WO2019234917A1 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
WO2019234917A1
WO2019234917A1 PCT/JP2018/022034 JP2018022034W WO2019234917A1 WO 2019234917 A1 WO2019234917 A1 WO 2019234917A1 JP 2018022034 W JP2018022034 W JP 2018022034W WO 2019234917 A1 WO2019234917 A1 WO 2019234917A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
mist injection
film forming
substrate
infrared light
Prior art date
Application number
PCT/JP2018/022034
Other languages
English (en)
French (fr)
Inventor
容征 織田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to KR1020207034541A priority Critical patent/KR20210005937A/ko
Priority to JP2020523956A priority patent/JP7039151B2/ja
Priority to PCT/JP2018/022034 priority patent/WO2019234917A1/ja
Priority to CN201880093561.7A priority patent/CN112135923B/zh
Priority to US17/047,695 priority patent/US20210114047A1/en
Priority to DE112018007706.3T priority patent/DE112018007706T5/de
Priority to TW107128818A priority patent/TWI685585B/zh
Publication of WO2019234917A1 publication Critical patent/WO2019234917A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/16Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area
    • B05B12/18Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling the spray area using fluids, e.g. gas streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/20Arrangements for spraying in combination with other operations, e.g. drying; Arrangements enabling a combination of spraying operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/90Spray booths comprising conveying means for moving objects or other work to be sprayed in and out of the booth, e.g. through the booth
    • B05B16/95Spray booths comprising conveying means for moving objects or other work to be sprayed in and out of the booth, e.g. through the booth the objects or other work to be sprayed lying on, or being held above the conveying means, i.e. not hanging from the conveying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • B05D3/0227Pretreatment, e.g. heating the substrate with IR heaters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/04Sheets of definite length in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/10Applying the material on both sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0097Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/146By vapour deposition

