル-1-ペンテン、2,4-ジフェニル-4-メチル-2-ペンテン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上用いてもよい。これらの連鎖移動剤の量は特に限定されないが、通常、仕込モノマー量100重量部に対して0~5重量部にて使用される。
 重合時間および重合温度は特に限定されない。使用する重合開始剤の種類等から適宜選択できるが、一般的に、重合温度は20~100℃であり、重合時間は0.5~100時間である。
 さらに上記の方法によって得られた重合体は、必要に応じてpH調整剤として塩基を用いることでpHを調整することができる。塩基の具体例としては、アルカリ金属(Li、Na、K、Rb、Cs)水酸化物、アンモニア、無機アンモニウム化合物、有機アミン化合物等が挙げられる。pHの範囲はpH1~11、好ましくはpH2~11、更に好ましくはpH2~10、例えばpH3~10、特にpH5~9の範囲である。
 本発明のバインダーは、一般に、重合体と水を含むバインダー組成物、特に、重合体が水に分散しているバインダー組成物であってよい。本発明のバインダー中における上記重合体の含有量(固形分濃度)は、1~80重量%、好ましくは5~70重量%、より好ましくは10~60重量%である。
 本発明のバインダー中における上記重合体の粒子径は、動的光散乱法、透過型電子顕微鏡法や光学顕微鏡法などによって計測できる。動的光散乱法を用いて得た散乱強度により算出した平均粒径は、0.001μm~1μm、好ましくは0.001μm~0.500μmである。具体的な測定装置としてはスペクトリス製のゼータサイザーナノ等が例示できる。
電池電極用スラリーの調製方法
 本発明のバインダーを使用した電池電極用スラリーの調製方法としては特に限定されず、本発明のバインダー、活物質、導電助剤、水、必要に応じて増粘剤等を通常の攪拌機、分散機、混練機、遊星型ボールミル、ホモジナイザーなど用いて分散させればよい。分散の効率を上げるために材料に影響を与えない範囲で加温してもよい。
 電池電極用スラリーの塗布性を改善するために、消泡剤をバインダー組成物に予め添加あるいは電池電極用スラリー液に添加することもできる。消泡剤を添加すると電池電極用スラリー調製時に、各成分の分散性が良好になり、スラリーの塗布性が改善(塗工で泡が残った箇所が欠陥)され、電極に気泡が残るのを抑制できる。
 消泡剤としてはシリコーン系消泡剤、鉱油系消泡剤、ポリエーテル系消泡剤などがある。シリコーン系および鉱油系消泡剤が好ましい。
 シリコーン系消泡剤としてはジメチルシリコーン系、メチルフェニルシリコーン系、メチルビニルシリコーン系消泡剤があり、好ましくはジメチルシリコーン系である。また、消泡剤を界面活性剤と共に水中に分散してなるエマルジョン型消泡剤として用いることができる。これらの消泡剤は、それぞれ単独で、または2種以上を混合して使用できる。
電池用電極の作製方法
 電池用の電極の作製方法は特に限定されず一般的な方法が用いられる。例えば、正極活物質あるいは負極活物質、導電助剤、バインダー、水、必要に応じて増粘剤などからなる電池電極用スラリーの調製液(塗工液)をドクターブレード法やシルクスクリーン法などにより集電体表面上に適切な厚さに均一に塗布することより行われる。
 例えばドクターブレード法では、負極活物質粉末や正極活物質粉末、導電助剤、バインダー等を水に分散してスラリー状にし、金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な水や有機溶剤を除去するため、例えば、100℃の熱風や80℃真空状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極材が製造される。プレス後に再度熱処理を施して水、溶剤、乳化剤等を除去してもよい。
 正極材料は、例えば電極材料基板としての金属電極基板と、金属電極基板上に正極活物質、および電解質層と良好なイオンの授受を行い、かつ、導電助剤と正極活物質を金属基板に固定するためのバインダーより構成されている。金属電極基板には、例えばアルミニウムが用いられるが、これに限るものではなく、ニッケル、ステンレス、金、白金、チタン等であってもよい。
 本発明で使用される正極活物質は、LiMO2、LiM24、Li2MO3、LiMEO4のいずれかの組成からなるリチウム金属含有複合酸化物粉末である。ここで式中のMは主として遷移金属からなり、Co、Mn、Ni、Cr、Fe、Tiの少なくとも一種を含んでいる。Mは遷移金属からなるが、遷移金属以外にもAl、Ga、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどが添加されていてもよい。EはP、Siの少なくとも1種を含んでいる。正極活物質の粒子径には50μm以下が好ましく、更に好ましくは20μm以下のものを用いる。これらの活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。
 正極活物質の具体例としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケル/マンガン/コバルト酸リチウム(3元系)、スピネル型マンガン酸リチウム、リン酸鉄リチウムなどが挙げられる。
 負極材料は、例えば電極材料基板としての金属電極基板と、金属電極基板上に負極活物質、および電解質層と良好なイオンの授受を行い、かつ、導電助剤と負極活物質を金属基板に固定するためのバインダーより構成されている。この場合の金属電極基板には、例えば銅が用いられるが、これに限るものではなく、ニッケル、ステンレス、金、白金、チタン等であってもよい。
 本発明で使用される負極活物質としてはリチウムイオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属からなる粉末である。粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。なお負極活物質にはその気孔率が、70%程度のものを用いるのが望ましい。
