WO2022059119A1 - 成膜装置 - Google Patents
成膜装置 Download PDFInfo
- Publication number
- WO2022059119A1 WO2022059119A1 PCT/JP2020/035222 JP2020035222W WO2022059119A1 WO 2022059119 A1 WO2022059119 A1 WO 2022059119A1 JP 2020035222 W JP2020035222 W JP 2020035222W WO 2022059119 A1 WO2022059119 A1 WO 2022059119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film forming
- mist
- heating
- space
- substrate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
Definitions
- the present disclosure relates to a film forming apparatus used for manufacturing an electronic device such as a solar cell and forming a thin film on a substrate.
- CVD chemical vapor deposition
- the chemical vapor deposition method often requires film formation under vacuum, and it is necessary to use a large vacuum vessel in addition to a vacuum pump or the like.
- the chemical vapor deposition method there is a problem that it is difficult to adopt a substrate having a large area as a substrate to be formed from the viewpoint of cost and the like. Therefore, a mist method capable of forming a film under atmospheric pressure is drawing attention.
- Patent Document 1 As a conventional technique relating to a film forming apparatus using the mist method, for example, there is a film forming apparatus disclosed in Patent Document 1.
- FIG. 11 is an explanatory diagram showing a schematic configuration of a conventional film forming apparatus.
- FIG. 11 shows the XYZ Cartesian coordinate system.
- the conventional film forming apparatus 19 includes heating chambers 851 and 852, film forming chambers 951 and 952, two thin film forming nozzles 101, a combination of two sets of infrared light irradiators 2 and 4, and a conveyor. 53 is included as a main component.
- the conveyor 53 which is a board transporting unit, transports a plurality of boards 10 in the transport direction (X direction) while mounting the plurality of boards 10 on the upper surface of the belt 52.
- the conveyor 53 includes a pair of transport rollers 51 provided on both left and right ends, and an endless transport belt 52 spanned by the pair of rollers 51.
- the conveyor 53 can move the belt 52 on the upper side (+ Z direction side) along the transport direction (X direction) by rotationally driving the pair of rollers 51.
- the central portion of the belt 52 is provided inside any one of the heating chamber 851, the heating chamber 852, the film forming chamber 951 and the film forming chamber 952.
- a pair of openings 188 provided on a part of the left and right (-X direction, + X direction) side surfaces of the heating chambers 851 and 852 are provided, and are provided on a part of the left and right side surfaces of the film forming chambers 951 and 952, respectively.
- a pair of openings 198 are provided.
- the heating chambers 851 and 852 and the film forming chambers 951 and 952 are provided adjacent to each other in the order of the heating chamber 851, the film forming chamber 951, the heating chamber 852 and the film forming chamber 952 from the left to the right. Further, the opening 188 on the right side of the heating chamber 851 and the opening 198 on the left side of the film forming chamber 951 are shared, and the opening 198 on the right side of the film forming chamber 951 and the opening 188 on the left side of the heating chamber 852 are shared. The opening 188 on the right side of the heating chamber 852 and the opening 198 of the film forming chamber 952 are shared.
- the belt 52 can be moved between the inside of the heating chambers 851 and 852, the inside of the film forming chambers 951 and 952, and the outside by the rotational drive of the pair of rollers 51.
- a part of the conveyor 53 is stored in the heating chambers 851 and 852. Since the internal and peripheral configurations of the heating chambers 851 and 852 are the same, the heating chamber 851 will be mainly described below.
- the heating chamber 851 is composed of an upper container 83, a lower container 84, and a pair of openings 188.
- a pair of openings 188 are located between the upper container 83 and the lower container 84 in the height direction, which is the Z direction. Therefore, the conveyor 53 provided between the openings 188 and 188 in the heating chamber 851 is arranged at a position higher than the main part of the lower container 84 and lower than the asserted part of the upper container 83.
- the infrared light irradiator 2 is fixed at a position away from the conveyor 53 on the lower ( ⁇ Z direction) side outside the lower container 84 by a fixing means (not shown).
- the infrared light irradiator 4 is fixed at a position away from the conveyor 53 on the upper side (+ Z direction) outside the upper container 83 by a fixing means (not shown).
- the heating mechanism is configured by the infrared light irradiator 2 and the infrared light irradiator 4.
- the infrared light irradiator 2 is performing a first-direction heat treatment in which the substrate 10 is heated by irradiating infrared light in the + Z direction (first direction).
- the infrared light irradiator 4 performs a second-direction heat treatment for heating the substrate 10 by irradiating infrared light in the ⁇ Z direction (second direction) opposite to the + Z direction.
- the heating chamber 851 houses the substrate 10 inside when the heat treatments (first-direction heat treatment and second-direction heat treatment) of the infrared light irradiators 2 and 4 are executed.
- the heating chamber 851 blocks the plurality of substrates 10 mounted on the belt 52 from the outside by closing the opening 188 between the upper container 83 and the lower container 84 with the air curtain 7. Can be done.
- the heating chamber 852 has the same configuration as the heating chamber 851, and the infrared light irradiators 2 and 4 are provided outside the heating chamber 852 as in the heating chamber 851.
- the conventional film forming apparatus 19 has infrared light irradiators 2 and 4 provided around the outside of the heating chamber 851 as the first heating mechanism, and the heating chamber 852 as the second heating mechanism. It has infrared light irradiators 2 and 4 provided around the outside.
- the infrared light irradiators 2 and 4 execute the first heat treatment on the plurality of substrates 10 in the heating chamber 851, and the infrared light irradiators 2 and 4 are applied to the plurality of substrates 10 in the heating chamber 852.
- the second heat treatment is being carried out.
- These first and second heat treatments include the above-mentioned first-way heat treatment and second-way heat treatment, respectively.
- first and second heat treatments may be simply referred to as "heat treatment".
- the film forming chambers 951 and 952 accommodate a part of the thin film forming nozzle 101 and the conveyor 53, respectively. Since the internal configurations of the film forming chambers 951 and 952 are the same, the film forming chamber 951 will be mainly described below.
- the film forming chamber 951 is composed of an upper container 91, a lower container 92, and a pair of openings 198.
- a pair of openings 198 are located between the upper container 91 and the lower container 92 in the height direction, which is the Z direction. Therefore, the conveyor 53 provided between the openings 198 and 198 in the film forming chamber 951 is arranged at a position higher than the main portion of the lower container 34 and lower than the asserted portion of the upper container 83.
- the thin film forming nozzle 101 is fixedly arranged in the upper container 91 by a fixing means (not shown). At this time, the thin film forming nozzle 101 is arranged so that the injection surface 1S and the upper surface of the belt 52 face each other.
- the thin film forming nozzle 101 executes the first mist injection process of injecting the raw material mist MT downward (in the ⁇ Z direction) from the injection port provided on the injection surface 1S.
- the film forming chamber 952 has the same structure as the film forming chamber 951, and has a thin film forming nozzle 101 inside like the film forming chamber 951.
- the conventional film forming apparatus 19 has a thin film forming nozzle 101 provided in the film forming chamber 951 and a thin film forming nozzle 101 provided in the film forming chamber 952.
- the thin film forming nozzle 101 in the film forming chamber 951 becomes the first mist injection part
- the thin film forming nozzle 101 in the film forming chamber 952 becomes the second mist injection part.
- the first mist injection process is executed by the thin film forming nozzle 101 provided in the film forming chamber 951, and the second mist injection process is executed by the thin film forming nozzle 101 provided in the film forming chamber 952.
- the first and second mist injection processes are collectively referred to, they may be simply referred to as "mist injection process".
- the thin film forming nozzle 101 and the belt are formed by closing the opening 198 between the upper container 91 and the lower container 92 with the air curtain 7, respectively.
- the plurality of substrates 10 placed on the 52 can be shielded from the outside.
- the air curtain 7 closes all the pair of openings 188 of each of the heating chambers 851 and 852 and the pair of openings 198 of each of the film forming chambers 951 and 952, and the belt of the conveyor 53.
- the film formation environment can be set by moving the 52 along the transport direction (X direction).
- the heat treatment performed on the substrate 10 in the heating chambers 851 and 852 and the mist injection treatment performed in the film forming chambers 951 and 952 are not affected by each other in the film forming environment.
- the combination of the two sets of infrared light irradiators 2 and 4 and the two thin film forming nozzles 101 are arranged separately from each other.
- the conventional film forming apparatus 19 executed the first heat treatment by the infrared light irradiation of the infrared light irradiators 2 and 4 on the plurality of substrates 10 in the heating chamber 851 under the film forming environment. After that, the first mist injection process by the thin film forming nozzle 101 is executed in the film forming chamber 951.
- the film forming apparatus 19 executes a second heat treatment by infrared light irradiation of the infrared light irradiators 2 and 4 on the plurality of substrates 10 in the heating chamber 852 under the film forming environment.
- a second mist injection process is performed by the thin film forming nozzle 101 in the film forming chamber 952.
- the conventional film forming apparatus 19 can finally form a thin film on the surface of the substrate 10 placed on the upper surface of the belt 52 in the film forming chamber 952.
- the conventional film forming apparatus 19 can heat the substrate 10 by the combination of the two sets of infrared light irradiators 2 and 4 without having a contact relationship with the substrate 10, the shape of the substrate 10 is formed. Regardless of this, uniform heating can be performed without deforming the substrate 10.
- the film forming apparatus 19 can surely avoid the occurrence of the raw material mist evaporation phenomenon at the time of executing the first and second heat treatments and the first and second mist injection treatments, respectively.
- the conventional film forming apparatus 19 can form a thin film on the surface of the substrate 10 without deteriorating the film forming quality and the film forming speed.
- the conventional film forming apparatus 19 has the first and second heating mechanisms and the second heating mechanism so as not to be affected between the first and second heat treatments and the first and second mist injection treatments.
- the first and second mist injection portions are arranged alternately in the order of the first and the second.
- the conventional film forming apparatus 19 is characterized in that the first and second heat treatments and the first and second mist injection treatments are alternately executed in the order of the first and second.
- the conventional film forming apparatus 19 increases the film thickness of the thin film to be formed by executing the heat treatment and the mist injection treatment that are alternately repeated twice, or has a laminated structure consisting of two films having different film qualities.
- a thin film can be formed with.
- FIG. 12 is an explanatory diagram showing a detailed configuration of the film forming chamber 951 shown in FIG. FIG. 12 shows the XYZ Cartesian coordinate system.
- the raw material mist MT is supplied to the film forming chamber 951 from the mist generator 75 arranged separately from the film forming chamber 951. Specifically, the mist generator 75 and the thin film forming nozzle 101 in the film forming chamber 951 are connected via the mist supply pipe 105.
- the mist generator 75 includes a container 61, an ultrasonic vibrator 62, and a transport gas supply pipe 65 as main components.
- the container 61 contains the raw material solution 66, and the ultrasonic vibrator 62 is attached to the bottom surface. Then, the raw material solution 66 is made into a mist by the ultrasonic vibration operation of the ultrasonic vibrator 62 to generate the raw material mist MT, thereby obtaining the mist space SM9 in which the raw material mist MT exists in the container 61.
- the raw material mist MT in the mist space SM9 is conveyed by the transfer gas G0 taken in from the transfer gas supply pipe 65, and is supplied to the thin film forming nozzle 101 via the mist supply pipe 105.
- the first mist injection process of injecting the raw material mist MT from the thin film forming nozzle 101 toward the substrate 10 can be executed.
- the thin film forming nozzle 101 can exhaust the raw material mist MT that was not used in the film forming process to the outside through the mist exhaust pipe 103, and the upper container 91.
- the raw material mist MT that was not used in the film forming process can be exhausted to the outside through the mist exhaust pipe 93.
- the film forming chamber 952 has the same configuration as the film forming chamber 951, and the mist generator 75 is provided outside like the film forming chamber 951, and has a mist exhaust pipe 103 and a mist exhaust pipe 93.
- Patent Document 1 The conventional film forming apparatus using the raw material mist MT represented by Patent Document 1 is configured as described above.
- the film forming step in the film forming chamber 951 in the film forming step in the film forming chamber 951, the surface of the substrate 10 is sprayed (sprayed) from the thin film forming nozzle 101 to the substrate 10. A thin film is formed on top.
- the film forming step in the film forming chamber 952 is also performed in the same manner as in the film forming chamber 951.
- the film forming chamber 951 will be described as a representative.
- the raw material mist MT that was not used for forming the thin film is exhausted to the outside through the mist exhaust pipe 103 provided in the thin film forming nozzle 101. Further, the raw material mist MT that is not used for film formation of the thin film and is dispersed around the thin film forming nozzle 101 is exhausted through the mist exhaust pipe 93 provided in the upper container 91 of the film forming chamber 951. The raw material mist MT exhausted to the outside of the film forming chamber 951 is not reused.
- the raw material of the raw material mist MT contains rare metals such as indium, gallium, rare earth elements (rare earths), and precious metals such as gold and silver, the cost of the raw material becomes very high, so the above-mentioned low raw material utilization is used. Efficiency increases running costs.
- the film forming apparatus in the present disclosure includes a substrate transporting unit that executes a transport process for transporting the substrate, and a film forming chamber having a mist space inside in which the raw material mist exists, and the film forming chamber accommodates the raw material solution.
- a container for a raw material solution and at least one ultrasonic vibrator provided on the bottom surface of the container for the raw material solution are included, and the raw material solution is made into a mist by an ultrasonic vibration operation by the at least one ultrasonic vibrator.
- the mist space is obtained by generating the raw material mist, and the transfer process by the substrate transfer unit includes a mist space passage process for moving the substrate so as to pass through the mist space, and passes through the mist space.
- a thin film is formed on the substrate when the treatment is executed.
- a mist space is obtained in the film forming chamber by directly converting the raw material solution in the raw material solution container into a mist to generate the raw material mist. Then, the substrate transport unit executes a mist space passing process of moving the substrate so as to pass through the mist space, whereby a thin film is formed on the substrate.
- the film forming apparatus of the present disclosure can form a thin film in a mist space where the utilization efficiency of the raw material mist is high, so that the raw material solution can be effectively used.
- FIG. 1 is an explanatory diagram showing a schematic configuration of the film forming apparatus 11 of the first embodiment.
- FIG. 1 shows an XYZ Cartesian coordinate system.
- the film forming apparatus 11 of the first embodiment includes heating chambers 801 and 802, film forming chambers 901 and 902, and a conveyor 53 as main components.
- the conveyor 53 which is a board transporting unit, transports a plurality of boards 10 in the transport direction (X direction) while mounting the plurality of boards 10 on the upper surface of the belt 52.
- the conveyor 53 includes a pair of transport rollers 51 provided on both left and right ends, and an endless transport belt 52 spanned by the pair of rollers 51.
- the conveyor 53 can execute a transfer process in which the belt 52 on the upper side (+ Z direction side) is moved along the transfer direction (X direction) by rotationally driving the pair of rollers 51.
- the central portion of the belt 52 is formed in the heating chamber 801 and the heating chambers 801 and the film forming chamber 901, in the film forming chamber 901, in the film forming chamber 901 and the heating chamber 802, in the heating chamber 802, and in the heating chamber 802. It is provided between the film chambers 902 and in the film forming chamber 902.