Definitions

  • the present invention relates to a film forming apparatus which is used for manufacturing an electronic device such as a solar cell and forms a film on a substrate.
  • CVD Chemical Vapor Deposition
  • chemical vapor deposition often requires film formation under vacuum, and it is necessary to use a large vacuum vessel in addition to a vacuum pump or the like.
  • the chemical vapor deposition method has a problem that it is difficult to adopt a large-area substrate as a film formation substrate from the viewpoint of cost and the like. Therefore, a mist method capable of forming a film under atmospheric pressure has attracted attention.
  • the material solution is ejected from the raw material solution ejection port and the reaction material ejection port provided on the bottom surface of the mist ejection head unit including the mist ejection nozzle and the like with respect to the substrate disposed in the atmosphere.
  • the raw material solution and the reaction material are injected.
  • a film is formed on the substrate by the jetting.
  • the reaction material means a material that contributes to the reaction with the raw material solution.
  • FIG. 7 is an explanatory diagram showing a schematic configuration of a conventional film forming apparatus. As shown in the figure, a substrate stacking stage 30 as a substrate mounting portion has a plurality of substrates 10 mounted on the upper surface.
  • the substrate loading stage 30 has an adsorption mechanism 31 by vacuum adsorption, and the adsorption mechanism 31 can adsorb the entire back surface of each of the plurality of substrates 10 placed on the upper surface of the substrate loading stage 30. Further, the substrate loading stage 30 is provided with a heating mechanism 32 below the suction mechanism 31, and the heating mechanism 32 can execute a heating process on the plurality of substrates 10 placed on the upper surface of the substrate loading stage 30. it can.
  • the thin film forming nozzle 1 executes a mist injection process for injecting the raw material mist MT downward from an injection port provided on the injection surface 1S.
  • the raw material mist MT is a mist obtained by making a raw material solution into a mist.
  • the thin film forming nozzle 1 can inject the raw material mist MT into the atmosphere.
  • the thin film forming nozzle 1, the substrate loading stage 30, and the plurality of substrates 10 placed on the upper surface of the substrate loading stage 30 are all stored in the film forming chamber 60.
  • the film forming chamber 60 includes an upper container 68, a lower container 69, and a door 67.
  • the film forming chamber 60 closes the opening between the upper container 68 and the lower container 69 by closing the door 67 so that the thin film forming nozzle 1, the substrate stacking stage 30, and the plurality of substrates 10. Can be shut off from the outside.
  • the substrate 10 placed on the upper surface of the substrate stacking stage 3 is formed by closing the door 67 of the film forming chamber 60 and executing the mist injection process by the thin film forming nozzle 1 during the heating process of the heating mechanism 32.
  • a thin film can be formed thereon.
  • the conventional film forming apparatus forms a thin film on the substrate 10 by simultaneously performing the mist spraying process by the thin film forming nozzle 1 and the heating process by the heating mechanism 32.
  • the heating mechanism 32 is provided inside the substrate stacking stage 30 on which the substrate 10 that is a base material that is a film formation target is placed, and the substrate stacking stage 30 is flattened.
  • the substrate stacking stage 30 is flattened.
  • the upper surface of the substrate loading stage 30 and the lower surface of the substrate 10 are brought into contact with each other to transfer heat between the substrate loading stage 30 and the substrate 10 to heat the substrate 10. Will be executed.
  • the planar heating means when the substrate 10 is not flat and has a curved lower surface or a structure with irregularities on the lower surface, in the planar heating means, the contact between the upper surface of the substrate stacking stage 30 and the back surface of the substrate 10 is local. Become. For this reason, there are problems such as non-uniform heating of the substrate 10 when the heating mechanism 32 performs the heat treatment, or warpage of the substrate 10 and deformation.
  • An object of the present invention is to solve the above problems and to provide a film forming apparatus capable of forming a thin film on a substrate without reducing the film forming quality and the film forming speed.
  • a film forming apparatus includes a substrate transport unit that transports a substrate, and an infrared light lamp, and performs a heating process that heats the substrate by irradiating infrared light from the infrared light lamp. And a mist injection unit that executes a mist injection process for injecting a raw material mist obtained by misting the raw material solution, so that the heating process and the mist injection process are not affected by each other. And the mist injection unit is disposed separately, and the substrate is transferred by the substrate transfer unit, and after the heating process by the heating mechanism is performed, the mist injection process by the mist injection unit is executed. A thin film is formed.
  • the film forming apparatus includes a heating mechanism that performs a heating process of irradiating infrared light from an infrared lamp to heat the substrate. Regardless of the shape of the substrate, the substrate can be heated uniformly.
  • the heating mechanism and the mist injection unit are separately arranged so that the heating process and the mist injection process are not affected by each other, the raw material mist is infrared light when performing the heating process and the mist injection process. It is possible to reliably avoid the occurrence of a raw material mist evaporation phenomenon in which it is heated and evaporated by absorbing.
  • the film forming apparatus of the present invention performs the mist injection processing by the mist injection unit after the heat processing by the heating mechanism, without reducing the film forming quality and the film forming speed, A thin film can be formed on the surface of the substrate.
  • FIG. 10 is an explanatory diagram schematically showing a first modification of the second embodiment.
  • FIG. 10 is an explanatory diagram schematically showing a second modification of the second embodiment.
  • It is explanatory drawing (the 1) which shows schematic structure of the film-forming apparatus which is Embodiment 3 of this invention.
  • It is explanatory drawing (the 2) which shows schematic structure of the film-forming apparatus which is Embodiment 3 of this invention.
  • ⁇ Prerequisite technology> Infrared light that improves the prior art shown in FIG. 7 and performs a heat treatment for heating the substrate 10 by irradiating infrared light from an infrared lamp without providing a heating mechanism 32 in the substrate stacking stage 30.
  • a configuration in which an irradiator is separately provided as a heating mechanism and arranged away from the substrate stacking stage 30 is considered as a new premise technique.
  • infrared light irradiator As a heating mechanism, it can be directly heated by infrared rays, which are electromagnetic waves, without contacting the substrate 10 serving as a base material. It becomes possible.
  • the raw material mist MT absorbs the infrared light irradiated from the infrared light irradiator and the raw material mist MT is heated and evaporated, the film formation quality is increased. There remains a problem that the film forming speed is lowered. In addition, the raw material mist evaporation phenomenon has a problem that the heat treatment by the infrared light irradiator is hindered.
  • Embodiments 1 to 3 described below are intended to solve the problems of the prior art and the above-described prerequisite technology.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 shows an XYZ orthogonal coordinate system.
  • the film forming apparatus 11 includes a heating chamber 80, a film forming chamber 90, a thin film forming nozzle 1, infrared light irradiators 2 and 4, and a conveyor 53 as main components. Yes.
  • the conveyor 53 which is a substrate transport unit, transports the plurality of substrates 10 in the transport direction (X direction) while placing the plurality of substrates 10 on the upper surface of the belt 52.
  • the conveyor 53 includes a pair of conveyance rollers 51 provided at both left and right ( ⁇ X direction, + X direction) ends, and an endless conveyance belt 52 spanned between the pair of rollers 51.
  • the belt 52 is constituted by a combination of a pair of linear conveyor chains provided at both ends in the Y direction.
  • the conveyor 53 can move the upper side (+ Z direction side) belt 52 along the conveyance direction (X direction) by rotationally driving the pair of rollers 51.
  • the pair of rollers 51 of the conveyor 53 one is provided on the left ( ⁇ X direction) outside the heating chamber 80, and the other is provided on the right (+ X direction) outside the film forming chamber 90.
  • the central portion of the belt 52 is provided inside one of the heating chamber 80 and the film forming chamber 90.
  • the belt 52 is driven by rotation of the pair of rollers 51, and a pair of openings 88 provided on a part of the left and right ( ⁇ X direction, + X direction) side surfaces of the heating chamber 80, It is possible to move between the inside of the heating chamber 80, the inside of the film forming chamber 90, and the outside through the opening 98 provided in the part.
  • the heating chamber 80 and the film forming chamber 90 are provided adjacent to each other, and the opening 88 on the right side of the heating chamber 80 and the opening 98 on the left side of the film forming chamber 90 are shared.
  • the heating chamber 80 includes an upper container 81, a lower container 82, and a pair of openings 88.
  • a pair of openings 88 are positioned between the upper container 81 and the lower container 82 in the height direction, which is the Z direction. Therefore, the conveyor 53 provided between the openings 88 and 88 in the heating chamber 80 is disposed at a position higher than the lower container 82 and lower than the upper container 81.
  • the infrared light irradiator 2 as the first direction heating unit is fixed at a position away from the conveyor 53 in the lower container 82 by a fixing means (not shown).
  • the infrared light irradiator 4 which is the second direction heating unit is fixed at a position away from the conveyor 53 in the upper container 81 by fixing means (not shown).
  • a combination of the infrared light irradiator 2 and the infrared light irradiator 4 constitutes a heating mechanism.
  • both the infrared light irradiators 2 and 4 are arranged at positions overlapping the upper surface region (region sandwiched between a pair of linear conveyor chains) of the belt 52 in the heating chamber 80 in plan view.
  • the infrared light irradiator 2 includes a lamp mounting table 21 and a plurality of infrared light lamps 22, and a plurality of infrared light lamps 22 are attached to the upper part of the lamp mounting table 21. Therefore, the infrared light irradiator 2 can irradiate infrared light upward (+ Z direction) from the plurality of infrared light lamps 22.
  • the heat treatment (first direction heat treatment) for the plurality of substrates 10 placed on the upper surface of the belt 52 by the above-described infrared light irradiation by the infrared light irradiator 2 can be performed.
  • the infrared light irradiator 4 includes a lamp mounting table 41 and a plurality of infrared light lamps 42, and a plurality of infrared light lamps 42 are attached to the lower part of the lamp mounting table 41. Therefore, the infrared light irradiator 4 can irradiate infrared light downward ( ⁇ Z direction) from the plurality of infrared light lamps 42.
  • the heat treatment (second direction heat treatment) can be performed on the plurality of substrates 10 placed on the upper surface of the belt 52 by the above-described infrared light irradiation by the infrared light irradiator 4.
  • the infrared light irradiator 2 serving as the first direction heating unit performs the first direction heating process in which the plurality of substrates 10 are heated by irradiating infrared light toward the + Z direction (first direction). Is going.
  • the + Z direction is a direction from the back surface of the substrate 10 to the front surface.
  • the infrared light irradiator 4 serving as the second direction heating unit heats the plurality of substrates 10 by irradiating infrared light in the ⁇ Z direction (second direction) that is opposite to the + Z direction. Second direction heat treatment is performed.
  • the ⁇ Z direction is a direction from the front surface to the back surface of the substrate 10.
  • the film forming apparatus 11 includes the substrate 10 and the infrared light irradiators 2 and 4 inside when performing the heat treatment (first direction heat treatment and second direction heat treatment) by the infrared light irradiators 2 and 4. It has a heating chamber 80 that houses it.
  • the air curtain 7 closes the opening 88 between the upper container 81 and the lower container 82, whereby the plurality of substrates 10 placed on the belt 52 and the infrared light irradiator. 2 and 4 can be shut off from the outside.
  • the thin film forming nozzle 1 and a part of the conveyor 53 are accommodated in the film forming chamber 90.
  • the film forming chamber 90 includes an upper container 91, a lower container 92, and a pair of openings 98.
  • a pair of openings 98 are located between the upper container 91 and the lower container 92 in the height direction, which is the Z direction. Therefore, the conveyor 53 provided between the openings 98 and 98 in the film forming chamber 90 is arranged at a position higher than the lower container 92 and lower than the upper container 91.
  • the thin film forming nozzle 1 which is a mist injection unit is fixedly arranged in the upper container 91 by fixing means (not shown). At this time, the thin film forming nozzle 1 is disposed in a positional relationship in which the ejection surface 1S and the upper surface of the belt 52 face each other.
  • the thin film forming nozzle 1 executes a mist injection process for injecting the raw material mist MT downward ( ⁇ Z direction) from the injection port provided on the injection surface 1S.
  • the raw material mist MT is a mist obtained by making a raw material solution into a mist.
  • the thin film forming nozzle 1 can inject the raw material mist MT into the atmosphere.
  • the film forming chamber 90 closes the opening 98 between the upper container 91 and the lower container 92 with the air curtain 7, thereby allowing a plurality of films placed on the thin film forming nozzle 1 and the belt 52.
  • the substrate 10 can be shut off from the outside.
  • the film forming apparatus 11 of Embodiment 1 uses the air curtain 7 to close both the pair of openings 88 of the heating chamber 80 and the pair of openings 98 of the film forming chamber 90, and conveys the belt 52 of the conveyor 53. By moving along the direction (X direction), the film forming environment can be set.
  • the film forming apparatus 11 uses infrared light so that the heat treatment performed in the heating chamber 80 and the mist injection processing performed in the film forming chamber 90 are not affected by each other in the film forming environment.
  • the irradiators 2 and 4 and the thin film forming nozzle 1 are arranged separately from each other.
  • the film forming apparatus 11 performs the heat treatment by the infrared light irradiation of the infrared light irradiators 2 and 4 in the heating chamber 80 in the film forming environment, and then the film forming chamber 90.
  • the mist injection process by the thin film forming nozzle 1 is executed in the inside.
  • the film forming apparatus 11 can form a thin film on the surface of the substrate 10 placed on the upper surface of the belt 52 in the film forming chamber 90.
  • the film forming apparatus 11 is provided apart from the conveyor 53 serving as the substrate transfer unit, and irradiates infrared light from the infrared light lamps 22 and 42 to heat the plurality of substrates 10.