 導電助剤の具体的としては、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。
 増粘剤の具体的としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロースおよびこれらのナトリウム塩、アンモニウム塩、ポリビニルアルコール、ポリアクリル酸塩等が挙げられる。これら増粘剤は1種または2種以上用いてもよい。
 以下の電池の製造法は、主として、リチウムイオン二次電池の製造方法である。
電池の製造方法
 電池、特に二次電池の製造方法は特に限定されず、正極、負極、セパレータ、電解液、集電体で構成され、公知の方法にて製造される。例えば、コイン型の電池の場合、正極、セパレータ、負極を外装缶に挿入する。これに電解液を入れ含浸する。その後、封口体とタブ溶接などで接合して、封口体を封入し、かしめることで蓄電池が得られる。電池の形状は限定されないが、例としてはコイン型、円筒型、シート型などがあげられ、2個以上の電池を積層した構造でもよい。
 セパレータとしては正極と負極が直接接触して蓄電池内でショートすることを防止するものであり、公知の材料を用いることができる。具体的には、ポリオレフィンなどの多孔質高分子フィルムあるいは紙などからなっている。この多孔質高分子フィルムとしては、ポリエチレン、ポリプロピレンなどのフィルムが電解液によって影響を受けないため好ましい。
 電解液は電解質リチウム塩化合物および溶媒として非プロトン性有機溶剤等からなる溶液である。電解質リチウム塩化合物としては、リチウムイオン電池に一般的に利用されているような、広い電位窓を有するリチウム塩化合物が用いられる。たとえば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22,LiN(C25SO22,LiN[CF3SC(C25SO23]2などを挙げられるが、これらに限定されるものではない。これらは、単独で用いても、2種類以上を混合して用いても良い。
 非プロトン性有機溶剤としてはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル、ジエチルエーテルなどの直鎖エーテルを使用することができ、2種類以上混合して使用してもよい。
 また、溶媒として、常温溶融塩を用いることができる。常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。
 常温溶融塩はイオン液体とも呼ばれており、イオンのみ(アニオン、カチオン)から構成される「塩」であり、特に液体化合物をイオン液体という。
 カチオン種としてはピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。
 なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
 また、アルキルピリジウムイオンとしては、N-メチルピリジウムイオン、N-エチルピリジニウムイオン、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-エチル-2メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
 イミダゾリウムカチオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
 アニオン種としては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF 、PF などの無機酸イオン、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8-テトラシアノ-p-キノジメタンイオンなどの有機酸イオンなどが例示される。
 なお、常温溶融塩は、単独で用いてもよく、または2種以上を混合して用いても良い。
 電解液には必要に応じて種々の添加剤を使用することができる。例えば、難燃剤や不燃剤として、臭素化エポキシ化合物、ホスファゼン化合物、テトラブロムビスフェノールA 、塩素化パラフィン等のハロゲン化物、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、リン酸エステル、ポリリン酸塩、及びホウ酸亜鉛等が例示できる。負極表面処理剤としてはビニレンカーボネート、フルオロエチレンカーボネート、ポリエチレングリコールジメチルエーテル等が例示できる。正極表面処理剤として炭素や金属酸化物(MgОやZrO等)の無機化合物やオルト-ターフェニル等の有機化合物等が例示できる。過充電防止剤としてはビフェニルや1-(p-トリル)アダマンタン等が例示できる。
 本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
 本実施例では、本発明のバインダーを用いて電極及びコイン電池を作製し、電極の評価として屈曲試験、密着試験、コイン電池の評価として充放電サイクル特性性能を以下の実験にて行った。
[作製した電極の評価]
 作製した電極の評価としては屈曲試験と密着試験を行った。評価結果を表1にまとめて示した。
屈曲試験
 屈曲試験はマンドレル屈曲試験にて行った。具体的には電極を幅3cm×長さ8cmに切り、長さ方向の中央(4cm部分)の基材側(電極表面が外側を向くように)に直径2mmのステンレス棒を支えにして180°折り曲げたときの折り曲げ部分の塗膜の状態を観察した。この方法で5回測定を行い、5回とも電極表面のひび割れまたは剥離や集電体からの剥がれが全く生じていない場合を○、1回でも1箇所以上のひび割れまたは剥がれが生じた場合を×と評価した。
密着試験(結着試験)
 密着試験はクロスカット試験にて行った。具体的には電極を幅3cm×長さ4cmに切り、1マスの1辺が1mmとなるように直角の格子パターン状にカッターナイフで切れ込みを入れ、縦5マス×横5マスの25マスからなる碁盤目にテープ(セロテープ(登録商標):ニチバン製)を貼り付け、電極を固定した状態でテープを一気に引き剥がしたとき、電極から剥がれずに残ったマスの数を計測した。試験は5回実施し、その平均値を求めた。
