WO2015064438A1 - 薄膜の製造方法、透明導電膜 - Google Patents

薄膜の製造方法、透明導電膜 Download PDF

Info

Publication number
WO2015064438A1
WO2015064438A1 PCT/JP2014/078064 JP2014078064W WO2015064438A1 WO 2015064438 A1 WO2015064438 A1 WO 2015064438A1 JP 2014078064 W JP2014078064 W JP 2014078064W WO 2015064438 A1 WO2015064438 A1 WO 2015064438A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
film
mist
manufacturing
Prior art date
Application number
PCT/JP2014/078064
Other languages
English (en)
French (fr)
Inventor
康孝 西
誠 中積
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201480052051.7A priority Critical patent/CN105555424A/zh
Priority to JP2015544942A priority patent/JP6428636B2/ja
Publication of WO2015064438A1 publication Critical patent/WO2015064438A1/ja
Priority to US15/097,956 priority patent/US10328453B2/en
Priority to US16/407,344 priority patent/US10702887B2/en
Priority to US16/890,266 priority patent/US20200290082A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a method for forming a thin film and a transparent conductive film.
  • the present invention claims the priority of Japanese Patent Application No. 2013-225549 filed on October 30, 2013, and for the designated countries where weaving by reference of documents is permitted, the contents described in the application are as follows: Is incorporated into this application by reference.
  • Transparent conductive films made of indium tin oxide (ITO), zinc oxide (ZnO) or the like are widely used as transparent electrodes for liquid crystal displays and solar cells. These transparent conductive films are generally generated by a sputtering method.
  • Patent Document 1 discloses that “a first container (5A) containing a material solution containing metal (10) and a second container (5B, containing hydrogen peroxide). 18), a reaction vessel (1) having a heater (3) on which the substrate (2) is arranged and heating the substrate, the first vessel and the reaction vessel are connected, and the material solution is A first path (L1) for supplying the first container to the reaction container, the second container and the reaction container are connected, and the hydrogen peroxide is transferred from the second container to the reaction container. And a second path (L2) for supplying the metal oxide film.
  • a metal oxide film is formed by reacting a metal-containing material solution and hydrogen peroxide on a heated substrate.
  • the object of the present invention is to provide a new method for obtaining a thin film, which replaces the above-described conventional technology.
  • a thin film manufacturing method includes a mist forming step of misting a dispersion containing fine particles, and a mist-formed dispersion as a substrate. And a drying step of drying the dispersion supplied onto the substrate.
  • the thin film manufacturing method according to an aspect of the present invention may be characterized in that the particle size of the fine particles contained in the mist-dispersed dispersion is 100 nm or less.
  • the substrate in the method for manufacturing a thin film according to an aspect of the present invention may include a resin and have flexibility.
  • drying step in the thin film manufacturing method according to an aspect of the present invention may be performed at a temperature lower than the softening point of the substrate.
  • drying step in the thin film manufacturing method according to an aspect of the present invention may be performed at a temperature of 10 ° C. or higher and 40 ° C. or lower.
  • the thin film manufacturing method includes a hydrophilic / hydrophobic pattern forming step of forming a pattern including a hydrophilic portion and a water-repellent portion on the substrate, and the parent / hydrophobic pattern forming step includes the parent / water-repellent pattern forming step.
  • the supplying step may be performed on the substrate on which the water repellent pattern is formed.
  • the manufacturing method of the thin film which concerns on the aspect of this invention is equipped with the ultraviolet irradiation process which irradiates an ultraviolet-ray with respect to the said board
  • the manufacturing method of the thin film which concerns on the aspect of this invention is contained in the said mist supplied in the said mist supplied before the said ultraviolet irradiation process in the said supply process, and the said mist supplied after the said ultraviolet irradiation process. It may be different from the fine particles.
  • the ultraviolet rays irradiated in the ultraviolet irradiation step in the method for manufacturing a thin film according to an aspect of the present invention may include at least a wavelength of 200 nm or less.
  • the thin film manufacturing method according to an aspect of the present invention may be characterized in that, in the supplying step, the substrate is inclined with respect to a horizontal plane.
  • the thin film manufacturing method according to an aspect of the present invention may be characterized in that, in the supplying step, the substrate is inclined with respect to a plane orthogonal to the supplying direction.
  • the fine particles in the method for producing a thin film according to an aspect of the present invention may be metal oxide fine particles containing any of indium, zinc, tin, and titanium.
  • the transparent conductive film according to an aspect of the present invention is manufactured by the above-described thin film manufacturing method.
  • FIG. 1 is a cross-sectional view for explaining an example of a thin film forming method according to the present embodiment.
  • the substrate 10 is prepared.
  • a generally used substrate material can be used.
  • glass polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC) ), Cellulose acetate propionate (CAP), and the like.
  • the substrate 10 is cleaned as necessary.
  • a cleaning method a general method such as ultrasonic cleaning can be used.
  • the substrate 10 is irradiated with UV (ultraviolet).
  • a general UV irradiation apparatus is used for UV irradiation, but it is desirable to irradiate ultraviolet rays having a wavelength of 200 nm or less (for example, 10 nm to 200 nm).
  • UV ultraviolet rays having a wavelength of 200 nm or less (for example, 10 nm to 200 nm).
  • the metal oxide film 2 is formed by spraying a mist made of a dispersion containing fine particles onto the substrate 10.
  • FIG. 2 is a diagram showing an example of a film forming apparatus in the present embodiment.
  • the film forming apparatus includes a first tank that generates mist containing fine particles, a second tank that is a mist trap that makes mist uniform, and a third tank that sprays mist on the substrate 10.
  • a raw material solution 5 which is a dispersion liquid in which fine particles are dispersed in a dispersion medium is stored.
  • the fine particles conductive metal fine particles such as indium, zinc, tin, or titanium, or metal oxide fine particles containing at least one of them can be used. These may be used alone or in any combination of two or more.
  • the fine particles are nano fine particles having a particle size of 1 to 100 nm.
  • the average value of the major axis and minor axis of fine particles obtained from an SEM image can be used, for example. In the present embodiment, description will be made assuming that metal oxide fine particles are used as the fine particles.
  • the dispersion medium only needs to be able to disperse the fine particles, and water, alcohols such as isopropyl alcohol (IPA) and ethanol, and mixtures thereof can be used.
  • IPA isopropyl alcohol
  • air 22 for forming a mist flow path is poured into the first tank.
  • the ultrasonic vibrator 21 is stored in the first tank.
  • the ultrasonic vibrator 21 mists the dispersion liquid containing the metal oxide fine particles.
  • the particle size of the mist is desirably 10 ⁇ m or less (for example, 1 to 10 ⁇ m).
  • generated by the 1st tank is conveyed to a 2nd tank via the pipe
  • excess mist accumulates in the lower part of the tank, and the mist having a uniform particle diameter is conveyed to the third layer via a pipe provided in the second tank. It is desirable that a mist having a particle diameter of 5 ⁇ m or less (for example, 1 to 5 ⁇ m) is conveyed from the second tank to the third tank.
  • the substrate 10 is disposed in the third tank, and the mist conveyed from the second tank is sprayed on the substrate.
  • mist is sprayed on the substrate 10 for a predetermined time.
  • the mist dispersion medium adhering to the substrate 10 is vaporized, whereby a metal oxide film is formed on the surface of the substrate 10.
  • new mist adheres on the substrate 10 before the mist vaporizes, so that the dispersion liquid in droplets flows down and a uniform metal oxide film is formed on the substrate 10. Will not be formed.
  • the time for stopping the spraying of mist on the substrate 10 may be a point in time when the mist containing the metal oxide fine particles is liquefied and flows down from the substrate 10, or a metal oxide film having a desired film thickness is formed on the substrate 10. It may be the time when it was formed.
  • the third tank if the substrate 10 is heated excessively, it may be deformed due to softening. Therefore, in the third tank, it is desirable that mist is sprayed at a temperature lower than the softening point of the substrate to form a metal oxide film. Further, when the substrate 10 is heated to a predetermined temperature or higher during mist spraying, the metal oxide fine particles adhering to the substrate 10 are aggregated to form a metal oxide film having a high resistance value. For this reason, it is more desirable that the mist is sprayed at a temperature of 40 ° C. or lower (for example, 10 ° C. to 40 ° C.) to form a metal oxide film.
  • a temperature of 40 ° C. or lower for example, 10 ° C. to 40 ° C.
  • the softening point means a temperature at which the substrate softens and begins to deform when the substrate is heated.
  • the softening point can be determined by a test method according to JIS K7207 (Method A).
  • a water repellent film is selectively formed on the substrate 10 in advance to attach mist to the hydrophilic portion.
  • the dispersion liquid adhering to the water repellent part is not water repellent, and a metal oxide film cannot be selectively formed.
  • the mist is sprayed on the substrate 10 inclined with respect to the plane orthogonal to the spraying direction of the mist. This is because excess metal oxide fine particles adhering to the water-repellent part are removed by the mist spraying force.
  • the film forming apparatus may omit the mist trap in the second tank. By doing so, the metal oxide film can be formed on the substrate with a simpler apparatus.
  • mist generation method in addition to the generation using the ultrasonic vibrator 21 described above, an electrostatic method in which a mist is generated by directly applying a voltage to a thin tube for spraying droplets, and a flow rate is increased by applying pressure. Pressurized type that scatters generated mist by colliding the generated gas with liquid, a rotating disk type that drops droplets on a high-speed rotating disk and scatters generated mist by centrifugal force, micro-sized hole A liquid droplet is allowed to pass through an orifice plate having a liquid crystal, and an orifice vibration type that generates a micro-sized liquid droplet by cutting the liquid droplet by applying vibration by a piezoelectric element or the like can be used. About the generation method of mist, these methods are selected suitably according to cost, performance, etc. Of course, a mist may be generated by combining a plurality of methods.
  • the substrate 10 on which the metal oxide film 2 is formed is heated for drying.
  • the heating temperature at this time is desirably lower than the softening point of the substrate 10. Heating may be performed in a low vacuum of about 30 Pa or in an Ar gas atmosphere.
  • the thermal condition is properly selected according to the film formation condition. In this step, drying is not necessarily performed by heating. For example, you may dry by installing the board
  • the above-described first step is not necessarily a necessary step. Since it is a step performed as a pretreatment for attaching mist on the substrate 10 in the second step, any method may be used as long as mist is attached on the substrate 10.
  • a metal oxide film is formed on the substrate 10, but by performing the processing from the first step to the third step again as necessary, the second layer metal oxide film is formed. Can be obtained. In this case, the substrate cleaning in the first step can be omitted.
  • a metal oxide film having a sufficient thickness can be obtained by using the metal oxide fine particles contained in the mist of the first layer and the metal oxide fine particles in the second tank as the same material.
  • the conductive film can be properly used depending on the application and purpose.
  • film formation is performed without heating the substrate in the thin film formation process. For this reason, a metal oxide film having a low resistance value can be obtained. Further, it is possible to effectively form a film even on a substrate that is weak against heat.
  • FIG. 3 is a cross-sectional view for explaining an example of a method for producing a conductive film according to this modification.
  • a conductive film is manufactured using the metal oxide film formed according to the above-described embodiment.
  • the manufactured conductive film is used for a touch panel or the like as a capacitance switch.
  • the UV irradiation is performed for the purpose of removing impurities on the substrate 10. Note that the first step may be omitted.
  • the resist 11 is a general photosensitive material used for a photoresist, and a known coating method such as a spin coating method, a dip coating method, or a spray method can be used for coating.
  • the substrate 10 is selectively exposed. Specifically, a part of the resist 11 on the substrate 10 is selectively exposed using a photomask having a desired pattern in advance. Thereafter, the substrate 10 is developed to obtain a resist 11 patterned into a desired shape.
