WO2014119481A1 - 電池電極用バインダー、およびそれを用いた電極ならびに電池 - Google Patents

電池電極用バインダー、およびそれを用いた電極ならびに電池 Download PDF

Info

Publication number
WO2014119481A1
WO2014119481A1 PCT/JP2014/051487 JP2014051487W WO2014119481A1 WO 2014119481 A1 WO2014119481 A1 WO 2014119481A1 JP 2014051487 W JP2014051487 W JP 2014051487W WO 2014119481 A1 WO2014119481 A1 WO 2014119481A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
structural unit
meth
weight
Prior art date
Application number
PCT/JP2014/051487
Other languages
English (en)
French (fr)
Inventor
松尾 孝
倫之 矢野
康史 三木
克人 三浦
Original Assignee
ダイソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイソー株式会社 filed Critical ダイソー株式会社
Priority to US14/762,982 priority Critical patent/US10014525B2/en
Priority to CN201480003598.8A priority patent/CN104871352B/zh
Priority to JP2014559653A priority patent/JP6269510B2/ja
Priority to KR1020157019465A priority patent/KR101858798B1/ko
Publication of WO2014119481A1 publication Critical patent/WO2014119481A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/30Nitriles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder used for an electrode of a battery, an electrode manufactured using the binder, and a battery manufactured using the electrode.
  • the battery includes an electrochemical capacitor and is a primary battery or a secondary battery.
  • Specific examples of the battery are a lithium ion secondary battery and a nickel metal hydride secondary battery.
  • Lithium ion secondary batteries have high energy density and high voltage, and are therefore used in electronic devices such as mobile phones, notebook computers, and camcorders. Recently, due to heightened awareness of environmental protection and the development of related laws, applications as in-vehicle applications such as electric vehicles and hybrid electric vehicles and storage batteries for household power storage are also progressing.
  • a lithium ion secondary battery is generally composed of a negative electrode, a positive electrode, a separator, an electrolytic solution, and a current collector.
  • the negative electrode is coated on a current collector typified by copper foil with a negative electrode active material such as graphite or hard carbon capable of inserting and removing lithium ions, a conductive additive, a binder, and a solvent. Obtained by drying.
  • a negative electrode active material such as graphite or hard carbon capable of inserting and removing lithium ions
  • a conductive additive such as graphite or hard carbon capable of inserting and removing lithium ions
  • a conductive additive such as graphite or hard carbon
  • a binder styrene-butadiene rubber
  • the positive electrode is made by mixing a layered positive electrode active material such as lithium cobaltate or spinel type lithium manganate with a conductive auxiliary such as carbon black, a binder such as polyvinylidene fluoride or polytetrafluoroethylene, and the like.
  • the coating liquid dispersed in such a polar solvent is manufactured by applying and drying on a current collector foil represented by an aluminum foil in the same manner as the negative electrode.
  • binders of lithium ion batteries need to increase the amount of the binder added in order to secure the binding force, and a decrease in performance due to this is a problem.
  • N-methylpyrrolidone is used as a slurry solvent, and an aqueous binder is desired from the viewpoint of recovery, cost, toxicity and environmental load.
  • the binder of the positive electrode still uses polyvinylidene fluoride or polytetrafluoroethylene using N-methylpyrrolidone as a dispersion solvent as a binder, and binds the current collector to the active material or between the active materials.
  • Patent Documents 1 and 2 a binder composition containing an aromatic vinyl, a conjugated diene, and an ethylenically unsaturated carboxylic acid ester as an aqueous binder component, and a styrene-butadiene polymer latex and an acrylic polymer are used.
  • a binder in which binding property and battery performance are improved by preparing a positive electrode and / or a negative electrode using a binder composition containing a combined latex.
  • these binders are used for the positive electrode, there is a concern that there is a problem in oxidation resistance and the battery characteristics deteriorate.
  • Patent Document 3 it is proposed to use a binder composition containing a nitrile group-containing monomer as an aqueous binder component, but the purpose is mainly to increase the viscosity during the preparation of the negative electrode, and in particular, the positive electrode When used in the battery, there is a risk of causing a problem in durability as a battery.
  • Patent Document 4 describes a binder whose binding property and battery performance are improved by producing a positive electrode and / or a negative electrode using a binder composition containing a carboxy-modified styrene-butadiene copolymer. .
  • these binders are used for electrodes (positive electrode and / or negative electrode)
  • the charge / discharge cycle characteristics deteriorate under high temperature conditions.
  • the present invention has been made in view of the above circumstances, has a high binding property, excellent dispersibility, and does not cause oxidative degradation under a positive electrode high voltage, and has a small environmental load and an electrode using the same And to provide a battery.
  • an ethylenically unsaturated monomer containing a structural unit derived from a monomer having a hydroxyl group and a nitrile group or a bifunctional carboxylic acid group or ketone group It is found that the above-mentioned problems can be solved by using a binder composition containing a polymer containing a structural unit derived from a polyfunctional (meth) acrylate monomer and a structural unit derived from a polyfunctional (meth) acrylate monomer. It came to. That is, the present invention relates to the following.
  • Item 1 (A) General formula (1) (Wherein R 1 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are each hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, and n is It is an integer from 2 to 30.)
  • a battery electrode binder comprising a polymer containing Item 2.
  • Item 2 The battery electrode binder according to Item 1, wherein in the formula (1), n is an integer of 4 to 20.
  • the group having a nitrile group (—CN group) is a —B 2 —CN group (wherein B 2 is a direct bond or an alkylene group having 1 to 6 carbon atoms),
  • the group having a bifunctional carboxylic acid group (—COOH group) (dicarboxylic acid group) is a —B 1 —COOH group (where B 1 is a direct bond or an alkylene group having 1 to 6 carbon atoms),
  • the group having a ketone group (> C ⁇ O group) is a —B 3 —CO—B 4 group (where B 3 is a direct bond or an alkylene group having 1 to 6 carbon atoms, and B 4 is 1 to 6 carbon atoms).
  • Item 6 The battery electrode binder according to any one of Items 1 to 3, which is an alkyl group of 6.
  • the battery electrode binder according to any one of Items 1 to 4, which is a compound represented by: Item 6.
  • Item 5 The battery electrode binder according to any one of Items 1 to 4, which is a compound represented by: Item 7.
  • the polyfunctional (meth) acrylate monomer (C) has the formula: (Wherein R 11 s are the same or different and each represents hydrogen or a methyl group; R 12 is a pentavalent or lower organic group having 2 to 100 carbon atoms, m is an integer of 5 or less. )
  • Item 8 The battery electrode binder according to any one of Items 1 to 7, which is a compound represented by: Item 9.
  • Item 9 The battery electrode binder according to any one of Items 1 to 8, wherein the polyfunctional (meth) acrylate (C) is a tri- to 5-functional (meth) acrylate.
  • the battery electrode binder according to claim 1. Item 11.
  • the (meth) acrylic acid ester monomer (D) has the formula: Wherein R 21 is hydrogen or a methyl group, R 22 is a hydrocarbon group having 1 to 50 carbon atoms. )
  • the battery electrode binder according to Item 10 which is a compound represented by: Item 12.
  • the (meth) acrylic acid monomer (E) has the formula: (In the formula, R 31 is hydrogen or a methyl group.) Item 11.
  • the battery electrode binder according to Item 10 which is a compound represented by: Item 13.
  • the amount of the structural unit (A), the structural unit (B), the structural unit (C), the structural unit (D) and the structural unit (E) is based on 100 parts by weight of the structural unit (A).
  • Item 1 which is 1 to 500 parts by weight of the structural unit (B), 0.5 to 100 parts by weight of the structural unit (C), 0 to 500 parts by weight of the structural unit (D), and 0 to 100 parts by weight of the structural unit (E).
  • the binder of the present invention strongly binds the active material and the conductive additive, and the electrode has excellent binding properties with the current collector.
  • the excellent binding property (strong binding property) is considered to be caused by the large surface area of the polymer fine particles dispersed in water and the use of structural units derived from a monomer having a hydroxyl group. It is done.
  • the binder of the present invention provides an electrode having excellent flexibility.
  • the binder of the present invention is suppressed from being dissolved in the electrolytic solution and is not substantially dissolved in the electrolytic solution. This insolubility is considered to be due to a highly crosslinked structure by using a structural unit derived from a polyfunctional (meth) acrylate monomer as a crosslinking agent component.
  • the present invention can provide a battery having a high capacity and a long battery life, particularly a secondary battery.
  • the secondary battery is excellent in charge / discharge cycle characteristics.
  • the secondary battery is excellent in long-term cycle life and cycle charge / discharge characteristics at a high temperature (for example, 60 ° C.).
  • the secondary battery of the present invention can be used at a high voltage and has excellent heat resistance. Since the binder is water-based (the medium is water), the burden on the environment is small and no organic solvent recovery device is required.
  • the binder of the present invention comprises (A) the general formula (1) (Wherein R 1 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are each hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, and n is It is an integer from 2 to 30.)
  • R 1 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are hydrogen, 1 to 4 carbon atoms, respectively. Or a linear or branched alkyl group.
  • R 1 include hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl and isobutyl groups.
  • it is hydrogen or a methyl group.
  • the monomer (A) having a hydroxyl group is preferably a (meth) acrylate monomer (R 1 is hydrogen or a methyl group).
  • R 2 and R 3 include hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl and isobutyl groups. Preferably it is hydrogen or a methyl group.
  • n is an integer of 2 to 30. Preferably n is an integer of 3 to 25, more preferably 4 to 20.
  • the monomer (A) having a hydroxyl group examples include diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, and dipropylene glycol.
  • examples thereof include mono (meth) acrylate, tripropylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate. These can be used alone or in combination of two or more.
  • tetraethylene glycol mono (meth) acrylate tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate are preferable.
  • the functional group-containing ethylenically unsaturated monomer (B) has at least one functional group.
  • the functional group is a nitrile group, a bifunctional carboxylic acid group (dicarboxylic acid group or carboxylic anhydride group), or a ketone group. Dicarboxylic acid groups may be combined to form a carboxylic anhydride group.
  • the group having a nitrile group is preferably a —B 1 —CN group (where B 1 is a direct bond or an alkylene group having 1 to 6 carbon atoms).
  • the group having a bifunctional carboxylic acid group (—COOH group) (dicarboxylic acid group) is a —B 2 —COOH group (where B 2 is a direct bond or an alkylene group having 1 to 6 carbon atoms). Is preferred.
  • the group having a ketone group is a —B 3 —CO—B 4 group (where B 3 is a direct bond or an alkylene group having 1 to 6 carbon atoms, and B 4 is 1 to 6 carbon atoms). 6 is preferred.).
  • a 1 and A 2 or A 1 and A 3 may be combined to form a cyclic hydrocarbon group having two carboxylic acid groups.
  • a cyclic hydrocarbon group may be bonded directly or indirectly to two carboxylic acid groups.
  • the cyclic hydrocarbon group may be a 4- to 10-membered ring, preferably a 6-membered ring, and may be a cycloalkylene group having one ethylenically unsaturated double bond.
  • the cyclic hydrocarbon group may have an epoxy bond.
  • the number of nitrile groups is preferably 1 or 2.
  • the number of carboxylic acid groups is preferably 2, and the number of carboxylic anhydride groups is preferably 1.
  • the number of ketone groups is preferably 1.
  • the examples of a halogen atom are a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • the nitrile group-containing ethylenically unsaturated monomer is not particularly limited as long as it contains a nitrile group, but preferably acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, crotonnitrile, ⁇ -ethylacrylonitrile, vinylidene cyanide, An ⁇ , ⁇ -unsaturated nitrile monomer such as fumaronitrile is used. More preferred are acrylonitrile and methacrylonitrile. These can be used alone or in combination of two or more.
  • ethylenically unsaturated monomer containing a bifunctional carboxylic acid group examples include fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, 1,2,3,6-tetrahydrophthalic acid, 3 -Methyl-1,2,3,6-tetrahydrophthalic acid, 4-methyl-1,2,3,6-tetrahydrophthalic acid, methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic acid Examples include acids, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic acid, and hymic acid.
  • anhydrides of the above-mentioned unsaturated dicarboxylic acids such as maleic anhydride can also be used, and saponified products of these anhydrides may be used (in the present specification, “ethylene containing a bifunctional carboxylic acid group”).
  • the unsaturated unsaturated monomers "free acids, anhydrides and their salts or saponifications are collectively referred to below).
  • ethylenically unsaturated monomer (B) having a ketone group examples include vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, isopropyl vinyl ketone, isobutyl vinyl ketone, t-butyl vinyl ketone, and hexyl vinyl ketone. . These can be used alone or in combination of two or more.
  • the polyfunctional (meth) acrylate monomer (C) works as a crosslinking agent.
  • examples of the polyfunctional (meth) acrylate monomer (C) include bifunctional to pentafunctional (particularly, tri to pentafunctional) (meth) acrylates.
  • the polyfunctional (meth) acrylate monomer (C) is preferably a trifunctional or tetrafunctional (meth) acrylate.
  • the viscosity of the crosslinking agent itself is increased, so that dispersion cannot be performed well by emulsion polymerization, and in addition, physical properties (flexibility and binding properties) as a binder are deteriorated.
  • the polyfunctional (meth) acrylate monomer (C) has the formula: (Wherein R 11 s are the same or different and each represents hydrogen or a methyl group; R 12 is a pentavalent or lower organic group having 2 to 100 carbon atoms, m is an integer of 5 or less. ) It is preferable that it is a compound shown by these.
  • R 12 is a divalent to pentavalent organic group, and m is an integer of 2 to 5. More preferably, R 12 is a trivalent to pentavalent, particularly trivalent to tetravalent organic group, and m is an integer of 3 to 5, particularly 3 to 4.
  • R 12 is a hydrocarbon group, an oxyalkylene group (— (OA 1 ) —, A 1 is an alkylene group having 2 to 4 carbon atoms), a polyoxyalkylene group (— (OA 2 ) p —, and A 2 is a carbon number 2 to 4 alkylene groups, p is 2 to 30), or two or more of these may be included simultaneously.
  • R 12 may contain a substituent.
  • substituents include a hydroxyl group, a carboxylic acid group, a nitrile group, a fluorine atom, an amino group, a sulfonic acid group, a phosphoric acid group, an amide group, an isocyanuric acid group, an oxyalkylene group (-(OA 3 ) -H, A 3 is an alkylene group having 2 to 4 carbon atoms), a polyoxyalkylene group (— (OA 4 ) q —H, A 4 is an alkylene group having 2 to 4 carbon atoms, and q is 2 to 30), alkoxy An oxyalkylene group (-(A 5 -O) -B 1 , A 5 is an alkylene group having 2 to 4 carbon atoms, B 1 is an alkyl group having 1 to 4 carbon atoms), an alkoxy polyoxyalkylene group (-(A 6 -O) r -B 2 and A 6 are alkylene groups having 2 to 4 carbon atoms
  • bifunctional (meth) acrylate examples include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di Examples thereof include (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, dioxane glycol di (meth) acrylate, and bis (meth) acryloyloxyethyl phosphate.
  • trifunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, pentaerythritol tri (meth) acrylate, 2,2,2-tris (meth) Acryloyloxymethyl ethyl succinic acid, ethoxylated isocyanuric acid tri (meth) acrylate, ⁇ -caprolactone modified tris- (2- (meth) acryloxyethyl) isocyanurate, glycerol EO-added tri (meth) acrylate, glycerol PO-added tri Examples include (meth) acrylate and tris (meth) acryloyloxyethyl phosphate. Among these, trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, and pentaerythri
  • tetrafunctional (meth) acrylate examples include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and pentaerythritol EO-added tetra (meth) acrylate.