[作製した電池の評価]
 作製した電池の評価としては充放電装置を用いて充放電サイクル特性試験を行い、容量維持率を求めた。評価結果を表1にまとめて示した。
容量維持率
 電気化学特性は(株)ナガノ製の充放電装置を用い、4.2V上限、2.5Vを下限とし、初回から3回目までは8時間で所定の充電および放電が行える試験条件(C/8)、4回目以降は1時間で所定の充電および放電が行える試験条件(1C)にて一定電流通電することにより電池の充放電サイクル特性を評価した。試験温度は60℃の環境とした。可逆容量は4サイクル目の放電容量の値を採用し、容量維持率は充放電を100サイクル行った後の放電容量と4サイクル目の放電容量の比で評価した。
バインダー組成物の合成例
[バインダー組成物の実施合成例1]
 攪拌機付き反応容器に、(A)ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)30重量部、(B)酢酸ビニル15重量部、アクリル酸1.3重量部、メタアクリル酸3.7重量部、メタアクリル酸メチル45重量部、(C)トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)5重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後、冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液をpH8.1に調整してバインダー組成物A(重合転化率99%以上)(固形分濃度17wt%)を得た。得られた重合体の平均粒子径は0.107μmであった。
[バインダー組成物の実施合成例2]
 攪拌機付き反応容器に、(A)ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)50重量部、(B)酢酸ビニル10重量部、アクリル酸1.3重量部、メタアクリル酸3.7重量部、メタアクリル酸メチル30重量部、(C)ペンタエリスリトールトリアクリレート(新中村化学製:A-TMM-3)5重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液をpH8.0に調整し、バインダー組成物B(重合転化率99%以上)(固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.098μmであった。
[バインダー組成物の実施合成例3]
 攪拌機付き反応容器に、(A)ポリエチレングリコールモノアクリレート(日油製:ブレンマーAE-400)30重量部、(B)酢酸ビニル55重量部、アクリル酸2重量部、(C)トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)13重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液をpH8.2に調整し、バインダー組成物C(重合転化率99%以上)(固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.233μmであった。
 [バインダー組成物の比較合成例1]
 攪拌機付き反応容器に、(B)酢酸ビニル70重量部、アクリル酸20重量部、(C)ポリエチレングリコールジアクリレート10重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後、冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液をpH7.8に調整し、バインダー組成物D(重合転化率99%以上)(固形分濃度17wt%)を得た。得られた重合体の平均粒子径は0.098μmであった。
 [バインダー組成物の比較合成例2]
 攪拌機付き反応容器に、(A)ポリエチレングリコールモノアクリレート(日油製:ブレンマーAE-400)55重量部、(B)酢酸ビニル25重量部、メタアクリル酸20重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温した。重合体は微粒子にならずに、撹拌を停止すると1時間程度で沈降した。撹拌しながら冷却後、水酸化ナトリウム水溶液を用いて、重合液をpH7.8に調整し、バインダー組成物E(重合転化率99%以上)(固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.098μmであった。
 [バインダー組成物の比較合成例3] 
 攪拌機付き反応容器に、(A)ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)75重量部、メタアクリル酸20重量部、(C)ポリエチレングリコールジアクリレート5重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後、冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液をpH7.8に調整し、バインダー組成物F(重合転化率99%以上)(固形分濃度18wt%)を得た。得られた重合体の平均粒子径は0.120μmであった。
電極の作製例
 [電極の実施作製例1]
 正極活物質としてニッケル/マンガン/コバルト酸リチウム(3元系)90.6重量部に、導電助剤としてアセチレンブラック6.4重量部、バインダーの実施合成例1で得られたバインダー組成物Aの固形分として1重量部および増粘剤としてカルボキシメチルセルロースのナトリウム塩2重量部を加え、さらにスラリーの固形分濃度が35重量%となるように溶媒なる水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た。
 得られた正極スラリーを厚さ20μmのアルミ集電体上に65μmギャップのブレードコーターを用いて塗布し、110℃真空状態で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ15μmの正極を作製した。屈曲性および結着性の評価結果を表1の実施例1に示す。