  • a combination of infrared light irradiators 2 and 4 for performing heat treatment is provided as a heating mechanism.
  • the film formation apparatus 11 of Embodiment 1 can heat the substrate 10 by the infrared light irradiators 2 and 4 without having a contact relationship with the substrate 10, it is uniform regardless of the shape of the substrate 10. Heating can be performed without deforming the substrate 10.
  • the infrared light irradiators 2 and 4 and the thin film forming nozzle 1 are arranged separately from each other so that the heat treatment and the mist injection process are not affected by each other, each of the heat treatment and the mist injection process is performed. At the time of execution, it is possible to reliably avoid the occurrence of a raw material mist evaporation phenomenon in which the raw material mist is heated and evaporated by absorbing infrared light.
  • the film forming apparatus 11 of the first embodiment can form a thin film on the substrate 10 without reducing the film forming quality and the film forming speed.
  • the first direction heat treatment by the infrared light irradiator 2 and the second direction heat treatment by the infrared light irradiator 4 are simultaneously performed. Therefore, it can heat from the back surface of the board
  • the film forming apparatus 11 of Embodiment 1 can heat the substrate 10 more uniformly in the heating chamber 80.
  • the film forming apparatus 11 of the first embodiment irradiates the substrate 10 with infrared light without passing through the heating chamber 80 by providing the infrared light irradiators 2 and 4 that are heating mechanisms in the heating chamber 80. Therefore, the infrared light irradiation efficiency can be increased.
  • the infrared light irradiation from the infrared light irradiator 2 located below the conveyor 53 is performed upward (+ Z direction)
  • the infrared light is transmitted from the conveyor 53.
  • the plurality of substrates 10 are irradiated via the belt 52 (upper side and lower side).
  • the belt 52 is constituted by a combination of a pair of linear conveyor chains, and the first correspondence is made to have a structure in which an infrared light passage opening is present, and the infrared light is absorbed.
  • a second correspondence is conceivable in which an infrared light transmitting material having excellent infrared light transmission is used as a constituent material of the belt 52.
  • the degree of absorption of infrared light by the belt 52 can be minimized.
  • the infrared light transmitting material for example, germanium, silicon, zinc sulfide, zinc selenide and the like can be considered. However, it is necessary to satisfy the strength for use as the belt 52.
  • the infrared light irradiation from the infrared light irradiator 4 located above the conveyor 53 (+ Z direction) is directed downward ( ⁇ Z direction) and is directly irradiated to the substrate 10. It is not necessary to consider the first and second correspondences described above.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of a film forming apparatus according to Embodiment 2 of the present invention.
  • FIG. 2 shows an XYZ orthogonal coordinate system.
  • the film forming apparatus 12 of the second embodiment includes heating chambers 801 and 802, film forming chambers 901 and 902, two thin film forming nozzles 1, and two sets of infrared light irradiators 2 and 4.
  • a combination as well as a conveyor 53 are included as main components.
  • the conveyor 53 which is a substrate transport unit, transports the plurality of substrates 10 in the transport direction (X direction) while placing the plurality of substrates 10 on the upper surface of the belt 52.
  • the conveyor 53 includes a pair of transport rollers 51 provided at both left and right ends, and an endless transport belt 52 spanned between the pair of rollers 51.
  • the conveyor 53 can move the upper side (+ Z direction side) belt 52 along the conveyance direction (X direction) by rotationally driving the pair of rollers 51.
  • One of the pair of rollers 51 of the conveyor 53 is provided on the left side ( ⁇ X direction) outside the heating chamber 801, and the other is provided on the right side (+ X direction) of the film forming chamber 902.
  • the central portion of the belt 52 is provided inside any one of the heating chamber 801, the heating chamber 802, the film formation chamber 901, and the film formation chamber 902.
  • the belt 52 is driven by the rotation of the pair of rollers 51, and a pair of openings 88 provided in part of the left and right ( ⁇ X direction, + X direction) side surfaces of the heating chambers 801 and 802, and the film formation chamber 901 and Through a pair of openings 98 provided in a part of each of the left and right side surfaces of 902, the inside of the heating chambers 801 and 802, the inside of the film forming chambers 901 and 902, and the outside can be moved.
  • the heating chambers 801 and 802 and the film formation chambers 901 and 902 are provided adjacent to each other from the left to the right in the order of the heating chamber 801, the film formation chamber 901, the heating chamber 802, and the film formation chamber 902. Further, the opening 88 on the right side of the heating chamber 801 and the opening 98 on the left side of the film formation chamber 901 are shared, and the opening 98 on the right side of the film formation chamber 901 and the opening 88 on the left side of the heating chamber 802 are shared. Thus, the opening 88 on the right side of the heating chamber 802 and the opening 98 of the film formation chamber 902 are shared.
  • a part of the conveyor 53 is stored in the heating chambers 801 and 802. Since the internal and peripheral configurations of the heating chambers 801 and 802 are the same, the following description will focus on the heating chamber 801.
  • the heating chamber 801 includes an upper container 83, a lower container 84, and a pair of openings 88.
  • a pair of openings 88 are located between the upper container 83 and the lower container 84 in the height direction, which is the Z direction. Therefore, the conveyor 53 provided between the openings 88 and 88 in the heating chamber 801 is disposed at a position higher than the lower container 84 and lower than the upper container 83.
  • the infrared light irradiator 2 as the first direction heating unit is fixed by a fixing means (not shown) at a position away from the lower ( ⁇ Z direction) conveyor 53 outside the lower container 84. .
  • the infrared light irradiator 4 which is a second direction heating unit, is fixed by a fixing means (not shown) at a position away from the upper (+ Z direction) conveyor 53 outside the upper container 83.
  • the infrared light irradiator 2 and the infrared light irradiator 4 constitute a heating mechanism.
  • both the infrared light irradiators 2 and 4 are arranged at a position overlapping the upper surface region (region sandwiched between a pair of linear conveyor chains) of the belt 52 in the heating chamber 801 in plan view.
  • the heating chambers 801 and 802 are made of an infrared light transmitting material having excellent transparency without absorbing the infrared light irradiated from the infrared light irradiators 2 and 4, respectively. Specifically, the heating chambers 801 and 802 each employ quartz glass as a constituent material.
  • the infrared light irradiator 2 serving as the first direction heating unit irradiates infrared light toward the + Z direction (first direction) to heat the substrate 10. It is carried out.
  • the infrared light irradiator 4 serving as the second direction heating unit irradiates infrared light toward the ⁇ Z direction (second direction) opposite to the + Z direction to emit the substrate 10.
  • a second direction heat treatment for heating is performed.
  • the heating chamber 801 accommodates the substrate 10 inside when performing the heat treatment (first direction heat treatment and second direction heat treatment) of the infrared light irradiators 2 and 4.
  • the heating chamber 801 blocks the plurality of substrates 10 placed on the belt 52 from the outside by closing the opening 88 between the upper container 83 and the lower container 84 with the air curtain 7 when performing the heat treatment. Can do.
  • the film forming apparatus 12 of Embodiment 2 includes the infrared light irradiators 2 and 4 provided around the outside of the heating chamber 801 as the first heating mechanism, and heating as the second heating mechanism. Infrared light irradiators 2 and 4 are provided around the outside of the chamber 802.
  • the first heat treatment is performed on the plurality of substrates 10 in the heating chamber 801 by the infrared light irradiators 2 and 4, and the infrared light irradiators 2 and 4 are applied to the plurality of substrates 10 in the heating chamber 802.
  • the second heat treatment is performed.
  • These first and second heat treatments include the above-described first direction heat treatment and second direction heat treatment, respectively.
  • the film forming chambers 901 and 902 store a part of the thin film forming nozzle 1 and the conveyor 53, respectively. Since the internal structures of the film formation chambers 901 and 902 are the same, the following description will focus on the film formation chamber 901.
  • the film forming chamber 901 includes an upper container 91, a lower container 92, and a pair of openings 98.
  • a pair of openings 98 are located between the upper container 91 and the lower container 92 in the height direction, which is the Z direction. Therefore, the conveyor 53 provided between the openings 98 and 98 in the film forming chamber 901 is arranged at a position higher than the lower container 4 and lower than the upper container 83.
  • the thin film forming nozzle 1 that is a mist injection unit is fixedly disposed in the upper container 91 by a fixing means (not shown). At this time, the thin film forming nozzle 1 is disposed in a positional relationship in which the ejection surface 1S and the upper surface of the belt 52 face each other.
  • the thin film forming nozzle 1 executes mist injection processing for injecting the raw material mist MT downward ( ⁇ Z direction) from the injection port provided on the injection surface 1S, as in the first embodiment.
  • the film forming apparatus 12 includes the thin film forming nozzle 1 provided in the film forming chamber 901 as the first mist injection unit, and the film formation chamber 902 as the second mist injection unit. It has a thin film forming nozzle 1 provided inside.
  • the first mist injection process is executed by the thin film forming nozzle 1 provided in the film formation chamber 901
  • the second heat treatment is executed by the thin film formation nozzle 1 provided in the film formation chamber 902. .
  • the film forming chambers 901 and 902 are respectively placed on the thin film forming nozzle 1 and the belt 52 by closing the opening 98 between the upper container 91 and the lower container 92 by the air curtain 7 when performing the mist injection process.
  • the plurality of substrates 10 can be shut off from the outside.
  • the film forming apparatus 12 of Embodiment 1 uses the air curtain 7 to close all the pair of openings 88 of the heating chambers 801 and 802 and the pair of openings 98 of the film forming chambers 901 and 902, respectively,
  • the film forming environment can be set by moving the 53 belts 52 along the transport direction (X direction).
  • the heat treatment performed on the substrate 10 in the heating chambers 801 and 802 and the mist injection processing performed in the film forming chambers 901 and 902 have an influence on each other in the film forming environment.
  • the combination of the two infrared light irradiators 2 and 4 and the two thin film forming nozzles 1 are separately arranged.
  • the film-forming apparatus 12 of Embodiment 2 is the 1st heat processing by the infrared light irradiation of the infrared light irradiation devices 2 and 4 with respect to the several board
  • the film forming apparatus 12 performs the second heat treatment by the infrared light irradiation of the infrared light irradiators 2 and 4 on the plurality of substrates 10 in the heating chamber 802 under the film forming environment, A second mist spraying process is performed by the thin film forming nozzle 1 in the film forming chamber 902.
  • the film forming apparatus 12 of Embodiment 2 can finally form a thin film on the surface of the substrate 10 placed on the upper surface of the belt 52 in the film forming chamber 902.
  • the film forming apparatus 12 of the second embodiment heats the substrate 10 by the combination of the two infrared light irradiators 2 and 4 without having a contact relationship with the substrate 10 as in the first embodiment. Therefore, uniform heating can be performed without deforming the substrate 10 regardless of the shape of the substrate 10.
  • the film forming apparatus 12 includes two sets of infrared light irradiators 2 and 4 and two thin films so that the heat treatment and the mist injection process are not affected by each other.
  • the forming nozzles 1 are arranged separately from each other. For this reason, the film forming apparatus 12 can reliably avoid the occurrence of the material mist evaporation phenomenon when the first and second heat treatments and the first and second mist injection processes are executed.
  • the film forming apparatus 12 of the second embodiment can form a thin film on the surface of the substrate 10 without lowering the film forming quality and the film forming speed as in the first embodiment.
  • the film forming apparatus 12 has the first and second heating so as not to be affected between the first and second heat treatments and the first and second mist injection processes.
  • the mechanism and the first and second mist injection units are alternately arranged in the first and second order.
  • the film forming apparatus 12 according to the second embodiment is characterized in that the first and second heat treatments and the first and second mist injection treatments are alternately performed in the first and second order. .
  • the film forming apparatus 12 increases the thickness of the thin film to be formed or two films having different film qualities by executing the heating process and the mist injection process that are alternately repeated twice.
  • a thin film can be formed with a laminated structure.
  • the extended modification includes first to n-th mist injection units that have first to n-th heating mechanisms that perform first to n-th heat treatments and that perform first to n-th mist injection processes. have.
  • the first to nth heating mechanisms and the first to nth mist injections are not affected between the first to nth heat treatments and the first to nth mist injection processes.
  • the parts are alternately separated in the first to nth order.
  • the above-described modified example is characterized in that the first to nth heat treatments and the first to nth mist injection processes are alternately executed in the order of the first, second,..., Nth.
  • the heat treatment and the mist spraying process are alternately and repeatedly performed n ( ⁇ 2) times to increase the thickness of the thin film to be formed, or n layers having different film qualities.
  • a thin film can be formed with a laminated structure.
  • the film forming apparatus 12 uses the infrared light irradiator 2 as the first and second heat treatments performed on the substrates 10 in the heating chambers 801 and 802 as in the first embodiment.
  • the first direction heat treatment by and the second direction heat treatment by the infrared light irradiator 4 are simultaneously performed.
  • the film forming apparatus 12 of the second embodiment can heat the substrate 10 more uniformly in each of the heating chambers 801 and 802 as in the first embodiment.
  • the film forming apparatus 12 of the second embodiment is provided with infrared light irradiators 2 and 4 that are heating mechanisms outside the heating chambers 801 and 802, so that the red light lamps 22 and 42 can be replaced.
  • the maintenance of the external light irradiators 2 and 4 can be simplified.
  • the heating chambers 801 and 802 of the film forming apparatus 12 according to the second embodiment are made of quartz, which is an infrared light transmitting material that is excellent in transmittance with respect to the infrared light irradiated from the infrared light lamps 22 and 42. Glass is a constituent material.
