WO2019138707A1 - Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法 - Google Patents

Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法 Download PDF

Info

Publication number
WO2019138707A1
WO2019138707A1 PCT/JP2018/043511 JP2018043511W WO2019138707A1 WO 2019138707 A1 WO2019138707 A1 WO 2019138707A1 JP 2018043511 W JP2018043511 W JP 2018043511W WO 2019138707 A1 WO2019138707 A1 WO 2019138707A1
Authority
WO
WIPO (PCT)
Prior art keywords
ito particles
ito
dispersion
salt
particles
Prior art date
Application number
PCT/JP2018/043511
Other languages
English (en)
French (fr)
Inventor
淳司 村松
澄志 蟹江
涼子 鈴木
Original Assignee
国立大学法人東北大学
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 株式会社ニコン filed Critical 国立大学法人東北大学
Priority to JP2019564327A priority Critical patent/JP7089537B2/ja
Priority to KR1020207020498A priority patent/KR102461412B1/ko
Priority to EP18899507.0A priority patent/EP3741727A4/en
Priority to CN201880086439.7A priority patent/CN111601773A/zh
Publication of WO2019138707A1 publication Critical patent/WO2019138707A1/ja
Priority to US16/928,833 priority patent/US11952508B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/39Particle morphology extending in three dimensions parallelepiped-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to ITO particles, a dispersion obtained by dispersing the same, a method of producing ITO particles, a method of producing a dispersion, and a method of producing an ITO film.
  • the present invention claims priority of Japanese Patent Application Nos. 2018-004224 filed on January 15, 2018 and Japanese Patent Application Nos. 2018-119414 filed on June 25, 2018, With respect to designated countries that are permitted to be incorporated by reference, the contents described in that application are incorporated into the present application by reference.
  • ITO indium tin oxide particles
  • an indium source and a tin source are added to a solution obtained by dissolving a hydroxide of a quaternary ammonium ion in a reducing organic solvent, and then reacted.
  • ITO particles obtained by heating in an autoclave and ripening under autogenous pressure are disclosed.
  • Patent No. 5706797 gazette
  • the first aspect of the present invention is an ITO particle having a non-rectangular shape and having the same crystal orientation inside the particle.
  • a second aspect of the present invention is a dispersion comprising the above-described ITO particles dispersed in a solvent.
  • the third aspect of the present invention is directed to a solution containing 190 to 200 in a solution containing 0.09 to 0.9 M of In salt, 0.01 to 0.2 M of Sn salt, a basic compound, and a solvent. C. for 12 hours to 120 hours to obtain ITO particles, and washing the ITO particles.
  • a fourth aspect of the present invention relates to a solution containing 0.09 to 0.9 M In salt, 0.01 to 0.2 M Sn salt, a basic compound, and a first solvent,
  • a dispersion comprising a reaction step of reacting at 190 to 200 ° C. for 12 hours to 120 hours to obtain ITO particles, a step of washing the ITO particles, and a step of dispersing the washed ITO particles in a second solvent It is a manufacturing method.
  • a mist forming step of forming the dispersion liquid into a mist a contact step of bringing the misted dispersion into contact with the substrate, and a dispersion liquid present on the substrate after the contact step.
  • a drying step of drying the ITO film a drying step of drying the ITO film.
  • a sixth aspect of the present invention relates to a method comprising: 180 to 260 in a solution containing 0.09 to 0.9 M In salt, 0.01 to 0.2 M Sn salt, a basic compound, and a solvent C. for 12 hours to 120 hours to obtain ITO particles, and washing the ITO particles.
  • a seventh aspect of the present invention relates to a solution containing 0.09 to 0.9 M In salt, 0.01 to 0.2 M Sn salt, a basic compound, and a first solvent, A dispersion comprising a reaction step of obtaining ITO particles by reacting at 180 to 260 ° C. for 12 hours to 120 hours, a step of washing the ITO particles, and a step of dispersing the washed ITO particles in a second solvent. Manufacturing method.
  • FIG. 1 is a transmission electron microscope (TEM) photograph of Example 1.
  • FIG. It is the graph which plotted the measurement result of the zeta potential of Example 1 and the reference example 1.
  • FIG. 1 is a transmission electron microscope (TEM) photograph of Example 1.
  • FIG. It is the graph which plotted the measurement result of the zeta potential of Example 1 and the reference example 1.
  • the ITO particles according to this embodiment are ITO particles having a non-rectangular shape and having the same crystal orientation inside the particles.
  • the ITO particles according to the present embodiment can be uniformly made into fine particles and have high dispersibility, and can also meet the requirements as materials such as various transparent electrodes having low resistance, high transmittance, and low turbidity (haze). .
  • ITO particles are synthesized by a gel-sol method or the like, and the particle shape is a substantially rectangular parallelepiped shape. Since nucleation and growth reactions occur in the gel network in the gel-sol method, ITO particles prepared by the gel-sol method have a rectangular parallelepiped shape reflecting the crystal phase and have high crystallinity. ing.
  • the inventors further studied and focused on the macro state in the case of the ITO particles having the above-described rectangular parallelepiped shape. Then, if the idea can be largely converted into a non-rectangular shape having many convex portions on the surface instead of a substantially rectangular solid shape, the maximum contact area becomes small while maintaining high crystallinity, and as a result, the dispersion liquid It was thought that when it was set, it showed good dispersibility in the liquid. Based on this idea, the ITO particles according to the present embodiment were developed (however, the effects according to the present embodiment are not limited thereto).
  • non-rectangular shape means that there are seven or more faces that constitute particles.
  • six substantially rectangular parallelepiped shapes, approximately cubic shapes, three-dimensional shapes having five or less faces, spherical shapes, and the like are not included in the “non-rectangular shape” herein. That is, the non-rectangular shape of the ITO particles does not affect the rectangular solid (the shape having eight convex portions).
  • “having the same crystal orientation” means that a spot pattern is confirmed in an electron beam diffraction image of one whole particle.
  • the average particle size of the ITO particles is not particularly limited, but is preferably 3 to 50 nm, and more preferably 5 to 40 nm. When the average particle size is in this range, the dispersibility of the ITO particles can be further improved.
  • the average particle size can be controlled by adjusting the type of solvent to be described later and the reaction temperature.
  • the BET specific surface area of the ITO particles is not particularly limited, but is preferably 25 to 49 cm 2 / g.
  • the "BET specific surface area" is measured by BET gas adsorption measurement. From the viewpoint of dispersibility when used as a dispersion liquid, it is preferable that the ITO particles satisfy the range of the average particle diameter described above and the range of the BET specific surface area. The particles satisfying this have a surface area sufficient to develop higher dispersibility.
  • the molar ratio (Sn / In) of the content of Sn to the content of In is preferably 3.5 to 24 from the viewpoint of crystal synthesis and conductivity.
  • the concentration of In salt in the reaction solution is 0.09 to 0.9 M, preferably 0.09 to 0.45 M.
  • concentration of the Sn salt in the reaction solution is 0.01 to 0.2 M, preferably 0.01 to 0.05 M.
  • the concentration of the In salt is preferably 4.5 to 9 times, and more preferably 5 to 9 times the concentration of the Sn salt on a molar basis.
  • the In salt is not particularly limited, and those known as a raw material of ITO can be used.
  • at least one selected from the group consisting of metal salts such as InCl 3 , In 2 (C 2 O 4 ) 3 , In (NO 3 ) 3 , In 2 (SO 4 ) 3 and their hydrates
  • metal salts such as InCl 3 , In 2 (C 2 O 4 ) 3 , In (NO 3 ) 3 , In 2 (SO 4 ) 3 and their hydrates
  • anhydrous salts and metal salts are preferable, metal salts are more preferable, and InCl 3 is more preferable.
  • the Sn salt is not particularly limited, and those known as a raw material of ITO can be used.
  • metal salts such as SnCl 2 , SnCl 4 , Sn 2 (C 2 O 4 ) 3 , Sn (NO 3 ) 2 , SnSO 4 , InCl 3 , In 2 (C 2 O 4 ) 3 , In (NO 3 ) 3 , In 2 (SO 4 ) 3 and at least one selected from the group consisting of hydrates thereof.
  • anhydrous salts and metal salts are preferable, metal salts are more preferable, and SnCl 2 and SnCl 4 are further preferable.
  • the basic compound is not particularly limited as long as it can neutralize the reaction solution and precipitate In-Sn precipitated hydroxide (neutralization coprecipitation).
  • Known basic compounds can be used as the basic compound, and tetramethylammonium hydroxide (TMAH), sodium hydroxide and the like can be mentioned.
  • the concentration of the basic compound in the reaction solution is not particularly limited, but is preferably 1 to 2 M and more preferably 1.5 to 1.7 M from the viewpoint of particle synthesis.
  • a 1st solvent In salt, Sn salt, a basic compound, and the other additive used as needed should just melt
  • the first solvent known ones can be used.
  • water; alcohols such as methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol and the like are preferable.
  • the reaction time in the reaction step is preferably 12 hours to 120 hours, and more preferably 24 hours to 72 hours.
  • the reaction temperature in the reaction step is preferably 180 to 260 ° C., and more preferably 190 to 200 ° C.
