WO2017047640A1 - 非水電解質二次電池用の正極材料 - Google Patents

非水電解質二次電池用の正極材料 Download PDF

Info

Publication number
WO2017047640A1
WO2017047640A1 PCT/JP2016/077110 JP2016077110W WO2017047640A1 WO 2017047640 A1 WO2017047640 A1 WO 2017047640A1 JP 2016077110 W JP2016077110 W JP 2016077110W WO 2017047640 A1 WO2017047640 A1 WO 2017047640A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
structural unit
meth
acrylate
mass
Prior art date
Application number
PCT/JP2016/077110
Other languages
English (en)
French (fr)
Inventor
一博 高橋
美和 中村
松尾 孝
植田 秀昭
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58288889&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017047640(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to KR1020187005148A priority Critical patent/KR20180051498A/ko
Priority to CN201680049289.3A priority patent/CN107925088A/zh
Priority to JP2017539938A priority patent/JP6874682B2/ja
Priority to EP16846511.0A priority patent/EP3352266A4/en
Priority to US15/756,506 priority patent/US20180254515A1/en
Publication of WO2017047640A1 publication Critical patent/WO2017047640A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery. More specifically, the present invention has excellent flexibility and binding properties, effectively reduces the internal resistance of the non-aqueous electrolyte secondary battery, and further effectively improves the charge / discharge cycle characteristics.
  • the present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery, a positive electrode using the positive electrode material, and a non-aqueous electrolyte secondary battery using the positive electrode.
  • a lithium secondary battery is a typical example of a non-aqueous electrolyte secondary battery having an electrode using a binder.
  • Lithium ion secondary batteries have high energy density and high voltage, and are therefore used in electronic devices such as mobile phones, notebook computers, and camcorders.
  • in-vehicle applications such as electric vehicles and hybrid electric vehicles, and applications as storage batteries for household power storage are also progressing.
  • it is desirable that the battery has a high energy density from the viewpoint of the occupied volume and mass of the battery.
  • a lithium ion secondary battery is generally composed of a negative electrode, a positive electrode, a separator, an electrolytic solution, and the like.
  • the negative electrode is a negative electrode active material such as graphite or hard carbon capable of inserting and desorbing lithium ions, and further, a coating liquid containing a conductive additive, a binder, a solvent, etc. on a current collector represented by copper foil. It is obtained by coating and drying.
  • an aqueous dispersion using a styrene-butadiene rubber (hereinafter abbreviated as “SBR”) as a binder is generally used as a coating liquid.
  • SBR styrene-butadiene rubber
  • the positive electrode is mixed with a positive electrode active material such as layered lithium cobaltate or spinel type lithium manganate, a conductive auxiliary agent such as carbon black, and a binder such as polyvinylidene fluoride or polytetrafluoroethylene, and N-methylpyrrolidone.
  • a positive electrode active material such as layered lithium cobaltate or spinel type lithium manganate
  • a conductive auxiliary agent such as carbon black
  • a binder such as polyvinylidene fluoride or polytetrafluoroethylene, and N-methylpyrrolidone.
  • polyvinylidene fluoride and polytetrafluoroethylene using N-methylpyrrolidone as a dispersion solvent are still widely used. For this reason, development of the water-based binder which can be used conveniently for the positive electrode of a nonaqueous electrolyte secondary battery is desired.
  • Patent Documents 1 and 2 include a binder (Patent Document 1) containing a copolymer composed of an aromatic vinyl, a conjugated diene, a (meth) acrylic acid ester and an ethylenically unsaturated carboxylic acid, and bifunctional (
  • An aqueous acrylate binder such as a binder (Patent Document 2) containing a polymer containing a (meth) acrylate has been proposed.
  • aqueous acrylate binder such as a binder (Patent Document 2) containing a polymer containing a (meth) acrylate has been proposed.
  • these aqueous binders are used for the positive electrode, for example, there is a problem that charge / discharge cycle characteristics deteriorate under high temperature conditions.
  • the binder is used for a positive electrode, there is a concern that there is a problem in oxidation resistance under high voltage conditions, and battery characteristics deteriorate.
  • the viscosity of the coating liquid (slurry) at the time of electrode preparation is low, so that a smooth paste can be obtained to apply a smooth electrode. It is necessary to add a sticky agent.
  • the oxidation of the thickener during the charging / discharging process of the battery contributes to the deterioration of the battery characteristics.
  • Patent Document 3 a (meth) acrylate copolymer having a nitrile group is proposed as a binder that exhibits sufficient adhesion to a current collector without using a thickener.
  • this is a binder for a negative electrode, and the high oxidation resistance and the possibility of use in a positive electrode that requires flexibility because it is coated with a thick film have not been studied at all.
  • the present invention has been made in view of the above problems of the prior art, has excellent flexibility and binding properties, and effectively reduces the internal resistance of the nonaqueous electrolyte secondary battery. Furthermore, the main object is to provide a positive electrode material for a non-aqueous electrolyte secondary battery that can effectively improve charge / discharge cycle characteristics. Another object of the present invention is to provide a positive electrode using the positive electrode material and a non-aqueous electrolyte secondary battery using the positive electrode.
  • the present inventors have intensively studied to solve the above problems.
  • the binder is derived from a structural unit (A) derived from a (meth) acrylate monomer and a structural unit derived from an ethylenically unsaturated monomer containing a carboxylic acid group (B).
  • a structural unit (C) derived from a pentafunctional or lower polyfunctional (meth) acrylate monomer, and the positive electrode material substantially free of a thickener has excellent flexibility. It has been found that the internal resistance of the non-aqueous electrolyte secondary battery is effectively reduced, and the charge / discharge cycle characteristics are effectively improved.
  • the present invention has been completed by further studies based on these findings.
  • the binder comprises a structural unit (A) derived from a (meth) acrylate monomer, a structural unit (B) derived from an ethylenically unsaturated monomer containing a carboxylic acid group, and a polyfunctional (meth) having 5 or less functional groups.
  • a copolymer comprising a structural unit (C) derived from an acrylate monomer, Positive electrode material substantially free of thickener.
  • the positive electrode material according to Item 1 wherein the (meth) acrylate monomer of the structural unit (A) is at least one of (meth) acrylate and (meth) acrylate having a hydroxyl group.
  • Item 3. Item 3.
  • the copolymer has a structural unit (A-1) derived from a (meth) acrylate monomer having a hydroxyl group, a structural unit (A-2) derived from a (meth) acrylate monomer, and a carboxylic acid group.
  • the proportion of the structural unit (A-1), the structural unit (A-2), the structural unit (B), and the structural unit (C) is expressed in terms of mass ratio as the structural unit (A-1).
  • the positive electrode active material is AMO 2 (A is an alkali metal, M is a single or two or more transition metals, and a part thereof may include a non-transition metal), AM 2 O 4 (A is an alkali metal) , M consists of a single or two or more transition metals, part of which may contain non-transition metals), A 2 MO 3 (A is an alkali metal, M is a single or two or more transition metals) Part of which may contain a non-transition metal), or AMBO 4 (A is an alkali metal, B is P, Si, or a mixture thereof, and M is a single or two or more transition metals.
  • Item 6 The positive electrode material according to any one of Items 1 to 5, which comprises an alkali metal-containing composite oxide represented by any composition of (A part may contain a non-transition metal).
  • Item 7. A positive electrode for a non-aqueous electrolyte secondary battery, comprising the positive electrode material according to any one of Items 1 to 6 and a positive electrode current collector.
  • Item 8. A method for producing a positive electrode for a non-aqueous electrolyte secondary battery, comprising a step of applying the positive electrode material according to any one of items 1 to 6 to a surface of a positive electrode current collector.
  • Item 9. A nonaqueous electrolyte secondary battery comprising the positive electrode according to item 7, a negative electrode, and an organic electrolyte.
  • a positive electrode material for a nonaqueous electrolyte secondary battery includes a positive electrode active material and a binder, and the binder includes a structural unit (A) derived from a (meth) acrylate monomer and a carboxylic acid group.
  • a copolymer comprising a structural unit (B) derived from an ethylenically unsaturated monomer and a structural unit (C) derived from a polyfunctional (meth) acrylate monomer having a functionality of 5 or less. Since the positive electrode material has excellent flexibility and binding properties, the internal resistance of the nonaqueous electrolyte secondary battery is effectively reduced, and the charge / discharge cycle characteristics are further improved. It can be improved effectively. That is, since the nonaqueous electrolyte secondary battery of the present invention uses the positive electrode material for the positive electrode, the internal resistance is low and the charge / discharge cycle characteristics are also excellent.
  • the positive electrode material of the present invention contains a positive electrode active material and a binder, and the binder is derived from a structural unit (A) derived from a (meth) acrylate monomer and an ethylenically unsaturated monomer containing a carboxylic acid group.
  • a copolymer comprising a structural unit (B) and a structural unit (C) derived from a polyfunctional (meth) acrylate monomer having 5 or less functional groups, and further comprising substantially no thickener.
  • the positive electrode material of the present invention will be described in detail.
  • the positive electrode active material contained in the positive electrode material of the present invention is not particularly limited, and a known positive electrode active material used for a positive electrode of a nonaqueous electrolyte secondary battery can be used.
  • the positive electrode active material preferably contains, for example, an alkali metal-containing composite oxide represented by a composition of AMO 2 , AM 2 O 4 , A 2 MO 3 , or AMBO 4 .
  • A represents an alkali metal.
  • M consists of a single transition metal or two or more transition metals, and a part thereof may contain a non-transition metal.
  • B consists of P, Si, or a mixture thereof.
  • the positive electrode active material is preferably a powder, and the particle diameter thereof is preferably 50 microns or less, more preferably 20 microns or less. These positive electrode active materials have an electromotive force of 3 V (vs. Li / Li +) or more.
  • positive electrode active material examples include lithium cobaltate, lithium nickelate, nickel / manganese / lithium cobaltate (ternary system), spinel type lithium manganate, and lithium iron phosphate.
  • the content of the positive electrode active material in the positive electrode material is not particularly limited and is, for example, about 99.9 to 50% by mass, more preferably about 99.5 to 70% by mass, and further preferably about 99 to 85% by mass. Can be mentioned.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the binder contained in the positive electrode material of the present invention includes a structural unit (A) derived from a (meth) acrylate monomer, a structural unit (B) derived from an ethylenically unsaturated monomer containing a carboxylic acid group, and pentafunctional. It is a copolymer provided with the structural unit (C) induced
  • the binder is a copolymer of the monomers of the structural units (A) to (C) ((meth) acrylate monomer, ethylenically unsaturated monomer containing a carboxylic acid group, and polyfunctional (meth) acrylate monomer having 5 or less functional groups). It is a polymer.
  • the (meth) acrylate monomer is preferably at least one of (meth) acrylate and (meth) acrylate having a hydroxyl group.
  • “(meth) acrylate” means “acrylate” or “methacrylate”, and the same applies to similar expressions.
  • Examples of the (meth) acrylate having a hydroxyl group include a monomer represented by the following general formula (1).
  • R 1 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are each a hydrogen atom or A linear or branched alkyl group having 1 to 4 carbon atoms
  • n is an integer of 2 to 30.
  • the (meth) acrylate monomer having a hydroxyl group represented by the general formula (1) is preferably an alkylene glycol mono (meth) acrylate having a molecular weight of 150 to 1,000.
  • Specific examples include diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, and tripropylene.
  • Examples include glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate. These can be used alone or in combination of two or more.
  • tetraethylene glycol mono (meth) acrylate tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate are preferable.
  • Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (meth) Isobutyl acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and lauryl (meth) acrylate ((meth) acrylic) (Meth) acrylic acid esters such as (dodecyl acid) and (meth) acrylic acid amide. These can be used alone or in combination of two or more.
  • specific examples of the ethylenically unsaturated monomer containing a carboxylic acid group include monofunctional monomers such as methacrylic acid and acrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, Glutaconic acid, 1,2,3,6-tetrahydrophthalic acid, 3-methyl-1,2,3,6-tetrahydrophthalic acid, 4-methyl-1,2,3,6-tetrahydrophthalic acid, methyl-3 , 6-endomethylene-1,2,3,6-tetrahydrophthalic acid, exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic acid, and hymic acid.
  • monofunctional monomers such as methacrylic acid and acrylic acid, fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, Glutaconic acid, 1,2,3,6-tetrahydrophthalic acid, 3-methyl-1,2,3,6-tetrahydro
  • an anhydride of an unsaturated carboxylic acid such as maleic anhydride may be used, or a saponified product of these anhydrides may be used.
  • the ethylenically unsaturated monomer containing a carboxylic acid group is preferably methacrylic acid, acrylic acid, fumaric acid, maleic acid, itaconic acid. More preferred are methacrylic acid, acrylic acid and itaconic acid. These can be used alone or in combination of two or more.
  • the proportion of the structural unit (B) is not particularly limited, but is preferably about 0.5 to 50 parts by weight, more preferably about 1 to 30 parts by weight with respect to 100 parts by weight of the structural unit (A). .
  • the copolymer constituting the binder may include a similar structural unit.
  • the structural unit similar to the structural unit (B) include a structural unit derived from an ethylenically unsaturated monomer having at least one functional group different from the carboxylic acid group.
  • the functional group different from the carboxylic acid group include a nitrile group, a ketone group, an organic acid vinyl ester group, and a vinyl alcohol group.
  • an organic acid vinyl Mention may be made of ethylenically unsaturated monomers containing ester groups. Moreover, it can be set as the structural unit which has a vinyl alcohol group by saponifying the polymer of an organic acid vinyl ester monomer with an alkali.
  • the ethylenically unsaturated monomer containing a nitrile group is not particularly limited as long as it contains a nitrile group, but preferably acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, crotonnitrile, ⁇ -ethylacrylonitrile, ⁇ -cyanoacrylate ⁇ , ⁇ -unsaturated nitrile monomers such as vinylidene cyanide and fumaronitrile are used. More preferred are acrylonitrile and methacrylonitrile. These can be used alone or in combination of two or more.