  • a photomask selectively masked in the x direction (left and right direction in FIG. 3) of the substrate 10.
  • the water repellent film 3 is formed on the substrate 10.
  • an existing material such as a fluorine-based water repellent is used.
  • 3M TM Novell TM EGC-1720 manufactured by Sumitomo 3M Limited
  • the film formation method of the water repellent film 3 is performed using the existing film formation method as in the case of the application of the resist 11 described above.
  • the resist 11 on the substrate 10 is peeled off.
  • the resist 11 is stripped using an existing stripping solution such as acetone.
  • the water repellent film formed on the resist 11 is also peeled off. Thereby, the water repellent film 3 which forms a desired pattern can be obtained.
  • the dispersion containing the metal oxide fine particles is misted and sprayed on the substrate 10 to form the metal oxide film 2.
  • film formation is performed by spraying mist using the film formation apparatus shown in FIG. Since the water-repellent film 3 is selectively formed on the substrate 10, the liquefied dispersion liquid adheres to a portion where the water-repellent film 3 is not formed on the substrate 10, that is, a hydrophilic portion. A film 2 is formed.
  • the dispersion liquid temporarily adhering to the water repellent part flows down the water repellent part due to the inclination of the substrate 10 and adheres to the adjacent hydrophilic part, or flows down the substrate 10 and accumulates at the bottom of the third tank.
  • the metal oxide film 2 formed on the substrate 10 is then heated and dried.
  • the insulating film 4 is formed on the substrate 10. Note that before the insulating film 4 is formed, UV irradiation can be performed on the substrate. This is because by performing UV irradiation on the water repellent film 3, the water repellency is lowered to assist the formation of the insulating film 4. However, when the insulating film 4 is formed using a material having a high viscosity such as an organic material, it is not necessary to consider the water repellency of the water repellent film 3 and thus UV irradiation is not necessary. In consideration of the material of the insulating film 4 and the like, after performing UV irradiation as necessary, the insulating film 4 is formed on the substrate 10.
  • the insulating film 4 is formed on the water repellent film 3 and the metal oxide film 2.
  • a nonconductive material such as SnO 2 is used.
  • the method of forming the insulating film 4 the film is formed by applying a predetermined material over the entire surface using an existing method such as a spin coating method, a bar coating method, or a dip coating method.
  • FIG. 4 is a cross-sectional view (No. 2) for explaining an example of the touch panel manufacturing method according to the present modification.
  • the substrate 10 is irradiated with UV.
  • the reason for irradiating UV is to facilitate the formation of the second metal oxide film on the insulating film 4.
  • the substrate 10 is selectively exposed and developed.
  • exposure is performed using a photomask that is selectively masked in the x direction of the substrate 10.
  • the y direction of the substrate 10 (direction perpendicular to the left-right direction in FIG. 4) is selective. It is assumed that the exposure is performed using a photomask masked in (1).
  • the exposure and development are performed in the same procedure as in the third step.
  • Steps 11 and 12 Next, the water repellent film 3 is applied to the substrate 10. Thereafter, the resist 11 remaining on the substrate 10 is peeled off together with the water repellent film 3 formed on the resist 11.
  • the eleventh step and the twelfth step are performed in the same procedure as the fourth step and the fifth step.
  • a second-layer metal oxide film 2 is formed on the substrate 10.
  • the film forming apparatus shown in FIG. 2 is used as in the sixth step. Thereafter, the metal oxide film 2 is dried.
  • the metal oxide film 2 is selectively formed in the y direction of the substrate 10 in the second layer, in the cross-sectional view of the substrate 10, the second metal oxide film 2 over the entire substrate 10. It is described that is formed.
  • the insulating film 4 is formed on the substrate 10.
  • the insulating film 4 is formed on the metal oxide film 2 formed in the thirteenth step.
  • the insulating film 4 is formed by the same film forming method as in the seventh step and using the same material.
  • a metal oxide film having a patterning shape is formed, and a protective layer made of an insulating film is formed on the outermost surface, whereby a touch panel that operates according to a change in capacitance can be generated.
  • a metal oxide film having a lower resistance value and higher transparency than a general metal oxide film can be obtained.
  • FIG. 5 is a diagram showing an outline of the Roll to Roll method manufacturing apparatus.
  • the film 20 formed in a roll shape is installed on one side of the apparatus, the film 20 on which the metal oxide film is formed is discharged from the other side of the apparatus.
  • the film 20 is used as a substrate in the above-described embodiment, and includes a resin and has flexibility.
  • Step 1 Washing First, the film 20 is washed.
  • a cleaning method a general method such as ultrasonic cleaning is used.
  • the film 20 is irradiated with UV.
  • a general UV irradiation apparatus is used for UV irradiation, but it is desirable to irradiate ultraviolet rays having a wavelength of 200 nm or less.
  • step 3 the mist generated from the dispersion liquid in which the metal oxide fine particles are dispersed is sprayed on the film 20.
  • the film forming apparatus used in step 3 is the film forming apparatus described in FIG. As described above, in the film forming apparatus, the metal oxide film is formed at a temperature lower than the softening point of the film 20. By this step, the film 20 with the metal oxide film attached can be obtained.
  • Process 4 Heating
  • the film 20 is heated, and the metal oxide film attached to the film 20 in step 3 is dried. As described above, the temperature used for heating is lower than the softening point of the film 20.
  • Step 5 Slow cooling
  • the film 20 is gradually cooled.
  • the film 20 may be cooled using a cooling device.
  • Step 6 UV irradiation
  • a second metal oxide film is formed on the generated metal oxide film. Therefore, in this step, the film 20 is irradiated with UV to remove impurities and improve hydrophilicity. Note that when the formation of the metal oxide film is completed in one layer, the steps after this step are omitted.
  • Step 7 mist is sprayed on the film 20.
  • a metal oxide film is formed on the film 20 using the film forming apparatus shown in FIG.
  • a second metal oxide film is formed on the first metal oxide film formed in step 3.
  • Step 8 Heating
  • the film 20 is heated, and the metal oxide film attached to the film 20 in step 8 is dried.
  • Step 9 Slow cooling
  • the film 20 is gradually cooled.
  • a metal oxide film can be continuously formed on a roll-shaped substrate by using the Roll-to-Roll manufacturing apparatus.
  • a metal oxide film with high performance can be formed using a temperature lower than the softening point of a flexible substrate including a resin.
  • Example 1 First, an aqueous dispersion (NanoTek Slurry: manufactured by Cii Kasei) containing ITO fine particles was prepared.
  • the particle diameter of the ITO fine particles was 10 to 50 nm, and the average particle diameter was 30 nm.
  • the materials and particle diameters of the ITO fine particles used in the other examples below are the same as in this example.
  • the concentration of the metal oxide fine particles in the dispersion is 15 wt. %Met.
  • the prepared dispersion was put into the first tank of the film forming apparatus described above, and a 2.4 MHz voltage was applied by an ultrasonic vibrator (manufactured by Hyundai Electronics Co., Ltd.) to generate mist.
  • the film forming apparatus used in the present example omits the second tank, which is a mist trap. Therefore, the mist was sprayed on the substrate in the second tank.
  • a soda lime glass substrate was used as the substrate.
  • the substrate was placed in a state where the substrate was tilted with respect to the horizontal plane and the substrate was tilted by 45 degrees with respect to a surface perpendicular to the spraying direction of the mist, and the mist was continuously sprayed for 5 minutes. At this time, the substrate was sprayed at room temperature without heating.
  • the substrate was heated with different patterns of 100 ° C. to 200 ° C. using an infrared lamp heating device.
  • the heating was performed for 10 minutes in a low vacuum of about 30 Pa using a rotary pump or in an inert gas (Ar) atmosphere.
  • the surface of the dried ITO film was irradiated with UV (254 nm and 185 nm mixed).
  • the substrate was placed in the second tank of the film forming apparatus in the same manner as described above, and mist was continuously sprayed at room temperature for 5 minutes. Thereafter, the substrate was dried by heating with an infrared lamp heating apparatus for 10 minutes in the same manner as described above.
  • FIG. 6 is a diagram showing sheet resistance at different heating and drying temperatures.
  • the sheet resistance shown here was measured by the four probe method. Referring to the data shown in FIG. 6, it was found that a sheet resistance of 100 ⁇ / sq. was obtained in a low temperature region of 200 ° C. or lower which is the heat resistant temperature of the film constituting the substrate.
  • the low vacuum treatment shows a lower resistance in a temperature range of 150 ° C. or higher. I understood.
  • FIG. 7 is an SEM image of the obtained ITO film. This figure is the figure which observed the surface of the sample whose heating temperature at the time of drying is 200 degreeC using the scanning electron microscope (SEM). Unevenness is not observed on the surface, and smoothness can be confirmed.
  • the metal oxide film formed using mist exhibits low sheet resistance. Further, it has been found that a smooth metal oxide film can be formed without impairing translucency.
  • Example 2 An aqueous dispersion containing ITO fine particles is put into the first tank of the above-described film forming apparatus having no mist trap, and a 2.4 MHz voltage is applied by an ultrasonic vibrator (manufactured by Hyundai Electronics Co., Ltd.) to generate mist. It was. By flowing air into the first tank, the obtained mist was transported to the vicinity of the substrate in the second tank. A soda lime glass substrate was used as the substrate.
  • the substrate was placed in a state in which the substrate was tilted with respect to the horizontal plane and in a state in which the substrate was tilted with respect to a surface orthogonal to the spraying direction of the mist, and the mist was continuously sprayed for 5 minutes.
  • substrates each having a substrate temperature set to 20 ° C. to 200 ° C. were provided. Thereafter, the substrate was dried at room temperature.
  • the sheet resistance of the metal oxide films obtained here with different substrate temperatures at the time of film formation was measured by the four-probe method.
  • FIG. 8 is a diagram showing sheet resistance at different heating and drying temperatures of the obtained metal oxide film.
  • an increase in sheet resistance that is, a decrease in electrical conductivity was confirmed.
  • the detection limit of sheet resistance was exceeded about each sample, it was impossible to measure. The detection limit of this measurement was 4 G ⁇ / sq.
  • aqueous dispersion containing ITO fine particles was applied onto the substrate 10 by spin coating at 500 rpm. Application was performed at room temperature. After the application, it was dried by heating at a low vacuum of about 30 Pa at a temperature of 200 ° C. for about 10 minutes. Thereafter, the film surface was irradiated with UV (254 nm and 185 nm mixed). Subsequently, an aqueous dispersion containing ITO fine particles was applied to the substrate at 500 rpm by spin coating at room temperature. After the application, it was dried by heating at a low vacuum of about 30 Pa at a temperature of 200 ° C. for about 10 minutes. A soda lime glass substrate was used as the substrate.
  • the transmittance of the obtained ITO film was measured at a wavelength of 550 nm using a spectrophotometer, the visible light transmittance was 68%. Further, when the sheet resistance of the obtained ITO film was measured by a four-point probe method, it was 800 M ⁇ / sq.
  • FIG. 9 shows the results of surface observation using an SEM image. Compared to FIG. 7 which is an SEM image when film formation is performed by mist, it was confirmed that the surface was rough when film formation was performed using spin coating. Also, the surface resistance value is about three orders of magnitude higher than when film formation is performed with mist, and it is difficult to say that it is at a practical level as a transparent electrode.
  • the surface roughness of the film obtained in this comparative example was Ra: 80 nm.
  • the film formed by applying the dispersion by spin coating has a rough surface and a resistance value as compared with the film formed by misting the dispersion containing the metal oxide fine particles and spraying it on the substrate. It was found that the visible light transmittance was lowered.
  • Example 3 First, an aqueous dispersion (NanoTek Slurry: manufactured by Cii Kasei) containing GZO fine particles was prepared.
  • the GZO fine particles had a particle size of 10 to 50 nm and an average particle size of 30 nm.
  • the materials and particle diameters of GZO fine particles used in other examples below are the same as in this example.
  • the concentration of the metal oxide fine particles in the dispersion is 15 wt. %Met.