  • the degree of absorption of infrared light by the bottom surface of the lower container 62 when the substrate 10 is heated through the bottom surfaces of the lower containers 84 of the heating chambers 801 and 802 by the first direction heat treatment is minimized.
  • the degree of absorption of infrared light by the upper surface of the upper container 83 when the substrate 10 is heated through the upper surface of the upper container 83 of each of the heating chambers 801 and 802 by the second direction heat treatment is minimized. There is an effect that can.
  • quartz glass for example, germanium, silicon, zinc sulfide, zinc selenide, etc. can be considered as infrared light transmitting materials.
  • the film forming apparatus 12 of the second embodiment at least one of the first and second correspondences regarding the infrared light absorption by the belt 52 may be adopted as in the first embodiment.
  • Modification The following configuration can be considered as a modification of the second embodiment.
  • FIG. 3 is an explanatory view schematically showing a first modification of the second embodiment.
  • FIG. 3 shows an XYZ orthogonal coordinate system.
  • a heating chamber 811, a heating chamber 812, and a film forming chamber 911 are arranged adjacent to each other along the transport direction, and a film forming apparatus 12 ⁇ / b> X that is a first modification of the second embodiment is provided. It is composed. That is, the first configuration is set in the film forming apparatus 12X.
  • the heating chambers 811 and 812 have a part of the conveyor 53 inside and the infrared light irradiators 2 and 4 around the outside like the heating chambers 801 and 802.
  • the film forming chamber 911 has a part of the conveyor 53 and the thin film forming nozzle 1 inside, like the film forming chamber 901. Further, the conveyance direction of the substrate 10 by the conveyor 53 is from left to right.
  • the film forming apparatus 12X Since the first configuration is set in the film forming apparatus 12X which is the first modification of the second embodiment, the film forming apparatus 12X has 2 to the substrate 10 in the heating chambers 811 and 812 without sandwiching the mist injection process. By performing the heat treatment consecutively, the temperature of the substrate 10 can be set relatively easily.
  • the heat treatment is performed twice consecutively without interposing the mist injection process.
  • FIG. 4 is an explanatory view schematically showing a second modification of the second embodiment.
  • FIG. 4 shows an XYZ orthogonal coordinate system.
  • a heating chamber 821 and film formation chambers 921 and 922 are arranged adjacent to each other in the transport direction in this order to form a film formation apparatus 12Y that is a second modification of the second embodiment. ing. That is, the second configuration is set in the film forming apparatus 12Y.
  • the heating chamber 821 has a part of the conveyor 53 inside and the infrared light irradiators 2 and 4 around the outside, like the heating chamber 801, and the film formation chamber 921.
  • And 922 like the film forming chambers 901 and 902, have a part of the conveyor 53 and the thin film forming nozzle 1 inside.
  • the transport direction of the substrate 10 is from left to right.
  • the film forming chambers 921 and 922 are continuously arranged twice without interposing a heat treatment. By performing the mist injection process, there is an effect that it is possible to form a thin film having a laminated structure that is formed under an environment where the temperature of the substrate 10 is different.
  • the mist injection process is performed twice consecutively without sandwiching the heat treatment.
  • an extended configuration in which the heat treatment is continuously performed three or more times without sandwiching the heat treatment is also considered. It is done. That is, an extended configuration in which mist injection processing is continuously performed by at least two mist injection units without sandwiching heat treatment is conceivable. In this case, it is expected that the effect of the film forming apparatus 12Y is enhanced.
  • both the first configuration and the second configuration are set, and the heating chambers 811 and 812 of the film forming apparatus 12X and the film forming of the film forming apparatus 12Y are performed.
  • a film formation apparatus in which the chambers 921 and 922 are combined may be realized.
  • FIGS. 5 and 6 are explanatory views showing a schematic configuration of a film forming apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 shows a configuration viewed from above
  • FIG. 6 shows a configuration viewed from the side as in FIGS.
  • An XYZ orthogonal coordinate system is shown in FIGS.
  • the film forming apparatus 13 includes a heating chamber 18, a film forming chamber 19, a combination of thin film forming nozzles 1R and 1L, a combination of infrared light irradiators 2R and 2L, and A conveyance chain 25 is included as a main component.
  • the illustration of the transport chain 25 is omitted
  • the illustration of the infrared light irradiators 2R and 2L and the thin film forming nozzles 1R and 1L are omitted.
  • the transport chain 25 which is a substrate transport unit has a substrate suspension part 25p, and each of the plurality of substrates 10 is suspended from above via the substrate suspension part 25p. At this time, the plurality of substrates 10 are suspended so that the left side (+ Y direction side) is the front surface and the right side ( ⁇ Y direction side) is the back surface, based on the transport direction (+ X direction).
  • the transport chain 25 can be moved in the transport direction (X direction) by driving means (not shown), and the plurality of substrates 10 can be moved in the transport direction as the transport chain 25 moves.
  • One end of the transfer chain 25 is provided on the left side ( ⁇ X direction) outside the heating chamber 18, and the other end is provided on the right side (+ X direction) outside the film forming chamber 19.
  • a central portion of the transfer chain 25 is provided inside one of the heating chamber 18 and the film forming chamber 19, and a pair of left and right ( ⁇ X direction, + X direction) side portions of the heating chamber 18 are provided. It is possible to move between the inside of the heating chamber 18, the inside of the film forming chamber 19, and the outside via the opening 89 and the opening 99 provided on the left and right side surfaces of the film forming chamber 19.
  • the heating chamber 18 and the film formation chamber 19 are provided adjacent to each other from the left to the right in the order of the heating chamber 18 and the film formation chamber 19. Further, the opening 89 on the right side of the heating chamber 18 and the opening 99 on the left side of the film forming chamber 19 are shared.
  • the heating chamber 18 includes a right container 85, a left container 86, and a pair of openings 89.
  • a pair of openings 89 are located between the right container 85 and the left container 86 in the width direction that is the Y direction. Therefore, the transport chain 25 provided between the openings 89 and 89 in the heating chamber 18 is on the left side (+ Y direction side) from the right container 85 and from the left container 86 with respect to the transport direction (X direction). Arranged on the right side ( ⁇ Y direction side).
  • the heating chamber 18 is made of an infrared light transmitting material having excellent transparency without absorbing the infrared light irradiated from the infrared light irradiators 2R and 2L.
  • the heating chamber 18 employs quartz glass as a constituent material.
  • infrared light transmitting materials other than quartz glass include germanium, silicon, zinc sulfide, and zinc selenide.
  • the infrared light irradiator 2R which is the first direction heating unit is fixed by a fixing means (not shown) on the right side ( ⁇ Y direction) outside the right container 85 with reference to the transport direction (+ X direction). Therefore, the infrared light irradiator 2R is arranged away from the transport chain 25.
  • the infrared light irradiator 2L which is the second direction heating unit, is fixed to the left (+ Y direction) side outside the left container 86 by a fixing means (not shown) with reference to the transport direction. Therefore, the infrared light irradiator 2L is arranged away from the transport chain 25.
  • a heating mechanism is configured by a combination of the infrared light irradiator 2R and the infrared light irradiator 2L.
  • both the infrared light irradiators 2 ⁇ / b> R and 2 ⁇ / b> L are arranged at the same height as the plurality of substrates 10 in the heating chamber 18.
  • the infrared light irradiator 2R which is the first direction heating unit, performs a first direction heat treatment in which the substrate 10 is heated by irradiating infrared light toward the + Y direction (first direction).
  • the + Y direction that is to the left with respect to the transport direction is a direction from the back surface of the substrate 10 toward the front surface.
  • the infrared light irradiator 2L which is the second direction heating unit, irradiates infrared light toward the ⁇ Y direction (second direction) opposite to the + Y direction to heat the substrate 10 to perform the second direction heating process. It is carried out.
  • the ⁇ Y direction that is to the right with respect to the transport direction is a direction from the front surface of the substrate 10 to the back surface.
  • the heating chamber 18 accommodates the substrate 10 therein when performing the heat treatment (first direction heat treatment and second direction heat treatment) of the infrared light irradiators 2R and 2L.
  • the heating chamber 18 closes the openings 89 between the right container 85 and the left container 86 with the air curtain 7, so that the plurality of substrates 10 that are suspended by the substrate suspension unit 25 p are removed. Can be blocked from the outside.
  • the film forming apparatus 13 includes the infrared light irradiators 2R and 2L provided around the outside of the heating chamber 18 as a heating mechanism.
  • the film forming chamber 19 stores the thin film forming nozzles 1R and 1L and a part of the transport chain 25.
  • the film forming chamber 19 includes a right container 95, a left container 96, and a pair of openings 99. A pair of openings 99 are located between the right container 95 and the left container 96 in the width direction that is the Y direction. Therefore, the transfer chain 25 provided between the openings 99 and 99 in the film forming chamber 19 is arranged on the left side of the right container 95 and on the right side of the left container 96 with respect to the transfer direction.
  • the thin film forming nozzle 1R which is the first direction mist injection unit is fixedly arranged in the right container 95 by fixing means (not shown). At this time, the thin film forming nozzle 1R is arranged in a positional relationship in which the ejection surface 1S and the back surface of the substrate 10 face each other.
  • the thin film forming nozzle 1L which is the second direction mist injection unit is fixedly arranged in the left container 96 by a fixing means (not shown). At this time, the thin film forming nozzle 1L is arranged in a positional relationship in which the ejection surface 1S and the surface of the substrate 10 face each other.
  • the thin film forming nozzle 1R executes a first direction mist injection process for injecting the raw material mist MT to the left (+ Y direction) from the injection port provided on the injection surface 1S.
  • the thin film forming nozzle 1L performs a second direction mist injection process for injecting the raw material mist MT to the right ( ⁇ Y direction) from the injection port provided on the injection surface 1S.
  • the film forming apparatus 13 includes the thin film forming nozzle 1R as the first direction mist injection unit and the thin film formation nozzle 1L as the second direction mist injection unit. Therefore, the film forming apparatus 13 of the third embodiment forms a mist injection unit by a combination of the thin film forming nozzles 1R and 1L, and the mist injection process includes a combination of the first direction mist injection process and the second direction mist injection process. It is out.
  • the film forming chamber 19 is suspended from the thin film forming nozzles 1R and 1L and the substrate suspension 25p by closing the opening 99 between the right container 95 and the left container 96 with the air curtain 7 when performing the mist injection process.
  • the plurality of substrates 10 can be blocked from the outside.
  • the film forming apparatus 13 of the third embodiment closes both the pair of openings 89 of the heating chamber 18 and the pair of openings 99 of the film forming chamber 19 by the air curtain 7 and moves the transport chain 25 in the transport direction (
  • the film forming environment can be set by moving along the X direction.
  • the heating process performed on the substrate 10 in the heating chamber 18 and the mist injection process performed in the film forming chamber 19 are not affected by each other in the above film forming environment.
  • the infrared light irradiators 2R and 2L and the thin film forming nozzles 1R and 1L are arranged separately from each other.
  • the film-forming apparatus 13 of Embodiment 3 performs the heat processing by the infrared light irradiation of the infrared light irradiators 2R and 2L on the substrate 10 in the heating chamber 18 under the film-forming environment, In the film forming chamber 901, mist injection processing is performed by the thin film forming nozzles 1R and 1L.
  • the film forming apparatus 13 of Embodiment 3 can form a thin film on each of the front surface and the back surface of the substrate 10 suspended from the transport chain 25 in the film forming chamber 901.
  • the film forming apparatus 13 can heat the substrate 10 by the infrared light irradiators 2R and 2L without having a contact relationship with the substrate 10 as in the first embodiment. Regardless of the shape of the substrate 10, uniform heating can be performed without deforming the substrate 10.
  • the infrared light irradiators 2R and 2L and the thin film forming nozzles 1R and 1L are separated from each other so that the heat treatment and the mist injection process are not affected by each other. Therefore, when the mist injection process is executed, the occurrence of the raw material mist evaporation phenomenon can be surely avoided.
  • the film forming apparatus 13 of the third embodiment can form a thin film on the substrate 10 without lowering the film forming quality and the film forming speed as in the first embodiment.
  • the first direction heat treatment by the infrared light irradiator 2R and the second direction heat treatment by the infrared light irradiator 2L are simultaneously performed. Therefore, it can heat from the back surface of the board
  • the film forming apparatus 13 of the third embodiment can heat the substrate 10 more uniformly in the heating chamber 80 as in the first embodiment.
  • the film forming apparatus 13 simultaneously performs the first direction mist spraying process by the thin film forming nozzle 1R and the second direction mist spraying process by the thin film forming nozzle 1L, so that the back surface and the front surface of the substrate respectively.
  • a thin film can be formed.
  • the film forming apparatus 13 of the third embodiment is provided with infrared light irradiators 2R and 2L, which are heating mechanisms, outside the heating chamber 18, thereby replacing the infrared light lamp 22 and the like. And 2L maintenance can be simplified.
  • the heating chamber 18 of the film forming apparatus 13 according to the third embodiment is made of quartz glass, which is an infrared light transmitting material having excellent transparency with respect to the infrared light irradiated from the infrared light lamps 22 and 42. As a constituent material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明は、成膜品質や成膜速度を落とすことなく、低コストで基板上に薄膜を成膜することができる成膜装置を提供することを目的とする。実施の形態1の成膜装置(11)は、加熱室(80)内で行う加熱処理と成膜室(90)内で行うミスト噴射処理とが互いに影響を受けないように、赤外光照射器(2,4)及び薄膜形成ノズル(1)が互いに分離して配置されている。実施の形態1の成膜装置(11)は、加熱室(80)内で赤外光照射器(2,4)の赤外光照射による加熱処理を実行した後、成膜室(90)内で薄膜形成ノズル(1)によるミスト噴射処理を実行する。