  • ethylenically unsaturated monomer containing a ketone group examples include vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, isopropyl vinyl ketone, isobutyl vinyl ketone, t-butyl vinyl ketone, and hexyl vinyl ketone. These can be used alone or in combination of two or more.
  • ethylenically unsaturated monomers containing organic acid vinyl ester groups include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl trimethyl acetate, vinyl caproate, vinyl caprylate, vinyl laurate, vinyl palmitate, stearic acid. Vinyl etc. are mentioned. These can be used alone or in combination of two or more. Among these, vinyl acetate and vinyl propionate are preferable.
  • a polymer of an organic acid vinyl ester monomer can be converted to a structural unit having a vinyl alcohol group by saponification with an alkali.
  • a polyfunctional (meth) acrylate monomer having 5 or less functional groups functions as a crosslinking agent.
  • the polyfunctional (meth) acrylate monomer include bifunctional to pentafunctional (meth) acrylate.
  • a bifunctional to pentafunctional cross-linking agent is excellent in dispersion by emulsion polymerization, and has excellent physical properties (flexibility and binding properties) as a binder.
  • the polyfunctional (meth) acrylate monomer is preferably a trifunctional or tetrafunctional (meth) acrylate.
  • bifunctional (meth) acrylate monomer examples include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol Examples include di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, dioxane glycol di (meth) acrylate, and bis (meth) acryloyloxyethyl phosphate.
  • trifunctional (meth) acrylate monomer examples include trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, trimethylolpropane PO-added tri (meth) acrylate, and pentaerythritol tri (meth).
  • tetrafunctional (meth) acrylate monomer examples include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and pentaerythritol EO-added tetra (meth) acrylate.
  • pentafunctional (meth) acrylate monomers include dipentaerythritol penta (meth) acrylate.
  • the polyfunctional (meth) acrylate monomer may be used alone or in combination of two or more.
  • the proportion of the structural unit (C) is not particularly limited, but is preferably about 0.5 to 70 parts by weight, more preferably about 1 to 60 parts by weight, and still more preferably with respect to 100 parts by weight of the structural unit (A). 2 to 50 parts by mass.
  • the ratio of the structural unit (A), the structural unit (B), and the structural unit (C) is a mass ratio
  • the structural unit (A) is 1 to 70
  • Is 0.1 to 15 and the structural unit (C) is preferably 0.1 to 40
  • the structural unit (A) is 1 to 65
  • the structural unit (B) is 0.2 to 12
  • the structural unit (C) is more preferably 0.2 to 35
  • the structural unit (A) is 1 to 60
  • the structural unit (B) is 0.3 to 10
  • the structural unit (C) is 0.3 to 30. More preferably it is.
  • the said copolymer contains a structural unit (A), a structural unit (B), and a structural unit (C), it is preferable to contain as follows in the said copolymer.
  • the lower limit of the structural unit (A) is preferably 1% by mass or more, preferably the upper limit is 70% by mass or less, more preferably 65% by mass or less, and 60% by mass or less. More preferably.
  • the lower limit of the structural unit (B) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more, and the upper limit thereof. Is preferably 15% by mass or less, more preferably 12% by mass or less, and still more preferably 10% by mass or less.
  • the lower limit of the structural unit (C) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more, and the upper limit thereof. Is preferably contained in an amount of 40% by mass or less, more preferably 35% by mass or less, and still more preferably 30% by mass or less.
  • the copolymer has a structural unit (A-1) derived from a (meth) acrylate having a hydroxyl group, a structural unit (A-2) derived from (meth) acrylate, and a carboxylic acid group.
  • A-1 structural unit derived from a (meth) acrylate having a hydroxyl group
  • A-2 structural unit derived from (meth) acrylate
  • carboxylic acid group a carboxylic acid group.
  • the structural unit (B) derived from an ethylenically unsaturated monomer and the structural unit (C) derived from a polyfunctional (meth) acrylate monomer are included, the structural unit (A-1) and the structural unit
  • the ratio of (A-2), the structural unit (B), and the structural unit (C) is 1 to 45 for the structural unit (A-1) and 15 to 15 for the structural unit (A-2) by mass ratio.
  • the structural unit (B) is preferably 0.5 to 15 and the structural unit (C) is preferably 0.5 to 25, the structural unit (A-1) is 1 to 40, and the structural unit (A-2) Is 15 to 75, the structural unit (B) is 1 to 10, and the structural unit (C) is 1 to 25. More preferably, the structural unit (A-1) is 2 to 35, the structural unit (A-2) is 30 to 70, the structural unit (B) is 2 to 10, and the structural unit (C) is 2 to 20. More preferably it is.
  • the copolymer has a structural unit (A-1) derived from a (meth) acrylate having a hydroxyl group, a structural unit (A-2) derived from (meth) acrylate, and a carboxylic acid group.
  • A-1 the structural unit (A-1) derived from a (meth) acrylate having a hydroxyl group
  • A-2 structural unit derived from (meth) acrylate
  • carboxylic acid group derived from an ethylenically unsaturated monomer and the structural unit (C) derived from a polyfunctional (meth) acrylate monomer.
  • the lower limit is preferably 1% by mass or more, more preferably 2% by mass or more
  • the upper limit is preferably 45% by mass or less, and 40% by mass or less.
  • the lower limit of the structural unit (A-2) is preferably 15% by mass or more, more preferably 30% by mass or more, and the upper limit is preferably 98% by mass or less, and 75% by mass or less. It is more preferable to contain, and it is still more preferable to contain 70 mass% or less.
  • the lower limit of the structural unit (B) is preferably 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, and the upper limit is 15% by mass. It is preferable to contain below, and it is more preferable to contain below 10 mass%.
  • the lower limit of the structural unit (C) is preferably 0.5% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, and the upper limit is 25% by mass. It is preferable to contain below, and it is more preferable to contain below 20 mass%.
  • the binder is an aqueous binder used for the positive electrode material as an emulsion in which the binder is dispersed in water or alcohol. That is, when the positive electrode material of the present invention is prepared, it is used in the state of an aqueous emulsion in which the above-mentioned copolymer binder is dispersed in water or the like, and only the aqueous emulsion may be used.
  • the content (solid content concentration) of the binder in the emulsion is not particularly limited and is preferably about 0.2 to 80% by mass, more preferably about 0.5 to 70% by mass, and further preferably 0.5 to About 60 mass% is mentioned.
  • the method for obtaining an aqueous emulsion of the binder is not particularly limited, and examples thereof include a general emulsion polymerization method, a soap-free emulsion polymerization method, a seed polymerization method, and a method in which a monomer is swollen in seed particles and then polymerized.
  • a closed vessel equipped with a stirrer and a heating device contains a monomer, an emulsifier, a polymerization initiator, water, a dispersant, a chain transfer agent, a pH adjuster, etc., as necessary, at room temperature.
  • the composition is stirred under an inert gas atmosphere to emulsify monomers and the like in water.
  • a method using stirring, shearing, ultrasonic waves, or the like can be applied, and a stirring blade, a homogenizer, or the like can be used. Then, the temperature is raised while stirring to initiate polymerization, whereby a spherical polymer latex (a binder aqueous emulsion) in which a binder (monomer copolymer) is dispersed in water can be obtained.
  • the monomer addition method at the time of polymerization may be monomer dropping, pre-emulsion dropping, or the like in addition to batch preparation, and two or more of these methods may be used in combination.
  • the particle structure in the aqueous emulsion of the binder is not particularly limited.
  • a latex of a polymer containing composite polymer particles having a core-shell structure produced by seed polymerization can be used.
  • the seed polymerization method for example, a method described in “Dispersion / Emulsification System Chemistry” (Publisher: Engineering Books Co., Ltd.) can be used. Specifically, this is a method in which a monomer, a polymerization initiator, and an emulsifier are added to a system in which seed particles produced by the above method are dispersed to grow core particles, and the above method may be repeated one or more times.
  • a binder (copolymer) suitably used in the present invention or particles using a known polymer can be used.
  • the known polymer include polyethylene, polypropylene, polyvinyl alcohol, polystyrene, poly (meth) acrylate, and polyether, but are not limited, and other known polymers can be used. Further, one kind of homopolymer or two or more kinds of copolymers or blends may be used.
  • a spherical shape can be mentioned, and further, a plate shape, a hollow structure, a composite structure, a localized structure, a daruma-like structure, a octopus-like structure, a raspberry-like structure, and the like.
  • particles particles having two or more types of structures and compositions can be used without departing from the present invention.
  • the emulsifier is not particularly limited, and nonionic emulsifiers and anionic emulsifiers generally used in emulsion polymerization methods can be used.
  • Nonionic emulsifiers include, for example, polyoxyethylene alkyl ether, polyoxyethylene alcohol ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene fatty acid ester and And polyoxyethylene sorbitan fatty acid esters.
  • anionic emulsifiers include alkylbenzene sulfonates, alkyl sulfate esters, polyoxyethylene alkyl ether sulfates, fatty acid salts, and the like. You may use above.
  • Representative examples of the anionic emulsifier include sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, and triethanolamine lauryl sulfate.
  • the amount of the emulsifier used may be an amount generally used in the emulsion polymerization method. Specifically, it is in the range of 0.01 to 10% by mass, preferably 0.05 to 5% by mass, and more preferably 0.05 to 3% by mass, with respect to the charged monomer amount. When a reactive surfactant is used as the monomer component, it is not always necessary to add an emulsifier.
  • the polymerization initiator is not particularly limited, and a polymerization initiator generally used in an emulsion polymerization method can be used. Specific examples thereof include water-soluble polymerization initiators represented by persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate, and oil-soluble polymerization represented by cumene hydroperoxide and diisopropylbenzene hydroperoxide.
  • water-soluble polymerization initiators represented by persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate
  • oil-soluble polymerization represented by cumene hydroperoxide and diisopropylbenzene hydroperoxide.
  • Initiator hydroperoxide, 4-4′-azobis (4-cyanovaleric acid), 2-2′-azobis [2- (2-imidazolin-2-yl) propane, 2-2′-azobis (propane- 2-Carboamidine) 2-2'-azobis [N- (2-carboxyethyl) -2-methylpropanamide, 2-2'-azobis [2- [1- (2-hydroxyethyl) -2-imidazoline- 2-yl] propane], 2-2'-azobis (1-imino-1-pyrrolidino-2-methylpropane) and 2-2'-azobis [2- And azo initiators such as methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propanamide] and redox initiators. These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the polymerization initiator used may be an amount generally used in the emulsion polymerization method. Specifically, for example, about 0.01 to 10 parts by weight, preferably about 0.05 to 5 parts by weight, and more preferably about 0.1 to 3 parts by weight with respect to 100 parts by weight of the charged monomer.
  • the content of the binder in the positive electrode material is not particularly limited, but is preferably 7 parts by mass or less, more preferably 5 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • 0.05 mass part or more, 0.1 mass part or more, 0.2 mass part or more, 0.5 mass part or more, 1 mass part or more is illustrated normally. Can do.
  • the positive electrode material may further contain a conductive aid as necessary. It does not restrict
  • the well-known conductive support agent used for the positive electrode of a nonaqueous electrolyte secondary battery can be used.
  • Specific examples of the conductive assistant include conductive carbon such as acetylene black, ketjen black, carbon fiber, and graphite, conductive polymer, and metal powder. Among these, conductive carbon is particularly preferable.
  • the content of the conductive additive is not particularly limited, but is preferably 20 parts by mass or less, more preferably 15 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • the lower limit value of the content of the conductive support agent is usually 0.05 parts by mass or more, 0.1 part by mass or more, 0.2 part by mass or more, 0 .5 parts by mass or more and 2 parts by mass or more can be exemplified.
  • the positive electrode material of the present invention does not substantially contain a thickener.
  • the positive electrode material of the present invention contains the above specific copolymer as a binder, and has excellent flexibility and binding properties by substantially not containing a thickener. It is possible to effectively reduce the internal resistance of the water electrolyte secondary battery and further improve the charge / discharge cycle characteristics.
  • the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose and the like, and alkali metal salts or ammonium salts thereof, polyvinyl alcohol, polyacrylic acid salts, and the like.
  • the thickener is not substantially contained in the positive electrode material of the present invention, a trace amount of the thickener may be contained within a range not impairing the effects of the present invention.
  • content of the thickener in the positive electrode material of this invention Preferably it is 0.1 mass% or less, More preferably, it is 0.05 mass% or less, More preferably, 0.01 mass% or less is mentioned.
  • the method for preparing the positive electrode material composition (slurry) for forming the positive electrode material of the present invention is not particularly limited, and includes a positive electrode active material, a binder, and a conductive auxiliary agent, a solvent, and the like used as necessary. What is necessary is just to disperse
  • a positive electrode active material When producing a slurry-like positive electrode material composition, a positive electrode active material, an aqueous emulsion of a binder, a conductive additive, and a solvent (mainly water) are used.
  • the water to be used is not particularly limited, and generally used water can be used. Specific examples thereof include tap water, distilled water, ion exchange water, and ultrapure water. Among these, distilled water, ion exchange water, and ultrapure water are preferable. Moreover, you may mix and use water-soluble organic solvents, such as alcohol, in order to adjust the dispersibility and drying property of a slurry.
  • water-soluble organic solvents examples include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone and methyl ethyl ketone, tetrahydrofuran, N-methylpyrrolidone, dimethylformamide, and the like, but are not limited thereto. .
  • a dispersant can be added to the aqueous emulsion in advance or added to the slurry-like positive electrode material composition as necessary. If it is a dispersing agent, a kind and usage-amount will not be specifically limited, The dispersing agent generally used can be freely used in arbitrary quantity.
  • the solid content concentration of the slurry-like positive electrode material composition is 10 to 90% by mass, preferably 20 to 85% by mass, more preferably 30 to 80% by mass.
  • the proportion of the copolymer in the solid content of the slurry-like positive electrode material composition is preferably about 0.1 to 15% by mass, more preferably about 0.2 to 10% by mass, and further preferably 0.3 to It is about 7% by mass.