  • pentafunctional (meth) acrylate examples include dipentaerythritol penta (meth) acrylate.
  • a polyfunctional (meth) acrylate may be 1 type or can use 2 or more types together.
  • each of the monomers (A) to (E) may be one kind or a combination of two or more kinds.
  • the polymer of the present invention is: Structural unit derived from monomer having hydroxyl group represented by formula (1) (A), functional group-containing ethylenically unsaturated monomer (B) and structural unit derived from polyfunctional (meth) acrylate monomer (C )Others, One or both of the structural unit (D) derived from the (meth) acrylic acid ester monomer and the structural unit (E) derived from the (meth) acrylic acid monomer may be included.
  • the polymer of the present invention may have the following structural units. Structural unit (A) + (B) + (C) Structural unit (A) + (B) + (C) + (D) Structural unit (A) + (B) + (C) + (E) Structural unit (A) + (B) + (C) + (D) + (E)
  • the (meth) acrylic acid ester monomer (D) has the formula: Wherein R 21 is hydrogen or a methyl group, R 22 is a hydrocarbon group having 1 to 50 carbon atoms. ) It is preferable that it is a compound shown by these.
  • R 22 is a monovalent organic group, and may be a saturated or unsaturated aliphatic group (for example, a chain aliphatic group or a cyclic aliphatic group), an aromatic group, or an araliphatic group.
  • R 22 is preferably a saturated hydrocarbon group, particularly a saturated aliphatic group.
  • the R 22 group is particularly preferably a branched or straight chain alkyl group.
  • R 22 has 1 to 50 carbon atoms, such as 1 to 30, especially 1 to 20.
  • the structural unit (D) derived from the (meth) acrylate monomer examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, N-butyl (meth) acrylate, isobutyl (meth) acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, And alkyl (meth) acrylates such as lauryl (meth) acrylate.
  • methyl (meth) acrylate Preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and isopropyl (meth) acrylate.
  • These (meth) acrylic acid ester monomers can be used alone or in combination of two or more.
  • the (meth) acrylic acid monomer (E) has the formula: (In the formula, R 31 is hydrogen or a methyl group.) It is preferable that it is a compound shown by these.
  • the structural unit (E) derived from the (meth) acrylic acid monomer include methacrylic acid and acrylic acid, which can be used alone or in combination of two or more. Two combinations of methacrylic acid and acrylic acid may be used in a weight ratio of 1:99 to 99: 1, for example 5:95 to 95: 5, in particular 20:80 to 80:20.
  • Other monomers other than the monomers (A), (B), (C), (D) and (E), for example, vinyl monomers may be further used.
  • vinyl monomers include monomers that are gaseous at standard conditions, specifically ethylene, propylene, vinyl chloride, and monomers that are liquid or solid at standard conditions, particularly monomers (A), (B), ( (Meth) acrylic monomers other than (C), (D) and (E), for example, (meth) acrylic monomers having a hydroxyl group, an amide group, a fluorine atom, a sulfonic acid group or the like as a substituent.
  • the monomers used that is, the monomers (A), (B), (C), (D) and (E) and other monomers
  • the monomers used are ethylenically unsaturated double groups contained in the (meth) acrylic group.
  • the ratio of the structural unit (D) derived from the (meth) acrylic acid ester monomer and the structural unit (E) derived from the (meth) acrylic acid monomer is (A) 1-89.9% by weight, (B) 40-10% by weight, (C) 20-0.1% by weight, (D) 29-0% by weight, and (E) 10-0% by weight.
  • the polymer is derived from a structural unit (A) derived from a monomer having a hydroxyl group, a structural unit (B) derived from a functional ethylenically unsaturated monomer, or a polyfunctional (meth) acrylate that is a crosslinking agent.
  • the amount of the structural unit (C), the structural unit (D) derived from the (meth) acrylic acid ester monomer, and the structural unit (E) derived from the (meth) acrylic acid monomer is For 100 parts by weight of the structural unit (A), Structural unit (B) 1 to 500 parts by weight, preferably 2 to 300 parts by weight, more preferably 3 to 200 parts by weight, Structural unit (C) 0.5 to 100 parts by weight, preferably 1 to 90 parts by weight, more preferably 2 to 80 parts by weight, Structural unit (D) 0 to 500 parts by weight, preferably 1 to 400 parts by weight, more preferably 2 to 300 parts by weight, and structural unit (E) 0 to 100 parts by weight, preferably 0.5 to 80 parts by weight, More preferably, it may be 1 to 50 parts by weight.
  • a method for producing the polymer of the present invention there can be used a general emulsion polymerization method, a soap-free emulsion polymerization method, a seed polymerization method, a method in which a monomer or the like is swollen in seed particles, and then polymerized.
  • a composition containing a monomer, an emulsifier, a polymerization initiator, water, and a dispersant, a chain transfer agent, a pH adjuster, etc. at room temperature in an airtight container equipped with a stirrer and a heating device is an inert gas.
  • Monomers and the like are emulsified in water by stirring in an atmosphere.
  • a method using stirring, shearing, ultrasonic waves, or the like can be applied, and a stirring blade, a homogenizer, or the like can be used.
  • a spherical polymer latex in which the polymer is dispersed in water can be obtained.
  • the produced spherical polymer may be separately isolated and then used after being dispersed in an organic solvent such as N-methylpyrrolidone.
  • a latex of a polymer is obtained by again dispersing in water using a monomer, an emulsifier, a dispersant, or the like.
  • the monomer addition method at the time of polymerization may be monomer dropping, pre-emulsion dropping, or the like in addition to batch preparation, and two or more of these methods may be used in combination.
  • the particle structure of the polymer in the binder of the present invention is not particularly limited.
  • a latex of a polymer containing composite polymer particles having a core-shell structure produced by seed polymerization can be used.
  • the seed polymerization method for example, a method described in “Dispersion / Emulsification System Chemistry” (Publisher: Engineering Books Co., Ltd.) can be used. Specifically, this is a method in which a monomer, a polymerization initiator, and an emulsifier are added to a system in which seed particles produced by the above method are dispersed to grow core particles, and the above method may be repeated one or more times.
  • particles using the polymer of the present invention or a known polymer may be employed.
  • known polymers include polyethylene, polypropylene, polyvinyl alcohol, polystyrene, poly (meth) acrylate and polyether, but are not limited, and other known polymers can be used. Further, one kind of homopolymer or two or more kinds of copolymers or blends may be used.
  • the particle shape of the polymer in the binder of the present invention includes a plate shape, a hollow structure, a composite structure, a localized structure, a daruma-shaped structure, an octopus-like structure, a raspberry-like structure, and the like. Particles having two or more types of structures and compositions can be used without departing from the scope.
  • the emulsifier used in the present invention is not particularly limited, and nonionic emulsifiers and anionic emulsifiers generally used in emulsion polymerization methods can be used.
  • Nonionic emulsifiers include, for example, polyoxyethylene alkyl ether, polyoxyethylene alcohol ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene fatty acid ester and And polyoxyethylene sorbitan fatty acid esters.
  • anionic emulsifiers include alkyl benzene sulfonates, alkyl sulfate esters, polyoxyethylene alkyl ether sulfates, fatty acid salts, and the like. You may use above.
  • Representative examples of the anionic emulsifier include sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, and triethanolamine lauryl sulfate.
  • the amount of the emulsifier used in the present invention may be an amount generally used in the emulsion polymerization method. Specifically, it is in the range of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, and more preferably 0.05 to 3% by weight, based on the amount of monomer charged.
  • the polymerization initiator used in the present invention is not particularly limited, and a polymerization initiator generally used in an emulsion polymerization method can be used. Specific examples thereof include water-soluble polymerization initiators represented by persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate, and oil-soluble polymerization represented by cumene hydroperoxide and diisopropylbenzene hydroperoxide.
  • persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate
  • oil-soluble polymerization represented by cumene hydroperoxide and diisopropylbenzene hydroperoxide.
  • Initiator hydroperoxide, 4-4′-azobis (4-cyanovaleric acid), 2-2′-azobis [2- (2-imidazolin-2-yl) propane, 2-2′-azobis (propane- 2-Carboamidine) 2-2'-azobis [N- (2-carboxyethyl) -2-methylpropanamide, 2-2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazoline- 2-yl] propane ⁇ , 2-2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) and 2-2′-azobis ⁇ 2- And azo initiators such as methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propanamide ⁇ , redox initiators, and the like. These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used in the present invention may be an amount generally used in the emulsion polymerization method. Specifically, it is in the range of 0.01 to 5% by weight, preferably 0.05 to 3% by weight, more preferably 0.1 to 1% by weight, based on the amount of monomer charged.
  • the water used for producing the binder of the present invention is not particularly limited, and generally used water can be used. Specific examples thereof include tap water, distilled water, ion exchange water, and ultrapure water. Among these, distilled water, ion exchange water, and ultrapure water are preferable.
  • a dispersant can be used as necessary, and the kind and amount of use are not particularly limited, and a commonly used dispersant can be freely used in an arbitrary amount.
  • Specific examples include sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, polyacrylic acid or its sodium salt, polyethyleneimine, acrylic acid / maleic acid copolymer or its sodium salt, and the like.
  • a chain transfer agent can be used as necessary.
  • the chain transfer agent include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan, 2,4-diphenyl-4 -Xanthogen compounds such as methyl-1-pentene, 2,4-diphenyl-4-methyl-2-pentene, dimethylxanthogen disulfide, diisopropylxanthogen disulfide, terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram Thiuram compounds such as monosulfide, phenol compounds such as 2,6-di-t-butyl
  • Polymerization time and polymerization temperature are not particularly limited. Although it can be appropriately selected depending on the type of polymerization initiator used, etc., the polymerization temperature is generally 20 to 100 ° C., and the polymerization time is 0.5 to 100 hours.
  • the polymer obtained by the above method can be adjusted in pH by using a base as a pH adjuster as necessary.
  • a base include alkali metal (Li, Na, K, Rb, Cs) hydroxide, ammonia, an inorganic ammonium compound, an organic amine compound, and the like.
  • the pH range is from pH 1 to 11, preferably from pH 2 to 11, more preferably from pH 2 to 10, such as from pH 3 to 10, especially from pH 5 to 9.
  • the binder of the present invention may generally be a binder composition containing a polymer and water, particularly a binder composition in which the polymer is dispersed in water.
  • the content (solid content concentration) of the polymer in the binder composition of the present invention is 0.5 to 80% by weight, preferably 5 to 70% by weight, more preferably 10 to 60% by weight.
  • the particle diameter of the polymer in the binder of the present invention can be measured by a dynamic light scattering method, a transmission electron microscope method, an optical microscope method, or the like.
  • the average particle size calculated from the scattering intensity obtained using the dynamic light scattering method is 0.001 ⁇ m to 1 ⁇ m, preferably 0.001 ⁇ m to 0.500 ⁇ m.
  • Specific examples of the measuring device include Spectris Zetasizer Nano.
  • the method for preparing slurry for battery electrode using the binder of the present invention is not particularly limited, and the binder, active material, conductive additive, water, thickener as necessary, etc. of the present invention. May be dispersed using an ordinary stirrer, disperser, kneader, planetary ball mill, homogenizer, or the like. In order to increase the efficiency of dispersion, heating may be performed within a range that does not affect the material.
  • a production method of the battery electrode is not particularly limited, and a general method is used.
  • paste coating liquid consisting of positive electrode active material or negative electrode active material, conductive additive, binder, water, and thickener as necessary on the surface of current collector by doctor blade method or silk screen method. It is performed by uniformly applying to an appropriate thickness.
  • a negative electrode active material powder, a positive electrode active material powder, a conductive additive, a binder, and the like are dispersed in water to form a slurry, which is applied to a metal electrode substrate, and then is more appropriate for a blade having a predetermined slit width. Uniform to thickness.
  • the electrode is dried in hot air at 100 ° C. or vacuum at 80 ° C., for example, in order to remove excess water and organic solvent after the active material is applied.
  • An electrode material is manufactured by press-molding the dried electrode with a pressing device. You may heat-process again after pressing, and may remove water, a solvent, an emulsifier, etc.
  • the positive electrode material is, for example, a metal electrode substrate as an electrode material substrate, a positive electrode active material on the metal electrode substrate, and a good ion exchange with the electrolyte layer, and the conductive auxiliary agent and the positive electrode active material are fixed to the metal substrate. It is made up of a binder.
  • aluminum is used for the metal electrode substrate, but is not limited thereto, and may be nickel, stainless steel, gold, platinum, titanium, or the like.
  • the positive electrode active material used in the present invention is a lithium metal-containing composite oxide powder having any composition of LiMO 2 , LiM 2 O 4 , Li 2 MO 3 , and LiMEO 4 .
  • M in the formula is mainly composed of a transition metal and includes at least one of Co, Mn, Ni, Cr, Fe, and Ti.
  • M is made of a transition metal, but Al, Ga, Ge, Sn, Pb, Sb, Bi, Si, P, B, etc. may be added in addition to the transition metal.
  • E contains at least one of P and Si.
  • the particle diameter of the positive electrode active material is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less. These active materials have an electromotive force of 3 V (vs. Li / Li +) or more.
  • positive electrode active material examples include lithium cobaltate, lithium nickelate, nickel / manganese / lithium cobaltate (ternary system), spinel type lithium manganate, and lithium iron phosphate.
  • the negative electrode material is, for example, a metal electrode substrate as an electrode material substrate, a negative electrode active material on the metal electrode substrate, and exchange of good ions with the electrolyte layer, and the conductive auxiliary agent and the negative electrode active material are fixed to the metal substrate It is made up of a binder.
  • a metal electrode substrate as an electrode material substrate
  • a negative electrode active material on the metal electrode substrate and exchange of good ions with the electrolyte layer, and the conductive auxiliary agent and the negative electrode active material are fixed to the metal substrate It is made up of a binder.
  • copper is used for the metal electrode substrate, but the metal electrode substrate is not limited to this, and may be nickel, stainless steel, gold, platinum, titanium, or the like.
  • the negative electrode active material used in the present invention is a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (porous structure) capable of occluding and releasing lithium ions, or occluding and releasing lithium ions. It is a powder made of a metal such as lithium, aluminum-based compound, tin-based compound, silicon-based compound, and titanium-based compound. The particle diameter is preferably from 10 nm to 100 ⁇ m, more preferably from 20 nm to 20 ⁇ m. Moreover, you may use as a mixed active material of a metal and a carbon material. It is preferable to use a negative electrode active material having a porosity of about 70%.
  • the conductive aid include conductive carbon black such as graphite, furnace black, acetylene black, and ketjen black, or metal powder. These conductive aids may be used alone or in combination of two or more.
  • the thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, and sodium salts, ammonium salts, polyvinyl alcohol, and polyacrylates thereof. These thickeners may be used alone or in combination of two or more.
  • the following battery manufacturing method is mainly a lithium ion secondary battery manufacturing method.
  • the manufacturing method of the battery, particularly the secondary battery is not particularly limited, and includes a positive electrode, a negative electrode, a separator, an electrolytic solution, and a current collector, and is manufactured by a known method.