  • the prepared dispersion was put into the first tank of the above-described film forming apparatus without a mist trap, and a mist was generated by applying a voltage of 2.4 MHz with an ultrasonic vibrator (manufactured by Nissan Electronics Co., Ltd.). By flowing air into the first tank, the obtained mist was transported to the vicinity of the substrate in the second tank. A soda lime glass substrate was used as the substrate.
  • the substrate was placed in a state in which the substrate was tilted with respect to the horizontal plane and in a state in which the substrate was tilted with respect to a surface orthogonal to the spraying direction of the mist, and the mist was continuously sprayed for 5 minutes. At this time, the substrate was sprayed at room temperature without heating.
  • the substrate was heated at 150 ° C., 175 ° C., and 200 ° C. using an infrared lamp heating device. Heating was performed for about 10 minutes in a low vacuum of about 30 Pa each.
  • the surface of the dried GZO film was irradiated with UV (254 nm and 185 nm mixed).
  • the substrate was placed in the second tank of the film forming apparatus in the same manner as described above, and mist was continuously sprayed at room temperature for 5 minutes. Thereafter, the substrate was dried by heating with an infrared lamp heating apparatus for 10 minutes in the same manner as described above.
  • FIG. 10 is a diagram showing the surface resistance value and visible light transmittance of the obtained GZO film. It was found that a transparent conductive film showing a transmittance of 80% or more in the visible light region can be obtained regardless of whether the drying temperature is 150 ° C., 175 ° C., or 200 ° C. In any case, the sheet resistance was 20 M ⁇ / sq. Or less.
  • Example 4 First, an IPA dispersion (NanoTek Slurry: manufactured by Cii Kasei) containing GZO fine particles was prepared. The particle size of GZO and the concentration of metal oxide particles are the same as in Example 3. The prepared dispersion was put into the first tank of the above-described film forming apparatus without a mist trap, and a 2.4 MHz voltage was applied by an ultrasonic vibrator (manufactured by Hyundai Electronics Co., Ltd.) to generate mist. By flowing air into the first tank, the obtained mist was transported to the vicinity of the substrate in the second tank.
  • an ultrasonic vibrator manufactured by Nissan Electronics Co., Ltd.
  • the substrate was heat-dried for 10 minutes at a low vacuum of about 30 Pa at a temperature of 200 ° C. using an infrared lamp heating device. Thereafter, the surface of the dried GZO film was irradiated with UV (254 nm and 185 nm mixed). Subsequently, the substrate was placed in the second tank of the film forming apparatus in the same manner as described above, and mist was continuously sprayed at room temperature for 5 minutes. Thereafter, the substrate was dried by heating with an infrared lamp heating apparatus for 10 minutes in the same manner as described above. A soda lime glass substrate was used as the substrate.
  • the sheet resistance of the obtained film was 10 M ⁇ / sq., And the transmittance in the visible light region was 80% or more.
  • FIG. 11 is an SEM image of the obtained GZO film. From the result of the SEM image, it was found that a flat film was formed.
  • FIG. 12 is a diagram showing an analysis result by EDX of the obtained GZO film. Specifically, a line scan by energy dispersive X-ray spectroscopy (EDX) was performed on the obtained GZO film. From this figure, it was found that remarkable peaks were observed for Zn and O, and the obtained film was formed of ZnO.
  • EDX energy dispersive X-ray spectroscopy
  • Example 5 In the same manner as in Example 3, an aqueous dispersion (NanoTek Slurry: manufactured by Cii Kasei) containing GZO fine particles was prepared. The prepared dispersion was put into the first tank of the above-described film forming apparatus without a mist trap, and a 2.4 MHz voltage was applied by an ultrasonic vibrator (manufactured by Hyundai Electronics Co., Ltd.) to generate mist. By flowing air into the first tank, the obtained mist was transported to the vicinity of the substrate in the second tank.
  • an ultrasonic vibrator manufactured by Nissan Electronics Co., Ltd.
  • the substrate was placed in a state in which the substrate was tilted with respect to the horizontal plane and in a state in which the substrate was tilted with respect to a surface orthogonal to the spraying direction of the mist, and the mist was continuously sprayed for 5 minutes.
  • one substrate was heated to 60 ° C. for spraying, and the other substrate was heated to 80 ° C. for spraying.
  • a soda lime glass substrate was used as the substrate.
  • the substrate was heated at a temperature of 200 ° C. using an infrared lamp heating device. Heating was performed for 10 minutes in a low vacuum of about 30 Pa. Subsequently, after irradiating the surface of the GZO film with UV (254 nm and 185 nm mixed), the substrate is placed in the second tank of the film forming apparatus in the same manner as described above, and the mist is sprayed for 5 minutes while heating the substrate in the same manner. Continued. Thereafter, the substrate was dried by heating with an infrared lamp heating apparatus for 10 minutes in the same manner as described above.
  • FIG. 13 is an SEM image of the obtained GZO film.
  • the surface morphology was observed using the SEM image, it was confirmed that the surface smoothness of the GZO film formed on the heated substrate was lost.
  • FIG. 14 is a diagram showing the relationship between the substrate temperature and the surface resistance during film formation. As the heating temperature during film formation increases, the surface resistance value increases significantly. When the heating temperature at the time of film formation was 80 ° C., the surface resistance value exceeded the detection limit and could not be measured.
  • Example 6 A resist was applied uniformly on the substrate using a spin coater, and exposure with i-line was performed to form a pattern with a line and space of 100 ⁇ m. After that, 3M TM Novec TM EGC-1720 (manufactured by Sumitomo 3M Co., Ltd.) was applied to the substrate as a water repellent using a dip coater, and the resist solution was peeled off to obtain a substrate on which a desired water repellent pattern was formed. It was. A PET substrate was used as the substrate.
  • Example 2 an aqueous dispersion containing ITO fine particles was placed in the first tank of the above-described film forming apparatus having no mist trap, and 2.4 MHz by an ultrasonic vibrator (manufactured by Hyundai Electronics Co., Ltd.). A mist was generated by applying a voltage of. By flowing air into the first tank, the obtained mist was transported to the vicinity of the substrate in the second tank.
  • the substrate was placed in a state in which the substrate was tilted with respect to the horizontal plane and in a state in which the substrate was tilted with respect to a surface orthogonal to the spraying direction of the mist, and the mist was continuously sprayed for 5 minutes. At this time, the substrate was not heated and sprayed with mist at room temperature.
  • the substrate was heated at a temperature of 150 ° C. using an infrared lamp heating device. Heating was performed for 10 minutes in a low vacuum of about 30 Pa. Subsequently, after irradiating UV (254 nm, 185 nm mixed) on the film surface generated on the substrate, the substrate was placed in the second tank of the film forming apparatus in the same manner as described above, and mist was continuously sprayed for 5 minutes. Thereafter, the substrate was dried by heating with an infrared lamp heating apparatus for 10 minutes in the same manner as described above.
  • FIG. 15 is an SEM image of the ITO film on the water-repellent patterning substrate.
  • the ITO film was formed on the hydrophilic portion so as to avoid the water-repellent portion.
  • a metal oxide film having an intended pattern can be selectively formed by using a water repellent pattern. I was able to.
  • Example 7 A resist was applied uniformly on the substrate using a spin coater, and exposure with i-line was performed to form a pattern with a line and space of 100 ⁇ m. After that, 3M TM Novec TM EGC-1720 (manufactured by Sumitomo 3M Co., Ltd.) was applied to the substrate as a water repellent using a dip coater, and the resist solution was peeled off to obtain a substrate on which a desired water repellent pattern was formed. It was. A PET substrate was used as the substrate.
  • Example 3 an aqueous dispersion containing GZO fine particles was prepared, placed in the first tank of a film forming apparatus without a mist trap, and 2.4 MHz by an ultrasonic vibrator (manufactured by Hyundai Electronics Co., Ltd.). A voltage was applied to generate mist. By flowing air into the first tank, the obtained mist was transported to the vicinity of the substrate in the second tank. In the 2nd tank, the board
  • the substrate was heated at a temperature of 150 ° C. using an infrared lamp heating device. Heating was performed for 10 minutes in a low vacuum of about 30 Pa. Subsequently, after irradiating UV (254 nm, 185 nm mixed) on the film surface generated on the substrate, the substrate was placed in the second tank of the film forming apparatus in the same manner as described above, and mist was continuously sprayed for 5 minutes. Thereafter, the substrate was dried by heating with an infrared lamp heating apparatus for 10 minutes in the same manner as described above.
  • FIG. 16 is an SEM image of the GZO film on the water-repellent patterning substrate. It was confirmed that the water-repellent coating and the hydrophilic portion other than the water-repellent portion were in different states.
  • ⁇ Comparative example 2> A resist was applied uniformly on the substrate using a spin coater, and exposure with i-line was performed to form a pattern with a line and space of 100 ⁇ m. After that, 3M TM Novec TM EGC-1720 (manufactured by Sumitomo 3M Co., Ltd.) was applied to the substrate as a water repellent using a dip coater, and the resist solution was peeled off to obtain a substrate on which a desired water repellent pattern was formed. It was. A PET substrate was used as the substrate.
  • Example 2 In the same manner as in Example 1, an aqueous dispersion containing ITO fine particles (NanoTek : Slurry: manufactured by CI Kasei Co., Ltd.) is prepared and placed in the first tank of the above-described film forming apparatus without a mist trap. Produced a mist by applying a voltage of 2.4 MHz. By flowing air into the first tank, the obtained mist was transported to the vicinity of the substrate in the second tank.
  • a substrate heated to 60 ° C. and a substrate heated to 80 ° C. were installed, and mist was continuously sprayed on each for 5 minutes.
  • each substrate was placed in a state where the substrate was tilted with respect to a horizontal plane, and a state where the substrate was tilted 45 degrees with respect to a surface perpendicular to the spraying direction of the mist was sprayed.
  • substrate was heated under the temperature of 150 degreeC using the infrared lamp heating apparatus. Heating was performed for 10 minutes in a low vacuum of about 30 Pa.
  • FIG. 17 is an SEM view of the substrate heated to 60 ° C. Since the evaporation rate of the dispersion containing the metal oxide fine particles on the heated substrate is extremely high, it is considered that the dispersion attached to the water-repellent part evaporated without being water-repellent. Therefore, it was confirmed that a trace amount of metal oxide film was formed even in the water repellent portion.
  • FIG. 18 is an SEM view of the substrate heated to 80 ° C. It was confirmed that the metal oxide film was entirely formed without distinguishing between the hydrophilic portion and the water repellent portion. As a result, no patterning on the line was obtained.
  • ⁇ Comparative Example 3> A resist was applied uniformly on the substrate using a spin coater, and exposure with i-line was performed to form a pattern with a line and space of 100 ⁇ m. After that, 3M TM Novec TM EGC-1720 (manufactured by Sumitomo 3M Co., Ltd.) was applied to the substrate as a water repellent using a dip coater, and the resist solution was peeled off to obtain a substrate on which a desired water repellent pattern was formed. It was. A PET substrate was used as the substrate.
  • Example 1 an aqueous dispersion containing ITO fine particles (NanoTek® Slurry: manufactured by Cai Kasei Co., Ltd.) was prepared and placed in the first tank of the above-described film forming apparatus having a mist trap. Produced a mist by applying a voltage of 2.4 MHz. By flowing air into the first tank, the obtained mist was conveyed to the vicinity of the substrate in the third tank.
  • the substrate was placed so as to be parallel to the horizontal plane and parallel to the plane perpendicular to the spraying direction of the mist, and spraying the mist for 5 minutes. At this time, the substrate was sprayed at room temperature without heating.
  • the substrate was heated at a temperature of 200 ° C. using an infrared lamp heating device. Heating was performed for 10 minutes in a low vacuum of about 30 Pa. Subsequently, after irradiating UV (254 nm, 185 nm mixed) on the film surface generated on the substrate, the substrate was placed in the third tank of the film forming apparatus as described above. In addition, the board
  • FIG. 19 is an SEM image of the obtained ITO film. There was almost no distinction between the hydrophilic portion and the water repellent portion, and a metal oxide film was formed on the entire substrate. This is probably because the dispersion containing metal oxide fine particles adhering to the water repellent portion evaporated without being water repellent. As a result, patterning on the line as seen in Example 6 was not obtained.
  • a suitable metal oxide film can be obtained regardless of whether the metal oxide fine particles are ITO or GZO. It was. Moreover, a suitable metal oxide film could be obtained regardless of whether the dispersion medium was water or IPA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Conductive Materials (AREA)