- the heating chambers 801 and 802 and the film forming chambers 901 and 902 are formed from the left side (-X direction) to the right side (+ X direction) in the order of the heating chamber 801 and the film forming chamber 901, the heating chamber 802 and the film forming chamber 902. It will be provided.
- a pair of openings 88 are provided on a part of the left and right side surfaces of the heating chambers 801 and 802, respectively, and a pair of openings 98 are provided on a part of the left and right side surfaces of each of the film forming chambers 901 and 902.
- the belt 52 is formed by rotating the pair of rollers 51 through the pair of openings 88 of the heating chambers 801 and 802, and the pair of openings 98 of the film forming chambers 901 and 902, respectively.
- the film chamber 901, the heating chamber 802, and the film forming chamber 902 can be moved in this order.
- a part of the conveyor 53 is stored in the heating chambers 801 and 802. Since the internal and peripheral configurations of the heating chambers 801 and 802 are the same, the heating chambers 801 will be mainly described below.
- the heating chamber 801 includes an upper container 81, a lower container 82, a pair of openings 88, and infrared light irradiators 2 and 4 as main components.
- a pair of openings 88 are located between the upper container 81 and the lower container 82 in the height direction, which is the direction. Therefore, the conveyor 53 provided between the openings 88 and 88 in the heating chamber 801 is arranged at a position higher than the main part of the lower container 82 and lower than the main part of the upper container 81.
- an infrared light irradiator 2 which is a first-direction heating unit is provided on the bottom surface of the lower container 82. Therefore, the infrared light irradiator 2 is arranged below the belt 52.
- an infrared light irradiator 4 which is a second-direction heating unit is provided below the upper surface of the upper container 81. Therefore, the infrared light irradiator 4 is arranged above the belt 52.
- the space sandwiched between the infrared light irradiator 2 and the infrared light irradiator 4 becomes the heating space HS1.
- Both the infrared light irradiators 2 and 4 are arranged at positions overlapping with the upper surface region of the belt 52 (the region sandwiched between the pair of linear conveyor chains) in the heating chamber 801 in a plan view.
- the infrared light irradiator 2 is composed of a lamp mounting table 21 and a plurality of infrared light lamps 22, and a plurality of infrared light lamps 22 are attached to the upper part of the lamp mounting table 21. Therefore, the infrared light irradiator 2 can irradiate infrared light upward from the plurality of infrared light lamps 22.
- the infrared light irradiator 2 which is the first-direction heating unit irradiates the heating space HS1 with infrared light whose irradiation direction is the + Z direction (first direction) to provide the heating space HS1.
- a first-direction heat treatment for heating is performed. Therefore, when the substrate 10 placed on the belt 52 exists in the heating space HS1, the substrate 10 can be heated by the first-direction heat treatment.
- the infrared light irradiator 4 is composed of a lamp mounting table 41 and a plurality of infrared light lamps 42, and a plurality of infrared light lamps 42 are attached to the lower part of the lamp mounting table 41. Therefore, the infrared light irradiator 4 can irradiate infrared light downward (in the ⁇ Z direction) from the plurality of infrared light lamps 42.
- the infrared light irradiator 4 which is the second direction heating unit irradiates the heating space HS1 with infrared light having the ⁇ Z direction (second direction) as the irradiation direction, and the heating space HS2.
- a second-direction heat treatment for heating the substrate 10 placed on the inner belt 52 is performed. Therefore, when the substrate 10 placed on the belt 52 exists in the heating space HS1, the substrate 10 can be heated by the second-direction heat treatment.
- the ⁇ Z direction, which is the second direction is opposite to the + Z direction, which is the first direction.
- the heating chamber 802 has the same characteristics as the above-mentioned characteristics of the heating chamber 801.
- the heating space HS2 corresponds to the heating space HS1.
- the film forming apparatus 11 of the first embodiment has the infrared light irradiators 2 and 4 provided inside the heating chamber 801 as the first heating mechanism, and the heating chamber as the second heating mechanism. It has infrared light irradiators 2 and 4 provided inside the 802.
- the first heat treatment for heating the heating space HS1 by the infrared light irradiators 2 and 4 is executed on the plurality of substrates 10 in the heating chamber 801.
- the plurality of substrates 10 in the heating chamber 802 are subjected to the second heat treatment for heating the heating space HS2 by the infrared light irradiators 2 and 4.
- These first and second heat treatments include the above-mentioned first-way heat treatment and second-way heat treatment, respectively.
- the conveyor 53 which is a substrate transport unit, executes a first heating space passage process of moving a plurality of substrates 10 so as to pass through the heating space HS1 which is a first heating space as a transfer process.
- the conveyor 53 executes a second heating space passing process as a transfer process in which the plurality of substrates 10 are moved so as to pass through the heating space HS2 which is the second heating space.
- heating space passage treatment the first and second heating space passage treatments may be collectively referred to simply as "heating space passage treatment”.
- the heating chambers 801 and 802 close the opening 88 between the upper container 81 and the lower container 82 with the air curtain 7, thereby forming the heating space HS and the belt 52.
- the plurality of substrates 10 placed on the substrate 10 can be shielded from the outside.
- the heating space HS is a general term for the heating spaces HS1 and HS2.
- the film forming chambers 901 and 902 include an upper container 31, a lower container 32, and two ultrasonic transducers 38 as main components, respectively. Since the internal configurations of the film forming chambers 901 and 902 are the same, the film forming chamber 901 will be mainly described below.
- FIG. 2 is an explanatory diagram showing a schematic structure of the film forming chamber 901 as viewed from the viewpoint P1 of FIG.
- FIG. 2 shows the XYZ Cartesian coordinate system.
- the configuration of the film forming chamber 901 will be described with reference to FIGS. 1 and 2.
- the film forming chamber 901 includes a lower container 32, two ultrasonic transducers 38, and an upper container 31 as main components.
- the two ultrasonic vibrators 38 are schematically shown, and do not reflect the actual arrangement position.
- a part below the upper container 31 is opened and a part above the lower container 32 is opened, so that between the upper container 31 and the lower container 32 in the height direction in the Z direction.
- a conveyor 53 is provided between the openings 98 and 98 in the film forming chamber 901.
- the lower container 32 which is a container for the raw material solution, contains the raw material solution 36.
- the two ultrasonic transducers 38 (at least one ultrasonic transducer) are provided on the bottom surface of the lower container 32.
- the film forming chamber 901 mists the raw material solution 36 by ultrasonic vibration operation by the two ultrasonic vibrators 38 to generate the raw material mist MT. As a result, the raw material mist MT stays in the film forming chamber 901 and fills up, so that the mist space SM1 is obtained. As described above, the film forming chamber 901 has a mist generation function, and a mist space SM1 is obtained inside.
- the temperature and liquid level of the raw material solution 36 contained in the lower container 32 and the outputs of the two ultrasonic transducers 38 are set so as to obtain desired film formation accuracy.
- the film forming chamber 902 also has the same characteristics as the above-mentioned characteristics of the film forming chamber 901. That is, the film forming chamber 902 has a mist generation function, and a mist space SM2 is obtained inside.
- the film forming apparatus 11 of the first embodiment creates a mist space SM1 (first mist space) in the film forming chamber 901 which is the first film forming chamber, and in the second film forming chamber.
- a mist space SM2 (second mist space) is generated in a certain film forming chamber 902.
- the conveyor 53 which is a substrate transporting unit, performs a first mist space passing process of moving a plurality of substrates 10 so as to pass through the mist space SM1 in the film forming chamber 901, which is the first film forming chamber, as a transport process. Can be done.
- the conveyor 53 executes a second mist space passing process for moving the plurality of substrates 10 so as to pass through the mist space SM2 in the film forming chamber 902, which is the second film forming chamber, as a transport process. be able to.
- mist spaces SM1 and SM2 may be collectively referred to simply as “mist space SM”.
- first and second mist space passing processes may be generically referred to simply as “mist space passing processing”.
- the film forming chamber 901 (902) is placed on the mist space SM and the belt 52 by closing the pair of openings 98 between the upper container 31 and the lower container 32 with the air curtain 7.
- the plurality of mounted substrates 10 can be shielded from the outside.
- the air curtain 7 closes all the pair of openings 88 of the heating chambers 801 and 802 and the pair of openings 98 of the film forming chambers 901 and 902, respectively, and the conveyor is used.
- the film formation environment can be set by executing the transfer process of moving the belt 52 of 53 along the transfer direction (X direction).
- the transfer process by the conveyor 53 includes the first and second heating space passing processes and the first and second mist space passing processes.
- the heating spaces HS1 and HS2 in the heating chambers 801 and 802 and the mist spaces SM1 and SM2 in the film forming chambers 901 and 902 are influenced by each other under the film forming environment.
- the heating chambers 801 and 802 and the film forming chambers 901 and 902 are arranged separately so as not to be present.
- the film forming content of the film forming apparatus 11 of the first embodiment will be described with the same substrate 10 as the film forming target.
- the film forming apparatus 11 of the first embodiment executes the first heating space passing process as the transport process by the conveyor 53 under the film forming environment on the substrate 10 to be film-formed, and then the first Executes the mist space passage processing of.
- the film forming apparatus 11 executes the second heating space passing process as the transfer process by the conveyor 53 under the film forming environment for the substrate 10 to be film-formed, and then the second mist space. Execute pass processing.
- the surface of the substrate 10 to be film-formed comes into contact with the raw material mist MT, and a thin film grows.
- the film forming apparatus 11 of the first embodiment can finally form a thin film on the surface of the substrate 10 to be formed, which is placed on the upper surface of the belt 52 in the film forming chamber 902. ..
- the film forming apparatus 11 of the first embodiment can heat the substrate 10 by the combination of the two sets of infrared light irradiators 2 and 4 without having a contact relationship with the substrate 10, the substrate 10 can be heated. Uniform heating can be performed regardless of the shape of the substrate 10 without deforming the substrate 10.
- the film forming apparatus 11 of the first embodiment separates the heating chambers 801 and 802 and the film forming chambers 901 and 902, respectively, so that the heating spaces HS1 and HS2 and the mist spaces SM1 and SM2 are not affected by each other. And arrange it.
- the combination of the two sets of infrared light irradiators 2 and 4 provided in the heating chambers 801 and 802 and the film forming chambers 901 and 902 are arranged separately. Therefore, the film forming apparatus 11 can surely avoid the occurrence of the raw material mist evaporation phenomenon at the time of executing the first and second heating space passing treatments and the first and second mist space passing treatments, respectively.
- the "raw material mist evaporation phenomenon” means a phenomenon in which the raw material mist MT in the mist space SM is heated and evaporated by absorbing infrared light.
- the film forming apparatus 11 of the first embodiment can form a thin film on the surface of the substrate 10 without deteriorating the film forming quality and the film forming speed.
- the raw material solution 36 in the lower container 32 which is a container for the raw material solution, is directly converted into a mist to generate the raw material mist MT, whereby the mist space SM is formed in the film forming chambers 951 and 952. (SM1 and SM2) have been obtained.
- the conveyor 53 which is a substrate transporting unit, executes a mist space passing process of moving a plurality of substrates 10 so as to pass through the mist space SM, whereby a thin film is formed on the surface of the substrate 10.
- the film forming chamber 901 (902) has a function as a mist generator. Therefore, the raw material mist MT that has not been used for the film forming process of the substrate 10 to be formed can be used for the film formation of another substrate 10 that subsequently passes through the mist space SM.
- the raw material mist MT in the mist space SM settles and returns to the raw material solution 36 accumulated in the lower container 32. Since the raw material solution 36 is always misted by the ultrasonic vibration operation of the two ultrasonic vibrators 38, the settled raw material mist MT can be reused as the raw material solution 36. Therefore, the film forming apparatus 11 can achieve high utilization efficiency of the raw material solution 36.
- the film forming apparatus 11 of the first embodiment can form a thin film in the mist space SM (SM1 and SM2) where the utilization efficiency of the raw material mist MT is high, the raw material solution 36 is effectively used. It has the effect that it can.
- the first and second heat treatments are performed in combination with the first direction heat treatment and the second direction heat treatment, respectively.
- the plurality of substrates 10 can be uniformly heated at the time of executing each of the space passage processes.
- the first direction is the + Z direction and the second direction is the ⁇ Z direction.
- the film forming apparatus 11 uses a conveyor 53 as a substrate transporting unit.
- the conveyor 53 has a parallel arrangement relationship in which the surface of each of the plurality of substrates 10 is parallel to the bottom surface of the lower container 32 which is a container for the raw material solution, and the first and second heating space passing treatments and the first and second mists are arranged. The space passage process is being executed.
- a plurality of substrates 10 are stably placed on the belt 52 of the conveyor 53, and the first and second heating space passing treatments and the first and second heating space passage treatments are performed. Mist space passage processing can be executed.
- the first and second heating mechanisms and the first and second film forming chambers are arranged alternately in the order of the first and the second. ..
- the first heating mechanism is a combination of the infrared light irradiators 2 and 4 in the heating chamber 801 and the second heating mechanism is a combination of the infrared light irradiators 2 and 4 in the heating chamber 802. be.
- the first film forming chamber is the film forming chamber 901
- the second film forming chamber is the film forming chamber 902.
- the film forming apparatus 11 of the first embodiment alternately executes the first and second heating space passing treatments and the first and second mist space passing treatments in the order of the first and second. It is a feature.
- the film forming apparatus 11 of the first embodiment thickens the film film to be formed or has a different film quality by executing the heating space passing process and the mist space passing process which are alternately repeated twice.
- a thin film can be formed by a laminated structure consisting of two films.
- the extended modification has the first to nth heating mechanisms that execute the first to nth heat treatments in the heating spaces HS1 to HSn, and the first to nth heating mechanisms that generate the mist spaces SM1 to SMN. It has a film forming chamber.
- the heating spaces HS1 to HSn correspond to the first to nth heating spaces
- the mist spaces SM1 to SMN correspond to the first to nth mist spaces.
- the conveyor 53 which is a substrate transport unit, moves a plurality of substrates 10 so as to pass through the mist spaces SM1 to SMN in the first to nth film forming chambers as a transport process, and the first to nth mist spaces. Passage processing can be executed.
- the conveyor 53 can execute the first to nth heating space passage processing for moving the plurality of substrates 10 so as to pass through the heating spaces HS1 to HSn as the transfer processing. Therefore, a plurality of substrates 10 can be heated in the first to nth heating chambers having the first to nth heating mechanisms inside.
- the first to nth heating mechanisms and the first to nth film forming chambers are provided so that the heating spaces HS1 to HSn and the mist spaces SM1 to SMN are not affected by each other. They are arranged alternately in the order of n.
- the extended modification is characterized in that the first to nth heating space passing treatments and the first to nth mist space passing treatments are alternately executed in the order of the first, second, ... nth. It is supposed to be.
- the film thickness of the thin film to be formed is increased or the film quality is different by executing the heating space passage treatment and the mist space passage treatment by alternately repeating n ( ⁇ 2) times.
- a thin film can be formed by a laminated structure consisting of a layered film.
- FIG. 3 is an explanatory diagram showing a schematic configuration of the film forming apparatus 12 of the second embodiment.
- FIG. 4 is an explanatory diagram showing the configuration of the film forming chamber 191 as viewed from the viewpoint P2 of FIG.
- FIG. 5 is an explanatory diagram showing the configuration of the heating chamber 181 as viewed from above (+ Z direction).