  • a positive electrode, a separator, and a negative electrode are inserted into an outer can. This is impregnated with an electrolytic solution. Then, it joins with a sealing body by tab welding etc., a sealing body is enclosed, and a storage battery is obtained by crimping.
  • the shape of the battery is not limited, but examples include a coin type, a cylindrical type, and a sheet type, and a structure in which two or more batteries are stacked may be used.
  • a positive electrode and a negative electrode are directly contacted to prevent a short circuit in the storage battery, and a known material can be used. Specifically, it is made of a porous polymer film such as polyolefin or paper. As the porous polymer film, a film such as polyethylene or polypropylene is preferable because it is not affected by the electrolytic solution.
  • the electrolytic solution is a solution comprising an electrolyte lithium salt compound and an aprotic organic solvent as a solvent.
  • the electrolyte lithium salt compound a lithium salt compound having a wide potential window, which is generally used in lithium ion batteries, is used.
  • aprotic organic solvents examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, Linear ethers such as dipropyl carbonate, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetic acid ester, propionic acid ester, diethyl ether can be used. Good.
  • a room temperature molten salt can be used as the solvent.
  • the room temperature molten salt refers to a salt that is at least partially in a liquid state at room temperature, and the room temperature refers to a temperature range in which a power supply is assumed to normally operate.
  • the temperature range in which the power supply is assumed to operate normally has an upper limit of about 120 ° C., in some cases about 60 ° C., and a lower limit of about ⁇ 40 ° C., in some cases about ⁇ 20 ° C.
  • the room temperature molten salt is also called an ionic liquid and is a “salt” composed of only ions (anions and cations), and in particular, a liquid compound is called an ionic liquid.
  • quaternary ammonium organic cation examples include imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, and piperidinium ions.
  • imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, and piperidinium ions.
  • an imidazolium cation is preferable.
  • tetraalkylammonium ions include, but are not limited to, trimethylethylammonium ion, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, and triethylmethylammonium ion. is not.
  • the alkylpyridinium ions include N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion, N-butylpyridinium ion, 1-ethyl-2methylpyridinium ion, 1-butyl-4-methyl Examples thereof include, but are not limited to, pyridinium ions and 1-butyl-2,4 dimethylpyridinium ions.
  • Examples of the imidazolium cation include 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- Examples include 2,3-dimethylimidazolium ion, but are not limited thereto.
  • anionic species include halide ions such as chloride ions, bromide ions and iodide ions, inorganic acids such as perchlorate ions, thiocyanate ions, tetrafluoroborate ions, nitrate ions, AsF 6 ⁇ and PF 6 ⁇
  • Organic acid ions such as ions, stearyl sulfonate ions, octyl sulfonate ions, dodecylbenzene sulfonate ions, naphthalene sulfonate ions, dodecyl naphthalene sulfonate ions, 7,7,8,8-tetracyano-p-quinodimethane ions Etc. are exemplified.
  • normal temperature molten salt may be used independently or may be used in mixture of 2 or more types.
  • flame retardants and flame retardants include brominated epoxy compounds, phosphazene compounds, tetrabromobisphenol A, halides such as chlorinated paraffin, antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, phosphate esters, Examples thereof include polyphosphate and zinc borate.
  • the negative electrode surface treatment agent include vinylene carbonate, fluoroethylene carbonate, and polyethylene glycol dimethyl ether.
  • the positive electrode surface treatment agent include inorganic compounds such as carbon and metal oxides (such as MgO and ZrO 2 ), and organic compounds such as ortho-terphenyl.
  • the overcharge inhibitor include biphenyl and 1- (p-tolyl) adamantane.
  • an electrode and a coin battery were produced using the binder of the present invention, and the bending test and adhesion test were performed as the evaluation of the electrode, and the charge / discharge cycle characteristic performance was evaluated as the evaluation of the coin battery in the following experiment.
  • the bending test was performed by a mandrel bending test. Specifically, the electrode is cut into a width of 3 cm and a length of 8 cm, and 180 ° with a stainless steel rod having a diameter of 2 mm on the base side (the electrode surface faces the outside) at the center (4 cm portion) in the length direction. The state of the coating film at the bent portion when bent was observed. Measurement is performed 5 times by this method, and the case where the electrode surface is not cracked or peeled off or peeled off from the current collector at all 5 times. The case where one or more cracks or peeling occurs even once. It was evaluated.
  • Adhesion test (binding test) The adhesion test was performed by a cross cut test. Specifically, the electrode is cut to a width of 3 cm ⁇ length of 4 cm, and a grid pattern is cut with a cutter knife so that one side of one square is 1 mm, and from 25 squares of vertical 5 squares ⁇ horizontal 5 squares.
  • a tape cello tape (registered trademark): manufactured by Nichiban) was applied to the grid, and the tape was peeled off at a stretch with the electrode fixed, the number of cells remaining without being peeled off from the electrode was measured. The test was performed 5 times, and the average value was obtained.
  • Example of synthesis of binder composition [Exemplary Synthesis Example 1 of Binder Composition]
  • a reaction vessel equipped with a stirrer 55 parts by weight of polypropylene glycol monoacrylate (manufactured by NOF: Bremer AP-400), 35 parts by weight of acrylonitrile, 1.3 parts by weight of acrylic acid, 3.7 parts by weight of methacrylic acid, trimethylolpropane tri 5 parts by weight of acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: A-TMPT), 1 part by weight of sodium dodecyl sulfate as an emulsifier, 500 parts by weight of ion-exchanged water and 1 part by weight of potassium persulfate as a polymerization initiator were used, and an ultrasonic homogenizer was used.
  • polypropylene glycol monoacrylate manufactured by NOF: Bremer AP-400
  • acrylonitrile 35 parts by weight of acrylonitrile
  • the mixture After sufficiently emulsifying, the mixture was heated to 60 ° C. in a nitrogen atmosphere and polymerized for 5 hours. After completion of the polymerization, the mixture was cooled to obtain a binder composition A1 (polymerization conversion rate 99% or more) (pH 3.2, solid content concentration 18 wt%). The average particle size of the obtained polymer was 0.157 ⁇ m.
  • the average particle diameter of the obtained polymer was 0.200 ⁇ m.
  • the mixture was sufficiently emulsified and then heated to 60 ° C. in a nitrogen atmosphere and polymerized for 5 hours. After completion of the polymerization, the mixture was cooled to obtain a binder composition C1 (polymerization conversion rate 99% or more) (pH 3.6, solid content concentration 17 wt%).
  • the average particle size of the obtained polymer was 0.171 ⁇ m.
  • binder composition D1 polymerization conversion rate 99% or more
  • pH 3.5 solid content concentration 17 wt%
  • the average particle size of the obtained polymer was 0.123 ⁇ m.
  • the mixture was cooled to obtain a binder composition E1 (polymerization conversion rate of 99% or more) (pH 2.8, solid content concentration 16 wt%).
  • the average particle diameter of the obtained polymer was 0.131 ⁇ m.
  • the mixture was sufficiently emulsified and then heated to 60 ° C. under a nitrogen atmosphere to polymerize for 5 hours, and then cooled. After cooling, the pH of the polymerization solution is adjusted from 2.5 to 7.1 using a 24% aqueous sodium hydroxide solution to obtain a binder composition B2 (polymerization conversion rate 99% or more) (solid content concentration 16 wt%). It was. The average particle diameter of the obtained polymer was 0.112 ⁇ m.
  • binder composition D2 (polymerization conversion rate of 99% or more) (pH 3.3, solid content concentration 17 wt%).
  • the average particle size of the obtained polymer was 0.119 ⁇ m.
  • the mixture was cooled to obtain a binder composition E2 (polymerization conversion rate of 99% or more) (pH 2.9, solid content concentration 17 wt%).
  • the average particle diameter of the obtained polymer was 0.126 ⁇ m.
  • Example of electrode production [Example 1 of electrode production] The binder composition A1 obtained in Example 1 of Synthesis Example 1 with 90.6 parts by weight of nickel / manganese / lithium cobaltate (ternary system) as the positive electrode active material, 6.4 parts by weight of acetylene black as the conductive assistant, Add 1 part by weight of solid and 2 parts by weight of sodium salt of carboxymethylcellulose as a thickener, and add water as a solvent so that the solid content of the slurry is 35% by weight. By mixing, a positive electrode slurry was obtained. The obtained positive electrode slurry was coated on a 20 ⁇ m thick aluminum current collector using a 150 ⁇ m gap die coater, dried at 110 ° C. in a vacuum state for 12 hours or more, and then pressed by a roll press machine. A 36 ⁇ m positive electrode was produced. The evaluation results of flexibility and binding property are shown in Example 1 of Table 1.
  • Example 2 of electrode production A positive electrode was produced in the same manner as in Example 1 of the electrode except that the binder composition B1 obtained in Example 2 of binder synthesis was used. The thickness of the positive electrode obtained was 34 ⁇ m. The evaluation results of flexibility and binding property are shown in Example 2 of Table 1.
  • Example 3 of electrode production A positive electrode was prepared in the same manner as in Example 1 of the electrode except that the binder composition C1 obtained in Example 3 of binder synthesis was used. The thickness of the obtained positive electrode was 35 ⁇ m. The evaluation results of flexibility and binding property are shown in Example 3 of Table 1.
  • a positive electrode was produced in the same manner as in Example 1 of the electrode except that the binder composition D1 obtained in Comparative Synthesis Example 1 of the binder was used.
  • the thickness of the obtained positive electrode was 35 ⁇ m.
  • the evaluation results of flexibility and binding property are shown in Comparative Example 1 in Table 1.
  • a positive electrode was produced in the same manner as in Example 1 of the electrode except that the binder composition E1 obtained in Comparative Synthesis Example 2 of the binder was used.
  • the thickness of the positive electrode obtained was 34 ⁇ m.
  • the evaluation results of flexibility and binding property are shown in Comparative Example 2 in Table 1.
  • Example 4 of electrode production The binder composition A2 obtained in Example 4 of Synthesis Example 4 of nickel / manganese / lithium cobaltate (ternary) 90.6 parts by weight as a positive electrode active material, 6.4 parts by weight acetylene black as a conductive additive, and binder Add 1 part by weight of solid and 2 parts by weight of sodium salt of carboxymethylcellulose as a thickener, and add water as a solvent so that the solid content of the slurry is 35% by weight. By mixing, a positive electrode slurry was obtained. The obtained positive electrode slurry was coated on a 20 ⁇ m thick aluminum current collector using a 150 ⁇ m gap die coater, dried at 110 ° C. in a vacuum state for 12 hours or more, and then pressed by a roll press machine. A 34 ⁇ m positive electrode was produced. Evaluation results of flexibility and binding properties are shown in Example 4 of Table 2.
  • Example 5 of electrode production A positive electrode was produced in the same manner as in Example Production 4 of the electrode except that the binder composition B2 obtained in Example 5 of binder synthesis was used. The thickness of the obtained positive electrode was 35 ⁇ m. The evaluation results of flexibility and binding properties are shown in Example 5 in Table 2.
  • Example 6 of electrode production A positive electrode was produced in the same manner as in Example Production 4 of the electrode except that the binder composition C2 obtained in Synthesis Example 6 of the binder was used. The thickness of the obtained positive electrode was 35 ⁇ m. Evaluation results of flexibility and binding property are shown in Example 6 of Table 2.
  • a positive electrode was produced in the same manner as in Example Production Example 4 except that the binder composition D2 obtained in Comparative Synthesis Example 3 of the binder was used.
  • the thickness of the positive electrode obtained was 36 ⁇ m.
  • the evaluation results of flexibility and binding property are shown in Comparative Example 4 in Table 2.
  • a positive electrode was produced in the same manner as in Example Production Example 4 except that the binder composition E2 obtained in Comparative Synthesis Example 4 of the binder was used.
  • the thickness of the positive electrode obtained was 36 ⁇ m.
  • the evaluation results of flexibility and binding properties are shown in Comparative Example 2 in Table 2.
  • Electrode Comparative Production Example 6 88.7 parts by weight of nickel / manganese / lithium cobaltate (ternary system) as the positive electrode active material, 6.3 parts by weight of acetylene black as the conductive auxiliary agent, and polyvinylidene fluoride (PVDF, solid content concentration of 12 wt% N as the binder) -Methyl-2-pyrrolidone solution) is added as a solid, 5 parts by weight, and N-methyl-2-pyrrolidone is added as a solvent so that the solid content of the slurry is 40%.
  • PVDF polyvinylidene fluoride
  • N-methyl-2-pyrrolidone solution is added as a solvent so that the solid content of the slurry is 40%.
  • Example of battery production [Example of coin battery production 1]
  • the positive electrode obtained in Example 1 of electrode fabrication two 18 ⁇ m-thick polypropylene / polyethylene / polypropylene porous membranes as separators, and a 300 ⁇ m-thick metal lithium foil as a counter electrode
  • a 2032 type coin battery for testing is obtained by sufficiently impregnating the laminated product with 1 mol / L lithium hexafluorophosphate ethylene carbonate and dimethyl carbonate solution (volume ratio 1: 1) as an electrolytic solution. Manufactured. The evaluation results of the capacity retention rate after 100 cycles are shown in Example 1 of Table 1.
  • Example of coin battery production 2 Example of electrode production A coin battery was produced in the same manner as Example 1 of the coin battery except that the positive electrode obtained in Production Example 2 was used. The evaluation results of the capacity retention rate after 100 cycles are shown in Example 2 of Table 1.
  • Example 3 of coin battery production Example of electrode production A coin battery was produced in the same manner as Example 1 of the coin battery except that the positive electrode obtained in Production Example 3 was used. The evaluation results of the capacity retention rate after 100 cycles are shown in Example 3 of Table 1.
  • Table 1 shows examples and comparative examples.
  • Example of coin battery production 4 In the glove box substituted with argon gas, the positive electrode obtained in Example 4 of the electrode, two 18 ⁇ m-thick polypropylene / polyethylene / polypropylene porous membranes as separators, and a 300 ⁇ m-thick metal lithium foil as the counter electrode
  • a 2032 type coin battery for testing is obtained by sufficiently impregnating the laminated product with 1 mol / L lithium hexafluorophosphate ethylene carbonate and dimethyl carbonate solution (volume ratio 1: 1) as an electrolytic solution. Manufactured. The evaluation results of the capacity retention rate after 100 cycles are shown in Example 4 of Table 2.
  • Example 5 of coin battery production Example of electrode production A coin battery was produced in the same manner as Example 4 of the coin battery except that the positive electrode obtained in Production Example 5 was used. The evaluation results of the capacity retention rate after 100 cycles are shown in Example 5 of Table 2.
  • Example 6 of coin battery production Example of electrode production A coin battery was produced in the same manner as Example 4 of the coin battery except that the positive electrode obtained in Production Example 3 was used. The evaluation results of the capacity retention rate after 100 cycles are shown in Example 6 of Table 2.
  • Table 2 shows examples and comparative examples.
  • the binder for lithium secondary batteries of the present invention is a water system with high binding power and low environmental load, and from the viewpoint that performance does not affect temperature, lithium ion secondary batteries using this binder are mobile phones and notebook computers. It can be suitably used for small-sized batteries such as electronic devices such as camcorders, in-vehicle applications such as electric vehicles and hybrid electric vehicles, and large-sized lithium ion secondary battery applications such as storage batteries for household power storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 (A)一般式(1)( 式中、Rは水素または炭素数1~4の直鎖もしくは分岐のアルキル基であり、RおよびRはそれぞれ水素、炭素数1~4の直鎖もしくは分岐のアルキル基、nは2~30の整数である。) で表わされる水酸基を有するモノマーから誘導される構成単位と、 (B)2官能のカルボン酸基、ニトリル基およびケトン基からなる群から選択された少なくとも1種の官能性基を有するエチレン性不飽和モノマーから誘導される構成単位と、 (C)5官能以下の多官能(メタ)アクリレートモノマーとから誘導される構成単位、 を含む重合体を含有することを特徴する電池電極用バインダー。