  • Positive Electrode The positive electrode of the present invention is characterized by comprising the positive electrode material of the present invention described in the above-mentioned section “1. Positive electrode material” and a positive electrode current collector. The details of the positive electrode material of the present invention are as described above.
  • the positive electrode current collector is not particularly limited, and a known positive electrode current collector used for a positive electrode of a nonaqueous electrolyte secondary battery can be used.
  • a positive electrode electrical power collector it can comprise with metal substrates, such as aluminum, nickel, stainless steel, gold
  • the positive electrode is produced by uniformly applying a slurry-like positive electrode material composition (coating liquid) to an appropriate thickness on the surface of the positive electrode current collector by a doctor blade method, an applicator method, a silk screen method, or the like. Is called.
  • a slurry-like positive electrode material composition is applied to the surface of the positive electrode current collector, and then uniformized to an appropriate thickness with a blade having a predetermined slit width.
  • drying is performed in 100 ° C. hot air or 80 ° C. vacuum.
  • the positive electrode is manufactured by press molding using a press device. You may heat-process again after pressing, and may remove water, a solvent, an emulsifier, etc.
  • Nonaqueous Electrolyte Secondary Battery The nonaqueous electrolyte secondary battery of the present invention is characterized by comprising the positive electrode of the present invention, the negative electrode, and the organic electrolyte described in the above section “2. Positive electrode”. That is, the positive electrode used for the nonaqueous electrolyte secondary battery of the present invention includes the positive electrode material of the present invention. The details of the positive electrode of the present invention are as described above.
  • the negative electrode includes a negative electrode material and a negative electrode current collector.
  • the negative electrode material contains a negative electrode active material and a binder. It does not restrict
  • the well-known negative electrode active material used for the negative electrode of a nonaqueous electrolyte secondary battery can be used.
  • the negative electrode active material include carbon materials (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (porous structure) capable of occluding and releasing alkali metal ions such as lithium ions, and alkali metals such as lithium ions. Examples thereof include powders made of metals such as lithium, aluminum compounds, tin compounds and silicon compounds capable of occluding and releasing ions.
  • the particle diameter is preferably 10 nm or more and 100 ⁇ m or less, more preferably 20 nm or more and 20 ⁇ m or less.
  • the negative electrode active material a mixture of a metal and a carbon material may be used. Note that it is desirable to use a negative electrode active material having a porosity of about 70%.
  • the binder for the negative electrode is not particularly limited, and a known binder used for the negative electrode of a nonaqueous electrolyte secondary battery can be used.
  • Specific examples of the binder for the negative electrode include homopolymers or copolymers of monomers selected from at least one of vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, and ethylene trifluoride, styrene-butadiene copolymer
  • One or more kinds of compounds selected from a polymer, an acrylic polymer, and a vinyl polymer can be used. Among these, a vinylidene fluoride polymer, an ethylene tetrafluoride polymer, and an acrylic polymer are preferable.
  • the binder for the negative electrode the same ones exemplified as the binder for the positive electrode described above may be used.
  • the organic electrolyte is not particularly limited, and a known organic electrolyte used for a negative electrode of a nonaqueous electrolyte secondary battery can be used.
  • Specific examples of the organic electrolyte include a solution containing a lithium salt compound as an electrolyte and an aprotic organic solvent as a solvent. Each of the electrolyte and the solvent may be used alone or in combination of two or more.
  • lithium salt compound a lithium salt compound having a wide potential window, which is generally used in lithium ion batteries, is used.
  • LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN [CF 3 SC (C 2 F 5 SO 2 ) 3 ] 2 and the like are not limited thereto.
  • aprotic organic solvents examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, Linear ethers such as dipropyl carbonate, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetic acid ester, propionic acid ester, diethyl ether can be used. Good.
  • a room temperature molten salt can be used as the solvent.
  • the room temperature molten salt refers to a salt that is at least partially in a liquid state at room temperature, and the room temperature refers to a temperature range in which the battery is generally assumed to operate.
  • the temperature range in which the battery is supposed to normally operate has an upper limit of about 120 ° C., in some cases about 80 ° C., and a lower limit of about ⁇ 40 ° C., in some cases about ⁇ 20 ° C.
  • the room temperature molten salt is also called an ionic liquid and is a “salt” composed of only ions (anions and cations), and in particular, a liquid compound is called an ionic liquid.
  • quaternary ammonium organic cations include imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, and piperidinium ions.
  • imidazolium ions such as dialkylimidazolium and trialkylimidazolium, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, and piperidinium ions.
  • an imidazolium ion is preferable.
  • tetraalkylammonium ions include, but are not limited to, trimethylethylammonium ion, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, tetrapentylammonium ion, and triethylmethylammonium ion. is not.
  • the alkylpyridinium ions include N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion, N-butylpyridinium ion, 1-ethyl-2methylpyridinium ion, 1-butyl-4-methyl Examples thereof include, but are not limited to, pyridinium ions and 1-butyl-2,4 dimethylpyridinium ions.
  • imidazolium ions examples include 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- Examples include 2,3-dimethylimidazolium ion, but are not limited thereto.
  • the anion species of the room temperature molten salt include halide ions such as chloride ion, bromide ion and iodide ion, perchlorate ion, thiocyanate ion, tetrafluoroborate ion, nitrate ion, AsF 6 ⁇ , PF 6 ⁇ .
  • Inorganic acid ions such as stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, 7,7,8,8-tetracyano-p-quinodimethane ion
  • the organic acid ion etc. are illustrated.
  • normal temperature molten salt may be used individually by 1 type, and may be used in combination of 2 or more types.
  • additives can be used in the organic electrolyte as required.
  • the additive include a flame retardant, a flame retardant, a positive electrode surface treatment agent, a negative electrode surface treatment agent, and an overcharge preventing agent.
  • Flame retardants and flame retardants include brominated epoxy compounds, phosphazene compounds, tetrabromobisphenol A, halides such as chlorinated paraffin, antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, phosphate ester, polyphosphorus Examples thereof include acid salts and zinc borate.
  • the positive electrode surface treating agent include inorganic compounds such as carbon and metal oxides (such as MgO and ZrO 2 ), and organic compounds such as ortho-terphenyl.
  • the negative electrode surface treating agent include vinylene carbonate, fluoroethylene carbonate, polyethylene glycol dimethyl ether and the like.
  • the overcharge inhibitor include biphenyl and 1- (p-tolyl) adamantane.
  • the production method of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and is produced by a known method using a positive electrode, a negative electrode, an organic electrolyte, a separator, and the like.
  • a positive electrode, a separator, and a negative electrode are inserted into an outer can. This is impregnated with an electrolytic solution. Then, it joins with a sealing body by tab welding etc., a sealing body is enclosed, and a storage battery is obtained by crimping.
  • the shape of the battery is not limited, but examples include a coin type, a cylindrical type, and a sheet type, and may have a structure in which two or more batteries are stacked.
  • the separator prevents a short circuit in the storage battery due to direct contact between the positive electrode and the negative electrode, and a known material can be used.
  • a known material can be used.
  • Specific examples of the separator include porous polymer films such as polyolefin, paper, and the like.
  • the porous polymer film a film made of polyethylene, polypropylene, or the like is preferable because it is less affected by the organic electrolyte.
  • the reversibility of the positive electrode material can be evaluated by using a metal lithium foil as the counter electrode.
  • a combination of the positive electrode material and the carbon-based negative electrode material is used without using the metal lithium foil.
  • the nonaqueous electrolyte secondary battery of the present invention has low internal resistance and excellent charge / discharge cycle characteristics.
  • the non-aqueous electrolyte secondary battery of the present invention can be used for a small battery such as a mobile phone, a notebook personal computer, a camcorder and other electronic devices, and a large battery such as a storage battery for in-vehicle use such as an electric vehicle and a hybrid electric vehicle, and a household power storage. It can be suitably used for secondary battery applications.
  • each electrode and each coin battery were manufactured, and as an evaluation of each electrode, a bending test (flexibility evaluation) and a binding test were performed by the following experimental methods. Moreover, as performance evaluation of each coin battery, the measurement of internal resistance and the charge / discharge cycle characteristic test were performed by the following experimental methods. The results are shown in Tables 1 and 2.
  • each electrode positive electrode sheet
  • a stainless steel rod having a diameter of 2 mm is placed on the base material side (the electrode surface faces the outside) at the center in the length direction (4 cm portion).
  • the state of the coating film at the bent portion when the plate was bent by 180 ° was observed. Measurement is performed 5 times by this method, and the case where the electrode surface is not cracked or peeled off or peeled off from the current collector at all 5 times. The case where one or more cracks or peeling occurs even once. It was evaluated. The results are shown in Table 1.
  • the binding test was performed by a cross cut test. Specifically, each electrode (positive electrode sheet) is cut into a width of 3 cm and a length of 4 cm, and a square grid pattern is cut with a cutter knife so that one side of one square is 1 mm. A tape (adhesive tape: manufactured by Nichiban Co., Ltd.) was applied to a grid of 25 squares of 5 squares, and the number of squares that remained without being peeled off from the electrodes was measured when the tape was peeled off with the electrodes fixed. . The test was performed 5 times, and the average value was obtained. The results are shown in Table 1.
  • the pH of the polymerization solution was adjusted to 8.2 using a 28% aqueous ammonia solution, and binder A (polymerization conversion rate 99% or more) (solid content concentration 39 wt%) as an emulsion of the polymer of the present invention was added. Obtained.
  • the average particle diameter of the obtained polymer was 0.109 ⁇ m.
  • Binder B polymerization conversion rate of 99% or more
  • solid content concentration 42 wt% solid content concentration 42 wt%
  • the average particle size of the obtained polymer was 0.205 ⁇ m.
  • the average particle diameter of the obtained polymer was 0.206 ⁇ m.
  • the average particle diameter of the obtained polymer was 0.101 ⁇ m.
  • the pH of the polymerization solution was adjusted to 8.1 using a 24% aqueous sodium hydroxide solution, and the binder G (polymerization conversion rate of 99% or more) (solid content concentration 11 wt%) as an emulsion of the polymer of the comparative example. )
  • the average particle diameter of the obtained polymer was 0.154 ⁇ m.
  • Example 1 lithium manganate having an average particle size of 10 ⁇ m was used. With respect to 94 parts by mass of this positive electrode active material, 3 parts by mass of acetylene black as a conductive additive, 3 parts by mass as the solid content of binder A obtained in Synthesis Example 1 as a binder, and a solid content of the slurry of 55 parts by mass % And using a planetary mill with water as a solvent, the mixture was sufficiently kneaded to obtain a slurry composition for the positive electrode. The obtained slurry composition for the positive electrode was applied onto a 20 ⁇ m thick aluminum current collector using a 100 ⁇ m gap bar coater, dried at 110 ° C. for 12 hours or more, roll-pressed, and further subjected to argon Heat treatment was performed at 120 ° C. for 12 hours in a gas atmosphere to prepare a positive electrode sheet 1 having a thickness of 30 ⁇ m.
  • Example 2 A positive electrode sheet 2 was prepared in the same manner as in Example 1 except that the binder B obtained in Synthesis Example 2 was used as a binder during the production of the positive electrode.
  • Example 3 A positive electrode sheet 3 was prepared in the same manner as in Example 1 except that the binder C obtained in Synthesis Example 3 was used as the binder during the preparation of the positive electrode.
  • Example 4 A positive electrode sheet 4 was prepared in the same manner as in Example 1 except that the binder D obtained in Synthesis Example 4 was used as the binder when the positive electrode was produced.
  • Example 5 A positive electrode sheet 5 was prepared in the same manner as in Example 1 except that the binder E obtained in Synthesis Example 5 was used as the binder at the time of preparing the positive electrode.
  • a positive electrode sheet 6 was prepared in the same manner as in Example 1 except that the binder F obtained in Comparative Synthesis Example 1 was used as the binder during the preparation of the positive electrode.
  • a positive electrode sheet 7 was prepared in the same manner as in Example 1 except that the binder G obtained in Comparative Synthesis Example 2 was used as the binder during the preparation of the positive electrode.
  • a positive electrode sheet 8 was prepared in the same manner as in Example 1 except that 2 parts by mass of binder A obtained in Synthesis Example 1 and 1 part by mass of sodium salt of carboxymethyl cellulose were used as binders during the production of the positive electrode. did.
  • a positive electrode active material and a binder wherein the binder is derived from a structural unit (A) derived from a (meth) acrylate monomer, a structural unit (B) derived from an ethylenically unsaturated monomer containing a carboxylic acid group, and 5
  • the positive electrode materials of Examples 1 to 5, which are a copolymer having a structural unit (C) derived from a polyfunctional (meth) acrylate monomer having a functionality lower than that of the functional group and do not contain a thickener, are flexible and binding. It became clear that it was excellent in property.
  • Example of battery production [Coin battery production example 1]
  • the positive electrode obtained in Example 1 of the electrode two 18 ⁇ m-thick polypropylene / polyethylene / polypropylene porous membranes as the separator, and a 300 ⁇ m-thick metal lithium foil as the counter electrode are attached.
  • the combined laminate was sufficiently impregnated with 1 mol / L lithium hexafluorophosphate ethylene carbonate and dimethyl carbonate solution (volume ratio 1: 1) as an electrolytic solution to produce a test 2032 type coin battery. .
  • the nonaqueous electrolyte secondary batteries of Production Examples 1 to 5 using the positive electrode materials of Examples 1 to 5 were found to have low internal resistance and excellent charge / discharge cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Secondary Cells (AREA)