[電極の実施作製例2] 
 バインダーの実施合成例2で得られたバインダー組成物Bを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは16μmであった。屈曲性および結着性の評価結果を表1の実施例2に示す。
[電極の実施作製例3] 
 バインダーの実施合成例3で得られたバインダー組成物Cを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは17μmであった。屈曲性および結着性の評価結果を表1の実施例3に示す。
 [電極の比較作製例1] 
 バインダーの比較合成例1で得られたバインダー組成物Dを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは15μmであった。屈曲性および結着性の評価結果を表1の比較例1に示す。
 [電極の比較作製例2] 
 バインダーの比較合成例2で得られたバインダー組成物Eを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは15μmであった。屈曲性および結着性の評価結果を表1の比較例2に示す。
 [電極の比較作製例3] 
 バインダーの比較合成例3で得られたバインダー組成物Fを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは16μmであった。屈曲性および結着性の評価結果を表1の比較例3に示す。
[電極の比較作製例4]
 正極活物質としてニッケル/マンガン/コバルト酸リチウム(3元系)88.7重量部に、導電助剤としてアセチレンブラック6.3重量部、バインダーとしてポリフッ化ビニリデン(PVDF、固形分濃度12wt%のN-メチル-2-ピロリドン溶液)を固形分として5重量部を加え、さらにスラリーの固形分濃度が40%となるように溶媒としてN-メチル-2-ピロリドンを加えて遊星型ミルを用いて十分に混合して正極用スラリー溶液を得た。
 このようにして得られたスラリー溶液を使用した以外は、電極の作製例1と同様にして正極を作製した。得られた正極の厚みは17μmであった。屈曲性および結着性の評価結果を表1の比較例4に示す。
電池の製造例
[コイン電池の実施製造例1(実施例1)]
 アルゴンガスで置換されたグローブボックス内において、電極の実施作製例1で得た正極、セパレーターとして厚み18μmのポリプロピレン/ポリエチレン/ポリプロピレン多孔質膜を2枚、更に対極として厚さ300μmの金属リチウム箔を貼り合わせてた積層物に、電解液として1mol/Lの6フッ化リン酸リチウムのエチレンカーボネートとジメチルカーボネート溶液(体積比1:1)を十分に含浸させてかしめ、試験用2032型コイン電池を製造した。100サイクル後の容量維持率の評価結果を表1の実施例1に示す。
[コイン電池の実施製造例2(実施例2)]
 電極の作製例の実施作製例2で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の実施例2に示す。
[コイン電池の実施製造例3(実施例3)]
 電極の作製例の実施作製例3で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の実施例3に示す。
[コイン電池の比較製造例1(比較例1)]
 電極の作製例の比較作製例1で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例1に示す。
[コイン電池の比較製造例2(比較例2)]
 電極の作製例の比較作製例2で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例2に示す。
[コイン電池の比較製造例3(比較例3)]
 電極の作製例の比較作製例3で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例3に示す。
[コイン電池の比較製造例4(比較例4)]
 電極の作製例の比較作製例4で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例4に示す。
表1に実施例および比較例を示す。
Figure JPOXMLDOC01-appb-T000016
 本発明の電池用バインダー(リチウム二次電池用バインダー)は、高い結着力、環境負荷の小さい水系である点、温度に性能が影響しないという観点から、本バインダーを用いたリチウムイオン二次電池は携帯電話やノートパソコン、カムコーダーなどの電子機器など小型の電池から、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池といった大型のリチウムイオン二次電池用途に好適に利用可能である。
 本発明における別の態様は次のとおりである。
[1]
(I)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と、
(II)一般式(1)
Figure JPOXMLDOC01-appb-C000017
  (式中、Rは炭素数1~18の直鎖もしくは分岐のアルキル基である。)
で表わされる有機酸ビニルエステルモノマー(B)から誘導される構成単位と、
(III)多官能(メタ)アクリレートモノマー(C)から誘導される構成単位と
を含む重合体を含有することを特徴する電池電極用バインダー。
[2]
 水酸基を有する(メタ)アクリレートモノマー(A)の分子量が150~1000のアルキレングリコールモノ(メタ)アクリレートである[1]記載の電池電極用バインダー。
[3]
 多官能(メタ)アクリレートモノマー(C)が2~5官能の(メタ)アクリレートである[1]または[2]に記載の電池電極用バインダー。
[4]
 電池が二次電池である[1]~[3]のいずれかに記載の電池電極用バインダー。
[5]
 [1]~[4]のいずれかに記載のバインダーと活物質とを含有することを特徴とする電池用電極。
[6]
 [5]に記載の電極を有することを特徴とする電池。