  • the reaction step may be carried out in an open system, but it is preferable to use an autoclave. This can promote the formation of the coprecipitate of indium hydroxide-tin hydroxide formed in the reaction system.
  • the reaction temperature the reaction time, etc. It is thought that there is The shape control of monodispersed particles can be controlled by the number of generated nuclei in the system and the amount of substance present there, but in order to form a convex, the formed nuclei are not grown but in the gel network. It is thought that it is necessary to cause heterogeneous nucleation further from above while holding it. Therefore, it is considered preferable to increase the concentration of the metal source and to reduce the amount of base relative to the metal source.
  • the concentration of the metal oxide precursor capable of nucleation can be maintained for a long time. It is considered that the ITO particles according to the present embodiment can be synthesized by taking a combination of the conditions described above. (However, the effects according to the present embodiment are not limited to these.).
  • the concentration of the metal source it is preferable to increase the concentration of the metal source to make the base concentration relatively less than the metal source.
  • the centrifugation step it is preferable to carry out the centrifugation step between (1) the reaction step and (2) the washing step.
  • the centrifugation step is preferably carried out at 14000 rpm for 10 minutes.
  • washing is preferably performed using water, an alcohol such as ethanol, or the like.
  • water it is preferable to use distilled water or pure water such as ion exchanged water (IEW).
  • IEW ion exchanged water
  • the lyophilization process and the reduction baking process are conventionally performed after the reaction process, it is not necessary to perform this in the manufacturing method which concerns on this embodiment. In particular, it is preferable not to carry out the firing step after the step (2). Thereby, aggregation of ITO particles can be prevented, and a monodispersed state in the dispersion medium can be maintained.
  • the ITO particles according to this embodiment can be made into a dispersion liquid by dispersing it in the second solvent.
  • the second solvent is not particularly limited, and water; alcohols such as methanol, ethanol, isopropyl alcohol, ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol and the like, mixed solvents thereof and the like can be mentioned. Among these, water and alcohols are preferable, and water is more preferable. That is, the dispersion liquid which concerns on this embodiment can be used suitably as a water dispersion liquid.
  • the dispersion may contain other additives and the like as required.
  • the dispersion liquid according to the present embodiment can be a dispersion substantially free of surfactant, that is, a surfactant-free dispersion.
  • the surfactant herein refers to one having a function of adsorbing to the particle surface and enabling the particles to be dispersed in a dispersion medium, and specific examples thereof include anionic surfactants, cationic surfactants, and non-ionic surfactants. An ionic surfactant is mentioned.
  • the ratio (volume ratio) of the ITO particles to the solvent is not particularly limited, but is preferably 40% or less. By setting this range, monodispersion can be stably performed over a long period.
  • a method of producing the dispersion liquid a method of dispersing the ITO particles according to the present embodiment in a second solvent may be mentioned.
  • the dispersion As a method of producing the dispersion, (1) in a solution containing 0.09 to 0.9 M In salt, 0.01 to 0.2 M Sn salt, a basic compound, and a first solvent The reaction is carried out at 180 to 260 ° C. for 12 to 120 hours to obtain ITO particles, (2) washing the ITO particles, and (3) dispersing the washed ITO particles in a second solvent.
  • a process comprising the steps of
  • the steps (1) and (2) can be carried out in the same manner as the steps (1) and (2) described above as the method for producing ITO particles.
  • the reaction temperature in the step (1) is preferably 180 to 260 ° C., and more preferably 190 to 200 ° C.
  • a 1st solvent a well-known thing can be used, For example, it is preferable that alcohols; alcohol, such as water; methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, etc. are included.
  • the concentration of In salt in the solution is preferably 4.5 to 9 times the concentration of Sn salt.
  • the dispersing step is carried out by adding water to the ITO particles immediately after washing and uniformly mixing the particles and the dispersion medium.
  • the dispersion method is not particularly limited, and a stirring method using a stirrer or the like, an ultrasonic dispersion method using an ultrasonic bath or the like can be used, and these may be used in combination. Among these, it is preferable to use an ultrasonic bath.
  • the dispersion liquid which concerns on this embodiment can produce an ITO film using this.
  • a mist forming step of forming a mist of the dispersion according to the present embodiment (ii) a contacting step of bringing the misted dispersion into contact with the substrate, and (iii) after the contact step, It is preferable that it is a manufacturing method including the drying process which dries the dispersion liquid which exists on a board
  • the ITO film is a material having high conductivity and transparency, and is widely used as a transparent conductive material. Although there is a method such as sputtering method or laser deposition method as one of the manufacturing methods of the ITO film, it is difficult to form a uniform thin film on a flexible substrate by these techniques, and ITO having excellent surface characteristics Can not make full use of their performance. In addition, it is necessary to provide a large-scale equipment configuration in the vapor deposition process and the like, and there is room for improvement in this point as well.
  • the dispersion liquid according to the present embodiment does not have the components to precipitate and has high dispersibility, it is possible to use a simple mist technique when forming the ITO thin film on the substrate.
  • the restriction on the material of the substrate can be relaxed, and film formation is possible also on the flexible type substrate as described above.
  • high crystallinity and monodispersion can be stably maintained even when nano-level ITO particles (ITO nanoparticles) are used, so that the conductivity and transparency as a thin film, etc.
  • the surface properties can also be controlled at a high level.
  • a mist formation process what is necessary is just the method of making a dispersion liquid mist (fog).
  • a mist generation method a known method can be adopted, and for example, a pressure type, a rotary disc type, an ultrasonic type, an electrostatic type, an orifice vibration type, a steam type or the like can be adopted.
  • a method of physically forming a mist is preferable. This facilitates temperature control of the liquid and size control of the droplets.
  • by treating the dispersion as a mist it has high controllability and does not cause a defect such as distortion at the time of thin film formation which a sol-gel method or the like for supplying a liquid has.
  • the carrier gas can be used to carry the mist of the dispersion to the subsequent contact step.
  • the carrier gas for example, an inert gas such as argon, helium or nitrogen can be used.
  • the contact step is not particularly limited as long as it is a method of bringing the mist into contact with the substrate, and a known technique can be employed.
  • a known technique can be employed.
  • the mist method include ultrasonic spray, mist CVD method, sonia source method, hot wall method and the like. These methods can be selected in consideration of the film thickness of the ITO film formed on the substrate, the size of droplets to be sprayed, and the like.
  • any of atmospheric pressure, reduced pressure and vacuum may be used, but from the viewpoint of simplicity, atmospheric pressure is preferable.
  • a fine pattern can be formed by applying the misted dispersion onto the masked substrate.
  • it is suitable for forming a thin film of ITO nanoparticles on a substrate. This enables dimensional control with high accuracy.
  • water is used as the solvent of the dispersion, it is preferable to use a water-repellent masking material (water-repellent film) as the masking material. This enables pattern formation with higher accuracy.
  • thin and highly flexible film substrates (sometimes referred to as sheet substrates) can also be used as the substrate, since material constraints on the substrate are relaxed. Furthermore, continuous production such as roll-to-roll becomes possible.
  • known materials can be used as the substrate.
  • glass polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), polyether imide, polyether ether ketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC) And cellulose acetate propionate (CAP).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PES polyether imide
  • polyether ether ketone polyphenylene sulfide
  • polyarylate polyimide
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • the solvent of the dispersion sprayed on the substrate is removed.
  • the ITO film is formed on the surface of the substrate by vaporizing the solvent by irradiation with light such as infrared rays or heating.
  • the heating temperature can be set in consideration of the boiling point of the solvent, the softening point of the substrate, the influence on the physical properties of the ITO film, and the like.
  • the softening point of the substrate as referred to herein means a temperature at which the substrate softens and causes deformation when the substrate is heated, and can be determined, for example, by a test method according to JIS K7191-1.