Abstract

優れた可撓性及び結着性を備えており、非水電解質二次電池の内部抵抗を効果的に低下させ、さらに、充放電サイクル特性を効果的に向上させることができる、非水電解質二次電池用の正極材料を提供する。 正極活物質及びバインダーを含み、 前記バインダーが、(メタ)アクリレートモノマーから誘導される構成単位(A)と、カルボン酸基を含むエチレン性不飽和モノマーから誘導される構成単位(B)と、5官能以下の多官能(メタ)アクリレートモノマーから誘導される構成単位(C)とを備える共重合体であり、 実質的に増粘剤を含まない、正極材料。

Description

非水電解質二次電池用の正極材料
 本発明は、非水電解質二次電池用の正極材料に関する。さらに詳しくは、本発明は、優れた可撓性及び結着性を備えており、非水電解質二次電池の内部抵抗を効果的に低下させ、さらに、充放電サイクル特性を効果的に向上させることができる、非水電解質二次電池用の正極材料、当該正極材料を用いた正極、当該正極を用いた非水電解質二次電池に関する。
 電池の電極において、バインダーを用いることが知られている。バインダーを用いた電極を有する非水電解質二次電池の代表例として、リチウム二次電池が挙げられる。リチウムイオン二次電池は、エネルギー密度が高く、高電圧であるため、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では環境保護への意識の高まりや関連法の整備により、電気自動車やハイブリッド電気自動車などの車載用途や、家庭用電力貯蔵用の蓄電池としての応用も進んできている。いずれの用途においても電池の占有体積や質量等の観点より、電池のエネルギー密度は高いことが望ましい。
 リチウムイオン二次電池は、一般的に、負極、正極、セパレータ、電解液等で構成される。例えば負極は、リチウムイオンの挿入脱離が可能なグラファイトやハードカーボンなどの負極活物質、さらに、導電助剤、バインダー、溶媒などを含む塗工液を、銅箔に代表される集電体上に塗布、乾燥して得られる。現在、一般的には、スチレン-ブタジエンゴム(以下、「SBR」と略す)をバインダーとした、水分散体が塗工液として使用されている。
 一方、正極は、層状のコバルト酸リチウムやスピネル型マンガン酸リチウム等の正極活物質、カーボンブラック等の導電助剤、ポリフッ化ビニリデンやポリ四フッ化エチレン等のバインダーを混合し、N-メチルピロリドンのような極性溶媒に分散させた塗工液を、アルミニウム箔に代表される集電体上に負極と同様に塗布、乾燥して製造されている。
 これらのリチウムイオン電池において、高い結着力を確保するためには、バインダーの添加量を多くする必要があり、そのことによる性能の低下が課題として挙げられる。また、回収、コスト、毒性および環境負荷の観点から、N-メチルピロリドンなどの極性有機溶媒を用いたバインダーの代わりに、水系バインダーを用いることが望まれている。しかしながら、例えば水系であるSBRバインダーを用いた場合、正極環境下において、正極の酸化劣化が生じ、電池特性が低下(内部抵抗の上昇や、充放電サイクル特性の低下)するといった課題がある。そのため、依然として、正極のバインダーとしては、N-メチルピロリドンを分散溶媒に用いたポリフッ化ビニリデンやポリ四フッ化エチレンが広く使用されている。このため、非水電解質二次電池の正極に好適に使用できる水系のバインダーの開発が望まれている。
 例えば、特許文献1および2には、芳香族ビニル、共役ジエン、(メタ)アクリル酸エステルおよびエチレン性不飽和カルボン酸からなる共重合体を含有するバインダー(特許文献1)、および2官能性(メタ)アクリレートを含むポリマーを含有するバインダー(特許文献2)のような水系のアクリル酸エステルバインダーが提案されている。しかしながら、これらの水系バインダーを正極に用いた場合、例えば高温条件下において、充放電サイクル特性が劣化するという問題がある。特に、当該バインダーを正極に用いた場合、高電圧条件下で耐酸化性に問題があり、電池特性が悪くなることが懸念される。
 また、このような水系のアクリル酸エステル系バインダーを用いた場合、電極作製時の塗工液(スラリー)の粘度が低いため、滑らかなペーストを得ることで平滑な電極を塗布するために、増粘剤を添加する必要がある。ところが、電池の充放電過程における増粘剤の酸化が、電池特性の低下の一因となっている。
 さらに、特許文献3には、ニトリル基を有する(メタ)アクリレートの共重合体が、増粘剤を用いなくても、集電体との十分な密着性を発揮するバインダーとして提案されている。しかしながら、これは負極用のバインダーであり、高い耐酸化特性、さらに、厚膜塗布されるために可撓性が求められる正極での使用可能性については、全く検討されていない。
特開平11-025989号公報 特開2001-256980号公報 特開2012-51999号公報
 本発明は、上記のような従来技術の問題点に鑑みなされた発明であり、優れた可撓性及び結着性を備えており、非水電解質二次電池の内部抵抗を効果的に低下させ、さらに、充放電サイクル特性を効果的に向上させることができる、非水電解質二次電池用の正極材料を提供することを主な目的とする。さらに、本発明は、当該正極材料を用いた正極、当該正極を用いた非水電解質二次電池を提供することも目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、正極活物質及びバインダーを含み、当該バインダーが、(メタ)アクリレートモノマーから誘導される構成単位(A)と、カルボン酸基を含むエチレン性不飽和モノマーから誘導される構成単位(B)と、5官能以下の多官能(メタ)アクリレートモノマーから誘導される構成単位(C)とを備える共重合体であり、さらに、実質的に増粘剤を含まない正極材料は、優れた可撓性及び結着性を備えており、非水電解質二次電池の内部抵抗を効果的に低下させ、さらに、充放電サイクル特性を効果的に向上させることを見出した。本発明は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 正極活物質及びバインダーを含み、
 前記バインダーが、(メタ)アクリレートモノマーから誘導される構成単位(A)と、カルボン酸基を含むエチレン性不飽和モノマーから誘導される構成単位(B)と、5官能以下の多官能(メタ)アクリレートモノマーから誘導される構成単位(C)とを備える共重合体であり、
 実質的に増粘剤を含まない、正極材料。
項2. 前記構成単位(A)の(メタ)アクリレートモノマーが、水酸基を有する(メタ)アクリレート及び(メタ)アクリレートの少なくとも一方である、項1に記載の正極材料。
項3. 前記水酸基を有する(メタ)アクリレートが、分子量100~1000のアルキレングリコールモノ(メタ)アクリレートである、項2に記載の正極材料。
項4. 前記構成単位(B)のカルボン酸基を含むエチレン性不飽和モノマーが、(メタ)アクリル酸である、項1~3のいずれかに記載の正極材料。
項5. 前記共重合体は、水酸基を有する(メタ)アクリレートモノマーから誘導される構成単位(A-1)と、(メタ)アクリレートモノマーから誘導される構成単位(A-2)と、カルボン酸基を有するエチレン性不飽和モノマーから誘導される構成単位(B)と、多官能(メタ)アクリレートモノマーから誘導される構造単位(C)とを含んでおり、
 前記構成単位(A-1)と、前記構成単位(A-2)と、前記構成単位(B)と、前記構造単位(C)の割合が、質量比で、前記構成単位(A-1)が1~45、前記構成単位(A-2)が15~98、前記構成単位(B)が0.5~15、前記構造単位(C)が0.5~25である、項1~4のいずれかに記載の正極材料。
項6. 前記正極活物質が、AMO2(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、AM24(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、A2MO3(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、またはAMBO4(Aはアルカリ金属、BはP、Si、またはその混合物、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)のいずれかの組成で示されるアルカリ金属含有複合酸化物を含んでいる、項1~5のいずれか1項に記載の正極材料。
項7. 項1~6のいずれか1項に記載の正極材料と、正極集電体とを備える、非水電解質二次電池用の正極。
項8. 項1~6のいずれか1項に記載の正極材料を、正極集電体の表面に塗布する工程を備える、非水電解質二次電池用の正極の製造方法。
項9. 項7に記載の正極と、負極と、有機電解液とを備える、非水電解質二次電池。
 本発明によれば、非水電解質二次電池用の正極材料が、正極活物質及びバインダーを含み、当該バインダーが、(メタ)アクリレートモノマーから誘導される構成単位(A)と、カルボン酸基を含むエチレン性不飽和モノマーから誘導される構成単位(B)と、5官能以下の多官能(メタ)アクリレートモノマーから誘導される構成単位(C)とを備える共重合体であり、さらに、実質的に増粘剤を含まないことから、正極材料が優れた可撓性及び結着性を備えており、非水電解質二次電池の内部抵抗を効果的に低下させ、さらに、充放電サイクル特性を効果的に向上させることができる。すなわち、本発明の非水電解質二次電池は、正極に当該正極材料を用いているため、内部抵抗が低く、充放電サイクル特性にも優れている。
1.正極材料
 本発明の正極材料は、正極活物質及びバインダーを含み、バインダーが、(メタ)アクリレートモノマーから誘導される構成単位(A)と、カルボン酸基を含むエチレン性不飽和モノマーから誘導される構成単位(B)と、5官能以下の多官能(メタ)アクリレートモノマーから誘導される構成単位(C)とを備える共重合体であり、さらに、実質的に増粘剤を含まないことを特徴とする。以下、本発明の正極材料について、詳述する。
 本発明の正極材料に含まれる正極活物質としては、特に制限されず、非水電解質二次電池の正極に用いられる公知の正極活物質を用いることができる。正極活物質は、例えば、AMO2、AM24、A2MO3、またはAMBO4の組成で示されるアルカリ金属含有複合酸化物を含んでいることが好ましい。これらの組成において、Aは、アルカリ金属を示す。Mは、単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい。Bは、P、Siまたはその混合物からなる。なお正極活物質は、粉末であることが好ましく、その粒子径としては、好ましくは50ミクロン以下、より好ましくは20ミクロン以下が挙げられる。これらの正極活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。
 正極活物質の具体例としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケル/マンガン/コバルト酸リチウム(3元系)、スピネル型マンガン酸リチウム、リン酸鉄リチウムなどが挙げられる。
 正極材料中の正極活物質の含有量としては、特に制限されず、例えば99.9~50質量%程度、より好ましくは99.5~70質量%程度、さらに好ましくは99~85質量%程度が挙げられる。正極活物質は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 本発明の正極材料に含まれるバインダーは、(メタ)アクリレートモノマーから誘導される構成単位(A)と、カルボン酸基を含むエチレン性不飽和モノマーから誘導される構成単位(B)と、5官能以下の多官能(メタ)アクリレートモノマーから誘導される構成単位(C)とを備える共重合体である。すなわち、バインダーは、構成単位(A)~(C)の各モノマー((メタ)アクリレートモノマー、カルボン酸基を含むエチレン性不飽和モノマー、及び5官能以下の多官能(メタ)アクリレートモノマー)の共重合体である。
 構成単位(A)において、(メタ)アクリレートモノマーは、水酸基を有する(メタ)アクリレート及び(メタ)アクリレートの少なくとも一方であることが好ましい。なお、本発明において、「(メタ)アクリレート」とは、「アクリレート」または「メタクリレート」を意味し、これに類する表現についても同様である。
 水酸基を有する(メタ)アクリレートとしては、下記一般式(1)で表されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 構成単位(A)のモノマーにおいて、一般式(1)中、R1は、水素原子または炭素数1~4の直鎖もしくは分岐のアルキル基であり、R2およびR3は、それぞれ水素原子または炭素数1~4の直鎖もしくは分岐のアルキル基であり、nは、2~30の整数である。
 一般式(1)で表される、水酸基を有する(メタ)アクリレートモノマーとしては、分子量が150~1000のアルキレングリコールモノ(メタ)アクリレートが好ましい。具体例としては、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、およびポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、およびポリプロピレングリコールモノ(メタ)アクリレートなどが挙げられる。これらは1種又は2種以上併用できる。これらの中でも、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートが好ましい。
 また、(メタ)アクリレートモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、および(メタ)アクリル酸ラウリル((メタ)アクリル酸ドデシル)、(メタ)アクリル酸アミド等の(メタ)アクリル酸エステルなどが挙げられる。これらは1種又は2種以上併用できる。