Description

成膜装置
 この発明は、太陽電池などの電子デバイスの製造に用いられ、基板上に膜を成膜する成膜装置に関するものである。
 基板上に膜を成膜する方法として、化学気相成長(CVD(Chemical Vapor Deposition))法がある。しかしながら、化学気相成長法では真空下での成膜が必要な場合が多くなり、真空ポンプなどに加えて、大型の真空容器を用いる必要がある。さらに、化学気相成長法では、コスト等の観点から、成膜される基板として大面積のものを採用することが困難である、という問題があった。そこで、大気圧下における成膜処理が可能なミスト法が、注目されている。
 ミスト法を利用した成膜装置に関する従来技術として、例えば特許文献1に係る技術が存在している。
 特許文献1に係る技術では、ミスト噴射用ノズル等を含むミスト噴射ヘッド部の底面に設けられる原料溶液噴出口及び反応材料噴出口から、大気中に配置されている基板に対してミスト化された原料溶液及び反応材料が噴射されている。当該噴射により、基板上には膜が成膜される。なお、反応材料は原料溶液との反応に寄与する材料を意味する。
 図7は従来の成膜装置の概略構成を示す説明図である。同図に示すように、基板載置部である基板積載ステージ30は上面に複数の基板10を載置している。
 基板積載ステージ30は真空吸着による吸着機構31を有し、この吸着機構31により、載置した複数の基板10それぞれの裏面全体を、基板積載ステージ30の上面上に吸着することができる。さらに、基板積載ステージ30は吸着機構31の下方に加熱機構32が設けられており、この加熱機構32により、基板積載ステージ30の上面に載置した複数の基板10に対する加熱処理を実行することができる。
 薄膜形成ノズル1(ミスト噴射部)は噴射面1Sに設けられた噴射口から下方に原料ミストMTを噴射するミスト噴射処理を実行する。なお、原料ミストMTは原料溶液をミスト化して得られるミストであり、薄膜形成ノズル1によって原料ミストMTを大気中に噴射することができる。
 薄膜形成ノズル1、基板積載ステージ30、基板積載ステージ30の上面に載置された複数の基板10は全て成膜室60に収納される。成膜室60は上部容器68、下部容器69及び扉67により構成される。成膜室60は、成膜処理を行う際、扉67を閉状態にして上部容器68,下部容器69間の開口部を塞ぐことにより、薄膜形成ノズル1、基板積載ステージ30及び複数の基板10を外部から遮断することができる。
 したがって、成膜室60の扉67を閉状態にし、加熱機構32の加熱処理中に、薄膜形成ノズル1によりミスト噴射処理を実行することにより、基板積載ステージ3の上面に載置された基板10上に薄膜を成膜することができる。
 このように、従来の成膜装置は、薄膜形成ノズル1によるミスト噴射処理と加熱機構32による加熱処理とを同時に実行することにより基板10上に薄膜を成膜している。
国際公開第2017/068625号
 上述したように、従来の成膜装置は、成膜対象物となる基材である基板10を上面上に載置する基板積載ステージ30の内部に加熱機構32を設け、基板積載ステージ30を平面型加熱手段として用いるのが一般的であった。
 基板積載ステージ30のような平面型加熱手段を用いる場合、基板積載ステージ30の上面と基板10の下面とを接触させ、基板積載ステージ30,基板10間を伝熱させて基板10の加熱処理を実行することになる。
 しかし、基板10が平板形状ではなく、その下面が湾曲したものや、下面に凹凸がある構造を呈する場合、平面型加熱手段では、基板積載ステージ30の上面と基板10の裏面との接触が局所的になる。このため、加熱機構32による加熱処理の実行時に基板10の加熱が不均一になったり、基板10に反りが発生して変形したりする等の問題点があった。
 本発明では、上記のような問題点を解決し、成膜品質や成膜速度を落とすことなく、基板上に薄膜を成膜することができる成膜装置を提供することを目的とする。
 この発明に係る成膜装置は、基板を搬送する基板搬送部と、赤外光ランプを有し、前記赤外光ランプから赤外光を照射して前記基板を加熱する加熱処理を実行する加熱機構と、原料溶液をミスト化して得られる原料ミストを噴射するミスト噴射処理を実行するミスト噴射部とを備え、前記加熱処理と前記ミスト噴射処理とが互いに影響を受けないように、前記加熱機構及び前記ミスト噴射部は分離して配置され、前記基板搬送部によって前記基板を搬送させつつ、前記加熱機構による加熱処理の実行後に、前記ミスト噴射部によるミスト噴射処理を実行して前記基板の表面に薄膜を成膜する。
 請求項1記載の本願発明の成膜装置は、赤外光ランプから赤外光を照射して基板を加熱する加熱処理を実行する加熱機構を備えているため、加熱機構による加熱処理の実行により基板の形状に関わらず、基板を均一に加熱することができる。
 さらに、加熱処理とミスト噴射処理とが互いに影響を受けないように加熱機構及びミスト噴射部は分離して配置されているため、加熱処理及びミスト噴射処理それぞれの実行時に、原料ミストが赤外光を吸収することにより加熱されて蒸発するという原料ミスト蒸発現象の発生を確実に回避することができる。
 その結果、請求項1記載の本願発明の成膜装置は、加熱機構による加熱処理の実行後、ミスト噴射部によるミスト噴射処理を実行することにより、成膜品質や成膜速度を落とすことなく、基板の表面に薄膜を成膜することができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
この発明の実施の形態1である成膜装置の概略構成を示す説明図である。 この発明の実施の形態2である成膜装置の概略構成を示す説明図である。 実施の形態2の第1の変形例を模式的に示す説明図である。 実施の形態2の第2の変形例を模式的に示す説明図である。 この発明の実施の形態3である成膜装置の概略構成を示す説明図(その1)である。 この発明の実施の形態3である成膜装置の概略構成を示す説明図(その2)である。 従来の成膜装置の概略構成を示す説明図である。
 <前提技術>
 図7で示した従来技術を改良し、基板積載ステージ30内に加熱機構32を設けることなく、赤外光ランプから赤外光を照射して基板10を加熱する加熱処理を実行する赤外光照射器を加熱機構として別途設け、基板積載ステージ30から離れて配置する構成が新規な前提技術として考えられる。
 上記前提技術は、加熱機構として赤外光照射器を用いることにより、基材となる基板10に接触することなく電磁波である赤外線で直接加熱できるため、基板10の形状に関わらず均一に加熱することが可能となる。
 しかし、上記前提技術においても、原料ミストMTが赤外光照射器から照射される赤外光を吸収し、原料ミストMTが加熱されて蒸発するという原料ミスト蒸発現象が発生するため、成膜品質、成膜速度が低下する問題点が残存している。また、原料ミスト蒸発現象は赤外光照射器による加熱処理の妨げになるという問題点も有している。
 以下で述べる実施の形態1~実施の形態3は、従来技術及び上述した前提技術の問題点を併せて解消することを目的としている。
 <実施の形態1>
 図1はこの発明の実施の形態1である成膜装置の概略構成を示す説明図である。図1にXYZ直交座標系を記す。
 図1に示すように、実施の形態1の成膜装置11は、加熱室80、成膜室90、薄膜形成ノズル1、赤外光照射器2及び4並びにコンベア53を主要構成要素として含んでいる。
 基板搬送部であるコンベア53はベルト52の上面に複数の基板10を載置しつつ、複数の基板10を搬送方向(X方向)に搬送している。コンベア53は左右(-X方向,+X方向)両端に設けられた搬送用の一対のローラ51と、一対のローラ51に架け渡された無端状の搬送用のベルト52とを備えている。なお、ベルト52はY方向両端に設けられた一対の線状のコンベアチェーンの組合せにより構成される。
 コンベア53は、一対のローラ51の回転駆動によって、上方側(+Z方向側)のベルト52を搬送方向(X方向)に沿って移動させることができる。
 コンベア53の一対のローラ51のうち、一方は加熱室80外の左方(-X方向)に設けられ、他方は成膜室90外の右方(+X方向)に設けられる。また、ベルト52は中央部が加熱室80及び成膜室90のうちいずれかの内部に設けられる。
 ベルト52は一対のローラ51の回転駆動により、加熱室80の左右(-X方向,+X方向)の側面の一部に設けられる一対の開口部88、及び成膜室90の左右の側面の一部に設けられる開口部98を介して、加熱室80の内部、成膜室90の内部及び外部との間を移動することができる。
 加熱室80及び成膜室90は隣接して設けられ、加熱室80の右側の開口部88と、成膜室90の左側の開口部98とは共用される。
 コンベア53の一部、及び赤外光照射器2,4は加熱室80内に収納される。加熱室80は上部容器81、下部容器82及び一対の開口部88により構成される。Z方向である高さ方向において上部容器81と下部容器82との間に一対の開口部88が位置する。したがって、加熱室80内の開口部88,88間に設けられるコンベア53は下部容器82より高く、上部容器81より低い位置に配置される。
 第1方向加熱部である赤外光照射器2は下部容器82内のコンベア53から離れた位置に、図示しない固定手段より固定される。第2方向加熱部であるである赤外光照射器4は上部容器81内のコンベア53から離れた位置に、図示しない固定手段より固定される。赤外光照射器2及び赤外光照射器4の組合せにより加熱機構が構成される。
 なお、赤外光照射器2及び4は共に、加熱室80内のベルト52の上面領域(線状の一対のコンベアチェーンに挟まれる領域)と平面視して重複する位置に配置される。
 赤外光照射器2はランプ載置台21及び複数の赤外光ランプ22から構成され、ランプ載置台21の上部に複数の赤外光ランプ22が取り付けられる。したがって、赤外光照射器2は複数の赤外光ランプ22から上方(+Z方向)に向けて赤外光を照射することができる。赤外光照射器2による上述した赤外光照射によってベルト52の上面に載置した複数の基板10に対する加熱処理(第1方向加熱処理)を実行することができる。
 赤外光照射器4はランプ載置台41及び複数の赤外光ランプ42から構成され、ランプ載置台41の下部に複数の赤外光ランプ42が取り付けられる。したがって、赤外光照射器4は複数の赤外光ランプ42から下方(-Z方向)に向けて赤外光を照射することができる。赤外光照射器4による上述した赤外光照射によってベルト52の上面に載置した複数の基板10に対する加熱処理(第2の方向加熱処理)を実行することができる。
 このように、第1方向加熱部である赤外光照射器2は、+Z方向(第1の方向)に向けて赤外光を照射して複数の基板10を加熱する第1方向加熱処理を行っている。+Z方向は基板10の裏面から表面に向かう方向となる。
 一方、第2方向加熱部である赤外光照射器4は、+Z方向と反対方向となる-Z方向(第2の方向)に向けて赤外光を照射して複数の基板10を加熱する第2方向加熱処理を行っている。-Z方向は基板10の表面から裏面に向かう方向となる。
 また、成膜装置11は、赤外光照射器2及び4による加熱処理(第1方向加熱処理及び第2方向加熱処理)の実行時に、基板10並びに赤外光照射器2及び4を内部に収容する加熱室80を有している。
 加熱室80は、加熱処理を行う際、エアカーテン7により上部容器81,下部容器82間の開口部88を塞ぐことにより、ベルト52上に載置された複数の基板10並びに赤外光照射器2及び4を外部から遮断することができる。
 薄膜形成ノズル1及びコンベア53の一部は成膜室90内に収納される。成膜室90は上部容器91、下部容器92及び一対の開口部98により構成される。Z方向である高さ方向において上部容器91と下部容器92との間に一対の開口部98が位置する。したがって、成膜室90内の開口部98,98間に設けられるコンベア53は下部容器92より高く、上部容器91より低い位置に配置される。
 ミスト噴射部である薄膜形成ノズル1は上部容器91内に図示しない固定手段により固定配置される。この際、薄膜形成ノズル1は、噴射面1Sとベルト52の上面とが対向する位置関係で配置される。
 薄膜形成ノズル1は噴射面1Sに設けられた噴射口から下方(-Z方向)に原料ミストMTを噴射するミスト噴射処理を実行する。なお、原料ミストMTは原料溶液をミスト化して得られるミストであり、薄膜形成ノズル1によって原料ミストMTを大気中に噴射することができる。
 成膜室90は、ミスト噴射処理を行う際、エアカーテン7により上部容器91,下部容器92間の開口部98を塞ぐことにより、薄膜形成ノズル1、及びベルト52上に載置された複数の基板10を外部から遮断することができる。
 したがって、実施の形態1の成膜装置11は、エアカーテン7によって加熱室80の一対の開口部88及び成膜室90の一対の開口部98を共に閉状態にし、コンベア53のベルト52を搬送方向(X方向)に沿って移動させることにより、成膜環境を設定することができる。
 実施の形態1の成膜装置11は、上記成膜環境下で、加熱室80内で行う加熱処理と成膜室90内で行うミスト噴射処理とが互いに影響を受けないように、赤外光照射器2及び4並びに薄膜形成ノズル1を互いに分離して配置している。
 そして、実施の形態1の成膜装置11は、上記成膜環境下で、加熱室80内で赤外光照射器2及び4の赤外光照射による加熱処理を実行した後、成膜室90内で薄膜形成ノズル1によるミスト噴射処理を実行する。
 その結果、実施の形態1の成膜装置11は、成膜室90内においてベルト52の上面に載置された基板10の表面上に薄膜を成膜することができる。
 このように、実施の形態1の成膜装置11は、基板搬送部であるコンベア53から離れて設けられ、赤外光ランプ22及び42から赤外光を照射して複数の基板10を加熱する加熱処理を実行する赤外光照射器2及び4の組合せを加熱機構として備えている。
 したがって、実施の形態1の成膜装置11は、基板10と接触関係をもたせることなく、赤外光照射器2及び4によって基板10を加熱することができるため、基板10の形状に関わらず均一な加熱を、基板10を変形させることなく行うことができる。