Description

電池電極用バインダー、およびそれを用いた電極ならびに電池
 本発明は電池の電極に用いられるバインダー、該バインダーを用いて製造される電極、および該電極を用いて製造される電池に関する。本明細書において、電池とは、電気化学キャパシタを包含しており、一次電池または二次電池である。電池の具体例は、リチウムイオン二次電池およびニッケル水素二次電池である。
 電池の電極において、バインダーを用いることが知られている。バインダーを用いた電極を有する電池の代表例として、リチウムイオン二次電池が挙げられる。
 リチウムイオン二次電池はエネルギー密度が高く、高電圧であるため、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では環境保護への意識の高まりや関連法の整備により、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池としての応用も進んできている。
 リチウムイオン二次電池は一般的に負極、正極、セパレータ、電解液、集電体で構成される。電極に関して、負極はリチウムイオンの挿入脱離が可能なグラファイトやハードカーボンなどの負極活物質と導電助剤、バインダー、溶媒からなる塗工液を銅箔に代表される集電体上に塗布、乾燥して得られる。現在一般的には、バインダーとしてスチレン-ブタジエンゴム( 以下、「SBR」と略す)を水に分散させたものが用いられている。
 一方、正極は層状のコバルト酸リチウムやスピネル型マンガン酸リチウム等の正極活物質とカーボンブラック等の導電助剤、ポリフッ化ビニリデンやポリ四フッ化エチレン等のバインダーを混合し、N-メチルピロリドンのような極性溶媒に分散させた塗工液をアルミニウム箔に代表される集電体箔上に負極と同様に塗布、乾燥して製造されている。
 これらのリチウムイオン電池のバインダーは、結着力を確保するためにバインダーの添加量を多くする必要があり、そのことによる性能の低下が課題として挙げられる。また、N-メチルピロリドンをスラリー溶媒に用いており、回収、コスト、毒性および環境負荷の観点から、水系バインダーが望まれている。しかしながら、水系であるSBR系バインダーを用いた場合では正極環境下において酸化劣化するといった課題が挙げられる。そのため、依然として正極のバインダーには現行のN-メチルピロリドンを分散溶媒に用いたポリフッ化ビニリデンやポリ四フッ化エチレンがバインダーとして用いられており、集電体と活物質や活物質同士の結着性に優れ、環境負荷が少ない水系であり、かつ耐酸化性の高い二次電池用の電極の製造に適したバインダーの開発が急務となっている。
 上記課題を解決するために特許文献1および2では、水系バインダー成分として、芳香族ビニル、共役ジエン、およびエチレン性不飽和カルボン酸エステルを含むバインダー組成物、およびスチレン-ブタジエン重合体ラテックスおよびアクリル重合体ラテックスを含むバインダー組成物を用いて正極および/または負極を作成することによって、結着性と電池性能が改善されたバインダーの記載がなされている。しかしながら、これらのバインダーを正極に用いた場合、耐酸化性に問題があり、電池特性が悪くなることが懸念される。特許文献3では、水系バインダー成分として、ニトリル基含有単量体を含むバインダー組成物を用いることが提案されているが、主に負極作製時の増粘性を上げることが目的であり、特に、正極で用いた場合には、電池としての耐久性に問題をきたす恐れがある。
 特許文献4では、カルボキシ変性スチレン-ブタジエン系共重合体を含むバインダー組成物を用いて正極および/または負極を作製することによって、結着性と電池性能が改善されたバインダーの記載がなされている。しかしながら、これらのバインダーを電極(正極および/または負極)に用いた場合、高温条件下において、充放電サイクル特性の低下が起こる。特に、正極に用いた場合、高電圧条件下では耐酸化性に問題があり、電池特性が悪くなることが懸念される。
特開2001-076731号公報 特開2006-260782号公報 特開2012-51999号公報 特開2011-108373号公報
 本発明は上記事情に鑑みなされたものであり、結着性が高く、分散性に優れ、かつ正極高電圧下で酸化劣化を起こさない、環境負荷の小さな水系バインダー組成物およびそれを用いた電極および電池を提供することを目的とする。
 本発明者らは、上記目的を達成するために検討を重ねた結果、水酸基を有するモノマーから誘導される構成単位と、ニトリル基または2官能のカルボン酸基またはケトン基を含むエチレン性不飽和モノマーから誘導される構成単位と、多官能(メタ)アクリレートモノマーから誘導される構成単位とを含む重合体を含有するバインダー組成物を用いることにより、上記課題を解決することを見出し、本発明をなすに至った。すなわち本発明は以下に関する。
項1.
(A)一般式(1)
Figure JPOXMLDOC01-appb-C000005
( 式中、Rは水素または炭素数1~4の直鎖もしくは分岐のアルキル基であり、RおよびRはそれぞれ水素、炭素数1~4の直鎖もしくは分岐のアルキル基、nは2~30の整数である。)
で表わされる水酸基を有するモノマーから誘導される構成単位と、
(B)2官能のカルボン酸基、ニトリル基およびケトン基からなる群から選択された少なくとも1種の官能性基を有するエチレン性不飽和モノマーから誘導される構成単位と、
(C)5官能以下の多官能(メタ)アクリレートモノマーとから誘導される構成単位、
を含む重合体を含有することを特徴する電池電極用バインダー。
項2.
 式(1)において、nは4~20の整数である、項1記載の電池電極用バインダー。
項3.
 官能性基含有エチレン性不飽和モノマー(B)は、式:
  (A1-)(A2-)C=C(-A3)(-A4)       (2)
[式中、A1は、ニトリル基(-CN基)、カルボン酸基(-COOH基)またはケトン基(>C=O基)を有する基であり、
A2およびA3のそれぞれは、同一または異なって、水素原子、ハロゲン原子、炭素数1~6のアルキル基、ニトリル基(-CN基)またはカルボン酸基(-COOH基)を有する基、
A4は、水素原子、ハロゲン原子、炭素数1~6のアルキル基であり、
A1とA2またはA1とA3は、一体となって、2つのカルボン酸基を有する環状炭化水素基を形成してよい。]
で示される化合物である項1または2に記載の電池電極用バインダー。
項4.
 ニトリル基(-CN基)を有する基は、-B2-CN基(ただし、B2は直接結合または炭素数1~6のアルキレン基である。)であり、
 2官能カルボン酸基(-COOH基)(ジカルボン酸基)を有する基は、-B1-COOH基(ただし、B1は直接結合または炭素数1~6のアルキレン基である。)であり、
 ケトン基(>C=O基)を有する基は、-B3-CO-B4基(ただし、B3は直接結合または炭素数1~6のアルキレン基であり、Bは炭素数1~6のアルキル基である。)である項1~3のいずれかに記載の電池電極用バインダー。
項5.
 ニトリル基(-CN基)を有するエチレン性不飽和モノマーは、式:
  (CN-)(X11-)C=C(-X12)(-X13)
[式中、X11は、水素原子、炭素数1~6のアルキル基、ハロゲン原子またはシアノ基であり、
X12は、水素原子、炭素数1~6のアルキル基またはシアノ基であり、
X13は、水素原子、炭素数1~6のアルキル基またはハロゲン原子である。]
で示される化合物である項1~4のいずれかに記載の電池電極用バインダー。
項6.
 2官能のカルボン酸基を有するエチレン性不飽和モノマーは、式:
  (HOOC-X21-)(HOOC-X22-)m(-X23)1-m C=C(-X22-COOH)1-m (-X23)(-X24)  
[式中、X21およびX22のそれぞれは、同一または異なって、直接結合、または炭素数1~6のアルキレン基であり、
X23およびX24のそれぞれは、同一または異なって、水素原子、炭素数1~6のアルキル基、またはハロゲン原子であり、
mは0または1である。]
で示される化合物である項1~4のいずれかに記載の電池電極用バインダー。
項7.
 ケトン基を有するエチレン性不飽和モノマーは、式:
  (X31-CO-X32-)(X33-)C=C(-X34)(-X35)
[式中、X31、X33、X34およびX35のそれぞれは、同一または異なって、水素原子、炭素数1~6のアルキル基またはハロゲン原子であり、
X32は、直接結合、または炭素数1~6のアルキレン基である。]
で示される化合物である項1~4のいずれかに記載の電池電極用バインダー。
項8.
 多官能(メタ)アクリレートモノマー(C)が、式:
Figure JPOXMLDOC01-appb-C000006
(式中、R11は、それぞれ同一または異なって、水素またはメチル基であり、
12は、5価以下の炭素数2~100の有機基であり、
mは5以下の整数である。)
で示される化合物である項1~7のいずれかに記載の電池電極用バインダー。
項9.
 多官能(メタ)アクリレート(C)が3~5官能の(メタ)アクリレートである項1~8のいずれかに記載の電池電極用バインダー。
項10.
 重合体が、さらに、(メタ)アクリル酸エステルモノマーから誘導される構成単位(D)および(メタ)アクリル酸モノマーから誘導される構成単位(E)の一方または両方を有する項1~9のいずれかに記載の電池電極用バインダー。
項11.
 (メタ)アクリル酸エステルモノマー(D)が、式:
Figure JPOXMLDOC01-appb-C000007
(式中、R21は水素またはメチル基であり、
22は、炭素数1~50の炭化水素基である。)
で示される化合物である項10に記載の電池電極用バインダー。
項12.
 (メタ)アクリル酸モノマー(E)が、式:
Figure JPOXMLDOC01-appb-C000008
(式中、R31は水素またはメチル基である。)
で示される化合物である項10に記載の電池電極用バインダー。
項13.
 重合体において、構成単位(A)、構成単位(B)、構成単位(C)、構成単位(D)および構成単位(E)の量は、構成単位(A)100重量部に対して、
構成単位(B)1~500重量部、構成単位(C)0.5~100重量部、構成単位(D)0~500重量部、および構成単位(E)0~100重量部である項1~12のいずれかに記載の電池電極用バインダー。
項14.
 電池が二次電池である項1~13のいずれかに記載の電池電極バインダー。
項15.
 項1~14のいずれかに記載のバインダーと活物質とを含有することを特徴とする電池電極。
項16.
 項15記載の電極を有することを特徴とする電池。
 本発明のバインダーは活物質や導電助剤を強く結着させ、電極は集電体との結着性に優れる。優れた結着性(強い結着性)は、水に分散した重合体の微粒子の表面積が大きいこと、および水酸基を有するモノマーから誘導される構成単位を用いていることが原因していると考えられる。
 本発明のバインダーは、屈曲性に優れる電極を提供する。
 本発明のバインダーは、電解液への溶解が抑制されており、実質的に電解液に溶解しない。この非溶解性は、架橋剤成分に多官能(メタ)アクリレートモノマーから誘導される構成単位を用いることにより高度に架橋した構造であるためと考えられる。
 本発明は、高容量を有し、電池寿命が長い電池、特に二次電池を提供することができる。二次電池は充放電サイクル特性に優れている。特に、二次電池は、長期サイクル寿命と高温(例えば、60℃)でのサイクル充放電特性に優れている。
 本発明の二次電池は、高電圧で使用でき、かつ優れた耐熱性を有する。
 バインダーは、水系(媒体が水である。)であるので、環境への負荷が少なく、有機溶媒の回収装置を必要としない。
 本発明のバインダーは
(A)一般式(1)
Figure JPOXMLDOC01-appb-C000009
( 式中、Rは水素または炭素数1~4の直鎖もしくは分岐のアルキル基であり、RおよびRはそれぞれ水素、炭素数1~4の直鎖もしくは分岐のアルキル基、nは2~30の整数である。)
で表わされる水酸基を有するモノマーから誘導される構成単位と、
(B)ニトリル基、2官能のカルボン酸基、およびケトン基からなる群から選択された少なくとも1種の官能性基を有するエチレン性不飽和モノマーから誘導される構成単位と、
(C)5官能以下の多官能(メタ)アクリレートモノマーとから誘導される構成単位と、