- the XYZ Cartesian coordinate system is shown in each of FIGS. 3 to 5.
- the film forming apparatus 12 of the second embodiment mainly includes the heating chambers 181 and 182, the film forming chambers 191 and 192, the combination of the infrared light irradiators 2L and 2R, and the transport chain 25. Included as a component.
- the transport chain 25 which is a substrate transport portion, has a substrate suspending portion 25p, and a plurality of substrates 10 are suspended from above via the substrate suspending portion 25p.
- the plurality of substrates 10 are suspended so that the left side (+ Y direction side) is the front surface and the right side (-Y direction side) is the back surface with respect to the transport direction (+ X direction). Be done.
- the transport chain 25 can be moved in the transport direction (X direction) by a drive means (not shown), and a transport process for moving a plurality of substrates 10 in the transport direction can be performed as the transport chain 25 moves.
- One end of the transport chain 25 is provided on the left side (-X direction) outside the heating chamber 181 and the other end is provided on the right side (+ X direction) outside the film forming chamber 192.
- the central portion of the transport chain 25 is located in the heating chamber 181 and between the heating chambers 181 and the film forming chamber 191. It is provided between the film forming chambers 192 and in the film forming chamber 192.
- the heating chambers 181 and 182 and the film forming chambers 191 and 192 are provided from the left to the right in the order of the heating chamber 181 and the film forming chamber 191 and the heating chamber 182 and the film forming chamber 192.
- the heating chamber 181 Since the internal and peripheral configurations of the heating chambers 181 and 182 are the same, the heating chamber 181 will be mainly described below.
- the heating chamber 181 is composed of a right container 85, a left container 86, and a pair of openings 89.
- the right container 85 is located on the right side ( ⁇ Y direction side) of the plurality of substrates 10
- the left container 86 is located on the left side (+ Y direction side) of the plurality of substrates 10.
- a pair of openings 89 are located between the right container 85 and the left container 86 in the width direction, which is the Y direction. Therefore, the transport chain 25 provided between the openings 89 and 89 in the heating chamber 181 is left side (+ Y direction side) and left side from the main portion of the right container 85 with reference to the transport direction (X direction). It is arranged on the right side (-Y direction side) of the main part of the container 86.
- the heating chamber 181 is made of an infrared light transmitting material having excellent transparency without absorbing the infrared light emitted from the infrared light irradiators 2L and 2R. Specifically, the heating chamber 181 uses quartz glass as a constituent material. As an infrared light transmitting material other than quartz glass, for example, germanium, silicon, zinc sulfide, zinc selenium and the like can be considered.
- the infrared light irradiator 2R which is the first-direction heating unit, is fixed to the right side (-Y direction) outside the right container 85 with reference to the transport direction (+ X direction) by a fixing means (not shown). Therefore, the infrared light irradiator 2R is arranged away from the transport chain 25. Like the infrared light irradiator 2, the infrared light irradiator 2R includes a lamp mounting table 21 and an infrared light lamp 22 as main components.
- the infrared light irradiator 2L which is the second-direction heating unit, is fixed to the left side (+ Y direction) outside the left container 86 with reference to the transport direction by a fixing means (not shown). Therefore, the infrared light irradiator 2L is arranged away from the transport chain 25.
- the heating mechanism is configured by the combination of the infrared light irradiator 2R and the infrared light irradiator 2L.
- the infrared light irradiator 2L includes a lamp mounting table 21 and an infrared light lamp 22 as main components.
- Both the infrared light irradiators 2L and 2R are arranged at the same height as the plurality of substrates 10 in the heating chamber 181.
- the infrared light irradiator 2R which is a first-direction heating unit, irradiates the heating space HS1 with infrared light in the + Y direction (first direction) to heat the heating space HS1.
- the + Y direction which is to the left of the transport direction, is the direction from the back surface to the front surface of the substrate 10.
- the substrate 10 suspended by the substrate suspending portion 25p exists in the heating space HS1, the substrate 10 can be heated by the first-direction heat treatment.
- the infrared light irradiator 2L which is a second-direction heating unit, performs a second-direction heat treatment for heating the heating space HS1 by irradiating infrared light in the ⁇ Y direction (second direction).
- the ⁇ Y direction which is to the right of the transport direction, is the direction from the front surface to the back surface of the substrate 10. Therefore, the ⁇ Y direction, which is the second direction, is opposite to the + Y direction, which is the first direction.
- the substrate 10 suspended by the substrate suspending portion 25p exists in the heating space HS1, the substrate 10 can be heated by the second-direction heat treatment.
- the heating chamber 182 has the same configuration as the heating chamber 181 and, like the heating chamber 181, infrared light irradiators 2L and 2R are provided outside the heating chamber 852.
- the combination of the infrared light irradiators 2L and 2R for the heating chamber 181 corresponds to the first heating mechanism, and the combination of the infrared light irradiators 2L and 2R for the heating chamber 182 corresponds to the second heating mechanism.
- the transfer chain 25, which is a substrate transfer unit, executes a first heating space passage process for moving a plurality of substrates 10 so as to pass through the heating space HS1 which is a first heating space.
- the transfer chain 25 executes a second heating space passage process in which the plurality of substrates 10 are moved so as to pass through the heating space HS2 which is the second heating space.
- the heating chambers 181 and 182 each have the heating space HS1 by closing the opening 89 between the right container 85 and the left container 86 with the air curtain 7. And HS2 can be blocked from the outside.
- the film forming apparatus 12 of the second embodiment has infrared light irradiators 2L and 2R provided around the outside of the heating chamber 181 as the first heating mechanism, and heats as the second heating mechanism. It has infrared light irradiators 2L and 2R provided around the outside of the chamber 182.
- the film forming chambers 191 and 192 include an upper container 33, a lower container 34, and two ultrasonic transducers 38 as main components, respectively. Since the internal configurations of the film forming chambers 191 and 192 are the same, the film forming chamber 191 will be mainly described below.
- the film forming chamber 191 houses a part of the transport chain 25.
- a pair of openings 99 are provided between the upper container 33 and the lower container 34 in the height direction in the Z direction. Then, a transport chain 25 is provided between the openings 99 and 99 in the film forming chamber 191.
- a part below the upper container 33 is opened and a part above the lower container 34 is opened, so that the upper container 33 and the lower part are opened in the height direction in the Z direction.
- a pair of openings 99 are provided between the container 34 and the container 34.
- a transport chain 25 is provided between the openings 99 and 99 in the film forming chamber 191.
- the lower container 34 which is a container for the raw material solution, contains the raw material solution 36, as in the lower container 32 of the first embodiment.
- Two ultrasonic transducers 38 are provided on the bottom surface of the lower container 34.
- FIGS. 3 and 4 the two ultrasonic transducers 38 are schematically shown, and do not reflect the actual placement position.
- the film forming chamber 191 makes the raw material solution 36 into a mist by the ultrasonic vibration operation by the two ultrasonic vibrators 38, and generates the raw material mist MT. As a result, the raw material mist MT stays in the film forming chamber 191 and fills up, so that the mist space SM1 is obtained. As described above, the film forming chamber 191 has a mist generation function.
- the film forming chamber 192 has the same characteristics as those of the film forming chamber 191 described above. That is, the film forming chamber 192 has a mist generation function, and a mist space SM2 is obtained inside.
- the film forming apparatus 12 of the second embodiment generates the mist space SM1 (first mist space) in the film forming chamber 191 which is the first film forming chamber, and in the second film forming chamber.
- a mist space SM2 (second mist space) is generated in a certain film forming chamber 192.
- the transfer chain 25 which is a substrate transfer unit, moves a plurality of substrates 10 so as to pass through the mist space SM1 in the film formation chamber 191 which is the first film formation chamber. Can be executed.
- the transport chain 25 executes a second mist space passage process of moving the plurality of substrates 10 so as to pass through the mist space SM2 in the film formation chamber 192, which is the second film formation chamber, as the transfer process. can do.
- the film forming chamber 191 (192) closes the opening 99 between the upper container 33 and the lower container 34 with the air curtain 7 so that the mist space SM and the substrate suspending portion 25p are formed.
- a plurality of suspended substrates 10 can be shielded from the outside.
- the pair of openings 89 of each of the heating chambers 181 and 182 and the pair of openings 99 of each of the film forming chambers 191 and 192 are all closed by the air curtain 7 and conveyed.
- the film formation environment can be set by executing the transfer process of moving the chain 25 along the transfer direction (X direction).
- the transport process includes the first and second heating space passage processes and the first and second mist space passage processes.
- the heating spaces HS1 and HS2 in the heating chambers 181 and 182 and the mist spaces SM1 and SM2 in the film forming chambers 191 and 192 are influenced by each other under the film forming environment.
- the heating chambers 181 and 182 and the film forming chambers 191 and 192 are arranged separately so as not to be present.
- the film forming content of the film forming apparatus 12 of the second embodiment will be described with the same substrate 10 as the film forming target.
- the film forming apparatus 12 of the second embodiment executes the first heating space passing process as the transfer process by the transfer chain 25 under the film formation environment on the substrate 10 to be formed, and then the first.
- the mist space passage processing of 1 is executed.
- the film forming apparatus 12 executes the second heating space passing process as the transfer process by the transfer chain 25 under the film formation environment on the substrate 10 to be film-formed, and then the second mist. Execute space passage processing.
- the film forming apparatus 12 of the second embodiment finally forms a thin film on the front surface and the back surface of the film forming target substrate 10 suspended by the substrate suspending portion 25p in the film forming chamber 192. Can be filmed.
- the film forming apparatus 12 of the second embodiment can heat the substrate 10 by the combination of the two sets of infrared light irradiators 2L and 2R without having a contact relationship with the substrate 10. Therefore, the substrate 10 can be heated. Uniform heating can be performed regardless of the shape of the substrate 10 without deforming the substrate 10.
- the film forming apparatus 12 of the second embodiment separates the heating chambers 181 and 182 and the film forming chambers 191 and 192, respectively, so that the heating spaces HS1 and HS2 and the mist spaces SM1 and SM2 are not affected by each other. And arrange it.
- the film forming apparatus 12 can surely avoid the occurrence of the raw material mist evaporation phenomenon at the time of executing the first and second heating space passing treatments and the first and second mist space passing treatments, respectively. ..
- the film forming apparatus 12 of the second embodiment can form a thin film on the surface of the substrate 10 without deteriorating the film forming quality and the film forming speed.
- the raw material solution 36 in the lower container 34 which is a container for the raw material solution, is directly converted into a mist to generate the raw material mist MT, whereby the mist space SM1 is formed in the film forming chambers 191 and 192. And SM2 are obtained.
- the conveyor 53 which is a substrate transporting unit, executes a mist space passing process of moving a plurality of substrates 10 so as to pass through the mist space SM (SM1 and SM2), so that the surface and the back surface of the substrate 10 can be moved, respectively.
- a thin film is formed on the surface.
- the film forming chambers 191 and 192 each have a function as a mist generator. Therefore, the film forming apparatus 12 of the second embodiment can form a thin film in the mist space SM where the utilization efficiency of the raw material mist MT is high, as in the film forming apparatus 11 of the first embodiment. It has the effect that 36 can be effectively used.
- the first and second heat treatments are performed in combination with the first direction heat treatment and the second direction heat treatment, respectively.
- the plurality of substrates 10 can be uniformly heated at the time of executing each of the space passage processes.
- the first direction is the + Y direction and the second direction is the ⁇ Y direction.
- the film forming apparatus 12 uses a transport chain 25 as a substrate transport unit.
- the transport chain 25 has a vertical arrangement relationship in which the surface of each of the plurality of substrates 10 is perpendicular to the bottom surface of the lower container 34, which is a container for raw material solutions. Mist space passage processing is being executed.
- the film forming apparatus 12 of the second embodiment can form a thin film not only on the front surface of the plurality of substrates 10 but also on the back surface.
- the first and second heating mechanisms and the first and second film forming chambers are arranged alternately in the order of the first and the second. ..
- the first heating mechanism is a combination of the infrared light irradiators 2L and 2R for the heating chamber 181 and the second heating mechanism is a combination of the infrared light irradiators 2L and 2R for the heating chamber 182.
- the first film forming chamber is the film forming chamber 191 and the second film forming chamber is the film forming chamber 192.
- the film forming apparatus 12 of the second embodiment alternately executes the first and second heating space passing treatments and the first and second mist space passing treatments in the order of the first and second. It is a feature.
- the film forming apparatus 12 of the second embodiment thickens the film film to be formed or has a different film quality by executing the heating space passing process and the mist space passing process which are alternately repeated twice.
- a thin film can be formed by a laminated structure consisting of two films.
- the film forming apparatus 12 of the second embodiment can also realize the same extended modification as that of the first embodiment.
- the mist space SM exists in the film forming chamber.
- the raw material mist MT in the mist space SM may have a concentration gradient of the raw material mist MT in the vertical direction ( ⁇ Z direction) due to the influence of gravity. That is, there is a possibility that the concentration of the raw material mist MT is relatively low at a high place (+ Z direction side) of the mist space SM, and the concentration of the raw material mist MT is relatively high at a low place ( ⁇ Z direction side).
- the concentration distribution of the raw material mist MT occurs in the horizontal direction defined by the XY plane in the mist space SM. This is because the closer to the ultrasonic vibrator 38, the higher the concentration of the raw material mist MT, and the farther from the ultrasonic vibrator 38, the lower the concentration of the raw material mist MT tends to be.
- the presence of the belt 52 and the substrate 10 in the film forming apparatus 11 of the first embodiment and the presence of the transport chain 25 and the substrate 10 in the film forming apparatus 12 of the second embodiment do not cause the concentration of the raw material mist MT in the mist space SM. It may cause uniformity.
- the film forming apparatus 13 of the third embodiment and the film forming apparatus 14 of the fourth embodiment described below that have improved the above-mentioned concerns about the concentration gradient of the mist space SM.
- the film forming apparatus 13 is a general term for the film forming devices 13A and 13B
- the film forming apparatus 14 is a general term for the film forming devices 14A and 14B.
- FIGS. 6 and 7 are explanatory views showing the configuration of the film forming chamber used in the film forming apparatus 13 (13A, 13B) of the third embodiment.
- the XYZ Cartesian coordinate system is shown in FIGS. 6 and 7, respectively.
- FIG. 6 shows the film forming chamber 901B of the film forming apparatus 13A based on the configuration of the first embodiment
- FIG. 7 shows the film forming chamber 191B of the film forming apparatus 13B based on the configuration of the second embodiment. Shows.
- the opening 98 is omitted in FIG. 6, and the opening 99 is omitted in FIG. 7.
- the overall configuration of the film forming apparatus 13A is based on the configuration of the film forming apparatus 11 of the first embodiment shown in FIGS. 1 and 2, and the film forming chambers 901B and 902B are provided in place of the film forming chambers 901 and 902. It is characterized by that. Since the heating chambers 801 and 802 and the conveyor 53 other than the film forming chambers 901B and 902B are the same as the film forming apparatus 11 of the first embodiment, the description thereof will be omitted.
- a circulation fan 45 is provided on each of the pair of facing side surfaces of the lower container 32 via the mounting member 55. That is, in the lower container 32, a pair of circulation fans 45 are provided near the pair of facing side surfaces.