  • FIG. 1 is a conceptual view showing an example of the film forming apparatus using the mist method in the present embodiment.
  • the film forming apparatus 1 has a first tank that generates a mist containing fine particles, a second tank that is a mist trap that makes the mist uniform, and a third tank that sprays the mist on the substrate 10.
  • the above-described dispersion is stored as a raw material solution S in the first tank.
  • the particles in the dispersion liquid those described above can be used, but nanoparticulates are preferable.
  • ITO fine particles are used as the particles.
  • the ultrasonic transducer 30 is stored in the first tank.
  • the ultrasonic transducer 30 atomizes the dispersion containing ITO fine particles.
  • the particle size of the mist is not particularly limited, but is preferably 10 ⁇ m or less (eg, 1 to 10 ⁇ m).
  • the mist generated in the first tank is conveyed to the second tank via the pipe provided in the first layer.
  • excess mist accumulates in the lower part of the tank, and the mist having a more uniform particle diameter is conveyed to the third layer via a pipe provided in the second tank. It is preferable that a mist having a particle diameter of 5 ⁇ m or less (for example, 1 to 5 ⁇ m) be conveyed from the second tank to the third tank.
  • the substrate 10 is disposed in the third tank, and the mist transported from the second tank is sprayed onto the substrate.
  • mist is sprayed onto the substrate 10 for a predetermined time.
  • the dispersion medium of the mist attached to the substrate 10 is vaporized to form an ITO film on the surface of the substrate 10.
  • new mist adheres to the substrate 10 before the mist evaporates, whereby the dropletized dispersion liquid flows down and a uniform ITO film is formed on the substrate 10 It will not be done.
  • the time for stopping the mist spraying to the substrate 10 may be when the mist containing the ITO fine particles is liquefied and flows down from the substrate 10, or an ITO film having a desired film thickness is formed on the substrate 10 It may be a point in time.
  • mist is sprayed at a temperature lower than the softening point of the substrate to form an ITO film.
  • the mist is sprayed at a temperature of 40 ° C. or less (eg, 10 ° C. to 40 ° C.) to form an ITO film.
  • mist is attached to the hydrophilic portion by forming a water repellent film selectively on the substrate 10 in advance.
  • the dispersion attached to the water repellent portion is not water repellent, and it is not possible to selectively form a metal oxide film.
  • the mist be sprayed on the substrate 10 that is inclined with respect to the plane orthogonal to the mist spraying direction. This is to remove excess ITO fine particles attached to the water repellent portion by the force of mist spraying.
  • the mist trap in the second tank may be omitted. By doing so, relatively large droplets can be filtered, and even if the hydrophilic / water repellent pattern on the substrate is fine, the ITO film can be formed accurately.
  • an electrostatic type that generates a mist by applying a voltage directly to a capillary that sprays droplets, and a pressure is applied to increase the flow velocity
  • Pressurized type which scatters generated mist by colliding the liquid with liquid, dripping droplets on the disk rotating at high speed, and rotating disc type, micro-sized hole which scatters generated mist by centrifugal force
  • Droplets are allowed to pass through the orifice plate having the above-mentioned structure, and at that time, by vibrating the droplets by applying vibration by a piezoelectric element or the like, it is possible to use an orifice vibration type or the like which generates micro size droplets.
  • these methods are appropriately selected according to cost, performance, and the like.
  • the mist may be generated by combining a plurality of methods.
  • ICP measurement An ICP emission spectrometer ("Optima 3300" manufactured by Perkin-Elmer Corp.) was used as a measurement device.
  • TEM measurement A transmission electron microscope (TEM; “JEM-2100” manufactured by Hitachi, Ltd.) was used as a measurement apparatus, and measurement was performed under a magnification condition of 120 k.
  • a TEM image of the ITO particles was image processed using image processing software "image J 1.51j8". Specifically, the scale of one pixel was processed to correspond to the actual image, and the image was binarized.
  • Example 1 Preparation of ITO Particles and Dispersion
  • the reaction vessel was charged with 7.5 mL of methanol as a solvent and 1.6 M of tetramethylammonium hydroxide (TMAH) as a basic catalyst.
  • TMAH tetramethylammonium hydroxide
  • TMAH tetramethylammonium hydroxide
  • This was added to the above-mentioned TMAH methanol solution, stirred for 10 minutes, and then heated at 190 ° C. for 1 day to allow the reaction to proceed. Thereafter, centrifugation was performed at 14000 rpm for 10 minutes. Subsequently, the particles were washed twice with ethanol and twice with ion-exchanged water to obtain ITO particles. The appearance of the obtained ITO particles was blue.
  • FIG. 2 is a transmission electron microscope (TEM) photograph of Example 1.
  • a dispersion was prepared from the obtained ITO particles. Specifically, 40 mL of pure water (with no surfactant added) was mixed with 1 g of ITO particles. Then, the dispersion liquid was obtained by mixing the particles and pure water in an ultrasonic bath.
  • the zeta potential of the ITO particles of Example 1 was measured as an index for evaluating the dispersibility from the viewpoint of the chemical state of the particles.
  • FIG. 3 is a graph showing the measurement results of zeta potentials of Example 1 and Reference Example 1.
  • the zeta potential of the ITO particles of Example 1 was approximately the same as the zeta potential of the ITO particles of Reference Example 1. From this, it can be said that the chemical states of the particles of Example 1 and Reference Example 1 do not differ significantly. Therefore, it can be said that the ITO particles of Example 1 have excellent dispersibility, although there is no significant difference between the ITO particles of Reference Example 1 and the chemical state of the particle surface.
  • the fact that the ITO particles of Example 1 had a specific shape made it possible to reduce the contact area between the particles in the solution and suppress aggregation, and as a result, it was possible to exhibit excellent dispersibility.
  • Example 2 Based on Example 1, the experiment was performed by changing the concentration of In and Sn. ITO particles and a dispersion thereof were produced in the same manner as in Example 1 except that ITO particles were produced under the conditions shown in Tables 1 and 2, and their physical properties were evaluated.
  • Example 11 to 16 The experiment was performed with the reaction time of the reaction process changed, based on Example 1. ITO particles and a dispersion thereof were produced in the same manner as in Example 1 except that ITO particles were produced under the conditions shown in Table 3.
  • Example 17 The experiment was performed based on Example 1, changing the reaction temperature of the reaction process. ITO particles and a dispersion thereof were produced in the same manner as in Example 1 except that ITO particles were produced under the conditions shown in Table 4. The average particle size of the obtained ITO particles was 33.32 nm.
  • Example 18 to 21 The experiment was performed based on Example 1, changing the Sn doping amount. ITO particles and a dispersion thereof were produced in the same manner as in Example 1 except that ITO particles were produced under the conditions shown in Table 5. The average particle diameter of the ITO particles of Example 19 was 30.72 nm.
  • Examples 22 to 28 The experiment was performed with the reaction time of the reaction process changed, based on Example 1. ITO particles and a dispersion thereof were produced in the same manner as in Example 1 except that ITO particles were produced under the conditions shown in Table 6.
  • Examples 29 to 37 ITO particles and a dispersion thereof were produced in the same manner as in Example 1 except that ITO particles were produced under the conditions shown in Table 7 based on Example 1.
  • TMAH tetramethylammonium hydroxide
  • Comparative Example 1 Synthesis of ITO particles was attempted under the same conditions as in Example 1 except that the conditions were changed such that the In concentration in the reaction solution was 1.8 M and the Sn concentration was 0.2 M. As a result, in the XRD spectrum, the diffraction pattern of indium oxide having the same crystal structure as that of ITO was not confirmed, but the diffraction pattern belonging to indium oxyhydroxide was confirmed. That is, indium oxyhydroxide was produced, and ITO particles could not be synthesized.
  • Comparative Example 4 Synthesis of ITO particles was attempted under the same conditions as in Example 1 except that the reaction temperature was changed to 130 ° C. As a result, in the XRD spectrum, the diffraction pattern of indium oxide having the same crystal structure as that of ITO was not confirmed, but the diffraction pattern belonging to indium oxyhydroxide was confirmed. That is, indium oxyhydroxide was produced, and ITO particles could not be synthesized.
  • Comparative Example 5 Synthesis of ITO particles was attempted under the same conditions as in Example 1 except that the reaction temperature was changed to 100 ° C. As a result, in the XRD spectrum, the diffraction pattern of indium oxide having the same crystal structure as that of ITO was not confirmed, but the diffraction pattern belonging to indium oxyhydroxide was confirmed. That is, indium oxyhydroxide was produced, and ITO particles could not be synthesized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Photovoltaic Devices (AREA)