 さらに、加熱処理とミスト噴射処理とが互いに影響を受けないように赤外光照射器2及び4と薄膜形成ノズル1とが互いに分離して配置されているため、加熱処理及びミスト噴射処理それぞれの実行時に、原料ミストが赤外光を吸収することにより加熱されて蒸発するという原料ミスト蒸発現象の発生を確実に回避することができる。
 その結果、実施の形態1の成膜装置11は、成膜品質や成膜速度を落とすことなく、基板10上に薄膜を成膜することができる。
 加えて、加熱室80内で行う加熱処理として、赤外光照射器2による第1方向加熱処理と赤外光照射器4による第2方向加熱処理とを同時に行っている。したがって、上記第1方向加熱処理によって基板10の裏面から加熱し、かつ、上記第2方向加熱処理によって基板10の表面から加熱することができる。
 その結果、実施の形態1の成膜装置11は、加熱室80内において基板10をより均一に加熱することができる。
 さらに、実施の形態1の成膜装置11は、加熱機構である赤外光照射器2及び4を加熱室80内に設けることにより、加熱室80を介することなく赤外光を基板10に照射することができる分、赤外光の照射効率を高めることができる。
 なお、コンベア53の下方(-Z方向)に位置する赤外光照射器2からの赤外光の照射は、上方(+Z方向)に向けて行われているため、赤外光はコンベア53のベルト52(上方側及び下方側)を介して複数の基板10に照射されることになる。
 この点を考慮して、ベルト52を一対の線状のコンベアチェーンの組合せにより構成し、赤外光通過用の開口部分が存在する構造にする第1の対応と、赤外光を吸収することなく、赤外光の透過性に優れた赤外光透過材料をベルト52の構成材料とする第2の対応が考えられる。
 したがって、ベルト52に関し、上記第1及び第2の対応のうち少なくとも一つの対応を採用することにより、ベルト52による赤外光の吸収度合を必要最小限に抑えることができる。
 第2の対応の具体例を以下に述べる。赤外光透過材料として、例えば、ゲルマニウム、シリコン、硫化亜鉛、セレン化亜鉛などが考えられる。ただし、ベルト52として使用するための強度を満足する必要がある。
 一方、コンベア53の上方(+Z方向)に位置する赤外光照射器4からの赤外光の照射は、下方(-Z方向)に向けて行われており、基板10に直接照射されるため、上述した第1及び第2対応を考える必要はない。
 <実施の形態2>
 図2はこの発明の実施の形態2である成膜装置の概略構成を示す説明図である。図2にXYZ直交座標系を記す。
 図2に示すように、実施の形態2の成膜装置12は、加熱室801及び802、成膜室901及び902、2つの薄膜形成ノズル1、2組の赤外光照射器2及び4の組合せ並びにコンベア53を主要構成要素として含んでいる。
 基板搬送部であるコンベア53はベルト52の上面に複数の基板10を載置しつつ、複数の基板10を搬送方向(X方向)に搬送している。コンベア53は左右両端に設けられた搬送用の一対のローラ51と、一対のローラ51に架け渡された無端状の搬送用のベルト52とを備えている。
 コンベア53は、一対のローラ51の回転駆動によって、上方側(+Z方向側)のベルト52を搬送方向(X方向)に沿って移動させることができる。
 コンベア53の一対のローラ51のうち、一方は加熱室801外の左方(-X方向)に設けられ、他方は成膜室902の右方(+X方向)に設けられる。また、ベルト52の中央部は、加熱室801、加熱室802、成膜室901及び成膜室902のうちいずれかの内部に設けられる。
 したがって、ベルト52は一対のローラ51の回転駆動により、加熱室801及び802それぞれの左右(-X方向,+X方向)の側面の一部に設けられる一対の開口部88、及び成膜室901及び902それぞれの左右の側面の一部に設けられる一対の開口部98を介して、加熱室801及び802の内部、成膜室901及び902の内部並びに外部との間を移動することができる。
 加熱室801及び802と成膜室901及び902は、加熱室801、成膜室901、加熱室802及び成膜室902の順で左方から右方にかけて隣接して設けられる。また、加熱室801の右側の開口部88と成膜室901の左側の開口部98とが共用され、成膜室901の右側の開口部98と加熱室802の左側の開口部88とが共用され、加熱室802の右側の開口部88と成膜室902の開口部98とが共用される。
 コンベア53の一部は加熱室801及び802に収納される。加熱室801及び802の内部及び周辺の構成は同じであるため、以下では加熱室801を中心に説明する。
 加熱室801は、上部容器83、下部容器84及び一対の開口部88により構成される。Z方向である高さ方向において上部容器83と下部容器84との間に一対の開口部88が位置する。したがって、加熱室801内の開口部88,88間に設けられるコンベア53は下部容器84より高く、上部容器83より低い位置に配置される。
 加熱室801の周辺において、第1方向加熱部である赤外光照射器2は下部容器84外の下方(-Z方向)側のコンベア53から離れた位置に、図示しない固定手段より固定される。
 加熱室801の周辺において、第2方向加熱部であるである赤外光照射器4は上部容器83外の上方(+Z方向)側のコンベア53から離れた位置に、図示しない固定手段より固定される。赤外光照射器2及び赤外光照射器4により加熱機構が構成される。
 なお、赤外光照射器2及び4は共に、加熱室801内のベルト52の上面領域(線状の一対のコンベアチェーンに挟まれる領域)と平面視して重複する位置に配置される。
 加熱室801及び802はそれぞれ、赤外光照射器2及び4から照射される赤外光を吸収することなく、透過性に優れた赤外光透過材料を構成材料としている。具体的には、加熱室801及び802はそれぞれ構成材料として石英ガラスを採用している。
 第1方向加熱部である赤外光照射器2は、実施の形態1と同様、+Z方向(第1の方向)に向けて赤外光を照射して基板10を加熱する第1方向加熱処理を行っている。
 第2方向加熱部である赤外光照射器4は、実施の形態1と同様、+Z方向と反対方向となる-Z方向(第2の方向)に向けて赤外光を照射して基板10加熱する第2方向加熱処理を行っている。
 また、加熱室801は、赤外光照射器2及び4の加熱処理(第1方向加熱処理及び第2方向加熱処理)の実行時に、基板10を内部に収容している。
 加熱室801は、加熱処理を行う際、エアカーテン7により上部容器83,下部容器84間の開口部88を塞ぐことにより、ベルト52上に載置された複数の基板10を外部から遮断することができる。
 このように、実施の形態2の成膜装置12は、第1の加熱機構として加熱室801の外部周辺に設けられた赤外光照射器2及び4を有し、第2の加熱機構として加熱室802の外部周辺に設けられた赤外光照射器2及び4を有している。
 そして、加熱室801内の複数の基板10に対し赤外光照射器2及び4により第1の加熱処理を実行し、加熱室802内の複数の基板10に対し赤外光照射器2及び4により第2の加熱処理を実行している。これら第1及び第2の加熱処理がそれぞれ上述した第1方向加熱処理及び第2方向加熱処理を含んでいる。
 成膜室901及び902はそれぞれ薄膜形成ノズル1及びコンベア53の一部を収納する。成膜室901及び902の内部構成は同じであるため、以下では成膜室901を中心に説明する。
 成膜室901は、上部容器91、下部容器92及び一対の開口部98により構成される。Z方向である高さ方向において上部容器91と下部容器92との間に一対の開口部98が位置する。したがって、成膜室901内の開口部98,98間に設けられるコンベア53は下部容器4より高く、上部容器83より低い位置に配置される。
 成膜室901において、ミスト噴射部である薄膜形成ノズル1は上部容器91内に図示しない固定手段により固定配置される。この際、薄膜形成ノズル1は、噴射面1Sとベルト52の上面とが対向する位置関係で配置される。
 成膜室901において、薄膜形成ノズル1は、実施の形態1と同様、噴射面1Sに設けられた噴射口から下方(-Z方向)に原料ミストMTを噴射するミスト噴射処理を実行する。
 このように、実施の形態2の成膜装置12は、第1のミスト噴射部として成膜室901内に設けられた薄膜形成ノズル1を有し、第2のミスト噴射部として成膜室902内に設けられた薄膜形成ノズル1を有している。
 そして、成膜室901内に設けられた薄膜形成ノズル1により第1のミスト噴射処理を実行し、成膜室902内に設けられた薄膜形成ノズル1により第2の加熱処理を実行している。
 成膜室901及び902はそれぞれ、ミスト噴射処理を行う際、エアカーテン7により上部容器91,下部容器92間の開口部98を塞ぐことにより、薄膜形成ノズル1、及びベルト52上に載置された複数の基板10を外部から遮断することができる。
 したがって、実施の形態1の成膜装置12は、エアカーテン7によって加熱室801及び802それぞれの一対の開口部88並びに成膜室901及び902それぞれの一対の開口部98を全て閉状態にし、コンベア53のベルト52を搬送方向(X方向)に沿って移動させることにより、成膜環境を設定することができる。
 実施の形態2の成膜装置12は、上記成膜環境下で、加熱室801及び802内の基板10に対して行う加熱処理と成膜室901及び902内で行うミスト噴射処理とが互いに影響を受けないように、2組の赤外光照射器2及び4の組合せと2つの薄膜形成ノズル1とをそれぞれ分離して配置している。
 そして、実施の形態2の成膜装置12は、上記成膜環境下で、加熱室801内の複数の基板10に対し赤外光照射器2及び4の赤外光照射による第1の加熱処理を実行した後、成膜室901内で薄膜形成ノズル1による第1のミスト噴射処理を実行する。
 その後、成膜装置12は、上記成膜環境下で、加熱室802内の複数の基板10に対し赤外光照射器2及び4の赤外光照射による第2の加熱処理を実行した後、成膜室902内で薄膜形成ノズル1による第2のミスト噴射処理を実行する。
 その結果、実施の形態2の成膜装置12は、最終的に成膜室902においてベルト52の上面に載置された基板10の表面上に薄膜を成膜することができる。
 このように、実施の形態2の成膜装置12は、実施の形態1と同様、基板10と接触関係をもたせることなく、2組の赤外光照射器2及び4の組合せによって基板10を加熱することができるため、基板10の形状に関わらず均一な加熱を、基板10を変形させることなく行うことができる。
 さらに、実施の形態2の成膜装置12は、実施の形態1と同様、加熱処理とミスト噴射処理とが互いに影響を受けないように2組の赤外光照射器2及び4と2つの薄膜形成ノズル1とをそれぞれ分離して配置している。このため、成膜装置12は、第1及び第2の加熱処理並びに第1及び第2のミスト噴射処理それぞれの実行時に、上記原料ミスト蒸発現象の発生を確実に回避することができる。
 その結果、実施の形態2の成膜装置12は、実施の形態1と同様、成膜品質や成膜速度を落とすことなく、基板10の表面上に薄膜を成膜することができる。
 実施の形態2の成膜装置12は、上述したように、第1及び第2の加熱処理並びに第1及び第2のミスト噴射処理間で影響を受けないように、第1及び第2の加熱機構並びに第1及び第2ミスト噴射部は、第1、第2の順で交互に配置されている。
 そして、実施の形態2の成膜装置12は、第1及び第2の加熱処理と第1及び第2のミスト噴射処理とを第1,第2の順で交互に実行することを特徴としている。
 したがって、実施の形態2の成膜装置12は、2回交互に繰り返される加熱処理及びミスト噴射処理を実行することにより、成膜される薄膜の膜厚を厚くしたり、膜質が異なる2つの膜による積層構造で薄膜を形成したりすることができる。
 なお、上述した成膜装置12では、2つの加熱機構と2つのミスト噴射部による組合せを示したが、n(n≧2)個の加熱機構とn個のミスト噴射部による組合せによる拡張変形例を実現することができる。
 上記拡張変形例は、第1~第nの加熱処理を実行する第1~第nの加熱機構を有し、第1~第nのミスト噴射処理を実行する第1~第nのミスト噴射部を有している。
 上記拡張変形例は、第1~第nの加熱処理及び第1~第nのミスト噴射処理間で影響を受けないように、第1~第nの加熱機構及び第1~第nのミスト噴射部を、第1~第nの順で交互に分離して配置している。
 そして、上記拡張変形例は、第1~第nの加熱処理と第1~第nのミスト噴射処理とを第1,第2,…第nの順で交互に実行することを特徴としている。
 したがって、上記拡張変形例は、n(≧2)回交互に繰り返して加熱処理及びミスト噴射処理を実行することにより、成膜される薄膜の膜厚を厚くしたり、膜質が異なるn層の膜による積層構造で薄膜を形成したりすることができる。
 加えて、実施の形態2の成膜装置12は、加熱室801及び802内の基板10に対して行う第1及び第2の加熱処理として、実施の形態1と同様、赤外光照射器2による第1方向加熱処理と赤外光照射器4による第2方向加熱処理とを同時に行っている。
 その結果、実施の形態2の成膜装置12は、実施の形態1と同様、加熱室801及び802それぞれ内において基板10をより均一に加熱することができる。
 さらに、実施の形態2の成膜装置12は、加熱機構である赤外光照射器2及び4を加熱室801及び802の外部に設けることにより、赤外光ランプ22及び42の取り換え等、赤外光照射器2及び4のメンテナンスの簡略化を図ることができる。
 加えて、実施の形態2の成膜装置12の加熱室801及び802は、赤外光ランプ22及び42から照射される赤外光に対し、透過性に優れた赤外光透過材料である石英ガラスを構成材料としている。
 このため、第1方向加熱処理によって加熱室801及び802それぞれの下部容器84の底面を介して基板10を加熱する際の下部容器62の底面による赤外光の吸収度合を必要最小限に抑えることができる効果を奏する。同様に、第2方向加熱処理によって加熱室801及び802それぞれの上部容器83の上面を介して基板10を加熱する際の上部容器83の上面による赤外光の吸収度合を必要最小限に抑えることができる効果を奏する。
 また、赤外光透過材料として、石英ガラス以外に、例えば、ゲルマニウム、シリコン、硫化亜鉛、セレン化亜鉛などが考えられる。