Abstract

 薄膜を得る技術として、従来技術に代わる新たな方法を提供することを目的とする。 本発明における薄膜の製造方法は、微粒子を含む分散液をミスト化するミスト化工程と、ミスト化された分散液を基板に供給する供給工程と、前記基板上に供給された前記分散液を乾燥させる乾燥工程と、を有することを特徴とする。

Description

薄膜の製造方法、透明導電膜
 本発明は、薄膜の形成方法、透明導電膜に関する。本発明は2013年10月30日に出願された日本国特許の出願番号2013-225549の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。
 酸化インジウムスズ(ITO)や酸化亜鉛(ZnO)等からなる透明導電膜は、液晶ディスプレイや太陽電池の透明電極として広く用いられている。これらの透明導電膜は、一般的にスパッタリング法により生成される。
 また、スパッタリング法以外の方法として、例えば特許文献1には、「金属を含む材料溶液(10)が入った第一の容器(5A)と、過酸化水素が入った第二の容器(5B,18)と、基板(2)が配置され、前記基板を加熱する加熱器(3)を有する反応容器(1)と、前記第一の容器と前記反応容器とを接続し、前記材料溶液を前記第一の容器から前記反応容器へと供給する第一の経路(L1)と、前記第二の容器と前記反応容器とを接続し、前記過酸化水素を前記第二の容器から前記反応容器へと供給する第二の経路(L2)とを、備える、ことを特徴とする金属酸化膜の成膜装置」によって金属酸化膜を成膜することが開示されている。特許文献1に記載された成膜装置では、金属を含む材料溶液と過酸化水素とを、加熱した基板上で反応させて金属酸化膜を成膜する。
国際公開第2011/151889号
 本発明は、薄膜を得る技術として、上述の従来技術に代わる新たな方法を提供することを目的とする。
 本発明の態様は上記の目的を達成するためになされたもので、本発明に係る薄膜の製造方法は、微粒子を含む分散液をミスト化するミスト化工程と、ミスト化された分散液を基板に供給する供給工程と、前記基板上に供給された前記分散液を乾燥させる乾燥工程と、を有することを特徴とする。
 また、本発明の態様に係る薄膜の製造方法は、前記ミスト化された分散液に含まれる微粒子の粒径が100nm以下であることを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法における前記基板は、樹脂を含み、可撓性を有することを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法における前記乾燥工程は、前記基板の軟化点より低い温度下で行われることを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法における前記乾燥工程は、10℃以上40℃以下の温度下で行われることを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法は、前記基板上に、親水部と撥水部からなるパターンを形成する親撥水パターン形成工程を備え、前記親撥水パターン形成工程により前記親撥水パターンが形成された基板に対して前記供給工程を行うことを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法は、前記乾燥工程の後に前記基板に対して紫外線を照射する紫外線照射工程を備え、前記紫外線照射工程により紫外線が照射された前記基板に対して再度供給工程を行うことを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法は、前記供給工程において、前記紫外線照射工程前に供給される前記ミストに含まれる前記微粒子と、前記紫外線照射工程後に供給される前記ミストに含まれる前記微粒子とは異なることを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法における前記紫外線照射工程で照射する紫外線は、少なくとも200nm以下の波長を含むことを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法は、前記供給工程において、前記基板が水平面に対して傾斜していることを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法は、前記供給工程において、前記基板が前記供給の方向に直交する面に対して傾斜していることを特徴としてもよい。
 また、本発明の態様に係る薄膜の製造方法における前記微粒子は、インジウム、亜鉛、錫、及びチタンのいずれかを含む金属酸化物微粒子であることを特徴としてもよい。
 また、本発明の態様に係る透明導電膜は、前述した薄膜の製造方法により製造されることを特徴とする。
 薄膜を得る技術として、従来技術に代わる新たな方法を提供することができる。
本実施形態に係る金属酸化物膜の成膜方法の一例を説明するための断面図である。 本実施形態における成膜装置の一例を示す図である。 本変形例に係る導電膜の製造方法の一例を説明するための断面図(その1)である。 本変形例に係る導電膜の製造方法の一例を説明するための断面図(その2)である。 Roll to Roll方式製造装置の概要を示す図である。 加熱乾燥温度別のシート抵抗を示す図である。 得られたITO膜のSEM像である。 得られた金属酸化物膜の加熱乾燥温度別のシート抵抗を示す図である。 SEM像による表面観察結果である。 得られたGZO膜の表面抵抗値及び可視光透過率を示す図である。 得られたGZO膜のSEM像である。 得られたGZO膜のEDXによる分析結果を示す図である。 得られた膜GZO膜のSEM像である。 成膜時の基板温度と表面抵抗の関係を示す図である。 撥水パターニング基板上におけるITO膜のSEM像である。 撥水パターニング基板上におけるGZO膜のSEM像である。 60℃に加熱した基板のSEM像である。 80℃に加熱した基板のSEM像である。 得られたITO膜のSEM像である。
 以下、本発明の実施形態の一例について図面を参照しながら説明する。
 図1は、本実施形態に係る薄膜の形成方法の一例を説明するための断面図である。
 (第1の工程)
 まず、基板10を準備する。基板10は、一般に用いられる基板材料を用いることができる。例えば、ガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等を用いることができる。
 そして、必要に応じて基板10を洗浄する。洗浄方法には超音波洗浄等の一般的な方法を用いることができる。その後、基板10に対しUV(ultraviolet:紫外線)を照射する。UVの照射には一般的なUV照射装置を用いるが、200nm以下(例えば、10nm~200nm)の波長の紫外線を照射することが望ましい。UVを照射することで、基板10表面の不純物が除去され、親水化される。
 (第2の工程)
 次に、基板10に対して微粒子を含む分散液からなるミストを噴霧することにより、金属酸化物膜2の成膜を行う。
 図2は、本実施形態における成膜装置の一例を示す図である。成膜装置は、微粒子を含むミストを発生させる第1槽、ミストを均一化させるミストトラップである第2槽、基板10に対してミストを噴霧する第3槽を有する。
 第1槽には、微粒子を分散媒に分散させた分散液である原料溶液5が格納される。微粒子は、インジウム、亜鉛、錫又はチタン等の導電性を有する金属微粒子や、これらのうちの少なくとも一つを含む金属酸化物微粒子を用いることができる。これらは単独で用いてもよいし、2種類以上を任意に組み合わせてもよい。微粒子は、粒径が1-100nmのナノ微粒子である。なお、粒径としては、例えばSEM画像から求まる微粒子の長軸と短軸の平均値を用いることができる。なお、本実施形態では微粒子として金属酸化物微粒子を用いるものとして説明する。
 分散媒は、微粒子が分散可能であればよく、水や、イソプロピルアルコール(IPA)、エタノール等のアルコール、及びそれらの混合物を用いることができる。なお、第1槽にはミストの流路を形成するためのエアー22が流し込まれている。
 また、第1槽には、超音波振動子21が格納される。当該超音波振動子21により、金属酸化物微粒子を含む分散液がミスト化される。ミストの粒径は10μm以下(例えば1~10μm)が望ましい。第1槽で生成されたミストは、第1層に設けられた管を経由して第2槽に搬送される。第2槽では、余分なミストが槽の下部に溜まり、粒子径が均一化されたミストが第2槽に設けられた管を経由して第3層に搬送される。第2槽から第3槽へは、5μm以下(例えば1~5μm)の粒子径のミストが搬送されるよう構成されることが望ましい。
 第3槽には基板10が配置され、第2槽から搬送されたミストが基板に噴霧される。第3槽では所定時間、基板10に対してミストが噴霧される。そして、基板10に付着したミストの分散媒が気化することによって、基板10の表面に金属酸化物膜が形成される。なお、噴霧後一定時間が経過すると、ミストが気化するよりも先に新たなミストが基板10上に付着することにより、液滴化した分散液が流れ落ち、基板10上に均一な金属酸化物膜が形成されなくなる。基板10に対してミストの噴霧を停止する時間は、金属酸化物微粒子を含むミストが液化して基板10から流れ落ちる時点であってもよいし、希望する膜厚の金属酸化物膜が基板10上に形成された時点であってもよい。
 第3槽において、基板10を過度に加熱すると、軟化により変形してしまう可能性がある。そのため、第3槽では、基板の軟化点より低い温度の下でミストが噴霧され、金属酸化物膜が形成されることが望ましい。また、ミスト噴霧時に基板10を所定温度以上に加熱すると、基板10に付着した金属酸化物微粒子が凝集し、高い抵抗値を有する金属酸化物膜が形成される。このため、さらに望ましくは、40℃以下(例えば10℃~40℃)の温度下でミストが噴霧され、金属酸化物膜が形成されるよう構成する。
 なお、ここで軟化点とは、基板を加熱した場合に、基板が軟化して、変形を起こし始める温度をいい、例えば、JIS  K7207(A法)に準じた試験方法によりもとめることができる。
 詳しくは後述するが、基板10に対し選択的に金属酸化膜を形成する場合、予め基板10に対して選択的に撥水膜を形成することにより、親水部にミストを付着させる。この際、基板10が水平に配置されていると、撥水部に付着した分散液が撥水されず、選択的に金属酸化膜を形成させることができない。このため、第3槽では、水平面に対して傾斜した基板10に対してミストを噴霧させることが望ましい。
 同様に、第3槽では、ミストの噴霧方向に直交する面に対して傾斜した基板10に対してミストが噴霧されることが望ましい。ミストの噴霧の勢いで、撥水部に付着した余分な金属酸化物微粒子を除去するためである。
 なお、成膜装置は、第2槽のミストトラップを省略してもよい。そうすることで、より簡便な装置で基板に対し金属酸化物膜を成膜することができる。
 また、ミストの発生方法については、上述の超音波振動子21を用いて発生させるほか、液滴を噴霧する細管に直接電圧をかけてミストを発生させる静電式、圧力を加え流速を増加させたガスを液体と衝突させることによって、発生したミストを飛散させる加圧式、高速回転しているディスク上に液滴を滴下し、発生したミストを遠心力によって飛散させる回転ディスク式、マイクロサイズの孔を有するオリフィス板に液滴を通すが、その際に圧電素子等によって振動を加えることによって液滴を切断することで、マイクロサイズの液滴を発生させるオリフィス振動式等を用いることができる。ミストの発生方法については、コストやパフォーマンス等に応じて適宜これらの方法を選択する。当然、複数の方法を組み合わせてミストを発生させてもよい。
(第3の工程)
 説明を図1に戻す。その後、金属酸化物膜2が形成された基板10は、乾燥のため加熱される。上述の例と同様に、この際の加熱温度は基板10の軟化点より低い温度下であることが望ましい。加熱は、30Pa程度の低真空で行ってもよいし、Arガス雰囲気下で行ってもよい。熱状況については、成膜の状況等によって適宜使い分ける。なお、本工程では、必ずしも加熱により乾燥を行わなくともよい。例えば常温下に所定時間基板10を設置することにより乾燥を行ってもよい。
 なお、上述の第1の工程は、必ずしも必要な工程ではない。第2の工程において基板10上にミストを付着させるための前処理として行う工程であるため、基板10上にミストが付着すればよく、方法を問わない。
 以上の処理により、基板10上に金属酸化物膜が形成されるが、必要に応じて再度第1の工程から第3の工程までの処理を再度行うことにより、2層目の金属酸化物膜を得ることができる。この場合、第1の工程の基板洗浄は省略することができる。なお、第1層のミストに含まれる金属酸化物微粒子と、第2槽の金属酸化物微粒子とを同じ材料とすることで、充分な膜厚の金属酸化物膜を得ることができる。または、第1槽の金属酸化物膜と第2層の金属酸化物膜とを異なる物質とすることで、用途や目的に応じて導電膜を使い分けることができる。
 以上、本実施形態では、薄膜の形成工程で基板に対し加熱を行わずに成膜を行う。このため、抵抗値の低い金属酸化物膜を得ることができる。また、熱に弱い基板に対しても有効に成膜を行うことができる。
 (変形例)
 次に、本実施形態の変形例について説明する。