Abstract

非直方体形状を有し、粒子内部において結晶方位がそろっている、ITO粒子の提供。

Description

ITO粒子、分散液、ITO粒子の製造方法、分散液の製造方法及びITO膜の製造方法
 本発明は、ITO粒子、これを分散してなる分散液、ITO粒子の製造方法、分散液の製造方法及びITO膜の製造方法に関する。本発明は2018年1月15日に出願された日本国特許の出願番号2018-004224及び2018年6月25日に出願された日本国特許の出願番号2018-119414の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。
 ITO(酸化インジウムスズ)粒子について、特許文献1には、第四級アンモニウムイオンの水酸化物が還元性有機溶媒に溶解してなる溶液に、インジウム源及びスズ源を添加し反応を行い、次いでオートクレーブ内において加熱して自生圧力下に熟成を行うことで得られるITO粒子が開示されている。
特許第5706797号公報
 本発明の第一の態様は、非直方体形状を有し、粒子内部において結晶方位がそろっている、ITO粒子である。
 本発明の第二の態様は、上述したITO粒子が溶媒に分散されてなる分散液である。
 本発明の第三の態様は、0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、溶媒と、を含む溶液中で、190~200℃で、12時間~120時間反応させて、ITO粒子を得る反応工程と、ITO粒子を洗浄する工程と、を含むITO粒子の製造方法である。
 本発明の第四の態様は、0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、第1の溶媒と、を含む溶液中で、190~200℃で、12時間~120時間反応させ、ITO粒子を得る反応工程と、ITO粒子を洗浄する工程と、洗浄したITO粒子を第2の溶媒に分散させる工程と、を含む分散液の製造方法である。
 本発明の第五の態様は、上述した分散液をミスト化するミスト化工程と、ミスト化された分散液を、基板に接触させる接触工程と、接触工程後、基板上に存在する分散液を乾燥させる乾燥工程と、を含むITO膜の製造方法である。
 本発明の第六の態様は、0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、溶媒と、を含む溶液中で、180~260℃で、12時間~120時間反応させて、ITO粒子を得る反応工程と、ITO粒子を洗浄する工程と、を含むITO粒子の製造方法である。
 本発明の第七の態様は、0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、第1の溶媒と、を含む溶液中で、180~260℃で、12時間~120時間反応させて、ITO粒子を得る反応工程と、ITO粒子を洗浄する工程と、洗浄したITO粒子を第2の溶媒に分散させる工程と、を含む分散液の製造方法である。
本実施形態におけるミスト法を用いた成膜装置の一例を示す概念図である。 実施例1の透過型電子顕微鏡(TEM)写真である。 実施例1と参考例1のゼータ電位の測定結果をプロットしたグラフである。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。なお、図面中、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
<ITO粒子>
 本実施形態に係るITO粒子は、非直方体形状を有し、粒子内部において結晶方位がそろっている、ITO粒子である。本実施形態に係るITO粒子は、均一な微粒子化、高い分散性が可能であり、低抵抗化、高透過率、低濁度(ヘイズ)といった各種透明電極等の材料としての要求にも応え得る。
 従来のITO粒子は、ゲル-ゾル法等で合成されており、その粒子形状は略直方体形状である。ゲル-ゾル法ではゲルネットワーク内で核生成・成長反応が起こることから、ゲル-ゾル法で作製されたITO粒子は、その結晶相を反映した直方体の形状をしており高い結晶性を有している。
 従来の略直方体形状を有するITO粒子を用いてITO膜を製造する場合、ITO粒子の面同士が接触する配列をとれば、理論上は膜の充填率が100%となる。よって、ITO粒子については直方体形状の単結晶構造に近づけることが好ましいと考えられていた。しかし、発明者らが鋭意研究した結果、実際にはそのようなことは起こらず、ランダムに粒子が充填されて粒子同士は点あるいは線での接触状態をとっていることがわかった。このような配列になると透明導電膜として用いる場合には導電パスが少なくなり、抵抗値が大きくなってしまう。また、分散性が低いと凝集粒子により充填率の低下や膜の平滑性が失われる。本発明者らは、かかる点で従来のITO粒子は改善の余地があると考えた。
 本発明者らは、さらに検討を進めて、上述した直方体形状を有するITO粒子の場合のマクロな状態にも着目した。そして、発想を大きく転換し、略直方体形状ではなく、多くの凸部を表面に有する非直方体形状とすることができれば、高結晶性を維持したまま最大接触面積が小さくなり、その結果、分散液とした際には液中で良好な分散性を示すのではないかと考えた。この着想に基づき、本実施形態に係るITO粒子を開発した(但し、本実施形態に係る作用効果は、これらに限定されない。)。
 本実施形態において「非直方体形状」とは、粒子を構成する面が7以上あることを意味する。例えば、6面の略直方体形状や略立方体形状、5面以下の立体形状や、球状等のものは、ここでいう「非直方体形状」には包含されない。すなわち、ITO粒子の非直方体形状は、直方体(8個の凸部を有する形状)にあたらない。本実施形態に係るITO粒子の具体的な形状としては、9以上の凸部を有することが好ましい。
 本実施形態において「結晶方位がそろっている」とは、1つの粒子全体の電子線回折像においてスポットパターンが確認されることを意味する。
 ITO粒子の平均粒子径は、特に限定されないが、3~50nmであることが好ましく、5~40nmであることがより好ましい。平均粒子径が、かかる範囲であることにより、ITO粒子の分散性を一層向上させることができる。平均粒子径は、後述する溶媒の種類や反応温度を調整することで制御することができる。
 ITO粒子のBET比表面積は、特に限定されないが、25~49cm/gであることが好ましい。なお、ここでいう「BET比表面積」とは、BETガス吸着測定により測定される。なお、分散液とした際の分散性の観点から、ITO粒子は、上述した平均粒子径の範囲を満たし、かつ、BET比表面積の範囲を満たすことが好ましい。これを満たす粒子は、より高い分散性を発現できる程度の表面積を有する。
 ITO粒子の組成については、結晶合成及び導電性の観点から、Inの含有量に対するSnの含有量のモル比(Sn/In)は、3.5~24であることが好ましい。
<ITO粒子の製造方法>
 本実施形態に係るITO粒子は、ゲル-ゾル法ではなく、以下の方法により製造されることが好ましい。すなわち、(1)0.09~0.9M(M=mol/L)のIn塩と、0.01~0.2M(M=mol/L)のSn塩と、塩基性化合物と、第1の溶媒と、を含む溶液中で、180~260℃で、12時間~120時間反応させて、ITO粒子を得る反応工程と、(2)ITO粒子を洗浄する工程と、を含む製造方法であることが好ましい。
 反応溶液中のIn塩の濃度は、0.09~0.9Mであり、0.09~0.45Mであることが好ましい。そして、反応溶液中のSn塩の濃度は、0.01~0.2Mであり、0.01~0.05Mであることが好ましい。
 In塩の濃度は、モル基準で、Sn塩の濃度の4.5~9倍であることが好ましく、5~9倍であることがより好ましい。このような金属ソース濃度で粒子合成反応を行うことにより、本実施形態に係るITO粒子をワンポットでより簡便に合成することができる。
 In塩としては、特に限定されず、ITOの原料として公知のものを使用することができる。例えば、InCl等の金属塩、In(C、In(NO、In(SO及びこれらの水和物からなる群より選ばれる少なくとも1種が挙げられる。これらの中でも、無水塩や金属塩が好ましく、金属塩がより好ましく、InClが更に好ましい。
 Sn塩としては、特に限定されず、ITOの原料として公知のものを使用することができる。例えば、SnCl、SnCl、Sn(C、Sn(NO、SnSO、InCl等の金属塩、In(C、In(NO、In(SO及びこれらの水和物からなる群より選ばれる少なくとも1種が挙げられる。これらの中でも、無水塩や金属塩が好ましく、金属塩がより好ましく、SnCl、SnClが更に好ましい。
 塩基性化合物としては、特に限定されず、反応溶液を中和して、In-Snの沈殿水酸化物を析出(中和共沈)可能なものであればよい。塩基性化合物としては、公知のものを使用でき、水酸化テトラメチルアンモニウム(TMAH)、水酸化ナトリウム等が挙げられる。
 反応溶液中の塩基性化合物の濃度としては、特に限定されないが、粒子合成の観点から、1~2Mであることが好ましく、1.5~1.7Mであることがより好ましい。
 第1の溶媒としては、In塩、Sn塩、塩基性化合物、及び必要に応じて使用されるその他添加剤を溶解可能なものであればよい。第1の溶媒の具体例としては、公知のものを使用でき、例えば、水;メタノール、エタノール、イソプロパノール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類が好ましい。
 (1)反応工程において、本実施形態の効果を阻害しない範囲で、必要に応じて他の添加剤を加えてもよい。
 (1)反応工程における反応時間は、12時間~120時間であることが好ましく、24~72時間であることがより好ましい。
 (1)反応工程における反応温度は、180~260℃であることが好ましく、190~200℃であることがより好ましい。
 (1)反応工程では、開放系で行ってもよいが、オートクレーブを用いることが好ましい。これにより、反応系において生成した水酸化インジウム-水酸化スズの共沈物の生成を促進させることができる。
 本実施形態に係るITO粒子が、上述した製造方法によって得られるメカニズムは定かではないが、反応系中の金属塩の濃度制御(M=mol/L)、反応温度、反応時間等が影響しているのではないかと考えられる。単分散粒子の形状制御は、系中における生成核数と、そこに存在する物質量によって制御されうるが、凸部を形成させるためには生成した核を成長させるのではなく、ゲルネットワーク中に保持したままその上からさらに不均一核生成をさせる必要があると考えられる。そのため金属ソースの濃度を高くし、その金属ソースに対して塩基の量は少ないことがよいと考えられる。これにより、核生成できる金属酸化物前駆体濃度を長時間維持し得る。上述した条件の組み合わせをとることで、本実施形態に係るITO粒子を合成できると考えられる。(但し、本実施形態に係る作用効果はこれらに限定されない。)。
 本実施形態に係る製造方法では、金属ソースの濃度を高くし、金属ソースに対して相対的に少ない塩基濃度にすることが好ましい。これにより、初期の核生成反応後に粒子成長させるのではなく、生成した核の上にさらに不均一核生成を進行させることが可能となり、その結果、本実施形態に係るITO粒子を合成することができる。