- the film forming chamber 901B circulates the raw material mist MT in the mist space SM1 with the lower container 32 which is a container for the raw material solution, the upper container 31 arranged above the lower container 32. It includes a pair of circulating fans 45 that perform a blower operation.
- the structure in which the lower container 32 accommodates the raw material solution 36 and the two ultrasonic transducers 38 are provided on the bottom surface of the lower container 32 is the same as that of the film forming chamber 901 of the first embodiment.
- the pair of circulation fans 45 are arranged at a position slightly higher than the upper surface of the raw material solution 36 contained in the lower container 32 and below the belt 52 so that the circulation airflow C45 is generated upward (+ Z direction). Performs a circulation ventilation operation. Therefore, the circulation blowing operation of the pair of circulation fans 45 does not affect the movement of the substrate 10 mounted on the belt 52.
- the film forming chamber 901B mistizes the raw material solution 36 by the ultrasonic vibration operation by the two ultrasonic vibrators 38 to generate the raw material mist MT.
- the pair of circulation fans 45 perform a circulation ventilation operation to generate a pair of circulation airflows C45 in the direction from the bottom to the top (+ Z direction).
- the circulation process of circulating the raw material mist MT in the mist space SM1 can be performed by the circulation blowing operation by the pair of circulation fans 45.
- the film forming chamber 902B has the same configuration as the film forming chamber 901B, and a pair of circulation fans 45 are provided inside.
- the mist space SM2 corresponds to the mist space SM1.
- the film forming chambers 901B and 902B can make the concentration distribution of the raw material mist MT in the mist spaces SM1 and SM2 uniform.
- the overall configuration of the film forming apparatus 13B is based on the configuration of the film forming apparatus 12 of the second embodiment shown in FIGS. 3 to 5, and the film forming chambers 191B and 192B are provided in place of the film forming chambers 191 and 192. It is characterized by that. Since the heating chambers 181 and 182 other than the film forming chambers 191B and 192B, the transport chain 25, and the substrate suspending portion 25p are the same as the film forming apparatus 12 of the second embodiment, the description thereof will be omitted.
- the film forming chamber 191B Since the internal configurations of the film forming chambers 191B and 192B are the same, the film forming chamber 191B will be mainly described below with reference to FIG. 7.
- a circulation fan 45 is provided on each of the pair of facing side surfaces of the lower container 34 via the mounting member 55. That is, in the lower container 34, a pair of circulation fans 45 are provided near the pair of facing side surfaces.
- the film forming chamber 191B circulates a lower container 34, which is a container for a raw material solution, an upper container 33 arranged above the lower container 34, and a raw material mist MT in the mist space SM1. It includes a pair of circulating fans 45 that perform a blower operation.
- the structure in which the lower container 34 accommodates the raw material solution 36 and the two ultrasonic transducers 38 are provided on the bottom surface of the lower container 34 is the same as that of the film forming chamber 901 of the second embodiment.
- the pair of circulation fans 45 are located slightly higher than the upper surface of the raw material solution 36 housed in the lower container 34 and lower than the lower end of the substrate 10 suspended by the substrate suspending portion 25p, and are located above.
- the circulation blowing operation is executed so that the circulating airflow C45 is generated in the (+ Z direction). Therefore, the fan operation of the pair of circulation fans 45 does not affect the movement of the substrate 10 suspended from the substrate suspending portion 25p of the transport chain 25.
- the film forming apparatus 13B makes the raw material solution 36 into a mist by the ultrasonic vibration operation by the two ultrasonic vibrators 38 to generate the raw material mist MT.
- the pair of circulation fans 45 perform a circulation ventilation operation to generate a pair of circulation airflows C45 in the direction from the bottom to the top (+ Z direction).
- the circulation process of circulating the raw material mist MT in the mist space SM1 can be performed by the circulation blowing operation by the pair of circulation fans 45.
- the film forming chamber 192B has the same configuration as the film forming chamber 191B, and a pair of circulation fans 45 are provided inside.
- the mist space SM2 corresponds to the mist space SM1.
- the film forming chambers 191B and 192B can make the concentration distribution of the raw material mist MT uniform in the mist spaces SM1 and SM2.
- the film forming apparatus 13A and 13B of the third embodiment both circulate the raw material mist MT in the mist space SM (SM1 and SM2) by the circulation blowing operation executed by the pair of circulation fans 45. , The concentration of the raw material mist MT in the mist space SM can be made uniform.
- the film forming apparatus 13A of the third embodiment can accurately form a thin film on the surfaces of the plurality of substrates 10.
- the film forming apparatus 13B can accurately form a thin film on the front surface and the back surface of the plurality of substrates 10.
- FIGS. 8 and 9 are explanatory views showing the configuration of the film forming chamber used in the film forming apparatus 14 (14A, 14B) of the fourth embodiment.
- An XYZ Cartesian coordinate system is shown in FIGS. 8 and 9, respectively.
- FIG. 8 shows the film forming chamber 901C of the film forming apparatus 14A based on the configuration of the first embodiment
- FIG. 9 shows the film forming chamber 191C of the film forming apparatus 14B based on the configuration of the second embodiment. Shows.
- the film forming apparatus 14 is a general term for the film forming apparatus 14A and 14B.
- the overall configuration of the film forming apparatus 14A is based on the configuration of the film forming apparatus 11 of the first embodiment shown in FIGS. 1 and 2, and the film forming chambers 901 and 902 are replaced with the film forming chambers 901C and 902C. It is characterized by that. Since the heating chambers 801 and 802 and the conveyor 53 other than the film forming chambers 901C and 902C are the same as the film forming apparatus 11 of the first embodiment, the description thereof will be omitted.
- the film forming chamber 901C has a pair of circulation fans 45, and further has the following features.
- a pair of mounting members 56 are erected upward (+ Z direction) on the bottom surface of the lower container 32, and a spraying fan 46 is mounted on the upper tip portion of the pair of mounting members 56.
- the spraying fan 46 is arranged so as to overlap the central portion of the belt 52 in a plan view.
- a pair of mounting members 57 are erected downward (in the ⁇ Z direction) under the upper surface of the upper container 31, and a spraying fan 47 is mounted on the lower tip portion of the pair of mounting members 57.
- the spraying fan 47 is arranged so as to overlap the central portion of the belt 52 in a plan view and to coincide with the spraying fan 46 in a plan view.
- the film forming chamber 901C is characterized in that, in addition to the configuration of the film forming chamber 901B of the third embodiment, the spraying fans 46 and 47 described above are further provided.
- the spraying fan 46 which is a first-way spraying fan, is arranged at a position higher than the upper surface of the raw material solution 36 housed in the lower container 32 and the pair of circulation fans 45 and below the belt 52. ..
- the blowing fan 46 executes the first blowing air blowing operation so that the blowing airflow C46 is generated in the upper direction (+ Z direction) which is the first blowing direction. Therefore, the first blowing operation of the blowing fan 46 does not affect the movement of the substrate 10 mounted on the belt 52.
- the blowing fan 47 which is a second-direction blowing fan, is arranged above the belt 52, and the first blowing blowing operation is performed so that the blowing airflow C47 is generated downward ( ⁇ Z direction), which is the second blowing direction. To execute. Therefore, the second blowing operation of the blowing fan 47 does not affect the movement of the substrate 10 mounted on the belt 52.
- the blowing fan 46 which is the first-direction blowing fan, executes the first blowing blowing operation of blowing the raw material mist MT toward the film forming path RF1 along the + Z direction, which is the first blowing direction.
- the spraying fan 47 which is a second-direction spraying fan, blows the raw material mist MT toward the film forming path RF1 along the ⁇ Z direction, which is the second spraying direction.
- the mist space passing process by the conveyor 53 is a process of moving a plurality of substrates 10 so as to pass through the film forming path RF1 of the mist space SM1.
- the film forming apparatus 14A like the film forming apparatus 13A of the third embodiment, generates a pair of circulating airflows C45 by the circulation blowing operation of the pair of circulating fans 45, whereby the mist space SM1
- the raw material mist MT in the above is made uniform.
- the film forming apparatus 14A generates a blowing airflow C46 toward the upper film forming path RF1 by the first blowing blowing operation of the blowing fan 46, and the second blowing blowing operation of the blowing fan 47. As a result, a blown airflow C47 is generated toward the lower film formation path RF1.
- the supply speed of the raw material mist MT to the film forming path RF1 is increased by the first and second blowing air operations executed by the blowing fans 46 and 47, which are the first and second direction blowing fans.
- the concentration of the raw material mist MT in the film forming path RF1 can be made uniform in a high state.
- the film forming chamber 902C has the same configuration as the film forming chamber 901C, and a pair of circulation fans 45 and spraying fans 46 and 47 are provided inside.
- the mist space SM2 corresponds to the mist space SM1
- the film formation path RF2 corresponds to the film formation path RF1.
- the film forming chamber 191C has a pair of circulation fans 45, and further has the following features.
- a spraying fan 48 is provided via a pair of mounting members 58 provided on one side surface (the side surface on the ⁇ Y side) of the lower container 34.
- a spraying fan 49 is provided via a mounting member 59 provided on the other side surface (+ Y side side surface) of the lower container 34.
- the spray fans 48 and 49 are arranged at the same height and so as to overlap the passing region of the substrate 10 in a plan view on the XZ plane. Further, the spray fans 48 and 49 match each other in a plan view on the XZ plane.
- the film forming chamber 191C is characterized in that, in addition to the configuration of the film forming chamber 191B of the third embodiment, the spraying fans 48 and 49 described above are further provided.
- the first mist space passing process by the transport chain 25 is a process of moving a plurality of substrates 10 so as to pass through the film formation path RF11 of the mist space SM1.
- the film forming apparatus 14B like the film forming apparatus 13B, generates a pair of circulating airflows C45 by the circulation blowing operation of the pair of circulating fans 45, so that the raw material mist MT in the mist space SM1 We are trying to make it uniform.
- the film forming apparatus 14B generates a blowing airflow C48 toward the film forming path RF11 on the right side (+ Y direction) by the first blowing blowing operation of the blowing fan 48, and the second blowing fan 49.
- the blowing airflow C49 is generated toward the film forming path RF11 on the left side (-Y direction) by the blowing air operation for blowing.
- the blowing fan 48 which is the first-direction blowing fan, executes the first blowing blowing operation of blowing the raw material mist MT toward the film forming path RF11 along the + Y direction, which is the first blowing direction.
- the spraying fan 49 which is a second-direction spraying fan, blows the raw material mist MT toward the film forming path RF11 along the ⁇ Y direction, which is the second spraying direction.
- the raw material mist MT in the film forming path RF11 The concentration can be made uniform in a high state.
- the film forming chamber 192C has the same configuration as the film forming chamber 191C, and a pair of circulation fans 45 and spraying fans 48 and 49 are provided inside.
- the mist space SM2 corresponds to the mist space SM1
- the film formation path RF12 corresponds to the film formation path RF11.
- the film forming apparatus 14A of the fourth embodiment is inside the film forming chamber 901C (902C) by the blowing blowing operation (first and second blowing blowing operation) executed by the blowing fans 46 and 47.
- the concentration of the raw material mist MT in the film formation path RF1 (RF2) can be made uniform in a high state.
- the film forming apparatus 14B of the fourth embodiment is a raw material mist MT in the film forming path RF11 (RF12) in the film forming chamber 191C (192C) by the blowing blowing operation executed by the blowing fans 48 and 49. It can be made uniform in a high concentration state.
- the film forming apparatus 14 (14A and 14B) of the fourth embodiment can increase the film forming speed and the film forming accuracy of the thin film.
- the film forming apparatus 14A of the fourth embodiment is used for first and second spraying executed by the spraying fans 46 and 47 facing each other across the film forming path RF1 (RF2) in the height direction (Z direction).
- the concentration of the raw material mist MT in the film forming path RF1 can be made higher and more uniform.
- the film forming apparatus 14B of the fourth embodiment is used for first and second spraying executed by the spraying fans 48 and 49 facing each other across the film forming path RF11 (RF12) in the horizontal direction (Y direction).
- the concentration of the raw material mist MT in the film forming path RF11 can be made higher and more uniform.
- the first-way spraying fan corresponds to the spraying fan 46 of the film-forming device 14A and the film-forming device 14B to the spraying fan 48
- the second-way spraying fan corresponds to the film-forming device 14A.
- the spraying fan 47 and the spraying fan 49 of the film forming apparatus 14B correspond to the above.
- FIG. 10 is an explanatory diagram showing a schematic configuration of the film forming apparatus 15 of the fifth embodiment.
- FIG. 10 shows the XYZ Cartesian coordinate system.
- the film forming apparatus 15 of the fifth embodiment includes a film forming chamber 500, an infrared light irradiator 4, and a conveyor 53 as main components.
- the conveyor 53 which is a board transporting unit, transports a plurality of boards 10 in the transport direction (X direction) while mounting the plurality of boards 10 on the upper surface of the belt 52.
- the conveyor 53 includes a pair of transport rollers 51 provided on both left and right ends, and an endless transport belt 52 spanned by the pair of rollers 51.
- the conveyor 53 can move the belt 52 on the upper side (+ Z direction side) along the transport direction (X direction) by rotationally driving the pair of rollers 51.
- the pair of rollers 51 of the conveyor 53 one is provided on the left side ( ⁇ X direction) of the film forming chamber 500, and the other is provided on the right side (+ X direction) of the film forming chamber 500. Further, the central portion of the belt 52 is provided inside the film forming chamber 500.
- the belt 52 is driven by the rotation of the pair of rollers 51, and the film forming chamber 500 is provided with the pair of openings 68 provided on the left and right ( ⁇ X direction, + X direction) side surfaces of the film forming chamber 500. It can move between the inside and the outside.
- the infrared light irradiator 4 is fixed at a position away from the conveyor 53 on the upper side (+ Z direction) outside the upper container 31 by a fixing means (not shown).
- the heating mechanism is configured by the infrared light irradiator 4.
- the infrared light irradiator 4 is arranged at a position overlapping the upper surface region of the belt 52 in the film forming chamber 500 in a plan view.
- the infrared light irradiator 4 is composed of a lamp mounting table 41 and a plurality of infrared light lamps 42, and a plurality of infrared light lamps 42 are attached to the lower part of the lamp mounting table 41. Therefore, the infrared light irradiator 4 can irradiate infrared light downward (in the ⁇ Z direction) from the plurality of infrared light lamps 42.
- the infrared light irradiator 4 which is the second direction heating unit irradiates the heating space HS5 with infrared light whose irradiation direction is the ⁇ Z direction (second direction) to heat the heating space HS5. Perform heat treatment. Therefore, when the substrate 10 placed on the belt 52 exists in the heating space HS5, the substrate 10 can be heated by the heat treatment.
- the film forming apparatus 15 of the fifth embodiment has the infrared light irradiator 4 outside the film forming chamber 500 as a heating mechanism. Then, the infrared light irradiator 4 is used to perform a heat treatment for heating the heating space HS5 in the film forming chamber 500.
- the film forming chamber 500 includes an upper container 31, a lower container 32, and two ultrasonic transducers 38 as main components.
- a pair of openings 68 are provided on a part of the left and right side surfaces of the film forming chamber 500.