Claims (11)

  1. (I)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と、
    (II)一般式(1)
    Figure JPOXMLDOC01-appb-C000001
      (式中、 Rは炭素数1~18の炭化水素基である。)
    で表わされるビニルエステルモノマー(B)から誘導される構成単位と、
    (III)多官能(メタ)アクリレートモノマー(C)から誘導される構成単位と
    を含む重合体を含有することを特徴する電池電極用バインダー。
  2.  水酸基を有する(メタ)アクリレートモノマー(A)の分子量が100~1000のアルキレングリコールモノ(メタ)アクリレートである請求項1に記載の電池電極用バインダー。
  3.  水酸基を有する(メタ)アクリレートモノマー(A)が、一般式:
    Figure JPOXMLDOC01-appb-C000002

    ( 式中、Rは水素または炭素数1~4の直鎖もしくは分岐のアルキル基であり、RおよびRはそれぞれ水素、炭素数1~4の直鎖もしくは分岐のアルキル基、nは1~30の整数である。)
    で示される化合物である請求項1または2に記載の電池電極用バインダー。
  4.  多官能(メタ)アクリレートモノマー(C)が2~5官能の(メタ)アクリレートである請求項1~3のいずれかに記載の電池電極用バインダー。
  5.  多官能(メタ)アクリレートモノマー(C)が、式:
    Figure JPOXMLDOC01-appb-C000003
    (式中、R11は、それぞれ同一または異なって、水素またはメチル基であり、
    12は、5価以下の炭素数2~100の有機基であり、
    mは5以下の整数である。)
    で示される化合物である請求項1~4のいずれかに記載の電池電極用バインダー。
  6.  さらに、(メタ)アクリル酸モノマーおよび(メタ)アクリル酸エステルモノマーからなる群から選択された少なくとも一種のアクリルモノマー(D)から誘導される構成単位を有する請求項1~5のいずれかに記載の電池電極用バインダー。
  7.  (メタ)アクリル酸モノマーが、式:
    Figure JPOXMLDOC01-appb-C000004
    (式中、R31は水素またはメチル基である。)
    で示される化合物であり、
    (メタ)アクリル酸エステルモノマーが、式:
    Figure JPOXMLDOC01-appb-C000005