 本実施形態では、(1)反応工程と(2)洗浄工程の間に、遠心分離工程を行うことが好ましい。遠心分離工程としては、14000rpmで10分間行うことが好ましい。
(2)ITO粒子を洗浄する工程では、水、エタノール等のアルコール類等を用いて洗浄することが好ましい。水で洗浄する場合は、蒸留水、又はイオン交換水(IEW;Ion Exchanged Water)等の純水を用いることが好ましい。また、超音波洗浄機で分散液を処理して洗浄することが好ましい。
 なお、従来では、反応工程後に、凍結乾燥工程、還元焼成工程を行うが、本実施形態に係る製造方法では、これを行う必要がない。特に、(2)工程の後に、焼成工程を行わないことが好ましい。これにより、ITO粒子の凝集を防ぎ、分散媒中での単分散状態を維持できる。
<分散液>
 本実施形態に係るITO粒子は、これを第2の溶媒に分散させることで分散液とすることができる。
 第2の溶媒としては、特に限定されないが、水;メタノール、エタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類、及びこれらの混合溶媒等が挙げられる。これらの中でも、水、アルコール類が好ましく、水がより好ましい。すなわち、本実施形態に係る分散液は、水分散液として好適に用いることができる。
 分散液は、必要に応じて他の添加材等を配合してもよい。
 通常のITO粒子を長時間溶媒に分散させる場合、ITO粒子の凝集を防ぐために界面活性剤が必要であるところ、本実施形態に係る分散液は、界面活性剤を添加せずとも、ITO粒子が長時間分散可能な分散液とすることができる。よって、本実施形態に係る分散液は、実質的に界面活性剤を含まないもの、すなわち界面活性剤フリーな分散液とすることができる。
 ここでいう界面活性剤とは、粒子表面に吸着し粒子を分散媒に分散可能とする機能を有するものをいい、具体例としては、陰イオン性界面活性剤、陽イオン性界面活性剤、非イオン性界面活性剤が挙げられる。
 本実施形態に係る分散液において、溶媒に対するITO粒子の割合(体積比)は、特に限定されないが、40%以下であることが好ましい。かかる範囲とすることで、長期安定に単分散できる。
<分散液の製造方法>
 分散液の製造方法としては、本実施形態に係るITO粒子を第2の溶媒に分散させる方法が挙げられる。
 分散液の製造方法としては、(1)0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、第1の溶媒と、を含む溶液中で、180~260℃で、12時間~120時間反応させ、ITO粒子を得る反応工程と、(2)ITO粒子を洗浄する工程と、(3)洗浄したITO粒子を第2の溶媒に分散させる工程と、を含む方法が好ましい。
 さらには、(1)0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、第1の溶媒と、を含む溶液中で、190~200℃で、12時間~120時間反応させ、ITO粒子を得る反応工程と、(2)ITO粒子を洗浄する工程と、(3)洗浄したITO粒子を第2の溶媒に分散させる工程と、を含む方法がより好ましい。
 (1)工程及び(2)工程については、ITO粒子の製造方法として既に説明した(1)工程及び(2)工程と同様にして行うことができる。例えば、上述したITO粒子の製造方法と同様に、(1)工程の反応温度は、180~260℃であることが好ましく、190~200℃であることがより好ましい。そして、第1の溶媒としては、公知のものを使用でき、例えば、水;メタノール、エタノール、イソプロパノール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類を含むことが好ましい。また、溶液中のIn塩の濃度は、Sn塩の濃度の4.5~9倍であることが好ましい。
 (3)分散工程については、洗浄直後のITO粒子に水を添加し、粒子と分散媒を均一に混合することで行われる。分散手法としては、特に限定されず、スターラー等による攪拌方法、超音波バス等による超音波分散方法を用いることができ、これらを併用してもよい。これらの中でも、超音波バスを用いることが好ましい。
<ITO膜>
 本実施形態に係る分散液は、これを用いてITO膜を作製することができる。具体的には、(i)本実施形態に係る分散液をミスト化するミスト化工程と、(ii)ミスト化された分散液を、基板に接触させる接触工程と、(iii)接触工程後、基板上に存在する分散液を乾燥させる乾燥工程と、を含む製造方法であることが好ましい。
 ITO膜は、高い導電性と透明性を有する素材であり、透明導電材料として汎用されている。ITO膜の製造方法の1つとして、スパッタリング法やレーザー蒸着法といった手法があるが、これらの技術ではフレキシブルな基板上に均一な薄膜を形成することが困難であり、優れた表面特性を有するITOの性能を活かしきれていない。また、蒸着工程等において大掛かりな設備構成とする必要があり、かかる点についても改善の余地がある。
 この点、本実施形態に係る分散液は成分が沈降することがなく、高い分散性を有するため、基板上にITO薄膜を形成する際に簡便なミスト技術を用いることも可能である。また、基板の材質に関する制限を緩和することができ、上述したようなフレキシブルタイプの基板に対しても膜形成が可能である。さらに、本実施形態によれば、ナノレベルのITO粒子(ITOナノ粒子)とした場合であっても高い結晶性や単分散性を安定的に維持できるため、薄膜としての導電性や透明性といった表面特性も高いレベルで制御できる。
 (i)ミスト化工程としては、分散液をミスト(霧)状にする手法であればよい。ミストの発生手法としては、公知の手法を採用することができ、例えば、加圧式、回転ディスク式、超音波式、静電式、オリフィス振動式、スチーム式等を採用することができる。本実施形態では、ITO粒子の分散液であることから、物理的にミスト化する手法が好ましい。これにより、液体の温度制御や液滴のサイズ制御が容易となる。また、分散液をミストとして扱うことで、高い制御性を有し、液体供給を行うゾル-ゲル法等が抱える薄膜形成時のゆがみといった不具合が生じない。
 ミスト化工程では、キャリアガスを用いることで、続く接触工程まで分散液のミストを運ぶことができる。キャリアガスとしては、例えば、アルゴン、ヘリウム、窒素等の不活性ガスを用いることができる。
 また、(i)工程と(ii)工程の間に、ミストトラップによるミストを均一化させる工程や、ミストの滞留期間(滞留部)を設ける滞留工程を行ってもよい。
 (ii)接触工程としては、ミストを基板に接触させる手法であれば特に限定されず、公知の技術を採用することができる。例えば、ミスト法によりミスト化工程で得られた微小液滴を基板上に噴霧する方法が挙げられる。ミスト法としては、例えば、超音波噴霧、ミストCVD法、ソニアソース式、ホットウォール式等が挙げられる。これらの手法は、基板上に形成させるITO膜の膜厚、噴霧する液滴のサイズ等を考慮して、選択することができる。
 接触工程では、大気圧下、減圧下、真空下のいずれであってもよいが、簡便性の観点から大気圧下であることが好ましい。
 また、ミスト化した分散液をマスキングされた基板上に塗布することで、微細なパターン形成が可能となる。特に、ITOナノ粒子を基板上に薄膜形成する場合等には好適である。これにより、高い精度で寸法制御ができる。
 分散液の溶媒として水を使用する場合であれば、マスキング材料として撥水性のマスキング材料(撥水膜)を用いることが好ましい。これにより、一層高い精度でのパターン形成が可能となる。
 さらに、基材に対する材料の制約が緩和されるため、基材として、薄く、かつ、高いフレキシビリティを有するフィルム基材(シート基材と呼ばれることもある)を使用することもできる。さらには、ロール・ツー・ロール(Roll to Roll)といった連続生産も可能となる。
 基材としては、例えば、公知の材料を用いることができる。例えば、ガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等が挙げられる。
 (iii)乾燥工程としては、基板に噴霧された分散液の溶媒を除去する。例えば、赤外線等の光照射や加熱等によって、溶媒を気化させることによって、基板の表面上にITO膜を形成させる。加熱温度は、溶媒の沸点、基板の軟化点、その他ITO膜の物性に与える影響等を考慮して、設定することができる。ここでいう基板の軟化点とは、基板を加熱した場合に、基板が軟化して、変形を起こし始める温度をいい、例えば、JIS K7191-1に準じた試験方法により求めることができる。
 (iii)工程の後、必要に応じて、ITO膜が形成された基板を徐冷する工程(徐冷工程)や、親水性付与といった基材の改質を行う目的でUV照射工程等を行ってもよい。
 ここで、成膜装置について、図1は本実施形態におけるミスト法を用いた成膜装置の一例を示す概念図である。成膜装置1は、微粒子を含むミストを発生させる第1槽、ミストを均一化させるミストトラップである第2槽、基板10に対してミストを噴霧する第3槽を有する。
 第1槽には、上述した分散液を原料溶液Sとして格納される。分散液中の粒子は、上述したものを使用できるが、ナノ微粒子であることが好ましい。ここでは粒子としてITO微粒子を用いるものとして説明する。
 第1槽には、ミストの流路を形成するためのエアー20がフローされている。
 第1槽には、超音波振動子30が格納される。超音波振動子30により、ITO微粒子を含む分散液がミスト化される。ミストの粒径は、特に限定されないが、10μm以下(例えば1~10μm)であることが好ましい。第1槽で生成されたミストは、第1層に設けられた管を経由して第2槽に搬送される。第2槽では、余分なミストが槽の下部に溜まり、粒子径がより均一化されたミストが第2槽に設けられた管を経由して第3層に搬送される。第2槽から第3槽へは、5μm以下(例えば1~5μm)の粒子径のミストが搬送されるよう構成されることが好ましい。
 第3槽には基板10が配置され、第2槽から搬送されたミストが基板に噴霧される。第3槽では所定時間、基板10に対してミストが噴霧される。そして、基板10に付着したミストの分散媒が気化することによって、基板10の表面にITO膜が形成される。なお、噴霧後一定時間が経過すると、ミストが気化するよりも先に新たなミストが基板10上に付着することにより、液滴化した分散液が流れ落ち、基板10上に均一なITO膜が形成されなくなる。基板10に対してミストの噴霧を停止する時間は、ITO微粒子を含むミストが液化して基板10から流れ落ちる時点であってもよいし、所望する膜厚のITO膜が基板10上に形成された時点であってもよい。
 第3槽において、基板10を過度に加熱すると、軟化により変形してしまう可能性がある。そのため、第3槽では、基板の軟化点より低い温度の下でミストが噴霧され、ITO膜が形成されることが好ましい。また、ミスト噴霧時に基板10を所定温度以上に加熱すると、基板10に付着したITO微粒子が凝集する。その結果、膜の均一性が悪化するとともに、粒子同士の導電ネットワークを阻害するため、高い抵抗値を有するITO膜が形成される。このため、さらに好ましくは、40℃以下(例えば10℃~40℃)の温度下でミストが噴霧され、ITO膜が形成されるよう構成する。