- the pair of openings 68 are provided with a pair of openings 68 between the upper container 31 and the lower container 32 in the height direction, which is the Z direction.
- a conveyor 53 is provided between the openings 68 and 68 in the film forming chamber 500.
- the lower container 32 which is a container for the raw material solution, contains the raw material solution 36.
- the two ultrasonic transducers 38 (at least one ultrasonic transducer) are provided on the bottom surface of the lower container 32.
- the film forming chamber 500 mistizes the raw material solution 36 by ultrasonic vibration operation by the two ultrasonic vibrators 38 to generate the raw material mist MT. As a result, the raw material mist MT stays in the film forming chamber 500 and fills up, so that the mist space SM5 is obtained. As described above, the film forming chamber 500 has a mist generation function.
- both the mist space SM5 and the heating space HS5 exist in the film forming chamber 500, and the mist space SM and the heating space HS5 are mostly overlapped with each other.
- the film forming apparatus 15 of the fifth embodiment generates the mist space SM5 in the film forming chamber 500.
- the conveyor 53 which is a substrate transfer unit, can execute a mist space passage process of moving a plurality of substrates 10 so as to pass through the mist space SM in the film forming chamber 500 as a transfer process.
- the mist space passage process is executed, the plurality of substrates 10 pass through the film forming path RF5.
- the heating space HS5 and the mist space SM overlap, it is possible to heat a plurality of substrates 10 existing in the heating space HS at the same time when the mist space passing process is executed.
- the film forming chamber 500 closes the pair of openings 68 with the air curtain 7, so that the plurality of substrates 10, the mist space SM5, and the heating space HS5 mounted on the belt 52 are closed. Can be blocked from the outside.
- the pair of openings 68 of the film forming chamber 500 are closed by the air curtain 7, and the belt 52 of the conveyor 53 is moved along the conveying direction (X direction).
- the transport process includes a mist space passage process.
- the film forming content of the film forming apparatus 15 of the fifth embodiment will be described with the same substrate 10 as the film forming target.
- the film forming apparatus 15 of the fifth embodiment executes the mist space passing process as a transfer process by the conveyor 53 under the film forming environment.
- the heating treatment for heating the heating space HS5 by the infrared light irradiator 4 is also executed. Therefore, the substrate 10 to be formed into a film is heated when the mist space passing process is executed.
- the film forming apparatus 15 of the fifth embodiment can form a thin film on the surface of the substrate 10 mounted on the upper surface of the belt 52 in the film forming chamber 500.
- the film forming apparatus 15 of the fifth embodiment can heat the substrate 10 by the infrared light irradiator 4 without having a contact relationship with the substrate 10, it is uniform regardless of the shape of the substrate 10. Can be heated without deforming the substrate 10.
- the film forming apparatus 15 of the fifth embodiment can form a thin film on the surface of the substrate 10 without deteriorating the film forming quality and the film forming speed.
- the film forming chamber 500 has a mist generation function as in the film forming apparatus 11 of the first embodiment. Therefore, the film forming apparatus 15 can form a thin film in the mist space SM where the utilization efficiency of the raw material mist MT is high, so that the raw material solution 36 can be effectively used.
- the film forming apparatus 15 of the fifth embodiment since the substrate 10 to be filmed is heated when the mist space passing process is executed by the conveyor 53 which is the substrate transporting unit, the film forming apparatus 10 of the plurality of substrates 10 can be formed in a relatively short period of time. A thin film can be formed on the surface.
- the temperature of the film-forming target substrate 10 can be set with high thermal efficiency.
- the transport process includes a first and second heating space passing process and a first and second mist space passing process.
- the first heating space passage process performed in the heating chamber 801 requires the required heating space passage time TH, and the first mist space passage in the film forming chamber 901.
- the processing requires the execution of the required mist space transit time TM.
- the required heating space passage time TH is determined in consideration of the heating content of the first heat treatment of the first heating mechanism (infrared light irradiators 2 and 4), and the required mist space passage time TM is the mist space SM1. It is determined in consideration of the concentration setting contents of the raw material mist MT in the material.
- the first heating space passage treatment requiring the required heating space passage time TH is executed, and then the first mist space passage treatment requiring the required mist space passage time TM is executed in the film forming chamber 901. It is possible to realize an ideal environment for forming a thin film that satisfies the target film thickness with high quality.
- a modification of the first embodiment is to realize a configuration that provides an ideal environment.
- the distance in the transport direction in the heating space HS1 is defined as the heating process length LH
- the distance in the transport direction in the mist space SM1 is defined as the film formation process length LM.
- the moving speed of the substrate 10 in the transport process of the conveyor 53 is defined by the transport moving speed VM, and the transport moving speed VM is constant.
- the heating process length LH may be set to 100 cm.
- the film forming process length LM is set when the transport moving speed VM is 10 cm / s. It may be set to 150 cm.
- the heating process length LH and the transfer speed VM are set so as to satisfy the equation (1), and the film formation process length LM and the transfer speed VM are set. Equation (2) is set to be satisfied.
- the first heat treatment is executed so that the temperature of the substrate 10 to be film-formed reaches the target temperature without raising the set temperature of the heating space HS1 more than necessary. be able to.
- a thin film having a target film thickness can be accurately formed on the substrate 10 to be formed without increasing the concentration of the raw material mist MT in the mist space SM1 more than necessary. ..
- the heating process length LH and the transfer speed VM can be set as in the heating chamber 801.
- the film forming process length LM can be set as in the film forming chamber 901.
- the moving speed VM for transportation can be set.
- FIG. 7 schematically show the air curtain 7.
- the air curtain 7 may be provided inside the heating chamber or the film forming chamber, or may be provided outside the heating chamber or the film forming chamber. In short, it suffices if the inside of the heating chamber or the film forming chamber can be shielded from the outside.
- each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
- the conveyor 53 is used as the substrate transport unit as in the first embodiment, but the conveyor chain 25 may be used as the substrate transport unit as in the second embodiment.
- the heating mechanism infrared light irradiators 2L and 2R are used instead of the infrared light irradiator 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本開示は、原料ミストの原料の利用効率を高めた成膜装置の構造を提供することを目的とする。そして、本開示の成膜装置(11)において、成膜室(901)は、超音波振動動作によって、原料溶液(36)をミスト化して原料ミスト(MT)を生成するミスト発生機能を有し、成膜室(901)内にミスト空間(SM1)が得られる。成膜室(902)もミスト生成機能を有し、成膜室(902)内にミスト空間(SM2)が得られる。コンベア(53)は、ミスト空間(SM1)を通過するように複数の基板(10)を移動させる第1のミスト空間通過処理、及びミスト空間(SM2)を通過するように複数の基板(10)を移動させる第2のミスト空間通過処理を実行する。
Description
本開示は、太陽電池などの電子デバイスの製造に用いられ、基板上に薄膜を成膜する成膜装置に関するものである。