を含む重合体を含有することを特徴する。
 以下に、本発明の重合体の構成単位について詳細に説明する。
 水酸基を有するモノマー(A)の一般式(1)において、Rは水素または炭素数1~4の直鎖もしくは分岐のアルキル基であり、RおよびRはそれぞれ水素、炭素数1~4の直鎖もしくは分岐のアルキル基から選ばれる。Rは、水素、メチル、エチル、プロピル、イソプロピル、n-ブチルおよびイソブチル基などが挙げられる。好ましくは水素またはメチル基である。すなわち、水酸基を有するモノマー(A)は、(R1が水素またはメチル基である)(メタ)アクリレートモノマーであることが好ましい。RおよびRは、水素、メチル、エチル、プロピル、イソプロピル、n-ブチルおよびイソブチル基などが挙げられる。好ましくは水素またはメチル基である。nは2~30の整数である。好ましくはnが3~25、より好ましくは4~20の整数である。
 水酸基を有するモノマー(A)の具体例としては、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、およびポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、およびポリプロピレングリコールモノ(メタ)アクリレートなどが挙げられる。これらは1種または2種以上併用できる。これらの中でも、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートが好ましい。
 官能性基含有エチレン性不飽和モノマー(B)は、少なくとも1つの官能性基を有する。官能性基は、ニトリル基、2官能のカルボン酸基(ジカルボン酸基またはカルボン酸無水物基)、またはケトン基である。ジカルボン酸基が一体となってカルボン酸無水物基を形成してもよい。
 官能性基含有エチレン性不飽和モノマー(B)は、式:
  (A1-)(A2-)C=C(-A3)(-A4)       (2)
[式中、A1は、ニトリル基(-CN基)、カルボン酸基(-COOH基)またはケトン基(>C=O基)を有する基であり、
A2およびA3のそれぞれは、同一または異なって、水素原子、ハロゲン原子、炭素数1~6のアルキル基、ニトリル基(-CN基)またはカルボン酸基(-COOH基)を有する基、
A4は、水素原子、ハロゲン原子、炭素数1~6のアルキル基であり、
A1とA2またはA1とA3は、一体となって、2つのカルボン酸基を有する環状炭化水素基を形成してよい。]
で示される化合物であることが好ましい。
 本明細書において、「ケトン基」とは、カルボン酸基または-C(=O)-O-を除いた基を意味する。
 ニトリル基(-CN基)を有する基は、-B1-CN基(ただし、B1は直接結合または炭素数1~6のアルキレン基である。)であることが好ましい。
 2官能カルボン酸基(-COOH基)(ジカルボン酸基)を有する基は、-B2-COOH基(ただし、B2は直接結合または炭素数1~6のアルキレン基である。)であることが好ましい。
 ケトン基(>C=O基)を有する基は、-B3-CO-B4基(ただし、B3は直接結合または炭素数1~6のアルキレン基であり、Bは炭素数1~6のアルキル基である。)であることが好ましい。
 A1とA2またはA1とA3は、一体となって、2つのカルボン酸基を有する環状炭化水素基を形成してよい。A1とA2またはA1とA3において、環状炭化水素基が、直接的にまたは間接的に2つのカルボン酸基に結合していてよい。環状炭化水素基は、4~10員環、好ましくは6員環であってよく、1つのエチレン性不飽和二重結合を有するシクロアルキレン基であってよい。環状炭化水素基は、エポキシ結合を有していてよい。
 官能性基含有エチレン性不飽和モノマー(B)において、ニトリル基の数は1または2であることが好ましい。官能性基含有エチレン性不飽和モノマー(B)において、カルボン酸基の数は2であることが好ましく、カルボン酸無水物基の数は1であることが好ましい。官能性基含有エチレン性不飽和モノマー(B)において、ケトン基の数は1であることが好ましい。
 本明細書において、ハロゲン原子の例は、フッ素原子、塩素原子、臭素原子およびヨウ素原子であり、塩素原子が好ましい。
 ニトリル基(-CN基)を有するエチレン性不飽和モノマーは、式:
  (CN-)(X11-)C=C(-X12)(-X13)
[式中、X11は、水素原子、炭素数1~6のアルキル基、ハロゲン原子またはシアノ基であり、
X12は、水素原子、炭素数1~6のアルキル基またはシアノ基であり、
X13は、水素原子、炭素数1~6のアルキル基またはハロゲン原子である。]
で示される化合物であることが好ましい。
 ニトリル基含有のエチレン性不飽和モノマーは、ニトリル基を含有するものであれば特に限定されないが、好ましくはアクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、α-エチルアクリロニトリル、シアン化ビニリデン、フマロニトリルなどのα,β-不飽和ニトリルモノマーが用いられる。更に好ましくはアクリロニトリル、メタクリロニトリルである。これらは1種または2種以上併用できる。
 2官能のカルボン酸基を有するエチレン性不飽和モノマーは、式:
  (HOOC-X21-)(HOOC-X22-)m(-X23)1-m C=C(-X22-COOH)1-m (-X23)(-X24)  
[式中、X21およびX22のそれぞれは、同一または異なって、直接結合、または炭素数1~6のアルキレン基であり、
X23およびX24のそれぞれは、同一または異なって、水素原子、炭素数1~6のアルキル基、またはハロゲン原子であり、
mは0または1である。]
で示される化合物であることが好ましい。
 2官能のカルボン酸基を含むエチレン性不飽和モノマーの具体例としては、フマル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、1,2,3,6-テトラヒドロフタル酸、3-メチル-1,2,3,6-テトラヒドロフタル酸、4-メチル-1,2,3,6-テトラヒドロフタル酸、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロフタル酸、エキソ-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸、ハイミック酸などが挙げられる。更に、上記不飽和ジカルボン酸の無水物、例えば無水マレイン等も使用でき、また、これら無水物を鹸化したものを使用してもよい(本明細書において、「2官能のカルボン酸基を含むエチレン性不飽和モノマー」遊離酸、無水物及びそれらの塩または鹸化物をまとめて以下、という。)。好ましくはフマル酸、マレイン酸、イタコン酸である。更に好ましくは、イタコン酸である。これらは1種または2種以上併用できる。
 ケトン基を有するエチレン性不飽和モノマーは、式:
  (X31-CO-X32-)(X33-)C=C(-X34)(-X35)
[式中、X31、X33、X34およびX35のそれぞれは、同一または異なって、水素原子、炭素数1~6のアルキル基またはハロゲン原子であり、
X32は、直接結合、または炭素数1~6のアルキレン基である。]
で示される化合物であることが好ましい。
 X33、X34およびX35の少なくとも1つ、特に全てが水素原子であることが好ましい。X32は直接結合であることが好ましい。
 ケトン基を有するエチレン性不飽和モノマー(B)の具体例としては、メチルビニルケトン、エチルビニルケトン、イソプロピルビニルケトン、イソブチルビニルケトン、t-ブチルビニルケトン、ヘキシルビニルケトン等のビニルケトン類が挙げられる。これらは1種または2種以上併用できる。
 多官能(メタ)アクリレートモノマー(C)は、架橋剤として働く。多官能(メタ)アクリレートモノマー(C)としては2官能~5官能(特に、3~5官能)(メタ)アクリレートが挙げられる。多官能(メタ)アクリレートモノマー(C)は、好ましくは3官能または4官能(メタ)アクリレートである。(メタ)アクリレートが6官能以上になると、架橋剤そのものの粘度が高くなり、乳化重合で分散が上手くできなくなり、加えて、バインダーとしての物性(屈曲性、結着性)が悪くなる。
 多官能(メタ)アクリレートモノマー(C)は、式:
Figure JPOXMLDOC01-appb-C000010
(式中、R11は、それぞれ同一または異なって、水素またはメチル基であり、
12は、5価以下の炭素数2~100の有機基であり、
mは5以下の整数である。)
で示される化合物であることが好ましい。
 好ましくは、R12は、2~5価の有機基であり、mは2~5の整数である。さらに好ましくは、R12は、3~5価、特に3~4価の有機基であり、mは3~5の整数、特に3~4の整数である。
 R12は、炭化水素基、オキシアルキレン基(-(O-A1)-、A1は炭素数2~4のアルキレン基)、ポリオキシアルキレン基(-(O-A)p-、Aは炭素数2~4のアルキレン基、pは2~30である。)であってよく、またはこれらの2種以上を同時に含んでよい。R12は置換基を含有してよい。置換基の具体例としては、水酸基、カルボン酸基、ニトリル基、フッ素原子、アミノ基、スルホン酸基、リン酸基、アミド基、イソシアヌル酸基、オキシアルキレン基(-(O-A)-H、Aは炭素数2~4のアルキレン基)、ポリオキシアルキレン基(-(O-A)q-H、Aは炭素数2~4のアルキレン基、qは2~30である。)、アルコキシオキシアルキレン基(-(A-O)-B、Aは炭素数2~4のアルキレン基、Bは炭素数1~4のアルキル基)、アルコキシポリオキシアルキレン基(-(A6-O)r-B、Aは炭素数2~4のアルキレン基、rは1~30、B2は炭素数1~4アルキル基)等を挙げることができる。
 R12において、炭化水素基は、直鎖または分岐の炭化水素基であるが、分岐の炭化水素基であることが好ましい。炭化水素基の炭素数は、2~100、例えば3~50、特に4~30である。
 2官能(メタ)アクリレートの具体例としてはトリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ビス(メタ)アクリロイルオキシエチルフォスフェートなどが挙げられる。
 3官能(メタ)アクリレートの具体例としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2,2,2-トリス(メタ)アクリロイロキシメチルエチルコハク酸、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、グリセリンEO付加トリ(メタ)アクリレート、グリセリンPO付加トリ(メタ)アクリレートおよびトリス(メタ)アクリロイルオキシエチルフォスフェートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましい。
 4官能(メタ)アクリレートの具体例としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートおよびペンタエリスリトールEO付加テトラ(メタ)アクリレートなどが挙げられる。
 5官能(メタ)アクリレートの具体例としては、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 多官能(メタ)アクリレートは1種であってよくまたは2種以上を併用できる。
 本発明において、モノマー(A)~(E)のそれぞれは、1種であってよくまたは2種以上を併用できる。
 本発明の重合体は、
一般式(1)で表わされる水酸基を有するモノマーから誘導される構成単位(A)、官能性基含有エチレン性不飽和モノマー(B)および多官能(メタ)アクリレートモノマーから誘導される構成単位(C)の他に、
(メタ)アクリル酸エステルモノマーから誘導される構成単位(D)および(メタ)アクリル酸モノマーから誘導される構成単位(E)の一方または両方を有していてもよい。
 すなわち、本発明の重合体は、次のような構成単位を有していてよい。
  構成単位(A)+(B)+(C)
  構成単位(A)+(B)+(C)+(D)
  構成単位(A)+(B)+(C)+(E)
  構成単位(A)+(B)+(C)+(D)+(E)
 (メタ)アクリル酸エステルモノマー(D)は、式:
Figure JPOXMLDOC01-appb-C000011