 なお、実施の形態2の成膜装置12においても、実施の形態1と同様、ベルト52による赤外光吸収に関する上記第1及び第2の対応のうち少なくとも一つの対応を採用しても良い。
 (変形例)
 実施の形態2の変形例として以下の構成が考えられる。変形例において、赤外光照射器2及び4の組合せである加熱機構が複数存在する第1の構成、薄膜形成ノズル1であるミスト噴射部が複数存在する第2の構成のうち、少なくとも一つの構成が設定されている。
 図3は実施の形態2の第1の変形例を模式的に示す説明図である。図3にXYZ直交座標系を記している。同図に示すように、加熱室811、加熱室812及び成膜室911の順で搬送方向に沿って隣接して配置し、実施の形態2の第1の変形例である成膜装置12Xを構成している。すなわち、成膜装置12Xでは上記第1の構成が設定されている。
 なお、図3では図示しないが、加熱室811及び812は加熱室801及び802と同様、内部にコンベア53の一部を有し、外部周辺に赤外光照射器2及び4を有しており、成膜室911は成膜室901と同様、内部にコンベア53の一部と薄膜形成ノズル1とを有している。また、コンベア53による基板10の搬送方向は左から右である。
 実施の形態2の第1の変形例である成膜装置12Xは、上記第1の構成が設定されているため、ミスト噴射処理を挟むことなく、加熱室811及び812内の基板10に対し2回連続して加熱処理を実行することにより、基板10の温度設定を比較的容易に行える効果を奏する。
 なお、図3で示す例ではミスト噴射処理を挟むことなく、2回連続して加熱処理を行ったが、ミスト噴射処理を挟むことなく、3回以上連続して加熱処理を実行する拡張構成も考えられる。すなわち、少なくとも二つの加熱機構によって、ミスト噴射処理を挟むことなく連続して加熱処理を行う拡張構成が考えられる。この場合、成膜装置12Xの上記効果を高めることが期待される。
 図4は実施の形態2の第2の変形例を模式的に示す説明図である。図4にXYZ直交座標系を記している。同図に示すように、加熱室821、成膜室921及び922の順で搬送方向に沿って隣接して配置し、実施の形態2の第2の変形例である成膜装置12Yを構成している。すなわち、成膜装置12Yでは上記第2の構成が設定されている。
 なお、図4では図示しないが、加熱室821は加熱室801同様、内部にコンベア53の一部を有し、外部周辺に赤外光照射器2及び4を有しており、成膜室921及び922は成膜室901及び902と同様、内部にコンベア53の一部と薄膜形成ノズル1とを有している。また、基板10の搬送方向は左から右である。
 実施の形態2の第2の変形例である成膜装置12Yは、上記第2の構成が設定されているため、加熱処理を挟むことなく、2回連続して成膜室921及び922内でミスト噴射処理を実行することにより、基板10の温度が異なる環境下で成膜される積層構造の薄膜を形成することができる効果を奏する。
 なお、図4で示す例では加熱処理を挟むことなく、2回連続してミスト噴射処理を行ったが、加熱処理を挟むことなく、3回以上連続して加熱処理を実行する拡張構成も考えられる。すなわち、少なくとも二つのミスト噴射部によって、加熱処理を挟むことなく連続してミスト噴射処理を行う拡張構成が考えられる。この場合、成膜装置12Yの上記効果を高めることが期待される。
 また、実施の形態2の第3の変形例として、上記第1の構成と上記第2の構成とが共に設定され、成膜装置12Xの加熱室811及び812と、成膜装置12Yの成膜室921及び922とを組み合わせた成膜装置を実現してもよい。
 <実施の形態3>
 図5及び図6はこの発明の実施の形態3である成膜装置の概略構成を示す説明図である。図5は上方から視た構成を示し、図6は図1,図2と同様、側面から視た構成を示している。図5及び図6それぞれにXYZ直交座標系を記す。
 図5及び図6に示すように、実施の形態3の成膜装置13は、加熱室18、成膜室19、薄膜形成ノズル1R及び1Lの組合せ、赤外光照射器2R及び2Lの組合せ並びに搬送チェーン25を主要構成要素として含んでいる。なお、図5では、搬送チェーン25の図示を省略し、図6では、赤外光照射器2R及び2L並びに薄膜形成ノズル1R及び1Lの図示を省略している。
 図6に示すように、基板搬送部である搬送チェーン25は基板吊り下げ部25pを有し、基板吊り下げ部25pを介して複数の基板10それぞれを上方から吊り下げている。この際、複数の基板10は、搬送方向(+X方向)を基準として、左側(+Y方向側)が表面、右側(-Y方向側)が裏面になるように吊り下げられる。
 搬送チェーン25は図示しない駆動手段によって搬送方向(X方向)に移動可能であり、搬送チェーン25の移動に伴って複数の基板10を搬送方向に移動させることができる。
 搬送チェーン25の一端は加熱室18外の左方(-X方向)に設けられ、他端は成膜室19外の右方(+X方向)に設けられる。
 また、搬送チェーン25の中央部が、加熱室18及び成膜室19のうちいずれかの内部に設けられ、加熱室18の左右(-X方向,+X方向)側面の一部に設けられる一対の開口部89、成膜室19の左右側面に設けられる開口部99を介して、加熱室18の内部、成膜室19の内部及び外部との間を移動することができる。
 加熱室18と成膜室19は、加熱室18及び成膜室19の順で左方から右方にかけて隣接して設けられる。また、加熱室18の右側の開口部89と成膜室19の左側の開口部99とが共用される。
 搬送チェーン25の一部は加熱室18内に収納される。加熱室18は、右方容器85、左方容器86及び一対の開口部89により構成される。Y方向である幅方向において右方容器85と左方容器86との間に一対の開口部89が位置する。したがって、加熱室18内の開口部89,89間に設けられる搬送チェーン25は、搬送方向(X方向)を基準として、右方容器85より左側(+Y方向側)、かつ、左方容器86より右側(-Y方向側)に配置される。
 加熱室18は、赤外光照射器2R及び2Lから照射される赤外光を吸収することなく、透過性に優れた赤外光透過材料を構成材料としている。具体的には、加熱室18は構成材料として石英ガラスを採用している。石英ガラス以外の赤外光透過材料として、例えば、ゲルマニウム、シリコン、硫化亜鉛、セレン化亜鉛などが考えられる。
 第1方向加熱部である赤外光照射器2Rは、搬送方向(+X方向)を基準として、右方容器85外の右方(-Y方向)側に、図示しない固定手段より固定される。したがって、赤外光照射器2Rは搬送チェーン25から離れて配置される。
 第2方向加熱部であるである赤外光照射器2Lは、搬送方向を基準として、左方容器86外の左方(+Y方向)側に、図示しない固定手段より固定される。したがって、赤外光照射器2Lは搬送チェーン25から離れて配置される。赤外光照射器2R及び赤外光照射器2Lの組合せにより加熱機構が構成される。
 なお、図4では図示していないが、赤外光照射器2R及び2Lは共に加熱室18内の複数の基板10と同程度の高さで配置される。
 第1方向加熱部である赤外光照射器2Rは、+Y方向(第1の方向)に向けて赤外光を照射して基板10を加熱する第1方向加熱処理を行っている。搬送方向を基準として左方となる+Y方向は基板10の裏面から表面に向かう方向となる。
 第2方向加熱部である赤外光照射器2Lは、+Y方向と反対方向となる-Y方向(第2の方向)に向けて赤外光を照射して基板10加熱する第2方向加熱処理を行っている。搬送方向を基準として右方となる-Y方向は基板10の表面から裏面に向かう方向となる。
 また、加熱室18は、赤外光照射器2R及び2Lの加熱処理(第1方向加熱処理及び第2方向加熱処理)の実行時に、基板10を内部に収容している。
 加熱室18は、加熱処理を行う際、エアカーテン7により右方容器85,左方容器86間の開口部89を塞ぐことにより、基板吊り下げ部25pによって吊り下げられている複数の基板10を外部から遮断することができる。
 このように、実施の形態3の成膜装置13は、加熱機構として加熱室18の外部周辺に設けられた赤外光照射器2R及び2Lを有している。
 そして、加熱室18の外部周辺に設けられた赤外光照射器2R及び2Lにより加熱処理を実行している。
 成膜室19は薄膜形成ノズル1R及び1L並びに搬送チェーン25の一部を収納する。成膜室19は右方容器95、左方容器96及び一対の開口部99により構成される。Y方向である幅方向において右方容器95と左方容器96との間に一対の開口部99が位置する。したがって、成膜室19内の開口部99,99間に設けられる搬送チェーン25は、搬送方向を基準として、右方容器95より左側、かつ、左方容器96より右側に配置される。
 第1方向ミスト噴射部である薄膜形成ノズル1Rは右方容器95内に図示しない固定手段により固定配置される。この際、薄膜形成ノズル1Rは、噴射面1Sと基板10の裏面とが対向する位置関係で配置される。
 第2方向ミスト噴射部である薄膜形成ノズル1Lは左方容器96内に図示しない固定手段により固定配置される。この際、薄膜形成ノズル1Lは、噴射面1Sと基板10の表面とが対向する位置関係で配置される。
 成膜室19内において、薄膜形成ノズル1Rは、噴射面1Sに設けられた噴射口から左方(+Y方向)に原料ミストMTを噴射する第1方向ミスト噴射処理を実行する。
 成膜室19内において、薄膜形成ノズル1Lは、噴射面1Sに設けられた噴射口から右方(-Y方向)に原料ミストMTを噴射する第2方向ミスト噴射処理を実行する。
 このように、実施の形態3の成膜装置13は、第1方向ミスト噴射部として薄膜形成ノズル1Rを有し、第2方向ミスト噴射部とし薄膜形成ノズル1Lを有している。したがって、実施の形態3の成膜装置13は、薄膜形成ノズル1R及び1Lの組合せによりミスト噴射部を構成し、ミスト噴射処理は第1方向ミスト噴射処理及び第2方向ミスト噴射処理の組合せを含んでいる。
 成膜室19はミスト噴射処理を行う際、エアカーテン7により右方容器95,左方容器96間の開口部99を塞ぐことにより、薄膜形成ノズル1R及び1L並びに基板吊り下げ部25pから吊り下げられている複数の基板10を外部から遮断することができる。
 したがって、実施の形態3の成膜装置13は、エアカーテン7によって加熱室18の一対の開口部89及び成膜室19の一対の開口部99を共に閉状態にし、搬送チェーン25を搬送方向(X方向)に沿って移動させることにより、成膜環境を設定することができる。
 実施の形態3の成膜装置13は、上記成膜環境下で、加熱室18内の基板10に対して行う加熱処理と成膜室19内で行うミスト噴射処理とが互いに影響を受けないように、赤外光照射器2R及び2Lと薄膜形成ノズル1R及び1Lとを互いに分離して配置している。
 そして、実施の形態3の成膜装置13は、上記成膜環境下で、加熱室18内の基板10に対し赤外光照射器2R及び2Lの赤外光照射による加熱処理を実行した後、成膜室901内で薄膜形成ノズル1R及び1Lによるミスト噴射処理を実行する。
 その結果、実施の形態3の成膜装置13は、成膜室901において搬送チェーン25に吊り下げられた基板10の表面上及び裏面上それぞれに薄膜を成膜することができる。
 このように、実施の形態3の成膜装置13は、実施の形態1と同様、基板10と接触関係をもたせることなく、赤外光照射器2R及び2Lによって基板10を加熱することができるため、基板10の形状に関わらず均一な加熱を、基板10を変形させることなく行うことができる。
 さらに、成膜装置13は、実施の形態1と同様、加熱処理とミスト噴射処理とが互いに影響を受けないように赤外光照射器2R及び2Lと薄膜形成ノズル1R及び1Lとが互いに分離して配置されているため、ミスト噴射処理の実行時に、上記原料ミスト蒸発現象の発生を確実に回避することができる。
 その結果、実施の形態3の成膜装置13は、実施の形態1と同様、成膜品質や成膜速度を落とすことなく、基板10上に薄膜を成膜することができる。
 加えて、加熱室18内の基板10に対して行う加熱処理として、赤外光照射器2Rによる第1方向加熱処理と赤外光照射器2Lによる第2方向加熱処理とを同時に行っている。したがって、上記第1方向加熱処理によって基板10の裏面から加熱し、かつ、上記第2方向加熱処理によって基板10の表面から加熱することができる。
 その結果、実施の形態3の成膜装置13は、実施の形態1と同様、加熱室80内において基板10をより均一に加熱することができる。
 加えて、実施の形態3の成膜装置13は、薄膜形成ノズル1Rによる第1方向ミスト噴射処理と薄膜形成ノズル1Lによる第2方向ミスト噴射処理とを同時行うことにより、基板の裏面及び表面それぞれに薄膜を成膜することができる。
 さらに、実施の形態3の成膜装置13は、加熱機構である赤外光照射器2R及び2Lを加熱室18外に設けることにより、赤外光ランプ22の取り換え等、赤外光照射器2R及び2Lのメンテナンスの簡略化を図ることができる。
 加えて、実施の形態3の成膜装置13の加熱室18は、赤外光ランプ22及び42から照射される赤外光に対し、透過性に優れた赤外光透過材料である石英ガラスを構成材料としている。
 このため、第1方向加熱処理によって加熱室18の右方容器85の側面を介して基板10を加熱する際の右方容器85の側面による赤外光の吸収度合を必要最小限に抑えることができる効果を奏する。同様に、第2方向加熱処理によって加熱室18の左方容器86の側面を介して基板10を加熱する際の左方容器86の側面による赤外光の吸収度合を必要最小限に抑えることができる効果を奏する。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1,1R,1L 薄膜形成ノズル
 2,2R,2L,4 赤外光照射器
 11~13,12X,12Y 成膜装置
 18,80,801,802,811,812,821 加熱室
 19,90,901,902,911,921,922 成膜室
 21,41 ランプ載置台
 22,42 赤外光ランプ
 25 搬送チェーン
 51 ローラ
 52 ベルト
 53 コンベア
 81,83,91 上部容器
 82,84,92 下部容器
 85,95 右方容器
 86,96 左方容器
 88,89,98,99 開口部