 構成単位(B)において、カルボン酸基を含むエチレン性不飽和モノマーの具体例としては、メタアクリル酸、アクリル酸等の単官能モノマー、フマル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、1,2,3,6-テトラヒドロフタル酸、3-メチル-1,2,3,6-テトラヒドロフタル酸、4-メチル-1,2,3,6-テトラヒドロフタル酸、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロフタル酸、エキソ-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸、ハイミック酸等の2官能モノマーが挙げられる。さらに、上記2官能のカルボン酸基を含むエチレン性不飽和モノマーは、不飽和カルボン酸の無水物、例えば無水マレイン等も使用でき、また、これら無水物を鹸化したものを使用してもよい。カルボン酸基を含むエチレン性不飽和モノマーは、好ましくはメタアクリル酸、アクリル酸、フマル酸、マレイン酸、イタコン酸である。更に好ましくは、メタアクリル酸、アクリル酸、イタコン酸である。これらは1種又は2種以上併用できる。
 構成単位(B)の割合としては、特に制限されないが、構成単位(A)100質量部に対して、好ましくは0.5~50質量部程度、より好ましくは1~30質量部程度が挙げられる。
 なお、バインダーを構成する共重合体には、構成単位(B)に加えて、これに類する構成単位を含んでいてもよい。構成単位(B)に類する構成単位としては、カルボン酸基とは異なる官能基を少なくとも1種有するエチレン性不飽和モノマーから誘導される構成単位が挙げられる。カルボン酸基とは異なる官能基としては、例えば、ニトリル基、ケトン基、有機酸ビニルエステル基、ビニルアルコール基等が挙げられる。すなわち、構成単位(B)に類する構成単位のモノマーとしては、ニトリル基を含むエチレン性不飽和モノマー、カルボン酸基を含むエチレン性不飽和モノマー、ケトン基を含むエチレン性不飽和モノマー、有機酸ビニルエステル基を含むエチレン性不飽和モノマーが挙げられる。また、有機酸ビニルエステルモノマーの重合体をアルカリでケン化することによって、ビニルアルコール基を有する構成単位とすることができる。
 ニトリル基を含むエチレン性不飽和モノマーは、ニトリル基を含有するものであれば特に限定されないが、好ましくはアクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、α-エチルアクリロニトリル、α-シアノアクリレート、シアン化ビニリデン、フマロニトリルなどのα,β-不飽和ニトリルモノマーが用いられる。更に好ましくはアクリロニトリル、メタクリロニトリルである。これらは1種又は2種以上併用できる。
 ケトン基を含むエチレン性不飽和モノマーの具体例としては、メチルビニルケトン、エチルビニルケトン、イソプロピルビニルケトン、イソブチルビニルケトン、t-ブチルビニルケトン、ヘキシルビニルケトン等のビニルケトン類が挙げられる。これらは1種又は2種以上併用できる。
 有機酸ビニルエステル基を含むエチレン性不飽和モノマーの具体例としては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、トリメチル酢酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルなどが挙げられる。これらは1種又は2種以上併用できる。これらの中でも、酢酸ビニル、プロピオン酸ビニルが好ましい。
 前述の通り、有機酸ビニルエステルモノマーの重合体をアルカリでケン化することによって、ビニルアルコール基を有する構成単位とすることができる。
 構成単位(C)において、5官能以下の多官能(メタ)アクリレートモノマーは、架橋剤として働く。多官能(メタ)アクリレートモノマーとしては2官能~5官能(メタ)アクリレートが挙げられる。2官能~5官能の架橋剤では、乳化重合での分散が良好であり、バインダーとしての物性(屈曲性、結着性)が優れている。多官能(メタ)アクリレートモノマーは、好ましくは3官能または4官能(メタ)アクリレートである。
 2官能(メタ)アクリレートモノマーの具体例としてはトリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ビス(メタ)アクリロイルオキシエチルフォスフェートなどが挙げられる。
 3官能(メタ)アクリレートモノマーの具体例としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、トリメチロールプロパンPO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2,2,2-トリス(メタ)アクリロイロキシメチルエチルコハク酸、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、グリセリンEO付加トリ(メタ)アクリレート、グリセリンPO付加トリ(メタ)アクリレートおよびトリス(メタ)アクリロイルオキシエチルフォスフェートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましい。
 4官能(メタ)アクリレートモノマーの具体例としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートおよびペンタエリスリトールEO付加テトラ(メタ)アクリレートなどが挙げられる。
 5官能(メタ)アクリレートモノマーの具体例としては、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 構成単位(C)において、多官能(メタ)アクリレートモノマーは、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 構成単位(C)の割合としては、特に制限されないが、構成単位(A)100質量部に対して、好ましくは0.5~70質量部程度、より好ましくは1~60質量部程度、さらに好ましくは2~50質量部が挙げられる。
 バインダーを構成する共重合体における、構成単位(A)、構成単位(B)、及び構造単位(C)の割合は、質量比で、構成単位(A)が1~70、構成単位(B)が0.1~15、及び構成単位(C)が0.1~40であることが好ましく、構成単位(A)が1~65、構成単位(B)が0.2~12、及び構成単位(C)が0.2~35であることがより好ましく、構成単位(A)が1~60、構成単位(B)が0.3~10、構成単位(C)が0.3~30であることがさらに好ましい。
 また、当該共重合体が、構成単位(A)、構成単位(B)と、構造単位(C)とを含んでいる場合、当該共重合体においては、以下のように含有することが好ましい。
 構成単位(A)は、その下限が1質量%以上含有することが好ましく、その上限が70質量%以下含有することが好ましく、65質量%以下含有することがより好ましく、60質量%以下含有することが更に好ましい。
 構成単位(B)は、その下限が0.1質量%以上含有することが好ましく、0.2質量%以上含有することがより好ましく、0.3質量%以上含有することが更に好ましく、その上限が15質量%以下含有することが好ましく、12質量%以下含有することがより好ましい、10質量%以下含有することが更に好ましい。
 構成単位(C)は、その下限が0.1質量%以上含有することが好ましく、0.2質量%以上含有することがより好ましく、0.3質量%以上含有することが更に好ましく、その上限が40質量%以下含有することが好ましく、35質量%以下含有することがより好ましく、30質量%以下含有することが更に好ましい。
 また、当該共重合体が、水酸基を有する(メタ)アクリレートから誘導される構成単位(A-1)と、(メタ)アクリレートから誘導される構成単位(A-2)と、カルボン酸基を有するエチレン性不飽和モノマーから誘導される構成単位(B)と、多官能(メタ)アクリレートモノマーから誘導される構造単位(C)とを含んでいる場合、構成単位(A-1)と、構成単位(A-2)と、構成単位(B)と、構造単位(C)の割合としては、質量比で、構成単位(A-1)が1~45、構成単位(A-2)が15~98、構成単位(B)が0.5~15、構造単位(C)が0.5~25であることが好ましく、構成単位(A-1)が1~40、構成単位(A-2)が15~75、構成単位(B)が1~10、構造単位(C)が1~25であることがより好ましく、構成単位(A-1)が2~35、構成単位(A-2)が30~70、構成単位(B)が2~10、構造単位(C)が2~20であることがさらに好ましい。
 また、当該共重合体が、水酸基を有する(メタ)アクリレートから誘導される構成単位(A-1)と、(メタ)アクリレートから誘導される構成単位(A-2)と、カルボン酸基を有するエチレン性不飽和モノマーから誘導される構成単位(B)と、多官能(メタ)アクリレートモノマーから誘導される構造単位(C)とを含んでいる場合、当該共重合体においては、以下のように含有することが好ましい。
 構成単位(A-1)は、その下限が1質量%以上含有することが好ましく、2質量%以上含有することがより好ましく、その上限が45質量%以下含有することが好ましく、40質量%以下含有することがより好ましく、35質量%以下含有することが更に好ましい。
 構成単位(A-2)は、その下限が15質量%以上含有することが好ましく、30質量%以上含有することがより好ましく、その上限が98質量%以下含有することが好ましく、75質量%以下含有することがより好ましく、70質量%以下含有することが更に好ましい。
 構成単位(B)は、その下限が0.5質量%以上含有することが好ましく、1質量%以上含有することがより好ましく、2質量%以上含有することが更に好ましく、その上限が15質量%以下含有することが好ましく、10質量%以下含有することがより好ましい。
 構成単位(C)は、その下限が0.5質量%以上含有することが好ましく、1質量%以上含有することがより好ましく、2質量%以上含有することが更に好ましく、その上限が25質量%以下含有することが好ましく、20質量%以下含有することがより好ましい。
 本発明において、バインダーは、バインダーが水やアルコールに分散したエマルジョンとして、正極材料に用いられる水系バインダーである。すなわち、本発明の正極材料を調製する際には、前述の共重合からなるバインダーが水等に分散した水系エマルジョンの状態で使用され、水系エマルジョンのみでも構わない。エマルジョン中のバインダーの含有量(固形分濃度)としては、特に制限されず、好ましくは0.2~80質量%程度、より好ましくは0.5~70質量%程度、さらに好ましくは0.5~60質量%程度が挙げられる。
 バインダーの水系エマルジョンを得る方法としては、特に制限されず、一般的な乳化重合法、ソープフリー乳化重合法、シード重合法、シード粒子にモノマー等を膨潤させた後に重合する方法等が挙げられる。具体的には、攪拌機および加熱装置付きの密閉容器に、室温でバインダーの構成単位であるモノマー、乳化剤、重合開始剤、水、必要に応じて分散剤、連鎖移動剤、pH調整剤等を含んだ組成物を不活性ガス雰囲気下で攪拌することで、モノマー等を水に乳化させる。乳化の方法は撹拌、剪断、超音波等による方法等が適用でき、撹拌翼、ホモジナイザー等を使用することができる。次いで、攪拌しながら温度を上昇させて重合を開始させることで、バインダー(モノマーの共重合体)が水に分散した球形の重合体のラテックス(バインダーの水系エマルジョン)を得ることができる。重合時のモノマーの添加方法は、一括仕込みの他に、モノマー滴下やプレエマルジョン滴下等でもよく、これらの方法を2種以上併用してもよい。
 バインダーの水系エマルジョンにおける粒子構造は、特に限定されない。例えば、シード重合によって作製された、コア-シェル構造の複合重合体粒子を含む重合体のラテックスを用いることができる。シード重合法は、例えば、「分散・乳化系の化学」(発行元:工学図書(株))に記載された方法を用いることができる。具体的には、上記の方法で作製したシード粒子を分散した系にモノマー、重合開始剤、乳化剤を添加し、核粒子を成長させる方法であり、上記方法を1回以上繰り返してもよい。
 シード重合のシードには、本発明で好適に用いられるバインダー(共重合体)、または公知のポリマーを用いた粒子を用いることもできる。公知のポリマーとしては、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリスチレン、ポリ(メタ)アクリレートおよびポリエーテルなどが例示できるが、限定されるものではなく、他の公知のポリマーを用いることができる。また、1種のホモポリマーまたは2種以上の共重合体またはブレンド体を用いても良い。
 粒子の形状としては、球形が挙げられ、さらに、板状、中空構造、複合構造、局在構造、だるま状構造、いいだこ状構造、ラズベリー状構造等も挙げられる。粒子としては、本発明を逸脱しない範囲で、2種類以上の構造および組成の粒子を用いることができる。
 乳化剤としては、特に限定されず、乳化重合法おいて一般的に用いられるノニオン性乳化剤およびアニオン性乳化剤等を使用することができる。ノニオン乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステル等があげられ、アニオン性乳化剤としては、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩等が挙げられ、これらを1種または2種以上用いてもよい。アニオン性乳化剤の代表例としてはドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸トリエタノールアミンが挙げられる。
 乳化剤の使用量は、乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01~10質量%の範囲であり、好ましくは0.05~5質量%、更に好ましくは0.05~3質量%である。モノマー成分として、反応性界面活性剤を用いる場合は、乳化剤の添加は必ずしも必要でない。