 図3は、本変形例に係る導電膜の製造方法の一例を説明するための断面図である。本変形例では、上述の実施形態によって形成される金属酸化物膜を用いて導電膜を製造する。製造された導電膜は、静電容量スイッチとしてタッチパネル等に用いられる。
 (第1の工程)
 まず、基板10に対してUVを照射する。UV照射は、基板10上の不純物を除去する目的で行われるものである。なお、第1の工程は省略してもよい。
 (第2の工程)
 次に、基板10上にレジスト11を塗布する。レジスト11はフォトレジストに用いられる一般的な感光性材料であって、塗布には公知の塗布方法、例えばスピンコート法、ディップコート法、スプレー法等の塗布方法を用いることができる。
 (第3の工程)
 次に、基板10を選択的に露光する。具体的には、予め所望のパターンを施したフォトマスクを用いて、基板10上のレジスト11の一部を選択的に露光する。その後基板10を現像することで、所望の形状にパターニングされたレジスト11を得る。なお、ここでは便宜上、基板10のx方向(図3の左右方向)について選択的にマスキングしたフォトマスクを用いて露光するものとして説明する。
 (第4の工程)
 次に、基板10上に撥水膜3を形成する。撥水膜3にはフッ素系撥水剤等、既存の材料を用いる。例えば撥水膜3には、3MTMNоvecTMEGC-1720(住友スリーエム株式会社製)を用いることができる。撥水膜3の成膜方法については、上述のレジスト11の塗布と同様、既存の成膜方法を用いて成膜を行う。
 (第5の工程)
 次に、基板10上のレジスト11を剥離する。レジスト11の剥離については、既存の剥離液、例えばアセトン等を用いて行う。レジスト11を剥離することで、レジスト11上に形成された撥水膜も併せて剥離される。これにより、所望のパターンを形成する撥水膜3を得ることができる。
 (第6の工程)
 次に、基板10に対して金属酸化物微粒子を含む分散液をミスト化させて噴霧し、金属酸化物膜2を成膜する。具体的には、図2に示す成膜装置を用い、ミストを噴霧することにより成膜を行う。基板10には選択的に撥水膜3が形成されているため、液化した分散液は基板10上撥水膜3が形成されていない部分、つまり親水部分に付着し、選択的に金属酸化物膜2が形成される。なお、一時的に撥水部分に付着した分散液は基板10の傾きにより撥水部分を流れ落ち、隣接する親水部分に付着するか、基板10を流れ落ちて第3槽の底部に蓄積する。基板10に対し形成された金属酸化物膜2は、その後加熱乾燥される。
 (第7の工程)
 次に、基板10に対して絶縁膜4を形成する。なお、絶縁膜4を形成する前に、基板に対してUV照射を行うことができる。撥水膜3に対してUV照射を行うことで、撥水性が低下して絶縁膜4の形成を助けるためである。しかしながら、有機材料等、粘度の高い材料を用いて絶縁膜4を形成する場合等には、撥水膜3の撥水性の影響を考慮する必要がないため、UVを照射しなくてもよい。絶縁膜4の材料等を考慮して、必要に応じてUV照射を行った後、絶縁膜4を基板10上に形成する。
 絶縁膜4は、撥水膜3及び金属酸化物膜2の上に形成される。絶縁膜4には、例えばSnO等の非導電性の材料を用いる。絶縁膜4の形成方法については、スピンコート法、バーコート法、ディップコート法等の既存の方法を用いて、所定の材料を全面に塗布することにより成膜を行う。
 図4は、本変形例に係るタッチパネルの製造方法の一例を説明するための断面図(その2)である。
 (第8の工程)
 次に、基板10に対してUVを照射する。UVを照射するのは、絶縁膜4上に2層目の金属酸化物膜を形成し易くするためである。
 (第9の工程)
 次に、基板10に対してレジスト11を塗布する。レジスト11の塗布については、第2の工程と同様の手順で行われる。
 (第10の工程)
 次に、基板10を選択的に露光し、現像する。第3の工程では、基板10のx方向について選択的にマスキングしたフォトマスクを用いて露光を行ったが、本工程では基板10のy方向(図4の左右方向に直交する方向)について選択的にマスキングしたフォトマスクを用いて露光を行うものとして説明する。露光及び現像については、第3の工程と同様の手順で行われる。
 (第11・12の工程)
 次に、基板10に対して撥水膜3を塗布する。その後、基板10に残存したレジスト11を、レジスト11に形成された撥水膜3ごと剥離する。第11の工程及び第12の工程は、第4の工程及び第5の工程と同様の手順で行われる。
 (第13の工程)
 次に、基板10に対して2層目の金属酸化物膜2を形成する。金属酸化物膜2の成膜については、第6の工程と同様、図2に示す成膜装置を用いる。その後、金属酸化物膜2は乾燥される。なお、本図では2層目は基板10のy方向について選択的に金属酸化物膜2が形成されているため、基板10の断面図では基板10の全体にわたって2層目の金属酸化物膜2が形成されている記載となっている。
 (第14の工程)
 次に、基板10に対して絶縁膜4を形成する。絶縁膜4は、第13の工程で成膜を行った金属酸化物膜2の上部に形成される。絶縁膜4の形成については、第7の工程と同様の成膜方法で、同様の材料を用いて行う。
 以上、本実施形態では、パターニング形状を有する金属酸化物膜を形成し、最表面に絶縁膜による保護層を形成することにより、静電容量の変化に応じて動作するタッチパネルを生成することができる。また、上述の成膜装置を用いて金属酸化物膜を成膜することにより、一般的な金属酸化物膜と比較して抵抗値が低く、透明度が高い金属酸化物膜を得ることができる。
 図5は、Roll to Roll方式製造装置の概要を示す図である。本製造装置では、ロール状に形成されたフィルム20を装置の一方に設置すると、金属酸化物膜が形成されたフィルム20が装置の他方から排出される。なお、フィルム20は上述の実施形態における基板として用いられるものであり、樹脂を含み、可撓性を有するものである。
 (工程1:洗浄)
 まず、フィルム20が洗浄される。洗浄方法には超音波洗浄等の一般的な方法が用いられる。
 (工程2:UV照射)
 次に、フィルム20に対してUVを照射する。上述したように、UVの照射には一般的なUV照射装置を用いるが、200nm以下の波長の紫外線を照射することが望ましい。
 (工程3:ミスト噴霧)
 次に、フィルム20に対して金属酸化物微粒子を分散させた分散液から発生させたミストを噴霧する。工程3で用いられる成膜装置は、図2において説明した成膜装置である。なお、上述したように、成膜装置ではフィルム20の軟化点よりも低い温度で金属酸化物膜が成膜される。本工程により、金属酸化物膜が付着したフィルム20を得ることができる。
 (工程4:加熱)
 次に、フィルム20を加熱し、工程3でフィルム20に付着させた金属酸化物膜を乾燥させる。なお、前述したように、加熱に用いる温度はフィルム20の軟化点を下回る。
 (工程5:徐冷)
 次に、フィルム20を徐々に冷却させる。本工程では、冷却装置を用いてフィルム20を冷却してもよい。
 (工程6:UV照射)
 本製造装置では、生成された金属酸化物膜上に2層目の金属酸化物膜を成膜する。そのため、本工程ではフィルム20に対してUV照射を行い、不純物を除去し、親水性を向上させる。なお、金属酸化物膜の成膜を1層で終了する場合は、本工程以降を省略する。
 (工程7:ミスト噴霧)
 次に、フィルム20に対してミストを噴霧する。本工程では、工程3と同様に、図2に示す成膜装置を用いてフィルム20に対して金属酸化物膜を形成する。本工程により、工程3で形成された1層目の金属酸化物膜上に、2層目の金属酸化物膜が成膜される。
 (工程8:加熱)
 次に、フィルム20を加熱し、工程8でフィルム20に付着させた金属酸化物膜を乾燥させる。
 (工程9:徐冷)
 次に、フィルム20を徐々に冷却させる。
 以上、Roll to Roll方式製造装置を用いることで、ロール状に形成された基板上に連続して金属酸化物膜を形成することができる。また、樹脂を含み可撓性を備える基板に対し、軟化点よりも低い温度を用いて、性能の高い金属酸化物膜を成膜することができる。
 以下に、実施例を示して本発明の態様をより具体的に説明する。ただし、本発明は、これらの実施例によって限定されるものではない。
 <実施例1>
 まず、ITO微粒子を含む水分散液(NanoTek Slurry:シーアイ化成製)を準備した。ITO微粒子の粒子径は10~50nm、平均粒子径が30nmであった。以下の他の実施例に用いたITO微粒子の材料及び粒子径は、本実施例と同様である。また、分散液中の金属酸化物微粒子の濃度は15wt.%であった。準備した分散液を上述の成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第2槽の基板近傍まで搬送した。なお、本実施例で用いた成膜装置は、ミストトラップである第2槽を省略したものである。そのため、基板に対するミストの噴霧は第2槽で行った。なお、基板としてソーダライムガラス基板を用いた。
 第2槽では、基板を水平面に対して傾けた状態、及びミストの噴霧方向に直交する面に対して基板を45度傾けた状態に基板を配置し、5分間ミストを噴霧し続けた。この際に、基板は加熱せず、室温にて噴霧を行った。
 基板に対してミストを噴霧した後、赤外線ランプ加熱装置を用い、100℃~200℃の異なるパターンで加熱した。加熱は、ロータリーポンプを用いた30Pa程度の低真空、又は不活性ガス(Ar)雰囲気下で10分間行った。
 その後、乾燥したITO膜の表面にUV(254nm、185nm混合)を照射した。その後続けて、上述と同様に基板を成膜装置の第2槽に配置し、室温下で、5分間ミストを噴霧し続けた。その後、上述と同様に赤外線ランプ加熱装置にて10分間加熱することで、基板を乾燥させた。
 (評価)
 図6は、加熱乾燥温度別のシート抵抗を示す図である。なお、ここに示すシート抵抗は、四探針法により測定した。図6に示すデータを参照すると、基板を構成するフィルムの耐熱温度である200℃以下の低温領域において、100Ω/sq.台のシート抵抗が得られていることが分かった。
 また、不活性ガス(Ar)雰囲気下による大気圧中の処理、及び30Pa程度の低真空処理を検討すると、低真空処理の方が、150℃以上の温度域においてより低い抵抗を示していることが分かった。
 なお、得られた試料について、分光光度計を用いて波長550nmにおける透過率測定を行ったところ、図6に示すすべての試料について、80%以上の可視光透過率を示した。
 図7は、得られたITO膜のSEM像である。本図は、乾燥時の加熱温度が200℃である試料の表面を、走査型電子顕微鏡(SEM)を用いて観察した図である。表面は凹凸が観察されず、平滑性が確認できる。
 以上のように、ミストを用いて成膜した金属酸化物膜について、低いシート抵抗を示すことが明らかになった。また、透光性を損なわず、平滑性を有する金属酸化物膜を成膜することができることが分かった。
 <実施例2>
 ITO微粒子を含む水分散液を、ミストトラップを有しない上述の成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第2槽の基板近傍まで搬送した。なお、基板としてソーダライムガラス基板を用いた。
 第2槽では、基板を水平面に対して傾けた状態、及びミストの噴霧方向に直交する面に対して基板を傾けた状態に基板を配置し、5分間ミストを噴霧し続けた。この際に、基板の温度を20℃から200℃に設定した基板をそれぞれ設けた。その後、室温にて基板を乾燥させた。
 ここで得られた、成膜時の基板の温度が異なる金属酸化物膜のシート抵抗を、四探針法により計測した。
 図8は、得られた金属酸化物膜の加熱乾燥温度別のシート抵抗を示す図である。成膜時の基板温度を室温よりも上昇させた試料については、シート抵抗の増加、つまり電気伝導率の低下が確認された。また、基板を80℃以上の温度に加熱した試料については、それぞれの試料についてシート抵抗の検出限界を超えたため、計測不可能であった。なお、本計測の検出限界は、4GΩ/sq.であった。
 以上、成膜時の基板の温度が60℃以下である場合に、電気伝導性を有する金属酸化物膜を得ることができた。また、基板の温度が室温に近い25度である場合に、最も電気伝導率が高い金属酸化物膜を得ることができた。
 <比較例1>
 ITO微粒子を含む水分散液を、スピンコートにて500rpmで基板10上に塗布した。塗布は室温下で行われた。塗布後、30Pa程度の低真空にて200℃の温度下で10分程度の加熱乾燥を行った。その後膜表面にUV(254nm、185nm混合)を照射した。続けて、スピンコートにて500rpmで基板上にITO微粒子を含む水分散液を室温下で塗布した。塗布後、30Pa程度の低真空にて200℃の温度下で10分程度の加熱乾燥を行った。なお、基板としてソーダライムガラス基板を用いた。
 得られたITO膜について、分光光度計を用いて波長550nmにおける透過率測定を行ったところ、68%の可視光透過率であった。また、得られたITO膜のシート抵抗を四探針法により計測したところ、800MΩ/sq.であった。
 図9は、SEM像による表面観察結果である。ミストによる成膜を行った場合のSEM像である図7に比べ、スピンコートを用いて成膜を行った場合は表面が粗いことが確認された。また、表面抵抗値もミストによる成膜を行った場合に比べて3桁程度高くなっており、透明電極として実用的な水準にあるとは言い難い。