(式中、R21は水素またはメチル基であり、
22は、炭素数1~50の炭化水素基である。)
で示される化合物であることが好ましい。
 R22は、一価の有機基であり、飽和または不飽和の脂肪族基(例えば、鎖状脂肪族基または環状脂肪族基)、芳香族基または芳香脂肪族基であってよい。R22は飽和の炭化水素基、特に飽和の脂肪族基であることが好ましい。R22基は、分岐または直鎖のアルキル基であることが特に好ましい。R22の炭素数は、1~50、例えば1~30、特に1~20である。
 (メタ)アクリル酸エステルモノマーから誘導される構成単位(D)の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、および(メタ)アクリル酸ラウリルなどの(メタ)アクリル酸アルキルエステルが挙げられる。好ましくは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピルである。これら(メタ)アクリル酸エステルモノマーは1種または2種以上併用できる。
 (メタ)アクリル酸モノマー(E)は、式:
Figure JPOXMLDOC01-appb-C000012

(式中、R31は水素またはメチル基である。)
で示される化合物であることが好ましい。
 (メタ)アクリル酸モノマーから誘導される構成単位(E)の具体例としては、メタクリル酸、アクリル酸が挙げられ、1種または2種併用できる。メタクリル酸とアクリル酸の2種の組み合わせを重量比1:99~99:1、例えば5:95~95:5、特に20:80~80:20で使用してもよい。
 モノマー(A)、(B)、(C)、(D)および(E)以外の他のモノマー、例えば、ビニルモノマーをさらに使用してもよい。ビニルモノマーの例としては、標準状態で気体であるモノマー、具体的には、エチレン、プロピレン、塩化ビニル、および標準状態で液体または固体であるモノマー、特に、モノマー(A)、(B)、(C)、(D)および(E)以外の(メタ)アクリル系モノマー、例えば、置換基として水酸基、アミド基、フッ素原子、スルホン酸基等を有する(メタ)アクリル系モノマーが挙げられる。
 本発明において、使用モノマー(即ち、モノマー(A)、(B)、(C)、(D)および(E)ならびに他のモノマー)は、(メタ)アクリル基に含まれるエチレン性不飽和二重結合以外に、芳香族の炭素-炭素二重結合を含む炭素-炭素二重結合(および炭素-炭素三重結合)を有しないことが好ましい。
 水酸基を有するモノマーから誘導される構成単位(A)、官能性エチレン性不飽和モノマーから誘導される構成単位(B)、架橋剤である多官能(メタ)アクリレートから誘導される構造単位(C)、(メタ)アクリル酸エステルモノマーから誘導される構造単位(D)、(メタ)アクリル酸モノマーから誘導される構造単位(E)の比が、
(A)1~89.9重量%、(B)40~10重量%、(C)20~0.1重量%、(D)29~0重量%および(E)10~0重量%であり、好ましくは(A)10~80重量%、(B)40~15重量%、(C)15~0.5重量%、(D)25~0重量%および(E)10~4.5重量%であり、更に好ましくは(A)15~80重量%、(B)40~15重量%、(C)15~0.5重量%および(D)20~0重量%および(E)10~4.5重量%であってよく、あるいは
(A)10~98.9重量%、(B)20~1重量%、(C)25~0.1重量%、(D)60~0重量%および(E)15~0重量%であり、好ましくは(A)15~92.5重量%、(B)18~2重量%、(C)22~0.5重量%、(D)49~5重量%および(E)12~0重量%であり、更に好ましくは(A)20~86重量%、(B)16~3重量%、(C)20~1重量%および(D)49~10重量%および(E)10~0重量%であってよい。
 あるいは、重合体において、水酸基を有するモノマーから誘導される構成単位(A)、官能性エチレン性不飽和モノマーから誘導される構成単位(B)、架橋剤である多官能(メタ)アクリレートから誘導される構造単位(C)、(メタ)アクリル酸エステルモノマーから誘導される構造単位(D)、(メタ)アクリル酸モノマーから誘導される構造単位(E)の量は、
構成単位(A)100重量部に対して、
構成単位(B)1~500重量部、好ましくは2~300重量部、更に好ましくは3~200重量部、
構成単位(C)0.5~100重量部、好ましくは1~90重量部、更に好ましくは2~80重量部、
構成単位(D)0~500重量部、好ましくは1~400重量部、更に好ましくは2~300重量部、および
構成単位(E)0~100重量部、好ましくは0.5~80重量部、更に好ましくは1~50重量部
であってよい。
 本発明の重合体を製造する方法としては一般的な乳化重合法、ソープフリー乳化重合法、シード重合法、シード粒子にモノマー等を膨潤させた後に重合する方法等を使用することができる。具体的には、攪拌機および加熱装置付きの密閉容器に室温でモノマー、乳化剤、重合開始剤、水、必要に応じて分散剤、連鎖移動剤、pH調整剤等を含んだ組成物を不活性ガス雰囲気下で攪拌することでモノマー等を水に乳化させる。乳化の方法は撹拌、剪断、超音波等による方法等が適用でき、撹拌翼、ホモジナイザー等を使用することができる。次いで、攪拌しながら温度を上昇させて重合を開始させることで、重合体が水に分散した球形の重合体のラテックスを得ることができる。また、生成した球形の重合体を別途単離した後に、N-メチルピロリドン等の有機溶剤に分散させて使用してもよい。さらには、再度、モノマー、乳化剤や分散剤等を用いて水中に分散させて、重合体のラテックスを得る方法もある。重合時のモノマーの添加方法は、一括仕込みの他に、モノマー滴下やプレエマルジョン滴下等でもよく、これらの方法を2種以上併用してもよい。
 また本発明のバインダー中での重合体の粒子構造は特に限定されない。例えば、シード重合によって作製された、コア-シェル構造の複合重合体粒子を含む重合体のラテックスを用いることができる。シード重合法は、例えば、「分散・乳化系の化学」(発行元:工学図書(株))に記載された方法を用いることができる。具体的には、上記の方法で作製したシード粒子を分散した系にモノマー、重合開始剤、乳化剤を添加し、核粒子を成長させる方法であり、上記方法を1回以上繰り返してもよい。
 シード重合には本発明の重合体または公知のポリマーを用いた粒子を採用しても良い。公知のポリマーとしては、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリスチレン、ポリ(メタ)アクリレートおよびポリエーテルなどが例示できるが、限定されるものではなく、他の公知のポリマーを用いることができる。また、1種のホモポリマーまたは2種以上の共重合体またはブレンド体を用いても良い。
 本発明のバインダー中での重合体の粒子形状としては球形以外に、板状、中空構造、複合構造、局在構造、だるま状構造、いいだこ状構造、ラズベリー状構造等があげられ、本発明を逸脱しない範囲で2種類以上の構造および組成の粒子を用いることができる。
 本発明で用いられる乳化剤は特に限定されず、乳化重合法おいて一般的に用いられるノニオン性乳化剤およびアニオン性乳化剤等を使用することができる。ノニオン乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステル等があげられ、アニオン性乳化剤としては、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩等があげられ、これらを1種または2種以上用いてもよい。アニオン性乳化剤の代表例としてはドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸トリエタノールアミンが挙げられる。
 本発明で用いられる乳化剤の使用量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01~10重量%の範囲であり、好ましくは0.05~5重量%、更に好ましくは0.05~3重量%である。
 本発明で用いられる重合開始剤は特に限定されず、乳化重合法おいて一般的に用いられる重合開始剤を使用することができる。その具体例としては、過硫酸カリウム、過硫酸ナトリウムおよび過硫酸アンモニウムなどの過硫酸塩に代表される水溶性の重合開始剤、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドに代表される油溶性の重合開始剤、ハイドロパーオキサイド、4-4’-アゾビス(4-シアノ吉草酸)、2-2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン、2-2’-アゾビス(プロパン-2-カルボアミジン)2-2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロパンアミド、2-2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}、2-2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)および2-2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロパンアミド}などのアゾ系開始剤、レドックス開始剤等が挙げられる。これら重合開始剤は1種または2種以上組み合わせて用いてもよい。
 本発明で用いられる重合開始剤の使用量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01~5重量%の範囲であり、好ましくは0.05~3重量%、更に好ましくは0.1~1重量%である。
 本発明のバインダーを作製する際に用いる水は特に限定されず、一般的に用いられる水を使用することができる。その具体例としては水道水、蒸留水、イオン交換水および超純水などが挙げられる。その中でも、好ましくは蒸留水、イオン交換水および超純水である。
 本発明においては必要に応じて分散剤を用いることができ、種類および使用量は特に限定されず、一般的に用いられる分散剤を任意の量で自由に使用することができる。具体例としてはヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム、ピロリン酸ナトリウム、ポリアクリル酸またはそのナトリウム塩、ポリエチレンイミン、アクリル酸/マレイン酸コポリマーまたはそのナトリウム塩等が挙げられる。
 本発明においては、必要に応じて連鎖移動剤を用いることができる。連鎖移動剤の具体例としては、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン、2,4-ジフェニル-4-メチル-1-ペンテン、2,4-ジフェニル-4-メチル-2-ペンテン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上用いてもよい。これらの連鎖移動剤の量は特に限定されないが、通常、仕込モノマー量100重量部に対して0~5重量部にて使用される。
 重合時間および重合温度は特に限定されない。使用する重合開始剤の種類等から適宜選択できるが、一般的に、重合温度は20~100℃であり、重合時間は0.5~100時間である。
 さらに上記の方法によって得られた重合体は、必要に応じてpH調整剤として塩基を用いることでpHを調整することができる。塩基の具体例としては、アルカリ金属(Li、Na、K、Rb、Cs)水酸化物、アンモニア、無機アンモニウム化合物、有機アミン化合物等が挙げられる。pHの範囲はpH1~11、好ましくはpH2~11、更に好ましくはpH2~10、例えばpH3~10、特にpH5~9の範囲である。
 本発明のバインダーは、一般に、重合体と水を含むバインダー組成物、特に、重合体が水に分散しているバインダー組成物であってよい。本発明のバインダー組成物中における上記重合体の含有量(固形分濃度)は、0.5~80重量%、好ましくは5~70重量%、より好ましくは10~60重量%である。
 本発明のバインダー中における上記重合体の粒子径は、動的光散乱法、透過型電子顕微鏡法や光学顕微鏡法などによって計測できる。動的光散乱法を用いて得た散乱強度により算出した平均粒径は、0.001μm~1μm、好ましくは0.001μm~0.500μmである。具体的な測定装置としてはスペクトリス製のゼータサイザーナノ等が例示できる。
電池電極用スラリーの調整方法
 本発明のバインダーを使用した電池電極用スラリーの調整方法としては特に限定されず、本発明のバインダー、活物質、導電助剤、水、必要に応じて増粘剤等を通常の攪拌機、分散機、混練機、遊星型ボールミル、ホモジナイザーなど用いて分散させればよい。分散の効率を上げるために材料に影響を与えない範囲で加温してもよい。
電池用電極の作製方法
 電池用の電極の作製方法は特に限定されず一般的な方法が用いられる。例えば、正極活物質あるいは負極活物質、導電助剤、バインダー、水、必要に応じて増粘剤などからなるペースト(塗工液)をドクターブレード法やシルクスクリーン法などにより集電体表面上に適切な厚さに均一に塗布することより行われる。
 例えばドクターブレード法では、負極活物質粉末や正極活物質粉末、導電助剤、バインダー等を水に分散してスラリー状にし、金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な水や有機溶剤を除去するため、例えば、100℃の熱風や80℃真空状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極材が製造される。プレス後に再度熱処理を施して水、溶剤、乳化剤等を除去してもよい。
 正極材料は、例えば電極材料基板としての金属電極基板と、金属電極基板上に正極活物質、および電解質層と良好なイオンの授受を行い、かつ、導電助剤と正極活物質を金属基板に固定するためのバインダーより構成されている。金属電極基板には、例えばアルミニウムが用いられるが、これに限るものではなく、ニッケル、ステンレス、金、白金、チタン等であってもよい。
 本発明で使用される正極活物質は、LiMO2、LiM24、Li2MO3、LiMEO4のいずれかの組成からなるリチウム金属含有複合酸化物粉末である。ここで式中のMは主として遷移金属からなり、Co、Mn、Ni、Cr、Fe、Tiの少なくとも一種を含んでいる。Mは遷移金属からなるが、遷移金属以外にもAl、Ga、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどが添加されていてもよい。EはP、Siの少なくとも1種を含んでいる。正極活物質の粒子径には50μm以下が好ましく、更に好ましくは20μm以下のものを用いる。これらの活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。
 正極活物質の具体例としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケル/マンガン/コバルト酸リチウム(3元系)、スピネル型マンガン酸リチウム、リン酸鉄リチウムなどが挙げられる。
 負極材料は、例えば電極材料基板としての金属電極基板と、金属電極基板上に負極活物質、および電解質層と良好なイオンの授受を行い、かつ、導電助剤と負極活物質を金属基板に固定するためのバインダーより構成されている。この場合の金属電極基板には、例えば銅が用いられるが、これに限るものではなく、ニッケル、ステンレス、金、白金、チタン等であってもよい。
 本発明で使用される負極活物質としてはリチウムイオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属からなる粉末である。粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。なお負極活物質にはその気孔率が、70%程度のものを用いるのが望ましい。
 導電助剤の具体的としては、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。
 増粘剤の具体的としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロースおよびこれらのナトリウム塩、アンモニウム塩、ポリビニルアルコール、ポリアクリル酸塩等が挙げられる。これら増粘剤は1種または2種以上用いてもよい。
 以下の電池の製造法は、主として、リチウムイオン二次電池の製造方法である。
電池の製造方法
 電池、特に二次電池の製造方法は特に限定されず、正極、負極、セパレータ、電解液、集電体で構成され、公知の方法にて製造される。例えば、コイン型の電池の場合、正極、セパレータ、負極を外装缶に挿入する。これに電解液を入れ含浸する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシメることで蓄電池が得られる。電池の形状は限定されないが、例としてはコイン型、円筒型、シート型などがあげられ、2個以上の電池を積層した構造でもよい。
 セパレータとしては正極と負極が直接接触して蓄電池内でショートすることを防止するものであり、公知の材料を用いることができる。具体的には、ポリオレフィンなどの多孔質高分子フィルムあるいは紙などからなっている。この多孔質高分子フィルムとしては、ポリエチレン、ポリプロピレンなどのフィルムが電解液によって影響を受けないため好ましい。
 電解液は電解質リチウム塩化合物および溶媒として非プロトン性有機溶剤等からなる溶液である。電解質リチウム塩化合物としては、リチウムイオン電池に一般的に利用されているような、広い電位窓を有するリチウム塩化合物が用いられる。たとえば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22,LiN(C25SO22,LiN[CF3SC(C25SO23]2などを挙げられるが、これらに限定されるものではない。これらは、単独で用いても、2種類以上を混合して用いても良い。
 非プロトン性有機溶剤としてはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル、ジエチルエーテルなどの直鎖エーテルを使用することができ、2種類以上混合して使用してもよい。
 また、溶媒として、常温溶融塩を用いることができる。常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。
 常温溶融塩はイオン液体とも呼ばれており、イオンのみ(アニオン、カチオン)から構成される「塩」であり、特に液体化合物をイオン液体という。
 カチオン種としてはピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。
 なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
 また、アルキルピリジウムイオンとしては、N-メチルピリジウムイオン、N-エチルピリジニウムイオン、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-エチル-2メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
 イミダゾリウムカチオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
 アニオン種としては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF 、PF などの無機酸イオン、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8-テトラシアノ-p-キノジメタンイオンなどの有機酸イオンなどが例示される。