Claims (8)

  1.  基板(10)を搬送する基板搬送部(53,25)と、
     赤外光ランプ(22,42)を有し、前記赤外光ランプから赤外光を照射して前記基板を加熱する加熱処理を実行する加熱機構(2,4,2R,2L)と、
     原料溶液をミスト化して得られる原料ミスト(MT)を噴射するミスト噴射処理を実行するミスト噴射部(1)とを備え、
     前記加熱処理と前記ミスト噴射処理とが互いに影響を受けないように、前記加熱機構及び前記ミスト噴射部は分離して配置され、
     前記基板搬送部によって前記基板を搬送させつつ、前記加熱機構による加熱処理の実行後に、前記ミスト噴射部によるミスト噴射処理を実行して前記基板の表面に薄膜を成膜する、
    成膜装置。
  2.  請求項1記載の成膜装置であって、
     前記加熱機構は、第1~第n(n≧2)の加熱処理を実行する第1~第nの加熱機構を含み、前記加熱処理は第1~第nの加熱処理を含み、
     前記ミスト噴射部は、第1~第nのミスト噴射処理を実行する第1~第nのミスト噴射部を含み、前記ミスト噴射処理は第1~第nのミスト噴射処理を含み、
     前記第1~第nの加熱処理及び前記第1~第nのミスト噴射処理間で影響を受けないように、前記第1~第nの加熱機構及び前記第1~第nのミスト噴射部はそれぞれ分離して配置され、
     前記第1~第nの加熱処理と前記第1~第nのミスト噴射処理とが第1~第nの順で交互に実行されることを特徴とする、
    成膜装置。
  3.  請求項1記載の成膜装置であって、
     前記加熱機構が複数の加熱機構を含む第1の構成、及び前記ミスト噴射部が複数のミスト噴射部を含む第2の構成のうち、少なくとも一つの構成が設定され、
     前記第1の構成の場合、前記複数の加熱機構のうち少なくとも二つの加熱機構によって、前記ミスト噴射処理を挟むことなく連続して前記加熱処理が実行され、
     前記第2の構成の場合、前記複数のミスト噴射部のうち少なくとも二つのミスト噴射部によって、前記加熱処理を挟むことなく連続して前記ミスト噴射処理が実行される、
    成膜装置。
  4.  請求項1から請求項3のうち、いずれか1項に記載の成膜装置であって、
     前記加熱機構は、
     第1の方向に向けて赤外光を照射して前記基板を加熱する第1方向加熱処理を行う第1方向加熱部(2,2R)と、
     前記第1の方向と反対方向となる第2の方向に向けて赤外光を照射して前記基板を加熱する第2方向加熱処理を行う第2方向加熱部(4,2L)とを含み、
     前記加熱処理は前記第1方向加熱処理と前記第2方向加熱処理とを含む、
    成膜装置。
  5.  請求項4記載の成膜装置であって、
     前記ミスト噴射部は、
     前記第1の方向に向けて前記原料ミストを噴射する第1方向ミスト噴射処理を実行する第1方向ミスト噴射部(1R)と、
     前記第1の方向と反対方向となる第2の方向に向けて前記原料ミストを噴射する第2方向ミスト噴射処理を実行する第2方向ミスト噴射部(1L)とを含み、
     前記ミスト噴射処理は前記第1方向ミスト噴射処理と前記第2方向ミスト噴射処理とを含む、
    成膜装置。
  6.  請求項4または請求項5記載の成膜装置であって、
     前記第1の方向は基板の裏面から表面に向かう方向であり、
     前記第2の方向は基板の表面から裏面に向かう方向である、
    成膜装置。
  7.  請求項1記載の成膜装置であって、
     前記加熱処理の実行時に、前記基板及び前記加熱機構を内部に収容する加熱室(80)と、
     前記ミスト噴射処理の実行時に、前記基板及び前記ミスト噴射部を内部に収容する成膜室(90)とをさらに備える、
    成膜装置。
  8.  請求項1記載の成膜装置であって、
     前記加熱処理の実行時に、前記基板を内部に収容する加熱室(801,802,18)と、
     前記ミスト噴射処理の実行時に、前記ミスト噴射部を内部に収容する成膜室(901,902,19)をさらに備え、
     前記加熱機構は前記加熱室外に配置され、前記加熱室を介して前記基板を加熱し、
     前記加熱室は、前記赤外光ランプから照射される赤外光に対し、透過性に優れた赤外光透過材料を構成材料とする、
    成膜装置。
PCT/JP2018/022034 2018-06-08 2018-06-08 成膜装置 WO2019234917A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207034541A KR20210005937A (ko) 2018-06-08 2018-06-08 성막 장치
JP2020523956A JP7039151B2 (ja) 2018-06-08 2018-06-08 成膜装置
PCT/JP2018/022034 WO2019234917A1 (ja) 2018-06-08 2018-06-08 成膜装置
CN201880093561.7A CN112135923B (zh) 2018-06-08 2018-06-08 成膜装置
US17/047,695 US20210114047A1 (en) 2018-06-08 2018-06-08 Film forming apparatus
DE112018007706.3T DE112018007706T5 (de) 2018-06-08 2018-06-08 Filmausbildungsvorrichtung
TW107128818A TWI685585B (zh) 2018-06-08 2018-08-17 成膜裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022034 WO2019234917A1 (ja) 2018-06-08 2018-06-08 成膜装置

Publications (1)

Publication Number Publication Date
WO2019234917A1 true WO2019234917A1 (ja) 2019-12-12

Family

ID=68769825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022034 WO2019234917A1 (ja) 2018-06-08 2018-06-08 成膜装置

Country Status (7)

Country Link
US (1) US20210114047A1 (ja)
JP (1) JP7039151B2 (ja)
KR (1) KR20210005937A (ja)
CN (1) CN112135923B (ja)
DE (1) DE112018007706T5 (ja)
TW (1) TWI685585B (ja)
WO (1) WO2019234917A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113414039A (zh) * 2021-05-25 2021-09-21 安庆中船柴油机有限公司 一种船用部件喷涂生产线的气体过滤系统
WO2022059119A1 (ja) * 2020-09-17 2022-03-24 東芝三菱電機産業システム株式会社 成膜装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210129182A1 (en) * 2019-11-04 2021-05-06 Roeslein & Associates, Inc. Ultraviolet bottom coating system and method of operating
CN114832979B (zh) * 2022-04-13 2023-02-14 潮峰钢构集团有限公司 高强度钢构件的多功能表面处理系统及其处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950965A (ja) * 1995-08-04 1997-02-18 Tokyo Electron Ltd 枚葉式の熱処理装置
JP2014037089A (ja) * 2012-08-16 2014-02-27 Toshiba Mitsubishi-Electric Industrial System Corp 積層フィルム製造装置
WO2015064438A1 (ja) * 2013-10-30 2015-05-07 株式会社ニコン 薄膜の製造方法、透明導電膜
JP2018076591A (ja) * 2012-05-24 2018-05-17 株式会社ニコン ミストによる成膜装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122121A (ja) * 1985-11-21 1987-06-03 Sumitomo Electric Ind Ltd 半導体基板の加熱方法
JPH0390579A (ja) * 1989-08-31 1991-04-16 Taiyo Yuden Co Ltd 薄膜形成装置
JPH11126743A (ja) * 1997-10-24 1999-05-11 Tokyo Electron Ltd 処理装置
CN1086158C (zh) * 1999-08-30 2002-06-12 上海交通大学 透明导电薄膜和减反射薄膜喷涂装置及其方法
JP2006016273A (ja) * 2004-07-05 2006-01-19 Fujikura Ltd 噴霧熱分解法による成膜装置
CN100374612C (zh) * 2005-12-26 2008-03-12 内蒙古科技大学 金属雾化喷射连续生产双金属薄板、薄带的工艺及设备
US20110151619A1 (en) * 2008-09-24 2011-06-23 Toshiba Mitsubishi-Electric Industrial Sys. Corp. Method of forming metal oxide film and apparatus for forming metal oxide film
US20130189635A1 (en) * 2012-01-25 2013-07-25 First Solar, Inc. Method and apparatus providing separate modules for processing a substrate
JP2014072352A (ja) * 2012-09-28 2014-04-21 Dainippon Screen Mfg Co Ltd 熱処理装置
CN104704624B (zh) * 2012-10-09 2017-06-09 应用材料公司 具索引的串联基板处理工具
JP6510667B2 (ja) 2015-10-19 2019-05-08 東芝三菱電機産業システム株式会社 成膜装置
JP6598988B2 (ja) * 2016-04-26 2019-10-30 東芝三菱電機産業システム株式会社 成膜装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950965A (ja) * 1995-08-04 1997-02-18 Tokyo Electron Ltd 枚葉式の熱処理装置
JP2018076591A (ja) * 2012-05-24 2018-05-17 株式会社ニコン ミストによる成膜装置
JP2014037089A (ja) * 2012-08-16 2014-02-27 Toshiba Mitsubishi-Electric Industrial System Corp 積層フィルム製造装置
WO2015064438A1 (ja) * 2013-10-30 2015-05-07 株式会社ニコン 薄膜の製造方法、透明導電膜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059119A1 (ja) * 2020-09-17 2022-03-24 東芝三菱電機産業システム株式会社 成膜装置
JP7094649B1 (ja) * 2020-09-17 2022-07-04 東芝三菱電機産業システム株式会社 成膜装置
CN113414039A (zh) * 2021-05-25 2021-09-21 安庆中船柴油机有限公司 一种船用部件喷涂生产线的气体过滤系统
CN113414039B (zh) * 2021-05-25 2022-06-14 安庆中船柴油机有限公司 一种船用部件喷涂生产线的气体过滤系统

Also Published As

Publication number Publication date
DE112018007706T5 (de) 2021-02-18
JPWO2019234917A1 (ja) 2021-04-22
JP7039151B2 (ja) 2022-03-22
TW202000969A (zh) 2020-01-01
CN112135923B (zh) 2022-11-22
CN112135923A (zh) 2020-12-25
US20210114047A1 (en) 2021-04-22
KR20210005937A (ko) 2021-01-15
TWI685585B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2019234917A1 (ja) 成膜装置
JP6801975B2 (ja) 塗布装置および塗布方法
WO2019234918A1 (ja) 成膜装置
JP6858473B2 (ja) 成膜装置
JP6925005B2 (ja) 塗布装置
JP6855147B2 (ja) 成膜装置
KR101509401B1 (ko) 양면 자외선 경화장치
WO2012008218A1 (ja) 塗布膜製造用加熱乾燥装置およびこれを備えた塗布膜製造装置ならびに塗布膜製造方法
JP7280751B2 (ja) 成膜方法
JP2021183332A (ja) 塗布装置
JP2014157274A (ja) 紫外線照射装置及び表示パネルの製造方法
JP2007025333A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523956

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207034541

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18922079

Country of ref document: EP

Kind code of ref document: A1