 また、触針式膜厚計にて表面粗さの測定を行ったところ、実施例1において本比較例と同様の200℃の加熱乾燥を行った試料では、表面粗さRa:15nmであった。これに対し、本比較例で得た膜の表面粗さはRa:80nmであった。
 以上により、金属酸化物微粒子を含む分散液をミスト化して基板に噴霧することにより形成された膜に比べ、スピンコートにより分散液を塗布することにより形成された膜は、表面が荒く、抵抗値が高く、可視光透過率が低下することが分かった。
 <実施例3>
 まず、GZO微粒子を含む水分散液(NanoTek Slurry:シーアイ化成製)を準備した。GZO微粒子の粒子径は10~50nm、平均粒子径が30nmであった。以下の他の実施例に用いたGZO微粒子の材料及び粒子径は、本実施例と同様である。また、分散液中の金属酸化物微粒子の濃度は15wt.%であった。
 準備した分散液を上述のミストトラップのない成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第2槽の基板近傍まで搬送した。なお、基板としてソーダライムガラス基板を用いた。
 第2槽では、基板を水平面に対して傾けた状態、及びミストの噴霧方向に直交する面に対して基板を傾けた状態に基板を配置し、5分間ミストを噴霧し続けた。この際に、基板は加熱せず、室温にて噴霧を行った。
 基板に対してミストを噴霧した後、赤外線ランプ加熱装置を用い、150℃、175℃、200℃の各々で基板の加熱を行った。加熱は、各々30Pa程度の低真空にて10分程度行った。
 その後、乾燥したGZO膜の表面にUV(254nm、185nm混合)を照射した。その後続けて、上述と同様に基板を成膜装置の第2槽に配置し、室温下で、5分間ミストを噴霧し続けた。その後、上述と同様に赤外線ランプ加熱装置にて10分間加熱することで、基板を乾燥させた。
 図10は、得られたGZO膜の表面抵抗値及び可視光透過率を示す図である。乾燥温度が150℃、175℃、及び200℃のいずれの場合であっても、可視光領域において80%以上の透過率を示す透明導電膜が得られることが分かった。また、いずれの場合であっても、シート抵抗は20MΩ/sq.以下であった。
 以上により、金属酸化物微粒子にGZO微粒子を用いた場合であっても、好適な金属酸化物膜が得られることが分かった。
 <実施例4>
 まず、GZO微粒子を含むIPA分散液(NanoTek Slurry:シーアイ化成製)を準備した。GZOの粒径及び金属酸化物粒子の濃度は、実施例3と同様である。準備した分散液を上述のミストトラップのない成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第2槽の基板近傍まで搬送した。
 基板に対してミストを噴霧した後、赤外線ランプ加熱装置を用いて200℃の温度下において、30Pa程度の低真空で10分間の加熱乾燥を行った。その後、乾燥したGZO膜の表面にUV(254nm、185nm混合)を照射した。その後続けて、上述と同様に基板を成膜装置の第2槽に配置し、室温下で、5分間ミストを噴霧し続けた。その後、上述と同様に赤外線ランプ加熱装置にて10分間加熱することで、基板を乾燥させた。なお、基板としてソーダライムガラス基板を用いた。
 得られた膜のシート抵抗は10MΩ/sq.であり、可視光領域での透過率は80%以上であった。
 図11は、得られたGZO膜のSEM像である。SEM像の結果から、平坦な膜が形成されていることが分かった。
 図12は、得られたGZO膜のEDXによる分析結果を示す図である。具体的には、得られたGZO膜に対して、エネルギー分散型X線分析(Energy dispersive X-ray spectrometry:EDX)によるラインスキャンを行った。本図により、Zn及びOについて顕著なピークが見られ、得られた膜がZnOで形成されていることが分かった。
 <実施例5>
 実施例3と同様に、GZO微粒子を含む水分散液(NanoTek Slurry:シーアイ化成製)を準備した。準備した分散液を上述のミストトラップのない成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第2槽の基板近傍まで搬送した。
 第2槽では、基板を水平面に対して傾けた状態、及びミストの噴霧方向に直交する面に対して基板を傾けた状態に基板を配置し、5分間ミストを噴霧し続けた。この際に、一方の基板は60℃に加熱して噴霧を行い、他の基板は80℃に加熱して噴霧を行った。なお、基板としてソーダライムガラス基板を用いた。
 その後、赤外線ランプ加熱装置を用いて200℃の温度下で基板を加熱した。加熱は30Pa程度の低真空で10分間実施した。続けて、GZO膜の表面にUV(254nm、185nm混合)を照射した後、上述と同様に基板を成膜装置の第2槽に配置し、同様に基板を加熱しながら5分間ミストを噴霧し続けた。その後、上述と同様に赤外線ランプ加熱装置にて10分間加熱することで、基板を乾燥させた。
 図13は、得られたGZO膜のSEM像である。SEM像を用いて表面形態を観察すると、加熱した基板に形成されたGZO膜については、表面の平滑性が失われていることが確認された。
 図14は、成膜時の基板温度と表面抵抗の関係を示す図である。成膜時の加熱温度が上昇するにつれて、表面抵抗値が著しく上昇している。なお、成膜時の加熱温度が80℃である場合には、表面抵抗値は検出限界を超えているため計測不可能であった。
 <実施例6>
 スピンコーターを用いて、基板上に均一にレジストを塗布し、i線による露光を行い、ライン&スペースが100μmであるパターンを形成した。その後、ディップコーターを用いて撥水剤として3MTMNоvecTMEGC-1720(住友スリーエム株式会社製)を基板に塗布し、レジスト液を剥離することで所望の撥水パターンが形成された基板を得た。なお、基板としてPET基板を用いた。
 次に、実施例1と同様に、ITO微粒子を含む水分散液を、ミストトラップを有しない上述の成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第2槽の基板近傍まで搬送した。
 第2槽では、基板を水平面に対して傾けた状態、及びミストの噴霧方向に直交する面に対して基板を傾けた状態に基板を配置し、5分間ミストを噴霧し続けた。この際、基板は加熱処理を行わず、室温にてミストを噴霧した。
 その後、赤外線ランプ加熱装置を用いて150℃の温度下で基板を加熱した。加熱は30Pa程度の低真空で10分間実施した。続けて、基板上に生成された膜表面にUV(254nm、185nm混合)を照射した後、上述と同様に基板を成膜装置の第2槽に配置し、5分間ミストを噴霧し続けた。その後、上述と同様に赤外線ランプ加熱装置にて10分間加熱することで、基板を乾燥させた。
 図15は、撥水パターニング基板上におけるITO膜のSEM像である。ITO膜は撥水部分を避けるように親水部分に形成された。
 以上により、ITO微粒子を含む分散液をミスト化して噴霧することにより金属酸化物膜を形成する場合に、撥水パターンを用いることにより、意図したパターンの金属酸化物膜を選択的に形成することができた。
 <実施例7>
 スピンコーターを用いて、基板上に均一にレジストを塗布し、i線による露光を行い、ライン&スペースが100μmであるパターンを形成した。その後、ディップコーターを用いて撥水剤として3MTMNоvecTMEGC-1720(住友スリーエム株式会社製)を基板に塗布し、レジスト液を剥離することで所望の撥水パターンが形成された基板を得た。なお、基板としてPET基板を用いた。
 次に、実施例3と同様に、GZO微粒子を含む水分散液を準備し、ミストトラップのない成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第2槽の基板近傍まで搬送した。第2槽では、基板を水平面に対して傾けた状態、及びミストの噴霧方向に直交する面に対して基板を傾けた状態に基板を配置し、5分間ミストを噴霧し続けた。この際に、基板は加熱せず、室温にて噴霧を行った。
 その後、赤外線ランプ加熱装置を用いて150℃の温度下で基板を加熱した。加熱は30Pa程度の低真空で10分間実施した。続けて、基板上に生成された膜表面にUV(254nm、185nm混合)を照射した後、上述と同様に基板を成膜装置の第2槽に配置し、5分間ミストを噴霧し続けた。その後、上述と同様に赤外線ランプ加熱装置にて10分間加熱することで、基板を乾燥させた。
 図16は、撥水パターニング基板上におけるGZO膜のSEM像である。撥水コーティングによる撥水部分と撥水部分以外の親水部分で状態が異なることが確認できた。
 <比較例2>
 スピンコーターを用いて、基板上に均一にレジストを塗布し、i線による露光を行い、ライン&スペースが100μmであるパターンを形成した。その後、ディップコーターを用いて撥水剤として3MTMNоvecTMEGC-1720(住友スリーエム株式会社製)を基板に塗布し、レジスト液を剥離することで所望の撥水パターンが形成された基板を得た。なお、基板としてPET基板を用いた。
 実施例1と同様に、ITO微粒子を含む水分散液(NanoTek Slurry:シーアイ化成製)を準備し、ミストトラップのない上述の成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第2槽の基板近傍まで搬送した。
 第2槽では、60℃に加熱した基板と、80℃に加熱した基板とを設置し、各々に対して5分間ミストを噴霧し続けた。この際に、基板を水平面に対して傾けた状態、及びミストの噴霧方向に直交する面に対して基板を45度傾けた状態にそれぞれの基板を配置して噴霧を行った。その後、赤外線ランプ加熱装置を用いて150℃の温度下で基板を加熱した。加熱は30Pa程度の低真空で10分間実施した。
 図17は、60℃に加熱した基板のSEM図である。金属酸化物微粒子を含む分散液の、加熱した基板上での蒸発速度は極めて早いため、撥水部分に付着した分散液が撥水されずに蒸発したものと思われる。そのため、撥水部分においても微量の金属酸化物膜の成膜が確認できた。
 図18は、80℃に加熱した基板のSEM図である。親水部分と撥水部分の区別なく、全体的に金属酸化物膜が成膜されていることが確認できた。結果として、ライン上のパターニングは得られなかった。
 <比較例3>
 スピンコーターを用いて、基板上に均一にレジストを塗布し、i線による露光を行い、ライン&スペースが100μmであるパターンを形成した。その後、ディップコーターを用いて撥水剤として3MTMNоvecTMEGC-1720(住友スリーエム株式会社製)を基板に塗布し、レジスト液を剥離することで所望の撥水パターンが形成された基板を得た。なお、基板としてPET基板を用いた。
 実施例1と同様に、ITO微粒子を含む水分散液(NanoTek Slurry:シーアイ化成製)を準備し、ミストトラップのある上述の成膜装置の第1槽に入れ、超音波振動子(本多電子製)により2.4MHzの電圧を印加してミストを発生させた。第1槽に空気を流し込むことにより、得られたミストを第3槽の基板近傍まで搬送した。
 第3槽では、基板を水平面に対して平行に、かつミストの噴霧方向に直交する面に対して平行するように配置し、5分間ミストを噴霧し続けた。この際に、基板は加熱せず、室温にて噴霧を行った。
 その後、赤外線ランプ加熱装置を用いて200℃の温度下で基板を加熱した。加熱は30Pa程度の低真空で10分間実施した。続けて、基板上に生成された膜表面にUV(254nm、185nm混合)を照射した後、上述と同様に基板を成膜装置の第3槽に配置した。なお、基板は水平面に対して平行に、かつミストの噴霧方向に直交する面に対して平行するように配置した。基板に対して5分間ミストを噴霧し続けた後、上述と同様に赤外線ランプ加熱装置にて10分間加熱することで、基板を乾燥させた。
 図19は、得られたITO膜のSEM像である。親水部分及び撥水部分の区別はほぼなく、基板全体に対して金属酸化物膜が成膜された。撥水部分に付着した金属酸化物微粒子を含む分散液が、撥水されずに蒸発したためと考えられる。結果として、実施例6で見られるようなライン上のパターニングは得られなかった。
 <実施例2>及び<比較例1>の結果を考察する。スピンコートにより基板に金属酸化物微粒子を含む分散液を塗布した場合に比べ、ミストを用いた成膜装置により成膜を行った場合の方が、可視光透過率が高く、シート抵抗が低いことが分かった。また、成膜時の基板の温度が40℃以下である場合に、シート抵抗が低く好適な金属酸化物膜が得られることが分かった。
 また、<実施例1>、<実施例3>、及び<実施例4>の結果を考察するに、金属酸化物微粒子がITO、GZOいずれの場合であっても好適な金属酸化物膜が得られた。また、分散媒も水、IPAいずれであっても好適な金属酸化物膜を得ることができた。
 <実施例6>、<比較例2>及び<比較例3>の結果を考察する。撥水膜の形成によって、ミストによる成膜装置を用いて好適にパターニングされた金属酸化物膜を得ることができた。その際に、基板を60℃以上に加熱すると、基板全体に金属酸化物膜が形成され、パターニングを形成させることが困難になる。また、成膜時に基板を水平面に対して傾けるとともに、噴霧方向に直交する面に対して傾けて配置することで、好適にパターニングされた金属酸化物膜が得られることが分かった。
2:金属酸化物膜、3:撥水膜、4:絶縁膜、5:原料溶液、10:基板、11:レジスト、21:超音波振動子、22:エアー