 重合開始剤としては、特に限定されず、乳化重合法おいて一般的に用いられる重合開始剤を使用することができる。その具体例としては、過硫酸カリウム、過硫酸ナトリウムおよび過硫酸アンモニウムなどの過硫酸塩に代表される水溶性の重合開始剤、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドに代表される油溶性の重合開始剤、ハイドロパーオキサイド、4-4’-アゾビス(4-シアノ吉草酸)、2-2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン、2-2’-アゾビス(プロパン-2-カルボアミジン)2-2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロパンアミド、2-2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]、2-2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)および2-2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロパンアミド]などのアゾ系開始剤、レドックス開始剤等が挙げられる。これら重合開始剤は1種または2種以上組み合わせて用いてもよい。
 重合開始剤の使用量は、乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー100質量部に対して、例えば0.01~10質量部程度、好ましくは0.05~5質量部程度、さらに好ましくは0.1~3質量部程度である。
 正極材料中におけるバインダーの含有量としては、特に制限されないが、正極活物質100質量部に対して、好ましくは7質量部以下、より好ましくは5質量部以下が挙げられる。なお、バインダーの含有量の下限値としては、通常、0.05質量部以上、0.1質量部以上、0.2質量部以上、0.5質量部以上、1質量部以上を例示することができる。
 正極材料には、必要に応じて、導電助剤がさらに含まれていてもよい。導電助剤としては、特に制限されず、非水電解質二次電池の正極に用いられる公知の導電助剤を用いることができる。導電助剤の具体例としては、アセチレンブラック、ケッチェンブラック、炭素繊維、グラファイトなどの導電性カーボンや、導電性ポリマー、金属粉末などが挙げられる。これらの中でも、導電性カーボンが特に好ましい。
 導電助剤を用いる場合、導電助剤の含有量としては特に制限されないが、正極活物質100質量部に対して、好ましくは20質量部以下、より好ましくは15質量部以下が挙げられる。なお、正極材料中に導電助剤が含まれる場合、導電助剤の含有量の下限値としては、通常、0.05質量部以上、0.1質量部以上、0.2質量部以上、0.5質量部以上、2質量部以上を例示することができる。
 本発明の正極材料には、実質的に増粘剤が含まれない。本発明の正極材料は、バインダーとして、上記特定の共重合体を含んでおり、かつ、実質的に増粘剤を含まないことにより、優れた可撓性及び結着性を備えており、非水電解質二次電池の内部抵抗を効果的に低下させ、さらに、充放電サイクル特性を効果的に向上させることが可能となる。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース等およびこれらのアルカリ金属塩もしくはアンモニウム塩、ポリビニルアルコール、ポリアクリル酸塩等、などが挙げられる。
 なお、本発明の正極材料には、実質的に増粘剤が含まれないが、本発明の効果を阻害しない範囲において、微量の増粘剤が含まれていてもよい。本発明の正極材料における増粘剤の含有量としては、好ましくは0.1質量%以下、より好ましくは0.05質量%以下、さらに好ましくは0.01質量%以下が挙げられる。
 本発明の正極材料を形成するための正極材料組成物(スラリー)の調製方法としては、特に限定されず、正極活物質、バインダー、さらに必要に応じて使用される導電助剤、溶剤等を、通常の攪拌機、分散機、混練機、遊星型ボールミル、ホモジナイザーなど用いて分散させればよい。分散の効率を上げるために、材料に影響を与えない範囲で加温してもよい。
 スラリー状の正極材料組成物を作製する際には、正極活物質、バインダーの水系エマルジョン、さらには、導電助剤、溶剤(主に水)が用いられる。用いる水は特に限定されず、一般的に用いられる水を使用することができる。その具体例としては水道水、蒸留水、イオン交換水および超純水などが挙げられる。その中でも、好ましくは蒸留水、イオン交換水および超純水である。また、スラリーの分散性や乾燥性を調整する目的で、アルコール等の水溶性有機溶剤を混合して用いてもよい。使用できる水溶性有機溶剤としては、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、N-メチルピロリドン、ジメチルホルムアミド等が挙げられるが、これらに限定されるものではない。
 スラリー状の正極材料組成物の塗布性を改善するために、必要に応じて分散剤を水系エマルジョンに予め添加あるいはスラリー状の正極材料組成物に添加することもできる。分散剤であれば、種類および使用量は特に限定されず、一般的に用いられる分散剤を任意の量で自由に使用することができる。
 本スラリー状の正極材料組成物の固形分濃度は、10~90質量%、好ましくは20~85質量%、より好ましくは30~80質量%である。
 スラリー状の正極材料組成物の固形分中の共重合体の割合としては、好ましくは0.1~15質量%程度、より好ましくは0.2~10質量%程度、さらに好ましくは0.3~7質量%程度である。
2.正極
 本発明の正極は、前述の「1.正極材料」の欄で説明した本発明の正極材料と、正極集電体とを備えることを特徴とする。本発明の正極材料の詳細については、前述の通りである。
 正極集電体としては、特に制限されず、非水電解質二次電池の正極に用いられる公知の正極集電体を用いることができる。正極集電体としては、例えば、アルミニウム、ニッケル、ステンレス、金、白金、チタン等の金属の基板により構成することができる。
 正極の製造は、スラリー状の正極材料組成物(塗工液)をドクターブレード法やアプリケーター法、シルクスクリーン法などにより正極集電体の表面上に適切な厚さに均一に塗布することより行われる。
 例えばドクターブレード法では、スラリー状の正極材料組成物を正極集電体表面に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。正極材料組成物を集電体表面に塗布した後、余分な有機溶剤および水を除去するために、例えば、100℃の熱風や80℃真空状態で乾燥する。乾燥後、プレス装置によってプレス成型することで正極が製造される。プレス後に再度熱処理を施して水、溶剤、乳化剤等を除去してもよい。
3.非水電解質二次電池
 本発明の非水電解質二次電池は、前述の「2.正極」の欄で説明した本発明の正極と、負極と、有機電解液とを備えることを特徴としている。すなわち、本発明の非水電解質二次電池に用いられる正極は、本発明の正極材料を含んでいる。本発明の正極の詳細については、前述の通りである。
 負極は、負極材料と、負極集電体とを備えている。負極材料は、負極活物質と、バインダーを含んでいる。負極活物質としては、特に制限されず、非水電解質二次電池の負極に用いられる公知の負極活物質を用いることができる。負極活物質は、例えば、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)、リチウムイオンなどのアルカリ金属イオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物等の金属からなる粉末が挙げられる。粒子径は、好ましくは10nm以上100μm以下が挙げられ、さらに好ましくは20nm以上20μm以下が挙げられる。また、負極活物質としては、金属と炭素材料との混合物を用いてもよい。なお負極活物質としては、気孔率が70%程度のものを用いることが望ましい。
 負極のバインダーとしては、特に制限されず、非水電解質二次電池の負極に用いられる公知のバインダーを用いることができる。負極のバインダーの具体例としては、フッ化ビニリデン、四フッ化エチレン、六フッ化プロピレン、及び三フッ化エチレンの少なくとも1種から選ばれるモノマーの単独重合体または共重合体、スチレン-ブタジエン共重合体、アクリル系重合体、ビニル系重合体から選ばれる1種以上の化合物が挙げられる。これらの中でも、フッ化ビニリデン系重合体、四フッ化エチレン系重合体、アクリル系重合体が好ましい。また、負極のバインダーとしては、前述の正極のバインダーとして例示したものと同じものを用いてもよい。
 有機電解液としては、特に制限されず、非水電解質二次電池の負極に用いられる公知の有機電解液を用いることができる。有機電解液の具体例としては、電解質としてのリチウム塩化合物と、溶媒としての非プロトン性有機溶剤等を含む溶液が挙げられる。電解質及び溶媒は、それぞれ、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 リチウム塩化合物としては、リチウムイオン電池に一般的に利用されているような、広い電位窓を有するリチウム塩化合物が用いられる。たとえば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22,LiN(C25SO22,LiN[CF3SC(C25SO23]2などが挙げられるが、これらに限定されるものではない。
 非プロトン性有機溶剤としてはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル、ジエチルエーテルなどの直鎖エーテルを使用することができ、2種類以上混合して使用してもよい。
 また、溶媒として、常温溶融塩を用いることができる。常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電池が一般的に作動すると想定される温度範囲をいう。電池が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては80℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。
 常温溶融塩はイオン液体とも呼ばれており、イオンのみ(アニオン、カチオン)から構成される「塩」であり、特に液体化合物をイオン液体という。
 常温溶融塩のカチオン種としては、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムイオンが好ましい。
 なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
 また、アルキルピリジウムイオンとしては、N-メチルピリジウムイオン、N-エチルピリジニウムイオン、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-エチル-2メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
 イミダゾリウムイオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
 常温溶融塩のアニオン種としては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF6 -、PF6 -などの無機酸イオン、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8-テトラシアノ-p-キノジメタンイオンなどの有機酸イオンなどが例示される。
 なお、常温溶融塩は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 有機電解液には必要に応じて種々の添加剤を使用することができる。添加剤としては、難燃剤、不燃剤、正極表面処理剤、負極表面処理剤、過充電防止剤などが挙げられる。難燃剤、不燃剤としては、臭素化エポキシ化合物、ホスファゼン化合物、テトラブロムビスフェノールA、塩素化パラフィン等のハロゲン化物、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、リン酸エステル、ポリリン酸塩、及びホウ酸亜鉛等が例示できる。正極表面処理剤としては、炭素や金属酸化物(MgОやZrO2等)の無機化合物やオルト-ターフェニル等の有機化合物等が例示できる。負極表面処理剤としては、ビニレンカーボネート、フルオロエチレンカーボネート、ポリエチレングリコールジメチルエーテル等が例示できる。過充電防止剤としては、ビフェニルや1-(p-トリル)アダマンタン等が例示できる。
 本発明の非水電解質二次電池の製造方法は、特に限定されず、正極、負極、有機電解液、セパレータなどを用いて、公知の方法にて製造される。例えば、コイン型の電池の場合、正極、セパレータ、負極を外装缶に挿入する。これに電解液を入れ含浸する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシメることで蓄電池が得られる。電池の形状は限定されないが、例としてはコイン型、円筒型、シート型などが挙げられ、2個以上の電池を積層した構造であってもよい。
 セパレータは、正極と負極が直接接触して蓄電池内でショートすることを防止するものであり、公知の材料を用いることができる。セパレータとしては、具体的には、ポリオレフィンなどの多孔質高分子フィルム、紙等が挙げられる。多孔質高分子フィルムとしては、ポリエチレン、ポリプロピレンなどのフィルムが、有機電解液による影響が少ないため、好ましい。
 なお、正極材料のみの特性を評価する際には、対極に金属リチウム箔を用いることで、正極材料の可逆性を評価できる。また、正極材料と負極材料の組み合わせ評価の場合には、金属リチウム箔を用いず、正極材料と炭素系負極材料との組み合わせが用いられる。
 本発明の非水電解質二次電池は、内部抵抗が小さく、充放電サイクル特性に優れている。本発明の非水電解質二次電池は、携帯電話やノートパソコン、カムコーダーなどの電子機器など小型の電池から、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池といった大型の二次電池用途に好適に利用可能である。