基板上に膜を成膜する方法として、化学気相成長(CVD(Chemical Vapor Deposition))法がある。しかしながら、化学気相成長法では真空下での成膜が必要な場合が多くなり、真空ポンプなどに加えて、大型の真空容器を用いる必要がある。さらに、化学気相成長法では、コスト等の観点から、成膜される基板として大面積のものを採用することが困難である、という問題があった。そこで、大気圧下における成膜処理が可能なミスト法が、注目されている。
ミスト法を利用した成膜装置に関する従来技術として、例えば特許文献1に開示された成膜装置がある。
図11は従来の成膜装置の概略構成を示す説明図である。図11にXYZ直交座標系を記している。
図11に示すように、従来の成膜装置19は、加熱室851及び852、成膜室951及び952、2つの薄膜形成ノズル101、2組の赤外光照射器2及び4の組合せ並びにコンベア53を主要構成要素として含んでいる。
基板搬送部であるコンベア53はベルト52の上面に複数の基板10を載置しつつ、複数の基板10を搬送方向(X方向)に搬送している。コンベア53は左右両端に設けられた搬送用の一対のローラ51と、一対のローラ51に架け渡された無端状の搬送用のベルト52とを備えている。
コンベア53は、一対のローラ51の回転駆動によって、上方側(+Z方向側)のベルト52を搬送方向(X方向)に沿って移動させることができる。
コンベア53の一対のローラ51のうち、一方は加熱室851外の左方(-X方向)に設けられ、他方は成膜室952の右方(+X方向)に設けられる。また、ベルト52の中央部は、加熱室851、加熱室852、成膜室951及び成膜室952のうちいずれかの内部に設けられる。
加熱室851及び852それぞれの左右(-X方向,+X方向)の側面の一部に設けられる一対の開口部188が設けられ、成膜室951及び952それぞれの左右の側面の一部に設けられる一対の開口部198が設けられる。
加熱室851及び852と成膜室951及び952は、加熱室851、成膜室951、加熱室852及び成膜室952の順で左方から右方にかけて隣接して設けられる。また、加熱室851の右側の開口部188と成膜室951の左側の開口部198とが共用され、成膜室951の右側の開口部198と加熱室852の左側の開口部188とが共用され、加熱室852の右側の開口部188と成膜室952の開口部198とが共用される。
したがって、ベルト52は一対のローラ51の回転駆動により、加熱室851及び852の内部、成膜室951及び952の内部並びに外部との間を移動することができる。
コンベア53の一部は加熱室851及び852に収納される。加熱室851及び852の内部及び周辺の構成は同じであるため、以下では加熱室851を中心に説明する。
加熱室851は、上部容器83、下部容器84及び一対の開口部188により構成される。Z方向である高さ方向において上部容器83と下部容器84との間に一対の開口部188が位置する。したがって、加熱室851内の開口部188,188間に設けられるコンベア53は下部容器84の主要部より高く、上部容器83の主張部より低い位置に配置される。
加熱室851の周辺において、赤外光照射器2は下部容器84外の下方(-Z方向)側のコンベア53から離れた位置に、図示しない固定手段より固定される。
加熱室851の周辺において、赤外光照射器4は上部容器83外の上方(+Z方向)側のコンベア53から離れた位置に、図示しない固定手段より固定される。赤外光照射器2及び赤外光照射器4により加熱機構が構成される。
赤外光照射器2は、+Z方向(第1の方向)に向けて赤外光を照射して基板10を加熱する第1方向加熱処理を行っている。
赤外光照射器4は、+Z方向と反対方向となる-Z方向(第2の方向)に向けて赤外光を照射して基板10を加熱する第2方向加熱処理を行っている。
また、加熱室851は、赤外光照射器2及び4の加熱処理(第1方向加熱処理及び第2方向加熱処理)の実行時に、基板10を内部に収容している。
加熱室851は、加熱処理を行う際、エアカーテン7により上部容器83,下部容器84間の開口部188を塞ぐことにより、ベルト52上に載置された複数の基板10を外部から遮断することができる。
加熱室852も加熱室851と同様な構成であり、かつ、加熱室851と同様に加熱室852外に赤外光照射器2及び4が設けられる。
このように、従来の成膜装置19は、第1の加熱機構として加熱室851の外部周辺に設けられた赤外光照射器2及び4を有し、第2の加熱機構として加熱室852の外部周辺に設けられた赤外光照射器2及び4を有している。
そして、加熱室851内の複数の基板10に対し赤外光照射器2及び4により第1の加熱処理を実行し、加熱室852内の複数の基板10に対し赤外光照射器2及び4により第2の加熱処理を実行している。これら第1及び第2の加熱処理がそれぞれ上述した第1方向加熱処理及び第2方向加熱処理を含んでいる。以下、第1及び第2の加熱処理を総称する際、単に「加熱処理」と称する場合がある。
成膜室951及び952はそれぞれ薄膜形成ノズル101及びコンベア53の一部を収納する。成膜室951及び952の内部構成は同じであるため、以下では成膜室951を中心に説明する。
成膜室951は、上部容器91、下部容器92及び一対の開口部198により構成される。Z方向である高さ方向において上部容器91と下部容器92との間に一対の開口部198が位置する。したがって、成膜室951内の開口部198,198間に設けられるコンベア53は下部容器34の主要部より高く、上部容器83の主張部より低い位置に配置される。
成膜室951において、薄膜形成ノズル101は上部容器91内に図示しない固定手段により固定配置される。この際、薄膜形成ノズル101は、噴射面1Sとベルト52の上面とが対向する位置関係で配置される。
成膜室951において、薄膜形成ノズル101は、噴射面1Sに設けられた噴射口から下方(-Z方向)に原料ミストMTを噴射する第1のミスト噴射処理を実行する。
成膜室952も成膜室951と同様な構成であり、かつ、成膜室951と同様に内部に薄膜形成ノズル101を有している。
このように、従来の成膜装置19は、成膜室951内に設けられた薄膜形成ノズル101を有し、成膜室952内に設けられた薄膜形成ノズル101を有している。成膜室951内の薄膜形成ノズル101が第1のミスト噴射部となり、成膜室952内の薄膜形成ノズル101が第2のミスト噴射部となる。
そして、成膜室951内に設けられた薄膜形成ノズル101により第1のミスト噴射処理を実行し、成膜室952内に設けられた薄膜形成ノズル101により第2のミスト噴射処理を実行している。以下、第1及び第2のミスト噴射処理を総称する場合、単に「ミスト噴射処理」と称する場合がある。
成膜室951及び952はそれぞれ、第1及び第2のミスト噴射処理を行う際、エアカーテン7により上部容器91,下部容器92間の開口部198を塞ぐことにより、薄膜形成ノズル101、及びベルト52上に載置された複数の基板10を外部から遮断することができる。
したがって、従来の成膜装置19は、エアカーテン7によって加熱室851及び852それぞれの一対の開口部188並びに成膜室951及び952それぞれの一対の開口部198を全て閉状態にし、コンベア53のベルト52を搬送方向(X方向)に沿って移動させることにより、成膜環境を設定することができる。
従来の成膜装置19は、上記成膜環境下で、加熱室851及び852内の基板10に対して行う加熱処理と成膜室951及び952内で行うミスト噴射処理とが互いに影響を受けないように、2組の赤外光照射器2及び4の組合せと2つの薄膜形成ノズル101とをそれぞれ分離して配置している。
そして、従来の成膜装置19は、上記成膜環境下で、加熱室851内の複数の基板10に対し赤外光照射器2及び4の赤外光照射による第1の加熱処理を実行した後、成膜室951内で薄膜形成ノズル101による第1のミスト噴射処理を実行する。
その後、成膜装置19は、上記成膜環境下で、加熱室852内の複数の基板10に対し赤外光照射器2及び4の赤外光照射による第2の加熱処理を実行した後、成膜室952内で薄膜形成ノズル101による第2のミスト噴射処理を実行する。
その結果、従来の成膜装置19は、最終的に成膜室952においてベルト52の上面に載置された基板10の表面上に薄膜を成膜することができる。
このように、従来の成膜装置19は、基板10と接触関係をもたせることなく、2組の赤外光照射器2及び4の組合せによって基板10を加熱することができるため、基板10の形状に関わらず均一な加熱を、基板10を変形させることなく行うことができる。
さらに、従来の成膜装置19は、加熱処理とミスト噴射処理とが互いに影響を受けないように2組の赤外光照射器2及び4と2つの薄膜形成ノズル101とをそれぞれ分離して配置している。このため、成膜装置19は、第1及び第2の加熱処理並びに第1及び第2のミスト噴射処理それぞれの実行時に、原料ミスト蒸発現象の発生を確実に回避することができる。
その結果、従来の成膜装置19は、成膜品質や成膜速度を落とすことなく、基板10の表面上に薄膜を成膜することができる。
従来の成膜装置19は、上述したように、第1及び第2の加熱処理並びに第1及び第2のミスト噴射処理間で影響を受けないように、第1及び第2の加熱機構並びに第1及び第2のミスト噴射部は、第1、第2の順で交互に配置されている。
そして、従来の成膜装置19は、第1及び第2の加熱処理と第1及び第2のミスト噴射処理とを第1,第2の順で交互に実行することを特徴としている。
したがって、従来の成膜装置19は、2回交互に繰り返される加熱処理及びミスト噴射処理を実行することにより、成膜される薄膜の膜厚を厚くしたり、膜質が異なる2つの膜による積層構造で薄膜を形成したりすることができる。
図12は図11で示した成膜室951の詳細構成を示す説明図である。図12にXYZ直交座標系を記している。
同図に示すように、成膜室951とは離れて配置されるミスト発生器75から、成膜室951に原料ミストMTが供給されている。具体的には、ミスト発生器75と成膜室951内の薄膜形成ノズル101とがミスト供給管105を介して接続されている。
ミスト発生器75は、容器61、超音波振動子62及び搬送ガス供給管65を主要構成要素として含んでいる。
容器61は原料溶液66を収容し、底面に超音波振動子62が取り付けられる。そして、超音波振動子62の超音波振動動作によって、原料溶液66をミスト化して原料ミストMTを生成することにより、容器61内に原料ミストMTが存在するミスト空間SM9を得ている。
ミスト空間SM9内の原料ミストMTは搬送ガス供給管65から取り込まれる搬送ガスG0によって搬送され、ミスト供給管105を介して薄膜形成ノズル101に供給される。その結果、薄膜形成ノズル101から原料ミストMTを基板10に向けて噴射する第1のミスト噴射処理を実行することができる。
なお、薄膜形成ノズル101は、成膜処理に用いられなかった原料ミストMTを、ミスト排気管103を介して外部に排気することができ、上部容器91は。成膜処理に用いられなかった原料ミストMTを、ミスト排気管93を介して外部に排気することができる。
また、成膜室952も成膜室951と同様な構成であり、かつ、成膜室951と同様にミスト発生器75が外部に設けられ、ミスト排気管103及びミスト排気管93を有する。
特許文献1で代表される原料ミストMTを利用した、従来の成膜装置は上記のように構成されている。
しかし、従来の成膜装置19は、成膜室951内の成膜工程において、薄膜形成ノズル101より基板10に噴射する(吹き付ける)第1のミスト噴射処理を実行することにより、基板10の表面上に薄膜を成膜している。なお、成膜室952内の成膜工程も成膜室951内と同様に行われる。以下、成膜室951を代表して説明する。
このため、薄膜の成膜に使用されなかった原料ミストMTは、薄膜形成ノズル101に設けられたミスト排気管103を介して外部に排気される。また、薄膜の成膜に使用されず、薄膜形成ノズル101の周辺に分散した原料ミストMTについては、成膜室951の上部容器91に設けられたミスト排気管93を介して排気される。成膜室951外に排気された原料ミストMTは、再利用されることはない。
このように、従来の成膜装置19の成膜室951では、ミスト発生器75で生成された原料ミストMTの一部のみが、薄膜の成膜に利用されているため、原料ミストMTの原料(原料溶液66)の利用効率が低いという問題点があった。
特に、原料ミストMTの原料にインジウムやガリウム、希土類元素(レアアース)に代表されるレアメタルや、金、銀などの貴金属が含まれる場合、原料のコストが非常に高くなるため、上述した低い原料利用効率は、ランニングコストを増大させてしまう。
本開示では、上記のような問題点を解決し、原料ミストの原料の利用効率を高めた成膜装置の構造を提供することを目的とする。
本開示における成膜装置は、 基板を搬送する搬送処理を実行する基板搬送部と、原料ミストが存在するミスト空間を内部に有する成膜室とを備え、前記成膜室は、原料溶液を収容する原料溶液用容器と、前記原料溶液用容器の底面に設けられる少なくとも一つの超音波振動子とを含み、前記少なくとも一つの超音波振動子による超音波振動動作によって、前記原料溶液をミスト化して前記原料ミストを生成することにより、前記ミスト空間が得られ、前記基板搬送部による前記搬送処理は、前記ミスト空間を通過するように前記基板を移動させるミスト空間通過処理を含み、前記ミスト空間通過処理の実行時に前記基板上に薄膜が成膜される。
本開示の成膜装置において、原料溶液用容器内の原料溶液を直接ミスト化して原料ミストを生成することにより、成膜室内でミスト空間を得ている。そして、基板搬送部は、上記ミスト空間を通過するように基板を移動させるミスト空間通過処理を実行することにより、基板上に薄膜が成膜される。
したがって、本開示の成膜装置は、原料ミストの利用効率が高いミスト空間内で薄膜を成膜することができるため、原料溶液を有効に利用することができる効果を奏する。
本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
<実施の形態1>
図1は実施の形態1の成膜装置11の概略構成を示す説明図である。図1にXYZ直交座標系を記している。
図1は実施の形態1の成膜装置11の概略構成を示す説明図である。図1にXYZ直交座標系を記している。
図1に示すように、実施の形態1の成膜装置11は、加熱室801及び802、成膜室901及び902並びにコンベア53を主要構成要素として含んでいる。
基板搬送部であるコンベア53はベルト52の上面に複数の基板10を載置しつつ、複数の基板10を搬送方向(X方向)に搬送している。コンベア53は左右両端に設けられた搬送用の一対のローラ51と、一対のローラ51に架け渡された無端状の搬送用のベルト52とを備えている。
コンベア53は、一対のローラ51の回転駆動によって、上方側(+Z方向側)のベルト52を搬送方向(X方向)に沿って移動させる搬送処理を実行することができる。
コンベア53の一対のローラ51のうち、一方は加熱室801外の左方(-X方向)に設けられ、他方は成膜室902の右方(+X方向)に設けられる。また、ベルト52の中央部は、加熱室801内、加熱室801,成膜室901間、成膜室901内、成膜室901,加熱室802間、加熱室802内、加熱室802,成膜室902間、及び、成膜室902内に設けられる。
加熱室801及び802と成膜室901及び902とは、加熱室801、成膜室901、加熱室802及び成膜室902の順で左方(-X方向)から右方(+X方向)にかけて設けられる。
加熱室801及び802それぞれの左右の側面の一部に一対の開口部88が設けられ、成膜室901及び902それぞれの左右の側面の一部に一対の開口部98が設けられる。
したがって、ベルト52は一対のローラ51の回転駆動により、加熱室801及び802それぞれの一対の開口部88、並びに成膜室901及び902それぞれの一対の開口部98を介して、加熱室801、成膜室901、加熱室802及び成膜室902の順で移動することができる。
コンベア53の一部は加熱室801及び802に収納される。加熱室801及び802の内部及び周辺の構成は同じであるため、以下では加熱室801を中心に説明する。
加熱室801は、上部容器81、下部容器82、一対の開口部88並びに赤外光照射器2及び4を主要構成要素として含んでいる。方向である高さ方向において上部容器81と下部容器82との間に一対の開口部88が位置する。したがって、加熱室801内の開口部88,88間に設けられるコンベア53は下部容器82の主要部より高く、上部容器81の主要部より低い位置に配置される。
加熱室801の内部において、下部容器82の底面上に第1方向加熱部である赤外光照射器2が設けられる。したがって、赤外光照射器2はベルト52の下方に配置される。
加熱室801の内部において、上部容器81の上面下に第2方向加熱部であるである赤外光照射器4が設けられる。したがって、赤外光照射器4は、ベルト52の上方に配置される。
したがって、加熱室851内において、赤外光照射器2と赤外光照射器4とに挟まれた空間が加熱空間HS1となる。
なお、赤外光照射器2及び4は共に、加熱室801内のベルト52の上面領域(線状の一対のコンベアチェーンに挟まれる領域)と平面視して重複する位置に配置される。
赤外光照射器2はランプ載置台21及び複数の赤外光ランプ22から構成され、ランプ載置台21の上部に複数の赤外光ランプ22が取り付けられる。したがって、赤外光照射器2は複数の赤外光ランプ22から上方に向けて赤外光を照射することができる。
このように、第1方向加熱部である赤外光照射器2は、+Z方向(第1の方向)を照射方向とした赤外光を加熱空間HS1に向けて照射して、加熱空間HS1を加熱する第1方向加熱処理を行う。したがって、加熱空間HS1内にベルト52上に載置された基板10が存在する場合は、第1方向加熱処理によって基板10を加熱することができる。
赤外光照射器4はランプ載置台41及び複数の赤外光ランプ42から構成され、ランプ載置台41の下部に複数の赤外光ランプ42が取り付けられる。したがって、赤外光照射器4は複数の赤外光ランプ42から下方(-Z方向)に向けて赤外光を照射することができる。
このように、第2方向加熱部である赤外光照射器4は、-Z方向(第2の方向)を照射方向とした赤外光を加熱空間HS1に向けて照射して、加熱空間HS2内のベルト52上に載置された基板10を加熱する第2方向加熱処理を行う。したがって、加熱空間HS1内にベルト52上に載置された基板10が存在する場合は、第2方向加熱処理によって基板10を加熱することができる。なお、第2の方向である-Z方向は、第1の方向である+Z方向と反対方向となる。