 基板10に対し選択的に金属酸化膜を形成する場合、予め基板10に対して選択的に撥水膜を形成することにより、親水部にミストを付着させる。この際、基板10が水平に配置されていると、撥水部に付着した分散液が撥水されず、選択的に金属酸化膜を形成させることができない。このため、第3槽では、水平面に対して傾斜した基板10に対してミストを噴霧させることが好ましい。
 同様に、第3槽では、ミストの噴霧方向に直交する面に対して傾斜した基板10に対してミストが噴霧されることが好ましい。ミストの噴霧の勢いで、撥水部に付着した余分なITO微粒子を除去するためである。
 なお、成膜装置は、第2槽のミストトラップを省略してもよい。そうすることで、比較的大きな液滴をフィルタリングすることができ、基板上の親撥水パターンが微細であっても精度よくITO膜を成膜することができる。
 また、ミストの発生方法については、上述の超音波振動子30を用いて発生させるほか、液滴を噴霧する細管に直接電圧をかけてミストを発生させる静電式、圧力を加え流速を増加させたガスを液体と衝突させることによって、発生したミストを飛散させる加圧式、高速回転しているディスク上に液滴を滴下し、発生したミストを遠心力によって飛散させる回転ディスク式、マイクロサイズの孔を有するオリフィス板に液滴を通すが、その際に圧電素子等によって振動を加えることによって液滴を切断することで、マイクロサイズの液滴を発生させるオリフィス振動式等を用いることができる。ミストの発生方法については、コストやパフォーマンス等に応じて適宜これらの方法を選択する。当然、複数の方法を組み合わせてミストを発生させてもよい。
 以下の実施例及び比較例により本発明を更に詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。
<測定方法>
・XRD測定:
 測定装置として多目的X線回折装置(リガク社製「Ultima-IV」)を使用し、線源はCuKα、出力は40kV、40mA、検出器は「D/teX Ultra」の条件で測定した。
・ICP測定:
 測定装置としてICP発光分光分析装置(パーキンエルマー社製「Optima 3300」)を使用した。
・TEM測定:
 測定装置として透過型電子顕微鏡(TEM;日立製作所社製「JEM-2100」)を使用し、120kの倍率条件で測定した。
・ITO粒子の形状評価:
 ITO粒子のTEM撮像写真を、画像処理ソフトウェア「imageJ 1.51j8」を用いて画像処理した。具体的には、1ピクセルのスケールを実際の画像と対応するように処理し、画像を2値化した。
・ITO粒子の平均粒子径測定:
 ITO粒子の平均粒子径として、上述のX線回折装置によって測定したXRDパターンの400面のピークを用いてScherrerの式から算出した結晶子のサイズを採用した。
<実施例1(ITO粒子及び分散液の調製)>
 反応容器に、溶媒としてメタノール7.5mL、塩基性触媒として水酸化テトラメチルアンモニウム(TMAH)を1.6Mとなるよう仕込んだ。そして、反応溶液中のIn濃度が0.36M、Sn濃度が0.04M(反応溶液中In/Sn=9)となるよう、メタノール溶液を作製した。これを上述のTMAHメタノール溶液中に加え、10分間攪拌したのち、190℃で1日間加熱して反応を進行させた。その後、14000rpmで10分間遠心分離を行った。続いて、エタノールで2回、イオン交換水で2回洗浄して、ITO粒子を得た。
得られたITO粒子の外観は青色であった。
(ITO粒子の測定結果)
 XRDによれば、ITOと同じ結晶構造を持つ酸化インジウム(In)に帰属可能な回折パターンが得られた。これによりITOが合成されたことが確認された。ICPにより、ITO粒子のSn/In(モル比)=12.3であることが確認された。図2は、実施例1の透過型電子顕微鏡(TEM)写真である。
(分散液の調製)
 続いて、得られたITO粒子から分散液を調製した。具体的には、ITO粒子1gに、純水40mL(界面活性剤は不添加)を混合した。そして、超音波バス内で粒子と純水を混合することで、分散液を得た。
(分散液の分散性評価)
 得られた分散液を、20℃で、100日間静置した。その結果、目視では沈殿物の発生は確認できなかった。これらのことから、実施例1の分散液は、高い安定性を有し、かつ、分散性に優れることが少なくとも確認された。
(ゼータ電位の測定)
 分散性を粒子の化学的状態の観点から評価する指標として、実施例1のITO粒子のゼータ電位を測定した。ゼータ電位は、ゼータ電位測定装置(大塚電子社製「ELSZ-2」)を用いて、1×10-2M NaOH及び1×10=2M HClO水溶液を用い,イオン強度が1×10-2となる条件で測定した。
 なお、参考例1として、Chem. Lett., 42, 738 (2013)に記載の方法に準拠して製造したITO粒子(粒子の形状が略直方体形状であり、粒子1個あたりの凸部が8個である粒子。)のゼータ電位を、同様の条件で測定した。その結果、実施例1のITO粒子の等電点(pH0)は10.27であり、参考例1の等電点(pH0)は9.73であった。図3は、実施例1と参考例1のゼータ電位の測定結果を示すグラフである。
 図3に示すように、実施例1のITO粒子のゼータ電位は、参考例1のITO粒子のゼータ電位と同程度であった。このことから、実施例1と参考例1の粒子の化学的状態に、大きな差はないといえる。したがって、実施例1のITO粒子は、参考例1のITO粒子と粒子表面の化学的状態に大きな差異はないにもかかわらず、優れた分散性を有しているといえる。このことは、実施例1のITO粒子が特定の形状を有することにより、溶液中における粒子間の接触面積が小さくなり、凝集が抑制され、その結果優れた分散性を発揮できたといえる。
<実施例2~10>
 実施例1を基準に、InとSnの仕込みの濃度を変更して実験を行った。表1及び表2に示す条件にてITO粒子を作製した点以外は、実施例1と同様にして、ITO粒子及びその分散液を作製し、その物性を評価した。
 実施例1~10の分散液の作成条件及び評価結果を表1及び表2に示す。なお、「結晶方位」の項目において、電子線回折法によりスポットパターンが確認されたものは「〇」と記載し、そうでなかったものは「×」と記載した。「ITO粒子の凸部数」の項目は、上述した方法に基づきカウントされた、粒子1個における凸部の数を示しており、結晶面1面における凸部数ではない。例えば、凸部数が「9以上」との記載は、ITO粒子1個において凸部が9以上存在していることを意味する。「分散液の分散性」の項目については、分散性評価において目視で沈殿物の発生が確認できなかったものは「〇」と記載し、沈殿物の発生が確認できたものは「×」と記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<実施例11~16>
 実施例1を基準に、反応工程の反応時間を変更して実験を行った。表3に示す条件にてITO粒子を作製した点以外は、実施例1と同様にして、ITO粒子及びその分散液を作製した。
Figure JPOXMLDOC01-appb-T000003
<実施例17>
 実施例1を基準に、反応工程の反応温度を変更して実験を行った。表4に示す条件にてITO粒子を作製した点以外は、実施例1と同様にして、ITO粒子及びその分散液を作製した。得られたITO粒子の平均粒子径は、33.32nmであった。
Figure JPOXMLDOC01-appb-T000004
<実施例18~21>
 実施例1を基準に、Snドープ量を変更して実験を行った。表5に示す条件にてITO粒子を作製した点以外は、実施例1と同様にして、ITO粒子及びその分散液を作製した。なお、実施例19のITO粒子の平均粒子径は、30.72nmであった。
Figure JPOXMLDOC01-appb-T000005
<実施例22~28>
 実施例1を基準に、反応工程の反応時間を変更して実験を行った。表6に示す条件にてITO粒子を作製した点以外は、実施例1と同様にして、ITO粒子及びその分散液を作製した。
Figure JPOXMLDOC01-appb-T000006
<実施例29~37>
 実施例1を基準にした上で表7に示す条件にてITO粒子を作製した点以外は、実施例1と同様にして、ITO粒子及びその分散液を作製した。
 例えば、実施例29については、反応容器に、溶媒としてエチレングリコール7.5mL、塩基性触媒として水酸化テトラメチルアンモニウム(TMAH)を1.6Mとなるよう仕込んだ。そして、反応溶液中のIn濃度が0.36M、Sn濃度が0.04M(反応溶液中In/Sn=9)となるよう、エチレングリコール溶液を作製した。これを上述のTMAHエチレングリコール溶液中に加え、10分間攪拌したのち、230℃で1日間加熱して反応を進行させた。その後、14000rpmで10分間遠心分離を行った。続いて、エタノールで2回、イオン交換水で2回洗浄して、ITO粒子を得た。得られたITO粒子の外観は青色であった。
Figure JPOXMLDOC01-appb-T000007
<比較例1>
 反応溶液中のIn濃度が1.8M、Sn濃度が0.2Mとなるよう条件を変更した点以外は、実施例1と同様の条件でITO粒子の合成を試みた。その結果、XRDスペクトルには、ITOと同じ結晶構造を持つ酸化インジウムの回折パターンは確認されず、オキシ水酸化インジウムに帰属する回折パターンが確認された。すなわち、オキシ水酸化インジウムが生成し、ITO粒子は合成できなかった。
<比較例2>
 反応時間を6時間に変更した点以外は、実施例1と同様の条件でITO粒子の合成を試みた。その結果、TEMによると未反応の金属ソースが確認され、ITO粒子は合成できなかった。
<比較例3>
 反応温度を150℃に変更した点以外は、実施例1と同様の条件でITO粒子の合成を試みた。その結果、XRDスペクトルには、ITOと同じ結晶構造を持つ酸化インジウムの回折パターンは確認されず、オキシ水酸化インジウムに帰属する回折パターンが確認された。すなわち、オキシ水酸化インジウムが生成し、ITO粒子は合成できなかった。
<比較例4>
 反応温度を130℃に変更した点以外は、実施例1と同様の条件でITO粒子の合成を試みた。その結果、XRDスペクトルには、ITOと同じ結晶構造を持つ酸化インジウムの回折パターンは確認されず、オキシ水酸化インジウムに帰属する回折パターンが確認された。すなわち、オキシ水酸化インジウムが生成し、ITO粒子は合成できなかった。
<比較例5>
 反応温度を100℃に変更した点以外は、実施例1と同様の条件でITO粒子の合成を試みた。その結果、XRDスペクトルには、ITOと同じ結晶構造を持つ酸化インジウムの回折パターンは確認されず、オキシ水酸化インジウムに帰属する回折パターンが確認された。すなわち、オキシ水酸化インジウムが生成し、ITO粒子は合成できなかった。
1・・・成膜装置、10・・・板、20・・・エアー、30・・・超音波振動子、S・・・原料溶液