 以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。
 なお、以下の実施例及び比較例では、各電極及び各コイン電池を製造し、各電極の評価として、屈曲試験(可撓性評価)、結着性試験を以下の実験方法にて行った。また、各コイン電池の性能評価として、内部抵抗の測定、及び充放電サイクル特性試験を以下の実験方法にて行った。それぞれの結果を表1及び表2に示す。
<屈曲試験>
 屈曲試験は、マンドレル屈曲試験にて行った。具体的には、各電極(正極シート)を幅3cm×長さ8cmに切り、長さ方向の中央(4cm部分)の基材側(電極表面が外側を向くように)に直径2mmのステンレス棒を支えにして180°折り曲げたときの折り曲げ部分の塗膜の状態を観察した。この方法で5回測定を行い、5回とも電極表面のひび割れまたは剥離や集電体からの剥がれが全く生じていない場合を○、1回でも1箇所以上のひび割れまたは剥がれが生じた場合を×と評価した。結果を表1に示す。
<結着性試験>
 結着性試験は、クロスカット試験にて行った。具体的には、各電極(正極シート)を幅3cm×長さ4cmに切り、1マスの1辺が1mmとなるように直角の格子パターン状にカッターナイフで切れ込みを入れ、縦5マス×横5マスの25マスからなる碁盤目にテープ(粘着テープ:ニチバン社製)を貼り付け、電極を固定した状態でテープを一気に引き剥がしたとき、電極から剥がれずに残ったマスの数を計測した。試験は5回実施し、その平均値を求めた。結果を表1に示す。
<内部抵抗の測定>
 作製したリチウムイオン電池を、定電流-定電圧充電により、4.2Vまで充電した。終止電流は2C相当であった。充電後、電池を10分間休止させた。次いで定電流放電を実施し、電流値I(mA)及び10秒後の電圧降下ΔE(mV)より、リチウムイオン電池の内部抵抗R(Ω)=ΔE/Iを測定した。結果を表2に示す。
<充放電サイクル特性(容量維持率)>
 電気化学特性は東洋システム(株)製の充放電装置を用い、4.2Vを上限、2.5Vを下限とし、初回から3回目において8時間で所定の充電および放電が行える試験条件(C/8)、4回目以降1Cにて一定電流通電により正極の充放電サイクル特性を評価した。試験温度は25℃と60℃の環境とした。容量維持率は充放電を100サイクル行った後の容量と4サイクル目の容量の比で評価した。結果を表2に示す。
[合成例1:バインダーAの合成]
 500mlの攪拌機付き反応容器に、ポリエチレングリコールモノアクリレート(日油製:ブレンマーAE-400)30質量部、アクリル酸-2-エチルヘキシル55質量部、アクリル酸2質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)13質量部、乳化剤としてラウリル硫酸トリエタノールアミン水溶液(花王製:エマールTD)の固形分として1質量部、イオン交換水150質量部および重合開始剤として過硫酸アンモニウム0.1質量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを8.2に調整し、本発明の重合体のエマルジョンであるバインダーA(重合転化率99%以上)(固形分濃度39wt%)を得た。得られた重合体の平均粒子径は0.109μmであった。
[合成例2:バインダーBの合成]
 500mlの攪拌機付き反応容器に、メタアクリル酸メチル47質量部、ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)33質量部、アクリル酸1質量部、メタアクリル酸4質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)15質量部、乳化剤としてラウリル硫酸ナトリウム(花王製:エマール10G)5質量部、イオン交換水150質量部および重合開始剤として過硫酸アンモニウム0.1質量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液をpH8.1に調整し、本発明の重合体のエマルジョンであるバインダーB(重合転化率99%以上)(固形分濃度42wt%)を得た。得られた重合体の平均粒子径は0.173μmであった。
[合成例3:バインダーCの合成]
 500mlの攪拌機付き反応容器に、ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP-400)19質量部、メタアクリル酸メチル58.5質量部、メタアクリル酸4質量部、アクリル酸1.5質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)17質量部、反応性乳化剤としてポリオキシアルキレンアルケニルエーテル溶液(花王製:PD-420)として8質量部、イオン交換水150質量部および重合開始剤として過硫酸アンモニウム0.1質量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを8.2に調整し、本発明の重合体のエマルジョンであるバインダーC(重合転化率99%以上)(固形分濃度40wt%)を得た。得られた重合体の平均粒子径は0.205μmであった。
[合成例4:バインダーDの合成]
 500mlの攪拌機付き反応容器に、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE-90)5.5質量部、メタアクリル酸メチル44質量部、アクリル酸2-エチルヘキシル26質量部、メタアクリル酸5質量部、アクリル酸1.5質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)18質量部、乳化剤としてラウリル硫酸ナトリウム(花王製:エマール10G)1質量部、イオン交換水150質量部および重合開始剤として過硫酸アンモニウム0.1質量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを8.2に調整し、本発明の重合体のエマルジョンであるバインダーD(重合転化率99%以上)(固形分濃度39wt%)を得た。得られた重合体の平均粒子径は0.198μmであった。
[合成例5:バインダーEの合成]
 500mlの攪拌機付き反応容器に、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーAE-200)20質量部、アクリル酸ブチル57質量部、メタアクリル酸4.5質量部、アクリル酸1.5質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)17質量部、反応性乳化剤としてポリオキシアルキレンアルケニルエーテル溶液(花王製:PD-420)として3質量部、イオン交換水150質量部および重合開始剤として過硫酸アンモニウム0.1質量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを8.2に調整し、本発明の重合体のエマルジョンであるバインダーE(重合転化率99%以上)(固形分濃度40wt%)を得た。得られた重合体の平均粒子径は0.206μmであった。
[比較合成例1:バインダーFの合成]
 500mlの攪拌機付き反応容器に、メタアクリル酸メチル80質量部、アクリル酸3質量部、メタアクリル酸5質量部、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)12質量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1質量部、イオン交換水150質量部および重合開始剤として過硫酸カリウム0.2質量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液のpHを8.1に調整し、比較例の重合体のエマルジョンであるバインダーF(重合転化率99%以上)(固形分濃度38wt%)を得た。得られた重合体の平均粒子径は0.101μmであった。
[比較合成例2:バインダーGの合成]
 攪拌機付き反応容器に、アクリロニトリル17.3質量部、メチルトリエチレングリコールアクリレート(アルドリッチ社製)1.1質量部、アクリル酸12.3質量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1質量部、イオン交換水250質量部および重合開始剤として過硫酸アンモニウム0.14質量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液のpHを8.1に調整し、比較例の重合体のエマルジョンであるバインダーG(重合転化率99%以上)(固形分濃度11wt%)を得た。得られた重合体の平均粒子径は0.154μmであった。
<正極の製造>
[実施例1]
 正極活物質には、平均粒径10μmのマンガン酸リチウムを用いた。この正極活物質94質量部に対して、導電助剤としてアセチレンブラックを3質量部、バインダーとして合成例1で得られたバインダーAの固形分として3質量部、更に、スラリーの固形分が55質量%となるように水を溶媒として遊星ミルを用いて、十分に混練して正極用のスラリー組成物を得た。得られた正極用のスラリー組成物を厚さ20μmのアルミニウム集電体上に100μmギャップのバーコーターを用いて塗布し、110℃真空状態で12時間以上乾繰後、ロールプレスして、更にアルゴンガス雰囲気下にて120℃で12時間熱処理を施して、厚さ30μmの正極シート1を作製した。
[実施例2]
 正極作製時にバインダーとして、合成例2で得られたバインダーBを用いた以外は、実施例1と同様の方法で正極シート2を作製した。
[実施例3]
 正極作製時にバインダーとして、合成例3で得られたバインダーCを用いた以外は、実施例1と同様の方法で正極シート3を作製した。
[実施例4]
 正極作製時にバインダーとして、合成例4で得られたバインダーDを用いた以外は、実施例1と同様の方法で正極シート4を作製した。
[実施例5]
 正極作製時にバインダーとして、合成例5で得られたバインダーEを用いた以外は、実施例1と同様の方法で正極シート5を作製した。
[比較例1]
 正極作製時にバインダーとして、比較合成例1で得られたバインダーFを用いた以外は、実施例1と同様の方法で正極シート6を作製した。
[比較例2]
 正極作製時にバインダーとして、比較合成例2で得られたバインダーGを用いた以外は、実施例1と同様の方法で正極シート7を作製した。
[比較例3]
 正極作製時にバインダーとして、合成例1で得られたバインダーAを固形分として2質量部とカルボキシメチルセルロースのナトリウム塩1質量部を用いた以外は、実施例1と同様の方法で正極シート8を作製した。
Figure JPOXMLDOC01-appb-T000002
 正極活物質及びバインダーを含み、当該バインダーが、(メタ)アクリレートモノマーから誘導される構成単位(A)と、カルボン酸基を含むエチレン性不飽和モノマーから誘導される構成単位(B)と、5官能以下の多官能(メタ)アクリレートモノマーから誘導される構成単位(C)とを備える共重合体であり、増粘剤を含まない実施例1~5の正極材料は、可撓性及び結着性に優れることが明らかとなった。
<電池の製造例>
[コイン電池の製造例1]
 アルゴンガスで置換されたグローブボックス内において、電極の実施例1で得た正極、セパレータとして厚み18μmのポリプロピレン/ポリエチレン/ポリプロピレン多孔質膜を2枚、更に対極として厚さ300μmの金属リチウム箔を貼り合わせた積層物に、電解液として1mol/Lの6フッ化リン酸リチウムのエチレンカーボネートとジメチルカーボネート溶液(体積比1:1)を十分に含浸させてかしめ、試験用2032型コイン電池を製造した。
[コイン電池の製造例2]
 電極の実施例2で得た正極を用いた以外は、コイン電池の製造例1と同様にしてコイン電池を作製した。
[コイン電池の製造例3]
 電極の実施例3で得た正極を用いた以外は、コイン電池の製造例1と同様にしてコイン電池を作製した。
[コイン電池の製造例4]
 電極の実施例4で得た正極を用いた以外は、コイン電池の製造例1と同様にしてコイン電池を作製した。
[コイン電池の製造例5]
 電極の実施例5で得た正極を用いた以外は、コイン電池の製造例1と同様にしてコイン電池を作製した。
[コイン電池の比較製造例1]
 電極の比較例1で得た正極を用いた以外は、コイン電池の製造例1と同様にしてコイン電池を作製した。
[コイン電池の比較製造例2]
 電極の比較例2で得た正極を用いた以外は、コイン電池の製造例1と同様にしてコイン電池を作製した。
[コイン電池の比較製造例3]
 電極の比較例3で得た正極を用いた以外は、コイン電池の実施製造例1と同様にしてコイン電池を作製した。
Figure JPOXMLDOC01-appb-T000003
 実施例1~5の正極材料を用いた製造例1~5の非水電解質二次電池は、内部抵抗が低く、充放電サイクル特性にも優れていることが明らかとなった。