    (式中、R21は水素またはメチル基であり、
    22は、炭素数1~50の炭化水素基である。)
    で示される化合物である請求項6に記載の電池電極用バインダー。
  8.  水酸基を有するモノマー(A)から誘導される構成単位、有機酸ビニルエステルモノマー(B)から誘導される構成単位、多官能(メタ)アクリレート(C)から誘導される構造単位、(メタ)アクリルモノマー(D)から誘導される構造単位の量が、重合体に対して、(A)10~90重量%、(B)5~70重量%、(C)0.1~50重量%および(D)0~70重量%である請求項1~7のいずれかに記載の電池電極用バインダー。
  9.  電池が二次電池である請求項1~8のいずれかに記載の電池電極用バインダー。
  10.  請求項1~9のいずれかに記載のバインダーと活物質とを含有することを特徴とする電池用電極。
  11.  請求項10記載の電極を有することを特徴とする電池。
PCT/JP2014/078629 2013-10-29 2014-10-28 電池電極用バインダー、およびそれを用いた電極ならびに電池 WO2015064570A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480059461.4A CN105830263B (zh) 2013-10-29 2014-10-28 电池电极用粘合剂、及使用该粘合剂的电极和电池
EP14858247.1A EP3067974B1 (en) 2013-10-29 2014-10-28 Battery electrode binder and battery and electrode using same
US15/032,693 US10003077B2 (en) 2013-10-29 2014-10-28 Battery electrode binder and battery and electrode using same
JP2015545003A JP6164303B2 (ja) 2013-10-29 2014-10-28 電池電極用バインダー、およびそれを用いた電極ならびに電池
KR1020167010390A KR101931418B1 (ko) 2013-10-29 2014-10-28 전지 전극용 바인더, 및 그것을 사용한 전극 그리고 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013224291 2013-10-29
JP2013-224291 2013-10-29