上述した加熱室801の特徴と同様な特徴を加熱室802有している。なお、加熱空間HS2は加熱空間HS1に対応する。
このように、実施の形態1の成膜装置11は、第1の加熱機構として加熱室801の内部に設けられた赤外光照射器2及び4を有し、第2の加熱機構として加熱室802の内部に設けられた赤外光照射器2及び4を有している。
そして、加熱室801内の複数の基板10に対し、赤外光照射器2及び4によって加熱空間HS1を加熱する第1の加熱処理を実行している。同様に、加熱室802内の複数の基板10に対し、赤外光照射器2及び4によって、加熱空間HS2を加熱する第2の加熱処理を実行している。これら第1及び第2の加熱処理がそれぞれ上述した第1方向加熱処理及び第2方向加熱処理を含んでいる。
基板搬送部であるコンベア53は、搬送処理として、第1の加熱空間である加熱空間HS1を通過するように複数の基板10を移動させる第1の加熱空間通過処理を実行する。
同様に、コンベア53は、搬送処理として、第2の加熱空間である加熱空間HS2を通過するように複数の基板10を移動させる第2の加熱空間通過処理を実行する。
以下、第1及び第2の加熱空間通過処理を総称して、単に「加熱空間通過処理」と称する場合がある。
加熱室801及び802は、第1及び第2の加熱空間通過処理が実行される際、エアカーテン7により上部容器81,下部容器82間の開口部88を塞ぐことにより、加熱空間HS及びベルト52上に載置された複数の基板10を外部から遮断することができる。なお、加熱空間HSは加熱空間HS1及びHS2の総称を意味する。
成膜室901及び902はそれぞれ上部容器31、下部容器32、2つの超音波振動子38を主要構成要素として含んでいる。成膜室901及び902の内部構成は同じであるため、以下では成膜室901を中心に説明する。
図2は図1の視点P1から視た成膜室901の概略構造を示す説明図である。図2にXYZ直交座標系を示している。以下、図1及び図2を参照して、成膜室901の構成を説明する。
成膜室901は、下部容器32、2つの超音波振動子38、及び上部容器31を主要構成要素として含んでいる。なお、図1及び図2において、2つの超音波振動子38は模式的に図示されており、実際の配置位置を反映したものではない。
図2に示すように、上部容器31の下方の一部を開口し、下部容器32の上方の一部を開口するにより、Z方向である高さ方向において上部容器31と下部容器32との間に一対の開口部98が設けられる。そして、成膜室901内の開口部98,98間にコンベア53が設けられる。
原料溶液用容器である下部容器32は原料溶液36を収容している。2つの超音波振動子38(少なくとも一つの超音波振動子)は下部容器32の底面に設けられる。
成膜室901は、2つの超音波振動子38による超音波振動動作によって、原料溶液36をミスト化して原料ミストMTを生成する。その結果、原料ミストMTが成膜室901内で滞留し、充満することによりミスト空間SM1が得られる。このように、成膜室901はミスト発生機能を有しており、内部にミスト空間SM1を得ている。
なお、下部容器32に収容される原料溶液36の温度及び液面高さ並びに2つの超音波振動子38の出力は、所望の成膜精度が得られるように設定されている。
上述した成膜室901の特徴と同様な特徴を成膜室902も有している。すなわち、成膜室902はミスト発生機能を有しており、内部にミスト空間SM2を得ている。
このように、実施の形態1の成膜装置11は、第1の成膜室である成膜室901内にミスト空間SM1(第1のミスト空間)を生成し、第2の成膜室である成膜室902内にミスト空間SM2(第2のミスト空間)を生成している。
基板搬送部であるコンベア53は、搬送処理として、第1の成膜室である成膜室901内のミスト空間SM1を通過するように複数の基板10を移動させる第1のミスト空間通過処理を実行することができる。
同様に、コンベア53は、搬送処理として、第2の成膜室である成膜室902内のミスト空間SM2を通過するように複数の基板10を移動させる第2のミスト空間通過処理を実行することができる。
以下、ミスト空間SM1及びSM2を総称して、単に「ミスト空間SM」と称する場合がある。また、第1及び第2のミスト空間通過処理を総称して、単に「ミスト空間通過処理」と称する場合がある。
成膜室901(902)は、ミスト空間通過処理が実行される際、エアカーテン7により上部容器31,下部容器32間の一対の開口部98を塞ぐことにより、ミスト空間SM及びベルト52上に載置された複数の基板10を外部から遮断することができる。
したがって、実施の形態1の成膜装置11は、エアカーテン7によって加熱室801及び802それぞれの一対の開口部88並びに成膜室901及び902それぞれの一対の開口部98を全て閉状態にし、コンベア53のベルト52を搬送方向(X方向)に沿って移動させる搬送処理を実行することにより、成膜環境を設定することができる。
上述したように、コンベア53による搬送処理は、第1及び第2の加熱空間通過処理並びに第1及び第2のミスト空間通過処理が含まれる。
実施の形態1の成膜装置11は、上記成膜環境下で、加熱室801及び802内の加熱空間HS1及びHS2と成膜室901及び902内のミスト空間SM1及びSM2とが互いに影響を受けないように、加熱室801及び802と成膜室901及び902とをそれぞれ分離して配置している。
以下、同一の基板10を成膜対象として実施の形態1の成膜装置11の成膜内容を説明する。
実施の形態1の成膜装置11は、成膜対象の基板10に対し、上記成膜環境下で、コンベア53による搬送処理として、上記第1の加熱空間通過処理を実行した後、上記第1のミスト空間通過処理を実行する。
その後、成膜装置11は、成膜対象の基板10に対し、上記成膜環境下で、コンベア53による搬送処理として、上記第2の加熱空間通過処理を実行した後、上記第2のミスト空間通過処理を実行する。
第1及び第2のミスト空間通過処理の実行時に、成膜対象の基板10の表面と原料ミストMTが接触し薄膜が成長する。
その結果、実施の形態1の成膜装置11は、最終的に成膜室902においてベルト52の上面に載置された、成膜対象の基板10の表面上に薄膜を成膜することができる。
このように、実施の形態1の成膜装置11は、基板10と接触関係をもたせることなく、2組の赤外光照射器2及び4の組合せによって基板10を加熱することができるため、基板10の形状に関わらず均一な加熱を、基板10を変形させることなく行うことができる。
さらに、実施の形態1の成膜装置11は、加熱空間HS1及びHS2とミスト空間SM1及びSM2とが互いに影響を受けないように、加熱室801及び802と成膜室901及び902とをそれぞれ分離して配置している。
すなわち、加熱室801及び802内に設けられる2組の赤外光照射器2及び4の組合せと、成膜室901及び902とを分離して配置している。このため、成膜装置11は、第1及び第2の加熱空間通過処理並びに第1及び第2のミスト空間通過処理それぞれの実行時に、原料ミスト蒸発現象の発生を確実に回避することができる。
なお、「原料ミスト蒸発現象」とは、ミスト空間SM内の原料ミストMTが赤外光を吸収することにより加熱されて蒸発する現象を意味する。
その結果、実施の形態1の成膜装置11は、成膜品質や成膜速度を落とすことなく、基板10の表面上に薄膜を成膜することができる。
実施の形態1の成膜装置11において、原料溶液用容器である下部容器32内の原料溶液36を直接ミスト化して原料ミストMTを生成することにより、成膜室951及び952内にミスト空間SM(SM1及びSM2)を得ている。
そして、基板搬送部であるコンベア53は、ミスト空間SMを通過するように複数の基板10を移動させるミスト空間通過処理を実行することにより、基板10の表面上に薄膜が成膜される。
成膜室901(902)はミスト発生器としての機能を有している。したがって、成膜対象の基板10の成膜処理に利用されなかった原料ミストMTは、その後にミスト空間SMを通過する他の基板10の成膜に使用することができる。
加えて、ミスト空間SM内の原料ミストMTが沈降して下部容器32に溜まっている原料溶液36に戻る。原料溶液36は2つの超音波振動子38の超音波振動動作によって常にミスト化されているため、沈降した原料ミストMTを原料溶液36として再利用することができる。したがって、成膜装置11は、原料溶液36の高い利用効率を図ることができる。
このように、実施の形態1の成膜装置11は、原料ミストMTの利用効率が高いミスト空間SM(SM1及びSM2)内で薄膜を成膜することができるため、原料溶液36を有効に利用することができる効果を奏する。
さらに、実施の形態1の成膜装置11は、第1及び第2の加熱処理それぞれとして、第1方向加熱処理と第2方向加熱処理とを併せて行うことにより、第1及び第2の加熱空間通過処理それぞれの実行時に複数の基板10を均一に加熱することができる。なお、実施の形態1において、第1の方向は+Z方向、第2の方向は-Z方向となる。
また、成膜装置11は基板搬送部としてコンベア53を用いている。コンベア53は、複数の基板10それぞれの表面が原料溶液用容器である下部容器32の底面と平行となる平行配置関係で、第1及び第2の加熱空間通過処理並びに第1及び第2のミスト空間通過処理を実行している。
したがって、実施の形態1の成膜装置11は、コンベア53のベルト52上に複数の基板10を安定性良く載置して、第1及び第2の加熱空間通過処理並びに第1及び第2のミスト空間通過処理を実行することできる。
実施の形態1の成膜装置11は、上述したように、第1及び第2の加熱機構並びに第1及び第2の成膜室は、第1、第2の順で交互に配置されている。なお、第1の加熱機構は、加熱室801内の赤外光照射器2及び4の組合せであり、第2の加熱機構は、加熱室802内の赤外光照射器2及び4の組合せである。また、第1の成膜室は成膜室901である、第2の成膜室は成膜室902である。
そして、実施の形態1の成膜装置11は、第1及び第2の加熱空間通過処理と第1及び第2のミスト空間通過処理とを第1,第2の順で交互に実行することを特徴としている。
したがって、実施の形態1の成膜装置11は、2回交互に繰り返される加熱空間通過処理及びミスト空間通過処理を実行することにより、成膜される薄膜の膜厚を厚くしたり、膜質が異なる2つの膜による積層構造で薄膜を形成したりすることができる。
なお、上述した成膜装置11では、2つの加熱機構と2つの成膜室による組合せを示したが、n(n≧2)個の加熱機構とn個の成膜室による組合せによる拡張変形例を実現することができる。
上記拡張変形例は、加熱空間HS1~HSnにて第1~第nの加熱処理を実行する第1~第nの加熱機構を有し、ミスト空間SM1~SMnを生成する第1~第nの成膜室を有している。なお、加熱空間HS1~HSnは第1~第nの加熱空間に相当し、ミスト空間SM1~SMnは第1~第nのミスト空間に相当する。
そして、基板搬送部であるコンベア53は、搬送処理として、第1~第nの成膜室内のミスト空間SM1~SMnを通過するように複数の基板10を移動させる第1~第nのミスト空間通過処理を実行することができる。
同様に、コンベア53は、搬送処理として、加熱空間HS1~HSnを通過するように複数の基板10を移動させる第1~第nの加熱空間通過処理を実行することができる。したがって、第1~第nの加熱機構を内部に有する第1~第nの加熱室内で複数の基板10を加熱することができる。
上記拡張変形例は、加熱空間HS1~HSn及びミスト空間SM1~SMnが互いに影響を受けないように、第1~第nの加熱機構及び第1~第nの成膜室を、第1~第nの順で交互に分離して配置している。
そして、上記拡張変形例は、第1~第nの加熱空間通過処理と第1~第nのミスト空間通過処理とを第1,第2,…第nの順で交互に実行することを特徴としている。
したがって、上記拡張変形例は、n(≧2)回交互に繰り返して加熱空間通過処理及びミスト空間通過処理を実行することにより、成膜される薄膜の膜厚を厚くしたり、膜質が異なるn層の膜による積層構造で薄膜を形成したりすることができる。
<実施の形態2>
図3は実施の形態2の成膜装置12の概略構成を示す説明図である。図4は図3の視点P2から視た成膜室191の構成を示す説明図である。図5は、上方(+Z方向)から視た加熱室181の構成を示す説明図である。図3~図5それぞれにXYZ直交座標系を記している。
図3は実施の形態2の成膜装置12の概略構成を示す説明図である。図4は図3の視点P2から視た成膜室191の構成を示す説明図である。図5は、上方(+Z方向)から視た加熱室181の構成を示す説明図である。図3~図5それぞれにXYZ直交座標系を記している。
図3~図5に示すように、実施の形態2の成膜装置12は、加熱室181及び182、成膜室191及び192、赤外光照射器2L及び2Rの組合せ並びに搬送チェーン25を主要構成要素として含んでいる。
なお、図5では、搬送チェーン25の図示を省略し、図3では、赤外光照射器2L及び2Rの図示を省略している。
図3及び図4に示すように、基板搬送部である搬送チェーン25は基板吊り下げ部25pを有し、基板吊り下げ部25pを介して複数の基板10それぞれを上方から吊り下げている。この際、図5に示すように、複数の基板10は、搬送方向(+X方向)を基準として、左側(+Y方向側)が表面、右側(-Y方向側)が裏面になるように吊り下げられる。
搬送チェーン25は図示しない駆動手段によって搬送方向(X方向)に移動可能であり、搬送チェーン25の移動に伴って複数の基板10を搬送方向に移動させる搬送処理が行える。
搬送チェーン25の一端は加熱室181外の左方(-X方向)に設けられ、他端は成膜室192外の右方(+X方向)に設けられる。
また、搬送チェーン25の中央部は、加熱室181内、加熱室181,成膜室191間、成膜室191内、成膜室191,加熱室182間、加熱室182内、加熱室182,成膜室192間、及び、成膜室192内に設けられる。
加熱室181及び182並びに成膜室191及び192は、加熱室181、成膜室191、加熱室182及び成膜室192の順で左方から右方にかけて設けられる。
加熱室181及び182の内部及び周辺の構成は同じであるため、以下では加熱室181を中心に説明する。
図3に示すように、搬送チェーン25の一部は加熱室181内に収納される。図5に示すように、加熱室181は、右方容器85、左方容器86及び一対の開口部89により構成される。加熱室181内に複数の基板10が存在する場合、右方容器85は複数の基板10の右側(-Y方向側)に位置し、左方容器86は複数の基板10の左側(+Y方向側)に位置する。
Y方向である幅方向において右方容器85と左方容器86との間に一対の開口部89が位置する。したがって、加熱室181内の開口部89,89間に設けられる搬送チェーン25は、搬送方向(X方向)を基準として、右方容器85の主要部より左側(+Y方向側)、かつ、左方容器86の主要部より右側(-Y方向側)に配置される。
加熱室181は、赤外光照射器2L及び2Rから照射される赤外光を吸収することなく、透過性に優れた赤外光透過材料を構成材料としている。具体的には、加熱室181は構成材料として石英ガラスを採用している。石英ガラス以外の赤外光透過材料として、例えば、ゲルマニウム、シリコン、硫化亜鉛、セレン化亜鉛などが考えられる。
第1方向加熱部である赤外光照射器2Rは、搬送方向(+X方向)を基準として、右方容器85外の右方(-Y方向)側に、図示しない固定手段より固定される。したがって、赤外光照射器2Rは搬送チェーン25から離れて配置される。赤外光照射器2Rは赤外光照射器2と同様、ランプ載置台21及び赤外光ランプ22を主要構成要素として含んでいる。
第2方向加熱部であるである赤外光照射器2Lは、搬送方向を基準として、左方容器86外の左方(+Y方向)側に、図示しない固定手段より固定される。したがって、赤外光照射器2Lは搬送チェーン25から離れて配置される。赤外光照射器2R及び赤外光照射器2Lの組合せにより加熱機構が構成される。赤外光照射器2Lは、赤外光照射器2と同様、ランプ載置台21及び赤外光ランプ22を主要構成要素として含んでいる。
なお、赤外光照射器2L及び2Rは共に加熱室181内の複数の基板10と同程度の高さで配置される。
第1方向加熱部である赤外光照射器2Rは、+Y方向(第1の方向)に照射方向とした赤外光を加熱空間HS1に向けて照射して、加熱空間HS1を加熱する第1方向加熱処理を行っている。搬送方向を基準として左方となる+Y方向は基板10の裏面から表面に向かう方向となる。
したがって、加熱空間HS1内に基板吊り下げ部25pにより吊り下げられた基板10が存在する場合は、第1方向加熱処理によって基板10を加熱することができる。
第2方向加熱部である赤外光照射器2Lは、-Y方向(第2の方向)に向けて赤外光を照射して加熱空間HS1を加熱する第2方向加熱処理を行っている。搬送方向を基準として右方となる-Y方向は基板10の表面から裏面に向かう方向となる。したがって、第2の方向である-Y方向は、第1の方向である+Y方向と反対方向となる。
したがって、加熱空間HS1内に基板吊り下げ部25pにより吊り下げられた基板10が存在する場合は、第2方向加熱処理によって基板10を加熱することができる。
加熱室182も加熱室181と同様な構成であり、かつ、加熱室181と同様に加熱室852外に赤外光照射器2L及び2Rが設けられる。
加熱室181用の赤外光照射器2L及び2Rの組合せが第1の加熱機構に相当し、加熱室182用の赤外光照射器2L及び2Rの組合せが第2の加熱機構に相当する。
基板搬送部である搬送チェーン25は、搬送処理として、第1の加熱空間である加熱空間HS1を通過するように複数の基板10を移動させる第1の加熱空間通過処理を実行する。
同様に、搬送チェーン25は、搬送処理として、第2の加熱空間である加熱空間HS2を通過するように複数の基板10を移動させる第2の加熱空間通過処理を実行する。
加熱室181及び182はそれぞれ、第1及び第2の加熱空間通過処理が実行される際、エアカーテン7により右方容器85,左方容器86間の開口部89を塞ぐことにより、加熱空間HS1及びHS2を外部から遮断することができる。
このように、実施の形態2の成膜装置12は、第1の加熱機構として加熱室181の外部周辺に設けられた赤外光照射器2L及び2Rを有し、第2の加熱機構として加熱室182の外部周辺に設けられた赤外光照射器2L及び2Rを有している。