Claims (13)

  1.  微粒子を含む分散液をミスト化するミスト化工程と、
     ミスト化された前記分散液を基板に供給する供給工程と、
     前記基板上に供給された前記分散液を乾燥させる乾燥工程と、
     を有することを特徴とする薄膜の製造方法。
  2.  請求項1に記載の薄膜の製造方法であって、
     前記ミスト化された分散液に含まれる微粒子の粒径が100nm以下であることを特徴とする薄膜の製造方法。
  3.  請求項1又は2に記載の薄膜の製造方法であって、
     前記基板は、樹脂を含み、可撓性を有することを特徴とする薄膜の製造方法。
  4.  請求項1から3のいずれか一項に記載の薄膜の製造方法であって、
     前記乾燥工程は、前記基板の軟化点より低い温度下で行われることを特徴とする薄膜の製造方法。
  5.  請求項4に記載の薄膜の製造方法であって、
     前記乾燥工程は、10℃以上40℃以下の温度下で行われることを特徴とする薄膜の製造方法。
  6.  請求項1から5のいずれか一項に記載の薄膜の製造方法であって、
     前記基板上に、親水部と撥水部からなるパターンを形成する親撥水パターン形成工程を備え、
     前記親撥水パターン形成工程により前記親撥水パターンが形成された基板に対して前記供給工程を行うことを特徴とする薄膜の製造方法。
  7.  請求項1から6のいずれか一項に記載の薄膜の製造方法であって、
     前記乾燥工程の後に前記基板に対して紫外線を照射する紫外線照射工程を備え、
     前記紫外線照射工程により紫外線が照射された前記基板に対して再度前記供給工程を行うことを特徴とする薄膜の製造方法。
  8.  請求項7に記載の薄膜の製造方法であって、
     前記供給工程において、前記紫外線照射工程前に供給される前記ミストに含まれる前記微粒子と、前記紫外線照射工程後に供給される前記ミストに含まれる前記微粒子とは異なることを特徴とする薄膜の製造方法。
  9.  請求項7又は8に記載の薄膜の製造方法であって、
     前記紫外線照射工程で照射する紫外線は、少なくとも200nm以下の波長を含むことを特徴とする薄膜の製造方法。
  10.  請求項1から9のいずれか一項に記載の薄膜の製造方法であって、
     前記供給工程において、前記基板が水平面に対して傾斜していることを特徴とする薄膜の製造方法。
  11.  請求項1から10のいずれか一項に記載の薄膜の製造方法であって、
     前記供給工程において、前記基板が前記供給の方向に直交する面に対して傾斜していることを特徴とする薄膜の製造方法。
  12.  請求項1から11のいずれか一項に記載の薄膜の製造方法であって、
     前記微粒子は、インジウム、亜鉛、錫、及びチタンのいずれかを含む金属酸化物微粒子であることを特徴とする薄膜の製造方法。
  13.  請求項12に記載の薄膜の製造方法により製造された透明導電膜。
PCT/JP2014/078064 2013-10-30 2014-10-22 薄膜の製造方法、透明導電膜 WO2015064438A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480052051.7A CN105555424A (zh) 2013-10-30 2014-10-22 薄膜的制造方法、透明导电膜
JP2015544942A JP6428636B2 (ja) 2013-10-30 2014-10-22 薄膜の製造方法
US15/097,956 US10328453B2 (en) 2013-10-30 2016-04-13 Thin film production method and transparent conductive film
US16/407,344 US10702887B2 (en) 2013-10-30 2019-05-09 Thin film forming apparatus and transparent conductive film
US16/890,266 US20200290082A1 (en) 2013-10-30 2020-06-02 Thin film forming apparatus and transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-225549 2013-10-30
JP2013225549 2013-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/097,956 Continuation US10328453B2 (en) 2013-10-30 2016-04-13 Thin film production method and transparent conductive film