 なお、常温溶融塩は、単独で用いてもよく、または2種以上を混合して用いても良い。
 電解液には必要に応じて種々の添加剤を使用することができる。例えば、難燃剤や不燃剤として、臭素化エポキシ化合物、ホスファゼン化合物、テトラブロムビスフェノールA 、塩素化パラフィン等のハロゲン化物、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、リン酸エステル、ポリリン酸塩、及びホウ酸亜鉛等が例示できる。負極表面処理剤としてはビニレンカーボネート、フルオロエチレンカーボネート、ポリエチレングリコールジメチルエーテル等が例示できる。正極表面処理剤として炭素や金属酸化物(MgОやZrO等)の無機化合物やオルト-ターフェニル等の有機化合物等が例示できる。過充電防止剤としてはビフェニルや1-(p-トリル)アダマンタン等が例示できる。
 本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
 本実施例では、本発明のバインダーを用いて電極及びコイン電池を作製し、電極の評価として屈曲試験、密着試験、コイン電池の評価として充放電サイクル特性性能を以下の実験にて行った。
[作製した電極の評価]
 作製した電極の評価としては屈曲試験と密着試験を行った。評価結果を表1および表2にまとめて示した。
屈曲試験
 屈曲試験はマンドレル屈曲試験にて行った。具体的には電極を幅3cm×長さ8cmに切り、長さ方向の中央(4cm部分)の基材側(電極表面が外側を向くように)に直径2mmのステンレス棒を支えにして180°折り曲げたときの折り曲げ部分の塗膜の状態を観察した。この方法で5回測定を行い、5回とも電極表面のひび割れまたは剥離や集電体からの剥がれが全く生じていない場合を○、1回でも1箇所以上のひび割れまたは剥がれが生じた場合を×と評価した。
密着試験(結着試験)
 密着試験はクロスカット試験にて行った。具体的には電極を幅3cm×長さ4cmに切り、1マスの1辺が1mmとなるように直角の格子パターン状にカッターナイフで切れ込みを入れ、縦5マス×横5マスの25マスからなる碁盤目にテープ(セロテープ(登録商標):ニチバン製)を貼り付け、電極を固定した状態でテープを一気に引き剥がしたとき、電極から剥がれずに残ったマスの数を計測した。試験は5回実施し、その平均値を求めた。
 [作製した電池の評価]
 作製した電池の評価としては充放電装置を用いて充放電サイクル特性試験を行い、容量維持率を求めた。評価結果を表1および表2にまとめて示した。
容量維持率
 電気化学特性は(株)ナガノ製の充放電装置を用い、4.2V上限、2.5Vを下限とし、初回から3回目までは8時間で所定の充電および放電が行える試験条件(C/8)、4回目以降は4時間で所定の充電および放電が行える試験条件(C/4)にて一定電流通電することにより電池の充放電サイクル特性を評価した。試験温度は60℃の環境とした。可逆容量は4サイクル目の放電容量の値を採用し、容量維持率は充放電を100サイクル行った後の放電容量と4サイクル目の放電容量の比で評価した。
バインダー組成物の合成例
[バインダー組成物の実施合成例1]
 攪拌機付き反応容器に、ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)55重量部、アクリロニトリル35重量部、アクリル酸1.3重量部、メタアクリル酸3.7重量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)5重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合した。重合終了後、冷却してバインダー組成物A1(重合転化率99%以上)(pH3.2、固形分濃度18wt%)を得た。得られた重合体の平均粒子径は0.157μmであった。
 [バインダー組成物の実施合成例2]
 攪拌機付き反応容器に、ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)75重量部、アクリロニトリル15重量部、アクリル酸1.3重量部、メタアクリル酸3.7重量部、ペンタエリスリトールトリアクリレート(新中村化学製:A-TMM-3)5重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液のpHを2.1から6.9に調整し、バインダー組成物B1(重合転化率99%以上)(固形分濃度17wt%)を得た。得られた重合体の平均粒子径は0.200μmであった。
 [バインダー組成物の実施合成例3]
 攪拌機付き反応容器に、ポリエチレングリコールモノアクリレート(日油製:ブレンマーAE-400)60重量部、アクリロニトリル30重量部、アクリル酸1.3重量部、メタアクリル酸3.7重量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)5重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合した。重合終了後、冷却してバインダー組成物C1(重合転化率99%以上)(pH3.6、固形分濃度17wt%)を得た。得られた重合体の平均粒子径は0.171μmであった。
 [バインダー組成物の比較合成例1]
 攪拌機付き反応容器に、アクリロニトリル30重量部、メタアクリル酸メチル60重量部、アクリル酸1.3重量部、メタアクリル酸3.7重量部、ポリエチレングリコールジアクリレート5重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合した。重合終了後、冷却してバインダー組成物D1(重合転化率99%以上)(pH3.5、固形分濃度17wt%)を得た。得られた重合体の平均粒子径は0.123μmであった。
 [バインダー組成物の比較合成例2]
 攪拌機付き反応容器に、アクリロニトリル20部、アクリル酸エチル55重量部、メタアクリル酸メチル20重量部、アクリル酸1.3重量部、メタアクリル酸3.7重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合した。重合終了後、冷却してバインダー組成物E1(重合転化率99%以上)(pH2.8、固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.131μmであった。
[バインダー組成物の実施合成例4]
 攪拌機付き反応容器に、ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)55重量部、アクリル酸エチル35重量部、イタコン酸5重量部、ペンタエリスリトールトリアクリレート(新中村化学製:A-TMM-3)5重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合した。重合終了後、冷却してバインダー組成物A2(重合転化率99%以上)(pH2.1、固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.108μmであった。
 [バインダー組成物の実施合成例5]
 攪拌機付き反応容器に、ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)45重量部、アクリル酸1.3重量部、イタコン酸3.7重量部、メタアクリル酸メチル45重量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)5重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液のpHを2.5から7.1に調整し、バインダー組成物B2(重合転化率99%以上)(固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.112μmであった。
 [バインダー組成物の実施合成例6]
 攪拌機付き反応容器に、ポリエチレングリコールモノアクリレート(日油製:ブレンマーAE-400)60重量部、アクリル酸2.6重量部、イタコン酸5.4重量部、アクリル酸エチル22重量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)10重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合した。重合終了後、冷却してバインダー組成物C2(重合転化率99%以上)(pH2.5、固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.115μmであった。
[バインダー組成物の比較合成例3]
 攪拌機付き反応容器に、イタコン酸5重量部、メタアクリル酸メチル75重量部、アクリル酸2.7重量部、メタアクリル酸7.3重量部、ポリエチレングリコールジアクリレート10重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合した。重合終了後、冷却してバインダー組成物D2(重合転化率99%以上)(pH3.3、固形分濃度17wt%)を得た。得られた重合体の平均粒子径は0.119μmであった。
 [バインダー組成物の比較合成例4]
 攪拌機付き反応容器に、アクリル酸エチル45重量部、メタアクリル酸メチル45重量部、イタコン酸5重量部、アクリル酸2.3重量部、メタアクリル酸2.7重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、超音波ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合した。重合終了後、冷却してバインダー組成物E2(重合転化率99%以上)(pH2.9、固形分濃度17wt%)を得た。得られた重合体の平均粒子径は0.126μmであった。
電極の作製例
 [電極の実施作製例1]
 正極活物質としてニッケル/マンガン/コバルト酸リチウム(3元系)90.6重量部に、導電助剤としてアセチレンブラック6.4重量部、バインダーの実施合成例1で得られたバインダー組成物A1の固形分として1重量部および増粘剤としてカルボキシメチルセルロースのナトリウム塩2重量部を加え、さらにスラリーの固形分濃度が35重量%となるように溶媒なる水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た。
 得られた正極スラリーを厚さ20μmのアルミ集電体上に150μmギャップのダイコーターを用いて塗布し、110℃真空状態で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ36μmの正極を作製した。屈曲性および結着性の評価結果を表1の実施例1に示す。
 [電極の実施作製例2] 
 バインダーの実施合成例2で得られたバインダー組成物B1を使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは34μmであった。屈曲性および結着性の評価結果を表1の実施例2に示す。
 [電極の実施作製例3] 
 バインダーの実施合成例3で得られたバインダー組成物C1を使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは35μmであった。屈曲性および結着性の評価結果を表1の実施例3に示す。
 [電極の比較作製例1] 
 バインダーの比較合成例1で得られたバインダー組成物D1を使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは35μmであった。屈曲性および結着性の評価結果を表1の比較例1に示す。
 [電極の比較作製例2] 
 バインダーの比較合成例2で得られたバインダー組成物E1を使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは34μmであった。屈曲性および結着性の評価結果を表1の比較例2に示す。
[電極の比較作製例3]
 正極活物質としてニッケル/マンガン/コバルト酸リチウム(3元系)88.7重量部に、導電助剤としてアセチレンブラック6.3重量部、バインダーとしてポリフッ化ビニリデン(PVDF、固形分濃度12wt%のN-メチル-2-ピロリドン溶液)を固形分として5重量部を加え、さらにスラリーの固形分濃度が40%となるように溶媒としてN-メチル-2-ピロリドンを加えて遊星型ミルを用いて十分に混合して正極用スラリー溶液を得た。
 このようにして得られたスラリー溶液を使用した以外は、電極の作製例1と同様にして正極を作製した。得られた正極の厚みは36μmであった。屈曲性および結着性の評価結果を表1の比較例3に示す。
 [電極の実施作製例4]
 正極活物質としてニッケル/マンガン/コバルト酸リチウム(3元系)90.6重量部に、導電助剤としてアセチレンブラック6.4重量部、バインダーの実施合成例4で得られたバインダー組成物A2の固形分として1重量部および増粘剤としてカルボキシメチルセルロースのナトリウム塩2重量部を加え、さらにスラリーの固形分濃度が35重量%となるように溶媒なる水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た。
 得られた正極スラリーを厚さ20μmのアルミ集電体上に150μmギャップのダイコーターを用いて塗布し、110℃真空状態で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ34μmの正極を作製した。屈曲性および結着性の評価結果を表2の実施例4に示す。
 [電極の実施作製例5] 
 バインダーの実施合成例5で得られたバインダー組成物B2を使用した以外は、電極の実施作製例4と同様にして正極を作製した。得られた正極の厚みは35μmであった。屈曲性および結着性の評価結果を表2の実施例5に示す。
 [電極の実施作製例6] 
 バインダーの実施合成例6で得られたバインダー組成物C2を使用した以外は、電極の実施作製例4と同様にして正極を作製した。得られた正極の厚みは35μmであった。屈曲性および結着性の評価結果を表2の実施例6に示す。
 [電極の比較作製例4] 
 バインダーの比較合成例3で得られたバインダー組成物D2を使用した以外は、電極の実施作製例4と同様にして正極を作製した。得られた正極の厚みは36μmであった。屈曲性および結着性の評価結果を表2の比較例4に示す。
 [電極の比較作製例5] 
 バインダーの比較合成例4で得られたバインダー組成物E2を使用した以外は、電極の実施作製例4と同様にして正極を作製した。得られた正極の厚みは36μmであった。屈曲性および結着性の評価結果を表2の比較例2に示す。
 [電極の比較作製例6]
 正極活物質としてニッケル/マンガン/コバルト酸リチウム(3元系)88.7重量部に、導電助剤としてアセチレンブラック6.3重量部、バインダーとしてポリフッ化ビニリデン(PVDF、固形分濃度12wt%のN-メチル-2-ピロリドン溶液)を固形分として5重量部を加え、さらにスラリーの固形分濃度が40%となるように溶媒としてN-メチル-2-ピロリドンを加えて遊星型ミルを用いて十分に混合して正極用スラリー溶液を得た。
 このようにして得られたスラリー溶液を使用した以外は、電極の作製例4と同様にして正極を作製した。得られた正極の厚みは35μmであった。屈曲性および結着性の評価結果を表2の比較例6に示す。
電池の製造例
[コイン電池の実施製造例1]
 アルゴンガスで置換されたグローブボックス内において、電極の実施作製例1で得た正極、セパレーターとして厚み18μmのポリプロピレン/ポリエチレン/ポリプロピレン多孔質膜を2枚、更に対極として厚さ300μmの金属リチウム箔を貼り合わせてた積層物に、電解液として1mol/Lの6フッ化リン酸リチウムのエチレンカーボネートとジメチルカーボネート溶液(体積比1:1)を十分に含浸させてカシめ、試験用2032型コイン電池を製造した。100サイクル後の容量維持率の評価結果を表1の実施例1に示す。
 [コイン電池の実施製造例2]
 電極の作製例の実施作製例2で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の実施例2に示す。
 [コイン電池の実施製造例3]
 電極の作製例の実施作製例3で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の実施例3に示す。
 [コイン電池の比較製造例1]
 電極の作製例の比較作製例1で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例1に示す。
 [コイン電池の比較製造例2]
 電極の作製例の比較作製例2で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例2に示す。
 [コイン電池の比較製造例3]
 電極の作製例の比較作製例3で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例3に示す。
表1に実施例および比較例を示す。
Figure JPOXMLDOC01-appb-T000013
 [コイン電池の実施製造例4]
 アルゴンガスで置換されたグローブボックス内において、電極の実施作製例4で得た正極、セパレーターとして厚み18μmのポリプロピレン/ポリエチレン/ポリプロピレン多孔質膜を2枚、更に対極として厚さ300μmの金属リチウム箔を貼り合わせてた積層物に、電解液として1mol/Lの6フッ化リン酸リチウムのエチレンカーボネートとジメチルカーボネート溶液(体積比1:1)を十分に含浸させてカシめ、試験用2032型コイン電池を製造した。100サイクル後の容量維持率の評価結果を表2の実施例4に示す。
 [コイン電池の実施製造例5]
 電極の作製例の実施作製例5で得た正極を用いた以外は、コイン電池の実施製造例4と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表2の実施例5に示す。
 [コイン電池の実施製造例6]
 電極の作製例の実施作製例3で得た正極を用いた以外は、コイン電池の実施製造例4と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表2の実施例6に示す。
 [コイン電池の比較製造例4]
 電極の作製例の比較作製例4で得た正極を用いた以外は、コイン電池の実施製造例4と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表2の比較例4に示す。
 [コイン電池の比較製造例5]
 電極の作製例の比較作製例5で得た正極を用いた以外は、コイン電池の実施製造例4と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表2の比較例5に示す。
 [コイン電池の比較製造例6]
 電極の作製例の比較作製例6で得た正極を用いた以外は、コイン電池の実施製造例4と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表2の比較例6に示す。
表2に実施例および比較例を示す。
Figure JPOXMLDOC01-appb-T000014
 本発明のリチウム二次電池用バインダーは、高い結着力、環境負荷の小さい水系である点、温度に性能が影響しないという観点から、本バインダーを用いたリチウムイオン二次電池は携帯電話やノートパソコン、カムコーダーなどの電子機器など小型の電池から、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池といった大型のリチウムイオン二次電池用途に好適に利用可能である。