Publications (1)

Publication Number Publication Date
WO2015064570A1 true WO2015064570A1 (ja) 2015-05-07

Family

ID=53004172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078629 WO2015064570A1 (ja) 2013-10-29 2014-10-28 電池電極用バインダー、およびそれを用いた電極ならびに電池

Country Status (6)

Country Link
US (1) US10003077B2 (ja)
EP (1) EP3067974B1 (ja)
JP (1) JP6164303B2 (ja)
KR (1) KR101931418B1 (ja)
CN (1) CN105830263B (ja)
WO (1) WO2015064570A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163302A1 (ja) * 2014-04-21 2015-10-29 和光純薬工業株式会社 リチウム電池用結着剤
WO2017110654A1 (ja) * 2015-12-24 2017-06-29 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
EP3379623A4 (en) * 2015-11-19 2018-10-31 Asahi Kasei Kabushiki Kaisha Binder for electricity storage device and binder composition for electricity storage device
JP2018181700A (ja) * 2017-04-18 2018-11-15 旭化成株式会社 二次電池負極用スラリー、二次電池電極、二次電池、二次電池電極の製法、及び水溶性バインダーの二次電池負極用スラリーとしての使用
JP2020205178A (ja) * 2019-06-17 2020-12-24 株式会社大阪ソーダ 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
CN115842130A (zh) * 2022-08-30 2023-03-24 宁德时代新能源科技股份有限公司 粘结剂组合物、正极极片、二次电池、电池模块、电池包和用电装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP2020057579A (ja) * 2017-12-26 2020-04-09 株式会社大阪ソーダ 負極、及び蓄電デバイス
CN108359050B (zh) * 2018-03-02 2020-06-09 瑞固新能(上海)材料科技有限公司 一种核壳结构的改性丁苯胶乳的制备方法
CN110218285B (zh) * 2019-05-09 2021-09-07 福建蓝海黑石新材料科技有限公司 一种水性粘合剂及其制备方法
JP7442922B2 (ja) * 2020-09-21 2024-03-05 エルジー・ケム・リミテッド 二次電池負極用バインダ、二次電池負極および二次電池
CN114920873A (zh) * 2022-05-09 2022-08-19 瑞固新能(上海)材料科技有限公司 一种锂离子电池隔膜用聚合物微球及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125989A (ja) 1997-07-04 1999-01-29 Jsr Corp 電池電極用バインダー
JP2001256980A (ja) 2000-03-09 2001-09-21 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用
JP2002289174A (ja) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc 電池用活物質混合粉体、電極組成物、二次電池用電極及び二次電池並びに電気二重層キャパシタ用炭素材料混合粉体、分極性電極組成物、分極性電極及び電気二重層キャパシタ
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
JP2006066400A (ja) 2005-08-26 2006-03-09 Nippon Zeon Co Ltd 有機溶媒系バインダー組成物、電極、および電池
JP2006260782A (ja) 2005-03-15 2006-09-28 Jsr Corp 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
WO2011148970A1 (ja) * 2010-05-25 2011-12-01 日本ゼオン株式会社 二次電池用正極及び二次電池
JP2012051999A (ja) * 2010-08-31 2012-03-15 Hitachi Chem Co Ltd バインダ樹脂組成物、エネルギーデバイス用電極及びエネルギーデバイス
WO2013180103A1 (ja) * 2012-05-31 2013-12-05 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2014119481A1 (ja) * 2013-01-29 2014-08-07 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996394A (en) * 1975-03-24 1976-12-07 Union Carbide Corporation Method of improving adhesion to plastic substrates
JPH04270774A (ja) * 1991-02-26 1992-09-28 Nitto Denko Corp 放射線硬化型感圧接着剤及びその接着シート
US20020122985A1 (en) 2001-01-17 2002-09-05 Takaya Sato Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor
JP4822726B2 (ja) * 2005-03-30 2011-11-24 三洋電機株式会社 リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池
DE602006012040D1 (de) 2005-11-01 2010-03-18 Jsr Corp Organische Polymerpartikel und Herstellungsverfahren dafür, magnetische Partikel zur Diagnose, Partikel mit einer Carboxylgruppe und Herstellungsverfahren dafür sowie sondengebundene Partikel und Herstellungsverfahren dafür
JP2012238488A (ja) * 2011-05-12 2012-12-06 Sumitomo Chemical Co Ltd 電極用バインダー、電極及び該電極を有するリチウムイオン二次電池
JP6068973B2 (ja) * 2012-12-21 2017-01-25 デンカ株式会社 電極用バインダー組成物
KR20160129002A (ko) * 2014-03-04 2016-11-08 가부시키가이샤 오사카소다 전지 전극용 바인더, 및 그것을 사용한 전극 그리고 전지