Publications (1)

Publication Number Publication Date
WO2015064438A1 true WO2015064438A1 (ja) 2015-05-07

Family

ID=53004046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078064 WO2015064438A1 (ja) 2013-10-30 2014-10-22 薄膜の製造方法、透明導電膜

Country Status (4)

Country Link
US (3) US10328453B2 (ja)
JP (1) JP6428636B2 (ja)
CN (2) CN105555424A (ja)
WO (1) WO2015064438A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138708A1 (ja) * 2018-01-15 2019-07-18 国立大学法人東北大学 Ito粒子、分散液及びito膜の製造方法
WO2019138707A1 (ja) * 2018-01-15 2019-07-18 国立大学法人東北大学 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法
WO2019234917A1 (ja) * 2018-06-08 2019-12-12 東芝三菱電機産業システム株式会社 成膜装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109414718A (zh) * 2016-07-11 2019-03-01 东芝三菱电机产业系统株式会社 雾滴涂布成膜装置及雾滴涂布成膜方法
CN110406140B (zh) * 2019-08-07 2021-08-03 电子科技大学 基于液膜破裂自组装的柔性电致变色图形化薄膜的制备方法和薄膜
JP2023012690A (ja) * 2021-07-14 2023-01-26 トヨタ自動車株式会社 電極の製造方法および電極製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259494A (ja) * 2000-03-17 2001-09-25 Matsushita Battery Industrial Co Ltd 薄膜形成方法
JP2004223378A (ja) * 2003-01-22 2004-08-12 Shimada Phys & Chem Ind Co Ltd 液滴噴射装置
JP2007238393A (ja) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd 金属酸化物膜の製造方法、および、金属酸化物膜の製造装置
WO2011126039A1 (ja) * 2010-04-08 2011-10-13 富士フイルム株式会社 薄膜の作製方法及び作製装置
JP2011224503A (ja) * 2010-04-22 2011-11-10 Fujifilm Corp 薄膜の作製方法及び作製装置
JP2013129868A (ja) * 2011-12-20 2013-07-04 Sharp Corp 成膜装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321822A (en) * 1980-06-05 1982-03-30 The Regents Of The University Of Minnesota Impactor apparatus
US5916640A (en) * 1996-09-06 1999-06-29 Msp Corporation Method and apparatus for controlled particle deposition on surfaces
US6358567B2 (en) * 1998-12-23 2002-03-19 The Regents Of The University Of California Colloidal spray method for low cost thin coating deposition
JP3997731B2 (ja) * 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP4068883B2 (ja) 2002-04-22 2008-03-26 セイコーエプソン株式会社 導電膜配線の形成方法、膜構造体の製造方法、電気光学装置の製造方法、及び電子機器の製造方法
WO2005082491A1 (en) * 2004-02-25 2005-09-09 Energy Related Devices, Inc. Photocatalysts, electrets, and hydrophobic surfaces used to filter, clean, disinfect and deodorize
US8253137B2 (en) * 2007-07-18 2012-08-28 Ricoh Company, Ltd. Laminate structure, electronic device, and display device
US7618687B2 (en) * 2007-10-17 2009-11-17 Ppg Industries Ohio, Inc. Method for coating substrates
WO2010028017A2 (en) * 2008-09-02 2010-03-11 Drexel University Metal or metal oxide deposited fibrous materials
JP5614558B2 (ja) 2010-06-01 2014-10-29 東芝三菱電機産業システム株式会社 金属酸化膜の成膜装置、金属酸化膜の成膜方法
KR101266620B1 (ko) * 2010-08-20 2013-05-22 다이닛뽕스크린 세이조오 가부시키가이샤 기판처리방법 및 기판처리장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259494A (ja) * 2000-03-17 2001-09-25 Matsushita Battery Industrial Co Ltd 薄膜形成方法
JP2004223378A (ja) * 2003-01-22 2004-08-12 Shimada Phys & Chem Ind Co Ltd 液滴噴射装置
JP2007238393A (ja) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd 金属酸化物膜の製造方法、および、金属酸化物膜の製造装置
WO2011126039A1 (ja) * 2010-04-08 2011-10-13 富士フイルム株式会社 薄膜の作製方法及び作製装置
JP2011224503A (ja) * 2010-04-22 2011-11-10 Fujifilm Corp 薄膜の作製方法及び作製装置
JP2013129868A (ja) * 2011-12-20 2013-07-04 Sharp Corp 成膜装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019138708A1 (ja) * 2018-01-15 2021-01-07 国立大学法人東北大学 Ito粒子、分散液及びito膜の製造方法
KR20200098645A (ko) * 2018-01-15 2020-08-20 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Ito 입자, 분산액 및 ito 막의 제조 방법
WO2019138708A1 (ja) * 2018-01-15 2019-07-18 国立大学法人東北大学 Ito粒子、分散液及びito膜の製造方法
KR20200098644A (ko) * 2018-01-15 2020-08-20 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Ito 입자, 분산액, ito 입자의 제조 방법, 분산액의 제조 방법 및 ito 막의 제조 방법
US11952508B2 (en) 2018-01-15 2024-04-09 Tohoku University ITO particles, dispersion, production method of ITO particles, production method of dispersion, and production method of ITO film
CN111601774A (zh) * 2018-01-15 2020-08-28 国立大学法人东北大学 Ito颗粒、分散液和ito膜的制造方法
CN111601773A (zh) * 2018-01-15 2020-08-28 国立大学法人东北大学 Ito颗粒、分散液、ito颗粒的制造方法、分散液的制造方法和ito膜的制造方法
JP7455166B2 (ja) 2018-01-15 2024-03-25 国立大学法人東北大学 Ito粒子、分散液及びito膜の製造方法
KR102571299B1 (ko) * 2018-01-15 2023-08-25 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Ito 입자, 분산액 및 ito 막의 제조 방법
WO2019138707A1 (ja) * 2018-01-15 2019-07-18 国立大学法人東北大学 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法
JPWO2019138707A1 (ja) * 2018-01-15 2021-01-07 国立大学法人東北大学 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法
JP7089537B2 (ja) 2018-01-15 2022-06-22 国立大学法人東北大学 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法
KR102461412B1 (ko) * 2018-01-15 2022-10-31 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Ito 입자, 분산액, ito 입자의 제조 방법, 분산액의 제조 방법 및 ito 막의 제조 방법
US11692104B2 (en) 2018-01-15 2023-07-04 Tohoku University ITO particles, dispersion, and production method of ITO film
WO2019234917A1 (ja) * 2018-06-08 2019-12-12 東芝三菱電機産業システム株式会社 成膜装置
JP7039151B2 (ja) 2018-06-08 2022-03-22 東芝三菱電機産業システム株式会社 成膜装置
JPWO2019234917A1 (ja) * 2018-06-08 2021-04-22 東芝三菱電機産業システム株式会社 成膜装置

Also Published As

Publication number Publication date
JPWO2015064438A1 (ja) 2017-03-09
JP6428636B2 (ja) 2018-11-28
US20200290082A1 (en) 2020-09-17
US20160221031A1 (en) 2016-08-04
CN110085370A (zh) 2019-08-02
CN110085370B (zh) 2021-12-10
US10328453B2 (en) 2019-06-25
CN105555424A (zh) 2016-05-04
US10702887B2 (en) 2020-07-07
US20190262858A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6428636B2 (ja) 薄膜の製造方法
US20150027755A1 (en) Transparent conductive film, substrate carrying transparent conductive film, and production method thereof
US20120295071A1 (en) Conductive laminated body and touch panel using the same
WO2013176155A1 (ja) パターニングされた導電基材の製造方法、これによってパターニングされた導電基材およびタッチパネル
CN104681126A (zh) 透明电极层积体
JP2010153381A (ja) 有機発光表示装置及びその製造方法
WO2017176498A1 (en) Nanowire contact pads with enhanced adhesion to metal interconnects
CN104103336B (zh) 制造图案化的透明导体的方法
CN109741881B (zh) 一种石墨烯柔性电极及其制备方法
Fox et al. Uniform deposition of silver nanowires and graphene oxide by superhydrophilicity for transparent conductive films
Ding et al. Laser-induced backward transfer of conducting aluminum doped zinc oxide to glass for single-step rapid patterning
KR100801670B1 (ko) 잉크젯 프린팅법에 의한 나노소재의 미세 전극 패턴 제조방법
KR101321097B1 (ko) 탄소나노튜브 투명전극, 이의 제조 방법, 및 탄소나노튜브 투명전극용 코팅용액
EP3300468A1 (en) Method of manufacturing circuit board
RU2577174C1 (ru) Покрытие для фотовольтаической ячейки и способ его изготовления
JP2016018712A (ja) 導電膜、及び導電膜形成方法
US20120261172A1 (en) Structure and pattern forming method of transparent conductive circuit
TW201325335A (zh) 經圖案化基材上之導電網路
CN112363640A (zh) 触控感测模组与形成其之方法
TW201442950A (zh) 膜形成方法、導電膜、及絕緣膜
CN110121921A (zh) 用于制备导电图案的方法以及包含导电图案的制品
CN103052996B (zh) 透明导电膜的制造方法及由此制造出的透明导电膜
KR101551651B1 (ko) 나노 요철 구조가 형성된 기판의 제조방법
JP2016018715A (ja) 透明導電膜構造、及び透明導電膜構造の形成方法
JP5835633B1 (ja) 導電性基材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052051.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858526

Country of ref document: EP

Kind code of ref document: A1