Claims (9)

  1.  正極活物質及びバインダーを含み、
     前記バインダーが、(メタ)アクリレートモノマーから誘導される構成単位(A)と、カルボン酸基を含むエチレン性不飽和モノマーから誘導される構成単位(B)と、5官能以下の多官能(メタ)アクリレートモノマーから誘導される構成単位(C)とを備える共重合体であり、
     実質的に増粘剤を含まない、正極材料。
  2.  前記構成単位(A)の(メタ)アクリレートモノマーが、水酸基を有する(メタ)アクリレート及び(メタ)アクリレートの少なくとも一方である、請求項1に記載の正極材料。
  3.  前記水酸基を有する(メタ)アクリレートが、分子量100~1000のアルキレングリコールモノ(メタ)アクリレートである、請求項2に記載の正極材料。
  4.  前記構成単位(B)のカルボン酸基を含むエチレン性不飽和モノマーが、(メタ)アクリル酸である、請求項1~3のいずれかに記載の正極材料。
  5.  前記共重合体は、水酸基を有する(メタ)アクリレートモノマーから誘導される構成単位(A-1)と、(メタ)アクリレートモノマーから誘導される構成単位(A-2)と、カルボン酸基を有するエチレン性不飽和モノマーから誘導される構成単位(B)と、多官能(メタ)アクリレートモノマーから誘導される構造単位(C)とを含んでおり、
     前記構成単位(A-1)と、前記構成単位(A-2)と、前記構成単位(B)と、前記構造単位(C)の割合が、質量比で、前記構成単位(A-1)が1~45、前記構成単位(A-2)が15~98、前記構成単位(B)が0.5~15、前記構造単位(C)が0.5~25である、請求項1~4のいずれかに記載の正極材料。
  6.  前記正極活物質が、AMO2(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、AM24(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、A2MO3(Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)、またはAMBO4(Aはアルカリ金属、BはP、Si、またはその混合物、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい)のいずれかの組成で示されるアルカリ金属含有複合酸化物を含んでいる、請求項1~5のいずれか1項に記載の正極材料。
  7.  請求項1~6のいずれか1項に記載の正極材料と、正極集電体とを備える、非水電解質二次電池用の正極。
  8.  請求項1~6のいずれか1項に記載の正極材料を、正極集電体の表面に塗布する工程を備える、非水電解質二次電池用の正極の製造方法。
  9.  請求項7に記載の正極と、負極と、有機電解液とを備える、非水電解質二次電池。
PCT/JP2016/077110 2015-09-14 2016-09-14 非水電解質二次電池用の正極材料 WO2017047640A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187005148A KR20180051498A (ko) 2015-09-14 2016-09-14 비수전해질 이차전지용 양극재료
CN201680049289.3A CN107925088A (zh) 2015-09-14 2016-09-14 非水电解质二次电池用的正极材料
JP2017539938A JP6874682B2 (ja) 2015-09-14 2016-09-14 非水電解質二次電池用の正極材料
EP16846511.0A EP3352266A4 (en) 2015-09-14 2016-09-14 POSITIVE ELECTRODE MATERIAL FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US15/756,506 US20180254515A1 (en) 2015-09-14 2016-09-14 Positive electrode material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015180407 2015-09-14
JP2015-180407 2015-09-14
JP2015-247686 2015-12-18
JP2015247686 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017047640A1 true WO2017047640A1 (ja) 2017-03-23

Family

ID=58288889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077110 WO2017047640A1 (ja) 2015-09-14 2016-09-14 非水電解質二次電池用の正極材料

Country Status (7)

Country Link
US (1) US20180254515A1 (ja)
EP (1) EP3352266A4 (ja)
JP (1) JP6874682B2 (ja)
KR (1) KR20180051498A (ja)
CN (1) CN107925088A (ja)
TW (1) TW201721954A (ja)
WO (1) WO2017047640A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160129002A (ko) * 2014-03-04 2016-11-08 가부시키가이샤 오사카소다 전지 전극용 바인더, 및 그것을 사용한 전극 그리고 전지
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US20230070060A1 (en) * 2020-09-21 2023-03-09 Lg Chem, Ltd. Binder for Anode of Secondary Battery, Anode of Secondary Battery and Secondary Battery
CN114752012A (zh) * 2022-05-07 2022-07-15 佛山市瑞纳新材科技有限公司 一种用于正极导电银浆的聚丙烯酸酯树脂及其制备方法
CN117317234B (zh) * 2023-11-29 2024-05-10 瑞浦兰钧能源股份有限公司 一种硅基负极浆料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256980A (ja) * 2000-03-09 2001-09-21 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
JP2011119192A (ja) * 2009-10-29 2011-06-16 Nippon Shokubai Co Ltd 非水二次電池用水系電極組成物用バインダー
US20130202963A1 (en) * 2010-06-16 2013-08-08 Lg Chem, Ltd. Binder For Secondary Battery Providing Excellent Cycle Property
JP2015159069A (ja) * 2014-02-25 2015-09-03 ダイソー株式会社 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711975B1 (ko) * 1999-01-28 2007-05-02 니폰제온 가부시키가이샤 리튬이온 이차전지 전극용 바인더 조성물 및 그것의 이용
JP4178953B2 (ja) * 2000-11-13 2008-11-12 日本ゼオン株式会社 二次電池正極用スラリー組成物、二次電池正極および二次電池
WO2003036744A1 (en) * 2001-10-26 2003-05-01 Zeon Corporation Slurry composition, electrode and secondary cell
KR101858798B1 (ko) * 2013-01-29 2018-05-16 가부시키가이샤 오사카소다 전지 전극용 바인더, 및 그것을 사용한 전극 그리고 전지
JP6264744B2 (ja) * 2013-04-30 2018-01-24 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池用正極の製造方法、二次電池用正極および二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256980A (ja) * 2000-03-09 2001-09-21 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用
JP2003268053A (ja) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd 電池用バインダ樹脂、これを含有する電極及び電池
JP2011119192A (ja) * 2009-10-29 2011-06-16 Nippon Shokubai Co Ltd 非水二次電池用水系電極組成物用バインダー
US20130202963A1 (en) * 2010-06-16 2013-08-08 Lg Chem, Ltd. Binder For Secondary Battery Providing Excellent Cycle Property
JP2015159069A (ja) * 2014-02-25 2015-09-03 ダイソー株式会社 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352266A4 *

Also Published As

Publication number Publication date
EP3352266A4 (en) 2019-03-13
KR20180051498A (ko) 2018-05-16
CN107925088A (zh) 2018-04-17
US20180254515A1 (en) 2018-09-06
JPWO2017047640A1 (ja) 2018-08-02
TW201721954A (zh) 2017-06-16
JP6874682B2 (ja) 2021-05-19
EP3352266A1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6341271B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6269510B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP5447720B1 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2017110901A1 (ja) 電池電極用バインダー、電極、及び電池
KR101931418B1 (ko) 전지 전극용 바인더, 및 그것을 사용한 전극 그리고 전지
JP6268988B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6300078B2 (ja) 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
JP6874682B2 (ja) 非水電解質二次電池用の正極材料
JP6828685B2 (ja) 非水電解質二次電池用の正極材料
JP2016046231A (ja) 電池正極用バインダー組成物、およびそれを用いた電極ならびに電池
CN110139881B (zh) 电极用粘结剂
JP6395107B2 (ja) 電池電極用バインダー組成物、およびそれを用いた電極ならびに電池
JP2016192267A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JPWO2019017479A1 (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JP7088171B2 (ja) 電極用バインダー、電極材料、電極、及び蓄電デバイス
JP2017091789A (ja) 正極、二次電池およびその製造方法
JP2017117522A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2017069006A (ja) 電池電極用バインダー組成物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187005148

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15756506

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017539938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846511

Country of ref document: EP