Claims (16)

  1. (A)一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    ( 式中、Rは水素または炭素数1~4の直鎖もしくは分岐のアルキル基であり、RおよびRはそれぞれ水素、炭素数1~4の直鎖もしくは分岐のアルキル基、nは2~30の整数である。)
    で表わされる水酸基を有するモノマーから誘導される構成単位と、
    (B)2官能のカルボン酸基、ニトリル基およびケトン基からなる群から選択された少なくとも1種の官能性基を有するエチレン性不飽和モノマーから誘導される構成単位と、
    (C)5官能以下の多官能(メタ)アクリレートモノマーとから誘導される構成単位、
    を含む重合体を含有することを特徴する電池電極用バインダー。
  2.  式(1)において、nは4~20の整数である、請求項1記載の電池電極用バインダー。
  3.  官能性基含有エチレン性不飽和モノマー(B)は、式:
      (A1-)(A2-)C=C(-A3)(-A4)       (2)
    [式中、A1は、ニトリル基(-CN基)、カルボン酸基(-COOH基)またはケトン基(>C=O基)を有する基であり、
    A2およびA3のそれぞれは、同一または異なって、水素原子、ハロゲン原子、炭素数1~6のアルキル基、ニトリル基(-CN基)またはカルボン酸基(-COOH基)を有する基、
    A4は、水素原子、ハロゲン原子、炭素数1~6のアルキル基であり、
    A1とA2またはA1とA3は、一体となって、2つのカルボン酸基を有する環状炭化水素基を形成してよい。]
    で示される化合物である請求項1または2に記載の電池電極用バインダー。
  4.  ニトリル基(-CN基)を有する基は、-B2-CN基(ただし、B2は直接結合または炭素数1~6のアルキレン基である。)であり、
     2官能カルボン酸基(-COOH基)(ジカルボン酸基)を有する基は、-B1-COOH基(ただし、B1は直接結合または炭素数1~6のアルキレン基である。)であり、
     ケトン基(>C=O基)を有する基は、-B3-CO-B4基(ただし、B3は直接結合または炭素数1~6のアルキレン基であり、Bは炭素数1~6のアルキル基である。)である請求項1~3のいずれかに記載の電池電極用バインダー。
  5.  ニトリル基(-CN基)を有するエチレン性不飽和モノマーは、式:
      (CN-)(X11-)C=C(-X12)(-X13)
    [式中、X11は、水素原子、炭素数1~6のアルキル基、ハロゲン原子またはシアノ基であり、
    X12は、水素原子、炭素数1~6のアルキル基またはシアノ基であり、
    X13は、水素原子、炭素数1~6のアルキル基またはハロゲン原子である。]
    で示される化合物である請求項1~4のいずれかに記載の電池電極用バインダー。
  6.  2官能のカルボン酸基を有するエチレン性不飽和モノマーは、式:
      (HOOC-X21-)(HOOC-X22-)m(-X23)1-m C=C(-X22-COOH)1-m (-X23)(-X24)  
    [式中、X21およびX22のそれぞれは、同一または異なって、直接結合、または炭素数1~6のアルキレン基であり、
    X23およびX24のそれぞれは、同一または異なって、水素原子、炭素数1~6のアルキル基、またはハロゲン原子であり、
    mは0または1である。]
    で示される化合物である請求項1~4のいずれかに記載の電池電極用バインダー。
  7.  ケトン基を有するエチレン性不飽和モノマーは、式:
      (X31-CO-X32-)(X33-)C=C(-X34)(-X35)
    [式中、X31、X33、X34およびX35のそれぞれは、同一または異なって、水素原子、炭素数1~6のアルキル基またはハロゲン原子であり、
    X32は、直接結合、または炭素数1~6のアルキレン基である。]
    で示される化合物である請求項1~4のいずれかに記載の電池電極用バインダー。
  8.  多官能(メタ)アクリレートモノマー(C)が、式:
    Figure JPOXMLDOC01-appb-C000002
    (式中、R11は、それぞれ同一または異なって、水素またはメチル基であり、
    12は、5価以下の炭素数2~100の有機基であり、
    mは5以下の整数である。)
    で示される化合物である請求項1~7のいずれかに記載の電池電極用バインダー。
  9.  多官能(メタ)アクリレート(C)が3~5官能の(メタ)アクリレートである請求項1~8のいずれかに記載の電池電極用バインダー。
  10.  重合体が、さらに、(メタ)アクリル酸エステルモノマーから誘導される構成単位(D)および(メタ)アクリル酸モノマーから誘導される構成単位(E)の一方または両方を有する請求項1~9のいずれかに記載の電池電極用バインダー。
  11.  (メタ)アクリル酸エステルモノマー(D)が、式:
    Figure JPOXMLDOC01-appb-C000003
    (式中、R21は水素またはメチル基であり、
    22は、炭素数1~50の炭化水素基である。)
    で示される化合物である請求項10に記載の電池電極用バインダー。
  12.  (メタ)アクリル酸モノマー(E)が、式:
    Figure JPOXMLDOC01-appb-C000004
    (式中、R31は水素またはメチル基である。)
    で示される化合物である請求項10に記載の電池電極用バインダー。
  13.  重合体において、構成単位(A)、構成単位(B)、構成単位(C)、構成単位(D)および構成単位(E)の量は、構成単位(A)100重量部に対して、
    構成単位(B)1~500重量部、構成単位(C)0.5~100重量部、構成単位(D)0~500重量部、および構成単位(E)0~100重量部である項1~12のいずれかに記載の電池電極用バインダー。
  14.  電池が二次電池である請求項1~13のいずれかに記載の電池電極用バインダー。
  15.  請求項1~14のいずれかに記載のバインダーと活物質とを含有することを特徴とする電池電極。
  16.  請求項15記載の電極を有することを特徴とする電池。
PCT/JP2014/051487 2013-01-29 2014-01-24 電池電極用バインダー、およびそれを用いた電極ならびに電池 WO2014119481A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/762,982 US10014525B2 (en) 2013-01-29 2014-01-24 Binder for battery electrode, and electrode and battery using same
CN201480003598.8A CN104871352B (zh) 2013-01-29 2014-01-24 电池电极用粘接剂及使用了该粘接剂的电极及电池
JP2014559653A JP6269510B2 (ja) 2013-01-29 2014-01-24 電池電極用バインダー、およびそれを用いた電極ならびに電池
KR1020157019465A KR101858798B1 (ko) 2013-01-29 2014-01-24 전지 전극용 바인더, 및 그것을 사용한 전극 그리고 전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-014057 2013-01-29
JP2013014057 2013-01-29
JP2013071439 2013-03-29
JP2013-071439 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014119481A1 true WO2014119481A1 (ja) 2014-08-07

Family

ID=51262195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051487 WO2014119481A1 (ja) 2013-01-29 2014-01-24 電池電極用バインダー、およびそれを用いた電極ならびに電池

Country Status (5)

Country Link
US (1) US10014525B2 (ja)
JP (1) JP6269510B2 (ja)
KR (1) KR101858798B1 (ja)
CN (1) CN104871352B (ja)
WO (1) WO2014119481A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064570A1 (ja) * 2013-10-29 2015-05-07 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池
EP2858151A4 (en) * 2012-05-31 2015-12-16 Daiso Co Ltd BINDER FOR BATTERY ELECTRODE AND ELECTRODE AND BATTERY THEREOF
JP2016046231A (ja) * 2014-08-27 2016-04-04 株式会社大阪ソーダ 電池正極用バインダー組成物、およびそれを用いた電極ならびに電池
JP2016192267A (ja) * 2015-03-31 2016-11-10 株式会社大阪ソーダ 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2017050117A (ja) * 2015-08-31 2017-03-09 積水化学工業株式会社 正極材料、負極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用電解液、リチウムイオン二次電池用電極スラリー
JP2017117822A (ja) * 2015-12-21 2017-06-29 株式会社大阪ソーダ 電気化学キャパシタ
CN108028380A (zh) * 2015-11-19 2018-05-11 旭化成株式会社 蓄电设备用粘合剂、蓄电设备用粘合剂组合物
JP2018101519A (ja) * 2016-12-20 2018-06-28 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用バインダ、二次電池用バインダ樹脂組成物、二次電池用電極、および二次電池
JP2019197695A (ja) * 2018-05-11 2019-11-14 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
EP3352266A4 (en) * 2015-09-14 2019-03-13 Osaka Soda Co., Ltd. POSITIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
TW201724626A (zh) * 2015-09-14 2017-07-01 Osaka Soda Co Ltd 非水電解質二次電池用正極材料
JP7031576B2 (ja) * 2016-03-24 2022-03-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
CN105742707B (zh) * 2016-04-08 2018-08-14 深圳新宙邦科技股份有限公司 一种锂离子电池用电解液及锂离子电池
CN105810948B (zh) * 2016-05-26 2018-08-10 江苏深苏电子科技有限公司 一种锂离子电池用粘合剂及其制备方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR20200044805A (ko) 2017-08-31 2020-04-29 니폰 제온 가부시키가이샤 전기 화학 소자 기능층용 조성물, 전기 화학 소자용 기능층, 및 전기 화학 소자
KR102275863B1 (ko) * 2018-04-04 2021-07-12 주식회사 엘지에너지솔루션 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
CN108767259B (zh) * 2018-05-24 2021-12-31 九江华先新材料有限公司 一种用于锂离子电池的水性粘结剂及其制备方法
CN111933864B (zh) * 2019-04-25 2022-12-20 聚电材料股份有限公司 能量储存装置
WO2021039960A1 (ja) * 2019-08-29 2021-03-04 富士フイルム株式会社 蓄電デバイス用結着剤
CN118016891A (zh) * 2020-06-17 2024-05-10 广东省皓智科技有限公司 用于二次电池的粘结剂组合物
CN116200150B (zh) * 2023-03-09 2024-05-14 深圳好电科技有限公司 一种锂离子电池正极粘结剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256980A (ja) * 2000-03-09 2001-09-21 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用
JP2002289174A (ja) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc 電池用活物質混合粉体、電極組成物、二次電池用電極及び二次電池並びに電気二重層キャパシタ用炭素材料混合粉体、分極性電極組成物、分極性電極及び電気二重層キャパシタ
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
WO2011148970A1 (ja) * 2010-05-25 2011-12-01 日本ゼオン株式会社 二次電池用正極及び二次電池
JP2012051999A (ja) * 2010-08-31 2012-03-15 Hitachi Chem Co Ltd バインダ樹脂組成物、エネルギーデバイス用電極及びエネルギーデバイス
JP2013105676A (ja) * 2011-11-15 2013-05-30 Yamagata Univ ビススルホンイミド構造を持つポリマー及びこれを含む電極ならびに電池
WO2013180103A1 (ja) * 2012-05-31 2013-12-05 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045422B2 (ja) * 1991-12-18 2000-05-29 株式会社日本触媒 吸水性樹脂の製造方法
JP3627586B2 (ja) 1999-09-03 2005-03-09 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー、およびその利用
JP4280891B2 (ja) * 2000-07-26 2009-06-17 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダーおよびその利用
US20020122985A1 (en) 2001-01-17 2002-09-05 Takaya Sato Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor
JP5077510B2 (ja) 2005-03-15 2012-11-21 Jsr株式会社 二次電池負極用バインダー組成物、二次電池負極用スラリー、及び二次電池負極
JP5630632B2 (ja) 2009-11-12 2014-11-26 日本エイアンドエル株式会社 電池電極用バインダーおよび電池
EP2554554B1 (en) * 2010-03-31 2015-04-29 DIC Corporation Curable fluorine-containing resin and active energy ray curable composition using same
WO2012133031A1 (ja) * 2011-03-31 2012-10-04 東洋インキScホールディングス株式会社 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
WO2012169094A1 (ja) * 2011-06-06 2012-12-13 Jsr株式会社 蓄電デバイス用正極
JP4849286B1 (ja) 2011-06-06 2012-01-11 Jsr株式会社 正極用バインダー組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256980A (ja) * 2000-03-09 2001-09-21 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用
JP2002289174A (ja) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc 電池用活物質混合粉体、電極組成物、二次電池用電極及び二次電池並びに電気二重層キャパシタ用炭素材料混合粉体、分極性電極組成物、分極性電極及び電気二重層キャパシタ
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
WO2011148970A1 (ja) * 2010-05-25 2011-12-01 日本ゼオン株式会社 二次電池用正極及び二次電池
JP2012051999A (ja) * 2010-08-31 2012-03-15 Hitachi Chem Co Ltd バインダ樹脂組成物、エネルギーデバイス用電極及びエネルギーデバイス
JP2013105676A (ja) * 2011-11-15 2013-05-30 Yamagata Univ ビススルホンイミド構造を持つポリマー及びこれを含む電極ならびに電池
WO2013180103A1 (ja) * 2012-05-31 2013-12-05 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2858151A4 (en) * 2012-05-31 2015-12-16 Daiso Co Ltd BINDER FOR BATTERY ELECTRODE AND ELECTRODE AND BATTERY THEREOF
US9608273B2 (en) 2012-05-31 2017-03-28 Daiso Co., Ltd. Binder for battery electrode and electrode and battery using same
US10003077B2 (en) 2013-10-29 2018-06-19 Osaka Soda Co., Ltd. Battery electrode binder and battery and electrode using same
WO2015064570A1 (ja) * 2013-10-29 2015-05-07 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2016046231A (ja) * 2014-08-27 2016-04-04 株式会社大阪ソーダ 電池正極用バインダー組成物、およびそれを用いた電極ならびに電池
JP2016192267A (ja) * 2015-03-31 2016-11-10 株式会社大阪ソーダ 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2017050117A (ja) * 2015-08-31 2017-03-09 積水化学工業株式会社 正極材料、負極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用電解液、リチウムイオン二次電池用電極スラリー
CN108028380A (zh) * 2015-11-19 2018-05-11 旭化成株式会社 蓄电设备用粘合剂、蓄电设备用粘合剂组合物
EP3379623A4 (en) * 2015-11-19 2018-10-31 Asahi Kasei Kabushiki Kaisha Binder for electricity storage device and binder composition for electricity storage device
US10770706B2 (en) 2015-11-19 2020-09-08 Asahi Kasei Kabushiki Kaisha Binder for electricity storage device and binder composition for electricity storage device
CN108028380B (zh) * 2015-11-19 2021-04-09 旭化成株式会社 蓄电设备用粘合剂、蓄电设备用粘合剂组合物
JP2017117822A (ja) * 2015-12-21 2017-06-29 株式会社大阪ソーダ 電気化学キャパシタ
JP2018101519A (ja) * 2016-12-20 2018-06-28 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用バインダ、二次電池用バインダ樹脂組成物、二次電池用電極、および二次電池
US11005102B2 (en) 2016-12-20 2021-05-11 Samsung Sdi Co., Ltd. Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery
JP2019197695A (ja) * 2018-05-11 2019-11-14 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP7143114B2 (ja) 2018-05-11 2022-09-28 株式会社Eneosマテリアル 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス

Also Published As

Publication number Publication date
CN104871352B (zh) 2017-07-07
US10014525B2 (en) 2018-07-03
KR20150110530A (ko) 2015-10-02
JP6269510B2 (ja) 2018-01-31
KR101858798B1 (ko) 2018-05-16
US20150372305A1 (en) 2015-12-24
JPWO2014119481A1 (ja) 2017-01-26
CN104871352A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6269510B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP5447720B1 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6341271B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6164303B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6268988B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2017110901A1 (ja) 電池電極用バインダー、電極、及び電池
JP6300078B2 (ja) 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
JP6874682B2 (ja) 非水電解質二次電池用の正極材料
JP6395107B2 (ja) 電池電極用バインダー組成物、およびそれを用いた電極ならびに電池
JP2016046231A (ja) 電池正極用バインダー組成物、およびそれを用いた電極ならびに電池
JP2016192267A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JPWO2019017479A1 (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
WO2018151122A1 (ja) 電極用バインダー
JP2017117522A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2017091789A (ja) 正極、二次電池およびその製造方法
JP7088171B2 (ja) 電極用バインダー、電極材料、電極、及び蓄電デバイス
JPWO2019017480A1 (ja) 電極及び蓄電デバイス
JP2017069006A (ja) 電池電極用バインダー組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559653

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157019465

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14762982

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745998

Country of ref document: EP

Kind code of ref document: A1