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125989A (ja) 1997-07-04 1999-01-29 Jsr Corp 電池電極用バインダー
JP2001256980A (ja) 2000-03-09 2001-09-21 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用
JP2002289174A (ja) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc 電池用活物質混合粉体、電極組成物、二次電池用電極及び二次電池並びに電気二重層キャパシタ用炭素材料混合粉体、分極性電極組成物、分極性電極及び電気二重層キャパシタ
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
JP2006260782A (ja) 2005-03-15 2006-09-28 Jsr Corp 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
JP2006066400A (ja) 2005-08-26 2006-03-09 Nippon Zeon Co Ltd 有機溶媒系バインダー組成物、電極、および電池
WO2011148970A1 (ja) * 2010-05-25 2011-12-01 日本ゼオン株式会社 二次電池用正極及び二次電池
JP2012051999A (ja) * 2010-08-31 2012-03-15 Hitachi Chem Co Ltd バインダ樹脂組成物、エネルギーデバイス用電極及びエネルギーデバイス
WO2013180103A1 (ja) * 2012-05-31 2013-12-05 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2014119481A1 (ja) * 2013-01-29 2014-08-07 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3067974A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163302A1 (ja) * 2014-04-21 2015-10-29 和光純薬工業株式会社 リチウム電池用結着剤
US10854881B2 (en) 2014-04-21 2020-12-01 Tokyo University Of Science Foundation Binder for lithium cell
EP3379623A4 (en) * 2015-11-19 2018-10-31 Asahi Kasei Kabushiki Kaisha Binder for electricity storage device and binder composition for electricity storage device
US10770706B2 (en) 2015-11-19 2020-09-08 Asahi Kasei Kabushiki Kaisha Binder for electricity storage device and binder composition for electricity storage device
WO2017110654A1 (ja) * 2015-12-24 2017-06-29 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
CN108370038A (zh) * 2015-12-24 2018-08-03 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极及非水系二次电池
JPWO2017110654A1 (ja) * 2015-12-24 2018-10-11 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
JP2018181700A (ja) * 2017-04-18 2018-11-15 旭化成株式会社 二次電池負極用スラリー、二次電池電極、二次電池、二次電池電極の製法、及び水溶性バインダーの二次電池負極用スラリーとしての使用
JP2020205178A (ja) * 2019-06-17 2020-12-24 株式会社大阪ソーダ 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JP7460335B2 (ja) 2019-06-17 2024-04-02 株式会社大阪ソーダ 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
CN115842130A (zh) * 2022-08-30 2023-03-24 宁德时代新能源科技股份有限公司 粘结剂组合物、正极极片、二次电池、电池模块、电池包和用电装置

Also Published As

Publication number Publication date
EP3067974A1 (en) 2016-09-14
EP3067974B1 (en) 2019-02-20
KR101931418B1 (ko) 2018-12-20
JP6164303B2 (ja) 2017-07-19
CN105830263B (zh) 2018-09-14
CN105830263A (zh) 2016-08-03
KR20160077064A (ko) 2016-07-01
EP3067974A4 (en) 2017-04-05
US20160260976A1 (en) 2016-09-08
JPWO2015064570A1 (ja) 2017-03-09
US10003077B2 (en) 2018-06-19

Similar Documents

Publication Publication Date Title
JP6341271B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP5447720B1 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6269510B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6164303B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6268988B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2017110901A1 (ja) 電池電極用バインダー、電極、及び電池
JP6300078B2 (ja) 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
WO2017047640A1 (ja) 非水電解質二次電池用の正極材料
JP6395107B2 (ja) 電池電極用バインダー組成物、およびそれを用いた電極ならびに電池
JP2016046231A (ja) 電池正極用バインダー組成物、およびそれを用いた電極ならびに電池
JP2016192267A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JPWO2019017479A1 (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
WO2018151122A1 (ja) 電極用バインダー
JP2017117522A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2019021575A (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JP2017091789A (ja) 正極、二次電池およびその製造方法
JP7088171B2 (ja) 電極用バインダー、電極材料、電極、及び蓄電デバイス
JPWO2019017480A1 (ja) 電極及び蓄電デバイス
JP2017069006A (ja) 電池電極用バインダー組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545003

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167010390

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15032693

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014858247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014858247

Country of ref document: EP