Claims (18)

  1.  非直方体形状を有し、粒子内部において結晶方位がそろっている、ITO粒子。
  2.  9以上の凸部を有する、請求項1に記載のITO粒子。
  3.  Inの含有量に対するSnの含有量のモル比(Sn/In)が3.5~24である、請求項1又は2に記載のITO粒子。
  4.  請求項1~3のいずれか一項に記載のITO粒子が溶媒に分散されてなる分散液。
  5.  前記溶媒は、水を含む、請求項4に記載の分散液。
  6.  前記分散液は、界面活性剤を実質的に含まない、請求項4又は5に記載の分散液。
  7.  前記溶媒の体積に対する前記ITO粒子の体積の割合が、40%以下である、請求項4~6のいずれか一項に記載の分散液。
  8.  0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、溶媒と、を含む溶液中で、190~200℃で、12時間~120時間反応させて、ITO粒子を得る反応工程と、
     前記ITO粒子を洗浄する工程と、
    を含むITO粒子の製造方法。
  9.  前記溶液中の前記In塩の濃度は、モル基準で、前記Sn塩の濃度の4.5~9倍である、請求項8に記載のITO粒子の製造方法。
  10.  0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、第1の溶媒と、を含む溶液中で、190~200℃で、12時間~120時間反応させ、ITO粒子を得る反応工程と、
     前記ITO粒子を洗浄する工程と、
     洗浄した前記ITO粒子を第2の溶媒に分散させる工程と、
    を含む分散液の製造方法。
  11.  前記溶液中の前記In塩の濃度は、前記Sn塩の濃度の4.5~9倍である、請求項10に記載の分散液の製造方法。
  12.  請求項4~7のいずれか一項に記載の分散液をミスト化するミスト化工程と、
     ミスト化された前記分散液を、基板に接触させる接触工程と、
     前記接触工程後、前記基板上に存在する前記分散液を乾燥させる乾燥工程と、
    を含むITO膜の製造方法。
  13.  0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、溶媒と、を含む溶液中で、180~260℃で、12時間~120時間反応させて、ITO粒子を得る反応工程と、
     前記ITO粒子を洗浄する工程と、
    を含むITO粒子の製造方法。
  14.  前記溶媒がエチレングリコールを含む、請求項13に記載のITO粒子の製造方法。
  15.  前記溶液中の前記In塩の濃度は、前記Sn塩の濃度の4.5~9倍である、請求項13又は14に記載のITO粒子の製造方法。
  16.  0.09~0.9MのIn塩と、0.01~0.2MのSn塩と、塩基性化合物と、第1の溶媒と、を含む溶液中で、180~260℃で、12時間~120時間反応させて、ITO粒子を得る反応工程と、
     前記ITO粒子を洗浄する工程と、
     洗浄した前記ITO粒子を第2の溶媒に分散させる工程と、
    を含む分散液の製造方法。
  17.  前記第1の溶媒がエチレングリコールを含む、請求項16に記載の分散液の製造方法。
  18.  前記溶液中の前記In塩の濃度は、前記Sn塩の濃度の4.5~9倍である、請求項16又は17に記載の分散液の製造方法。
PCT/JP2018/043511 2018-01-15 2018-11-27 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法 WO2019138707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019564327A JP7089537B2 (ja) 2018-01-15 2018-11-27 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法
KR1020207020498A KR102461412B1 (ko) 2018-01-15 2018-11-27 Ito 입자, 분산액, ito 입자의 제조 방법, 분산액의 제조 방법 및 ito 막의 제조 방법
EP18899507.0A EP3741727A4 (en) 2018-01-15 2018-11-27 ITO PARTICLES, DISPERSION, METHOD FOR MANUFACTURING ITO PARTICLES, METHOD FOR MANUFACTURING DISPERSION AND METHOD FOR MANUFACTURING ITO LAYER
CN201880086439.7A CN111601773A (zh) 2018-01-15 2018-11-27 Ito颗粒、分散液、ito颗粒的制造方法、分散液的制造方法和ito膜的制造方法
US16/928,833 US11952508B2 (en) 2018-01-15 2020-07-14 ITO particles, dispersion, production method of ITO particles, production method of dispersion, and production method of ITO film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-004224 2018-01-15
JP2018004224 2018-01-15
JP2018119414 2018-06-25
JP2018-119414 2018-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/928,833 Continuation US11952508B2 (en) 2018-01-15 2020-07-14 ITO particles, dispersion, production method of ITO particles, production method of dispersion, and production method of ITO film

Publications (1)

Publication Number Publication Date
WO2019138707A1 true WO2019138707A1 (ja) 2019-07-18

Family

ID=67219574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043511 WO2019138707A1 (ja) 2018-01-15 2018-11-27 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法

Country Status (7)

Country Link
US (1) US11952508B2 (ja)
EP (1) EP3741727A4 (ja)
JP (1) JP7089537B2 (ja)
KR (1) KR102461412B1 (ja)
CN (1) CN111601773A (ja)
TW (2) TWI722350B (ja)
WO (1) WO2019138707A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089537B2 (ja) * 2018-01-15 2022-06-22 国立大学法人東北大学 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法
CN115321585B (zh) * 2022-08-09 2023-08-11 先导薄膜材料(安徽)有限公司 一种氢氧化铟的洗涤工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576797B2 (ja) 1977-10-06 1982-02-06
JP2010047448A (ja) * 2008-08-22 2010-03-04 Tohoku Univ Itoナノ粒子合成法および有機修飾itoナノ粒子
JP2010285332A (ja) * 2008-07-10 2010-12-24 Tohoku Univ Ito粒子の製造方法、およびito粉末、透明導電材用塗料並びに透明導電膜
JP2011126746A (ja) * 2009-12-18 2011-06-30 Tohoku Univ Ito粉末、ito粒子の製造方法、透明導電材用塗料並びに透明導電膜
WO2015064438A1 (ja) * 2013-10-30 2015-05-07 株式会社ニコン 薄膜の製造方法、透明導電膜
JP2018004224A (ja) 2016-07-07 2018-01-11 大阪瓦斯株式会社 熱電併給システム及び給湯システム
JP2018119414A (ja) 2017-01-23 2018-08-02 スズキ株式会社 排気熱回収装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589214B2 (ja) * 2007-10-01 2014-09-17 Dowaエレクトロニクス株式会社 Ito粉体およびその製造方法、透明導電材用塗料、並びに透明導電膜
EP2174989A1 (en) * 2008-10-08 2010-04-14 ChemIP B.V. Aqueous metaloxide dispersions and coating materials prepared thereof.
JP5754580B2 (ja) 2010-10-26 2015-07-29 三菱マテリアル電子化成株式会社 インジウム錫酸化物粉末
JP5706797B2 (ja) 2011-10-20 2015-04-22 三井金属鉱業株式会社 錫ドープ酸化インジウム粒子
CA2787584A1 (en) * 2012-08-22 2014-02-22 Hy-Power Nano Inc. Method for continuous preparation of indium-tin coprecipitates and indium-tin-oxide nanopowders with substantially homogeneous indium/tin composition, controllable shape and particle size
CN103508484B (zh) * 2013-09-30 2015-03-25 西北大学 一种红外低发射率纳米晶薄膜材料SnO2及其制备方法
JP6732201B2 (ja) * 2015-11-11 2020-07-29 国立大学法人京都工芸繊維大学 発光素子
JP6626709B2 (ja) 2015-12-24 2019-12-25 三菱マテリアル電子化成株式会社 Ito導電膜及びこのito導電膜を形成するための塗料
JPWO2019138708A1 (ja) * 2018-01-15 2021-01-07 国立大学法人東北大学 Ito粒子、分散液及びito膜の製造方法
JP7089537B2 (ja) * 2018-01-15 2022-06-22 国立大学法人東北大学 Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576797B2 (ja) 1977-10-06 1982-02-06
JP2010285332A (ja) * 2008-07-10 2010-12-24 Tohoku Univ Ito粒子の製造方法、およびito粉末、透明導電材用塗料並びに透明導電膜
JP2010047448A (ja) * 2008-08-22 2010-03-04 Tohoku Univ Itoナノ粒子合成法および有機修飾itoナノ粒子
JP2011126746A (ja) * 2009-12-18 2011-06-30 Tohoku Univ Ito粉末、ito粒子の製造方法、透明導電材用塗料並びに透明導電膜
WO2015064438A1 (ja) * 2013-10-30 2015-05-07 株式会社ニコン 薄膜の製造方法、透明導電膜
JP2018004224A (ja) 2016-07-07 2018-01-11 大阪瓦斯株式会社 熱電併給システム及び給湯システム
JP2018119414A (ja) 2017-01-23 2018-08-02 スズキ株式会社 排気熱回収装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEM. LETT., vol. 42, 2013, pages 738
See also references of EP3741727A4

Also Published As

Publication number Publication date
EP3741727A4 (en) 2021-10-06
US11952508B2 (en) 2024-04-09
JP7089537B2 (ja) 2022-06-22
JPWO2019138707A1 (ja) 2021-01-07
KR102461412B1 (ko) 2022-10-31
TWI764573B (zh) 2022-05-11
TW201936504A (zh) 2019-09-16
CN111601773A (zh) 2020-08-28
US20210002494A1 (en) 2021-01-07
TWI722350B (zh) 2021-03-21
TW202120437A (zh) 2021-06-01
KR20200098644A (ko) 2020-08-20
EP3741727A1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
CN101184695B (zh) 中空状SiO2微粒分散液的制造方法、涂料组合物及带防反射涂膜的基材
JP5589214B2 (ja) Ito粉体およびその製造方法、透明導電材用塗料、並びに透明導電膜
JP5511307B2 (ja) 光学部材、及びその製造方法
JP2783417B2 (ja) ルチル型酸化チタンゾルの製造法
JPH07133105A (ja) 複合酸化物ゾル、その製造方法および基材
WO2019138707A1 (ja) Ito粒子、分散液、ito粒子の製造方法、分散液の製造方法及びito膜の製造方法
Han et al. Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process
EP1060012B1 (en) Methods for the preparation of nanosized material particles
Kumar et al. Variation in chemical bath pH and the corresponding precursor concentration for optimizing the optical, structural and morphological properties of ZnO thin films
Kashyap et al. Deposition of thin films by chemical solution-assisted techniques
JP7455166B2 (ja) Ito粒子、分散液及びito膜の製造方法
CN103003721A (zh) 制备具有抗反射性能的涂层的方法
JP5659371B2 (ja) 薄片状酸化チタンを配合した有機溶媒分散体及びその製造方法並びにそれを用いた酸化チタン膜及びその製造方法
WO2021187412A1 (ja) タンタル酸カリウム粒子の製造方法、及び膜の製造方法、並びにタンタル酸カリウム粒子、膜、反射防止膜、光学素子、及び光学装置
JP4346524B2 (ja) 金属コロイド液、その製造方法および金属コロイド液の用途
US20230166980A1 (en) Gallium-doped zinc oxide particles, film containing gallium-doped zinc oxide particles, transparent conductive film, electronic device, and method for producing gallium-doped zinc oxide particles
JP2006117526A (ja) 複合酸化物ゾルおよび被膜付基材
CN112014417B (zh) 一种控制胶体沉积物微观形貌的方法
JP2013173667A (ja) 多針体二酸化チタン粒子、多針体二酸化チタン粒子コーティング、二酸化チタン系デバイス、及びそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564327

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207020498

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899507

Country of ref document: EP

Effective date: 20200817