成膜室191及び192はそれぞれ上部容器33、下部容器34、2つの超音波振動子38を主要構成要素として含んでいる。成膜室191及び192の内部構成は同じであるため、以下では成膜室191を中心に説明する。成膜室191は搬送チェーン25の一部を収納する。
図3及び図4に示すように、Z方向である高さ方向において上部容器33と下部容器34との間に一対の開口部99が設けられる。そして、成膜室191内の開口部99,99間に搬送チェーン25が設けられる。
具体的には、図4に示すように、上部容器33の下方の一部を開口し、下部容器34の上方の一部を開口するにより、Z方向である高さ方向において上部容器33と下部容器34との間に一対の開口部99が設けられる。そして、成膜室191内の開口部99,99間に搬送チェーン25が設けられる。
原料溶液用容器である下部容器34は、実施の形態1の下部容器32と同様、原料溶液36を収容している。2つの超音波振動子38(少なくとも一つの超音波振動子)は下部容器34の底面に設けられる。
なお、図3及び図4において、2つの超音波振動子38は模式的に図示されており、実際の配置位置を反映したものではない。
成膜室191は、2つの超音波振動子38による超音波振動動作によって、原料溶液36をミスト化して原料ミストMTを生成する。その結果、原料ミストMTが成膜室191内で滞留し、充満することによりミスト空間SM1が得られる。このように、成膜室191はミスト発生機能を有している。
上述した成膜室191の特徴と同様な特徴を成膜室192も有している。すなわち、成膜室192はミスト発生機能を有しており、内部にミスト空間SM2を得ている。
このように、実施の形態2の成膜装置12は、第1の成膜室である成膜室191内にミスト空間SM1(第1のミスト空間)を生成し、第2の成膜室である成膜室192内にミスト空間SM2(第2のミスト空間)を生成している。
基板搬送部である搬送チェーン25は、搬送処理として、第1の成膜室である成膜室191内のミスト空間SM1を通過するように複数の基板10を移動させる第1のミスト空間通過処理を実行することができる。
同様に、搬送チェーン25は、搬送処理として、第2の成膜室である成膜室192内のミスト空間SM2を通過するように複数の基板10を移動させる第2のミスト空間通過処理を実行することができる。
成膜室191(192)は、ミスト空間通過処理が実行される際、エアカーテン7により上部容器33,下部容器34間の開口部99を塞ぐことにより、ミスト空間SM及び基板吊り下げ部25pで吊り下げられた複数の基板10を外部から遮断することができる。
したがって、実施の形態2の成膜装置12は、加熱室181及び182それぞれの一対の開口部89並びに成膜室191及び192それぞれの一対の開口部99を全てエアカーテン7によって閉状態にし、搬送チェーン25を搬送方向(X方向)に沿って移動させる搬送処理を実行することにより、成膜環境を設定することができる。
上述したように、搬送処理は、第1及び第2の加熱空間通過処理並びに第1及び第2のミスト空間通過処理が含まれる。
実施の形態2の成膜装置12は、上記成膜環境下で、加熱室181及び182内の加熱空間HS1及びHS2と成膜室191及び192内のミスト空間SM1及びSM2とが互いに影響を受けないように、加熱室181及び182と成膜室191及び192とをそれぞれ分離して配置している。
以下、同一の基板10を成膜対象として実施の形態2の成膜装置12の成膜内容を説明する。
実施の形態2の成膜装置12は、成膜対象の基板10に対し、上記成膜環境下で、搬送チェーン25による搬送処理として、上記第1の加熱空間通過処理を実行した後、上記第1のミスト空間通過処理を実行する。
その後、成膜装置12は、成膜対象の基板10に対し、上記成膜環境下で、搬送チェーン25による搬送処理として、上記第2の加熱空間通過処理を実行した後、上記第2のミスト空間通過処理を実行する。
その結果、実施の形態2の成膜装置12は、最終的に成膜室192において基板吊り下げ部25pによって吊り下げられた、成膜対象の基板10の表面上及び裏面上それぞれに薄膜を成膜することができる。
このように、実施の形態2の成膜装置12は、基板10と接触関係をもたせることなく、2組の赤外光照射器2L及び2Rの組合せによって基板10を加熱することができるため、基板10の形状に関わらず均一な加熱を、基板10を変形させることなく行うことができる。
さらに、実施の形態2の成膜装置12は、加熱空間HS1及びHS2とミスト空間SM1及びSM2とが互いに影響を受けないように、加熱室181及び182と成膜室191及び192とをそれぞれ分離して配置している。
すなわち、加熱室181及び182内の設けられる2組の赤外光照射器2L及び2Rの組合せと、成膜室191及び192とを分離して配置している。このため、成膜装置12は、第1及び第2の加熱空間通過処理並びに第1及び第2のミスト空間通過処理それぞれの実行時に、上記原料ミスト蒸発現象の発生を確実に回避することができる。
その結果、実施の形態2の成膜装置12は、成膜品質や成膜速度を落とすことなく、基板10の表面上に薄膜を成膜することができる。
実施の形態2の成膜装置12において、原料溶液用容器である下部容器34内の原料溶液36を直接ミスト化して原料ミストMTを生成することにより、成膜室191及び192内にミスト空間SM1及びSM2を得ている。
そして、基板搬送部であるコンベア53は、ミスト空間SM(SM1及びSM2)を通過するように複数の基板10を移動させるミスト空間通過処理を実行することにより、基板10の表面上及び裏面上それぞれに薄膜が成膜される。
すなわち、成膜室191及び192はそれぞれミスト発生器としての機能を有している。したがって、実施の形態2の成膜装置12は、実施の形態1の成膜装置11と同様、原料ミストMTの利用効率が高いミスト空間SM内で薄膜を成膜することができるため、原料溶液36を有効に利用することができる効果を奏する。
さらに、実施の形態2の成膜装置12は、第1及び第2の加熱処理それぞれとして、第1方向加熱処理と第2方向加熱処理とを併せて行うことにより、第1及び第2の加熱空間通過処理それぞれの実行時に複数の基板10を均一に加熱することができる。なお、実施の形態2において、第1の方向は+Y方向、第2の方向は-Y方向となる。
また、成膜装置12は基板搬送部として搬送チェーン25を用いている。搬送チェーン25は、複数の基板10それぞれの表面が原料溶液用容器である下部容器34の底面と垂直となる垂直配置関係で、第1及び第2の加熱空間通過処理並びに第1及び第2のミスト空間通過処理を実行している。
したがって、第1及び第2のミスト空間通過処理の実行時に、成膜室191及び192内において、複数の基板10の表面及び裏面それぞれの大部分(基板吊り下げ部25pの取付領域を除く領域)とミスト空間SM内の原料ミストMTとの接触を図ることができる。
その結果、実施の形態2の成膜装置12は、複数の基板10の表面上に加え、裏面上にも薄膜を成膜することができる。
実施の形態2の成膜装置12は、上述したように、第1及び第2の加熱機構並びに第1及び第2の成膜室は、第1、第2の順で交互に配置されている。なお、第1の加熱機構は、加熱室181用の赤外光照射器2L及び2Rの組合せであり、第2の加熱機構は、加熱室182用の赤外光照射器2L及び2Rの組合せである。また、第1の成膜室は成膜室191である、第2の成膜室は成膜室192である。
そして、実施の形態2の成膜装置12は、第1及び第2の加熱空間通過処理と第1及び第2のミスト空間通過処理とを第1,第2の順で交互に実行することを特徴としている。
したがって、実施の形態2の成膜装置12は、2回交互に繰り返される加熱空間通過処理及びミスト空間通過処理を実行することにより、成膜される薄膜の膜厚を厚くしたり、膜質が異なる2つの膜による積層構造で薄膜を形成したりすることができる。
なお、実施の形態2の成膜装置12においても、実施の形態1と同様な拡張変形例を実現することができる。
<実施の形態3>
上述した実施の形態1及び実施の形態2では、成膜室にミスト発生機能を持たせていることを特徴としている。
上述した実施の形態1及び実施の形態2では、成膜室にミスト発生機能を持たせていることを特徴としている。
上述した特徴を有する実施の形態1及び実施の形態2では、成膜室内にミスト空間SMが存在している。ミスト空間SM内の原料ミストMTは、重力の影響により鉛直方向(-Z方向)に原料ミストMTの濃度勾配ができる可能性がある。すなわち、ミスト空間SMの高所(+Z方向側)では原料ミストMTの濃度が比較的低く、低所(-Z方向側)では原料ミストMTの濃度が比較的高くなる可能性がある。
加えて、2つの超音波振動子38からの距離によって、ミスト空間SM内におけるXY平面で規定される水平方向に原料ミストMTの濃度分布が生じる可能性もある。なぜなら、超音波振動子38に近い程、原料ミストMTの濃度が高くなり、超音波振動子38から遠い程、原料ミストMTの濃度が低くなる傾向があるからである。
さらに、実施の形態1の成膜装置11におけるベルト52や基板10の存在、実施の形態2の成膜装置12における搬送チェーン25や基板10の存在が、ミスト空間SMにおける原料ミストMTの濃度不均一の原因となる場合も考えられる。
ミスト空間SMに原料ミストMTの濃度勾配が存在する状態で薄膜を成膜した場合、基板10に接触する原料ミストMTの濃度が不均一となり、結果として薄膜の均一性が損なわれる懸念材料がある。
上述したミスト空間SMの濃度勾配に関する懸念材料に改善を施したのが以下で述べる実施の形態3の成膜装置13及び実施の形態4の成膜装置14である。なお、成膜装置13は成膜装置13A及び13Bの総称であり、成膜装置14は成膜装置14A及び14Bの総称である。
図6及び図7は実施の形態3の成膜装置13(13A,13B)に用いられる成膜室の構成を示す説明図である。図6及び図7それぞれにXYZ直交座標系を記している。
図6は実施の形態1の構成を基準とした成膜装置13Aの成膜室901Bを示しており、図7は実施の形態2の構成を基準とした成膜装置13Bの成膜室191Bを示している。なお、説明の都合上、図6では開口部98の図示を省略し、図7では開口部99の図示を省略している。
成膜装置13Aの全体構成は、図1及び図2で示した実施の形態1の成膜装置11の構成を基準として、成膜室901及び902に置き換えて、成膜室901B及び902Bを設けたことを特徴としている。なお、成膜室901B及び902B以外の加熱室801及び802、コンベア53は、実施の形態1の成膜装置11と同じであるため、説明を省略する。
成膜室901B及び902Bの内部構成は同じであるため、以下では、図6を参照して、成膜室901Bを中心に説明する。
成膜室901Bでは、下部容器32の対向する一対の側面それぞれに取付部材55を介して循環用ファン45を設けている。すなわち、下部容器32内において、対向する一対の側面付近に一対の循環用ファン45を設けている。
図6に示すように、成膜室901Bは、原料溶液用容器である下部容器32と、下部容器32の上方に配置される上部容器31と、ミスト空間SM1内で原料ミストMTを循環させる循環用送風動作を実行する一対の循環用ファン45とを含んでいる。なお、下部容器32が原料溶液36を収容すること、下部容器32の底面に2つの超音波振動子38が設けられる構成は、実施の形態1の成膜室901と同様である。
また、一対の循環用ファン45は、下部容器32に収容された原料溶液36の上面から少し高い位置でかつ、ベルト52の下方に配置され、上方(+Z方向)に循環気流C45が生じるように循環用送風動作を実行する。したがって、一対の循環用ファン45の循環用送風動作がベルト52上に載置された基板10の移動に影響を与えることはない。
このような構成において、成膜室901Bは、2つの超音波振動子38による超音波振動動作によって、原料溶液36をミスト化して原料ミストMTを生成している。この際、一対の循環用ファン45は循環用送風動作を行い、下方から上方に向かう方向(+Z方向)に一対の循環気流C45を発生させる。
したがって、原料溶液36からミスト化された原料ミストMTの一部が一対の循環気流C45によって上方に強制的に移動されるため、重力の影響により鉛直方向(-Z方向)に沿った原料ミストMTの濃度勾配を緩和することができる。
このように、一対の循環用ファン45による循環用送風動作によって、ミスト空間SM1内で原料ミストMTを循環させる循環処理が行える。
成膜室902Bも成膜室901Bと同様な構成であり、内部に一対の循環用ファン45が設けられる。なお、ミスト空間SM2はミスト空間SM1に対応する。
その結果、成膜装置13Aにおいて、成膜室901B及び902Bは、ミスト空間SM1及びSM2における原料ミストMTの濃度分布の均一化を図ることができる。
次に、図7で示した成膜装置13Bの成膜室191Bについて説明する。
成膜装置13Bの全体構成は、図3~図5で示した実施の形態2の成膜装置12の構成を基準として、成膜室191及び192に置き換えて、成膜室191B及び192Bを設けたことを特徴としている。なお、成膜室191B及び192B以外の加熱室181及び182、搬送チェーン25及び基板吊り下げ部25pは、実施の形態2の成膜装置12と同じであるため、説明を省略する。
成膜室191B及び192Bの内部構成は同じであるため、以下では、図7を参照して、成膜室191Bを中心に説明する。
成膜室191Bでは、下部容器34の対向する一対の側面それぞれに取付部材55を介して循環用ファン45を設けている。すなわち、下部容器34内において、対向する一対の側面付近に一対の循環用ファン45を設けている。
図7に示すように、成膜室191Bは、原料溶液用容器である下部容器34と、下部容器34の上方に配置される上部容器33と、ミスト空間SM1内で原料ミストMTを循環させる循環用送風動作を実行する一対の循環用ファン45とを含んでいる。なお、下部容器34が原料溶液36を収容すること、下部容器34の底面に2つの超音波振動子38が設けられる構成は、実施の形態2の成膜室901と同様である。
また、一対の循環用ファン45は、下部容器34に収容された原料溶液36の上面から少し高い位置で、かつ、基板吊り下げ部25pで吊り下げられた基板10の下端より低い位置され、上方(+Z方向)に循環気流C45が生じるように循環用送風動作を実行する。したがって、一対の循環用ファン45のファン動作が搬送チェーン25の基板吊り下げ部25pに吊り下げられた基板10の移動に影響を与えることはない。
このような構成において、成膜装置13Bは、2つの超音波振動子38による超音波振動動作によって、原料溶液36をミスト化して原料ミストMTを生成している。この際、一対の循環用ファン45は循環用送風動作を行い、下方から上方に向かう方向(+Z方向)に一対の循環気流C45を発生させる。
したがって、原料溶液36からミスト化された原料ミストMTの一部が一対の循環気流C45によって上方に強制的に移動されることにより、重力の影響による鉛直方向(-Z方向)に沿った原料ミストMTの濃度勾配を緩和することができる。
このように、一対の循環用ファン45による循環用送風動作によって、ミスト空間SM1内で原料ミストMTを循環させる循環処理が行える。
成膜室192Bも成膜室191Bと同様な構成であり、内部に一対の循環用ファン45が設けられる。なお、ミスト空間SM2はミスト空間SM1に対応する。
その結果、成膜室191B及び192Bは、ミスト空間SM1及びSM2における原料ミストMTの濃度分布の均一化を図ることができる。
このように、実施の形態3の成膜装置13A及び13Bは共に一対の循環用ファン45が実行する循環用送風動作によって、ミスト空間SM(SM1及びSM2)内の原料ミストMTを循環させることにより、ミスト空間SM内の原料ミストMTの濃度の均一化を図ることができる。
その結果、実施の形態3の成膜装置13Aは、複数の基板10の表面上に精度良く薄膜を成膜することができる。同様に、成膜装置13Bは、複数の基板10の表面上及び裏面上それぞれに精度良く薄膜を成膜することができる。
<実施の形態4>
図8及び図9は実施の形態4の成膜装置14(14A,14B)に用いられる成膜室の構成を示す説明図である。図8及び図9それぞれにXYZ直交座標系を記している。
図8及び図9は実施の形態4の成膜装置14(14A,14B)に用いられる成膜室の構成を示す説明図である。図8及び図9それぞれにXYZ直交座標系を記している。
図8は実施の形態1の構成を基準とした成膜装置14Aの成膜室901Cを示しており、図9は実施の形態2の構成を基準とした成膜装置14Bの成膜室191Cを示している。なお、成膜装置14は成膜装置14A及び14Bの総称である。
成膜装置14Aの全体構成は、図1及び図2で示した実施の形態1の成膜装置11の構成を基準として、成膜室901及び902に置き換えて、成膜室901C及び902Cを設けたことを特徴としている。なお、成膜室901C及び902C以外の加熱室801及び802、コンベア53は、実施の形態1の成膜装置11と同じであるため、説明を省略する。
成膜室901C及び902Cの内部構成は同じであるため、以下では、図8を参照して、成膜室901Cを中心に説明する。
成膜室901Cは、成膜室901Bと同様、一対の循環用ファン45を有し、さらに以下の特徴を有している。
成膜室901C内において、下部容器32の底面上に一対の取付部材56を上方(+Z方向)に立設させ、一対の取付部材56の上方先端部に吹付用ファン46を取り付けている。吹付用ファン46は平面視してベルト52の中心部と重複するように配置される。
成膜室901C内において、上部容器31の上面下に一対の取付部材57を下方(-Z方向)に立設させ、一対の取付部材57の下方先端部に吹付用ファン47を取り付けている。吹付用ファン47は平面視してベルト52の中心部と重複し、かつ、吹付用ファン46に平面視して一致するように配置される。
図8に示すように、成膜室901Cは、実施の形態3の成膜室901Bの構成に加え、さらに、上述した吹付用ファン46及び47を設けたことを特徴としている。
また、第1方向吹付用ファンである吹付用ファン46は、下部容器32に収容された原料溶液36の上面及び一対の循環用ファン45よりも高い位置でかつ、ベルト52の下方に配置される。吹付用ファン46は、第1の吹付方向である上方(+Z方向)に吹付気流C46が生じるように第1の吹付用送風動作を実行する。したがって、吹付用ファン46の第1の吹付用送風動作がベルト52上に載置された基板10の移動に影響を与えることはない。
第2方向吹付用ファンである吹付用ファン47は、ベルト52の上方に配置され、第2の吹付方向である下方(-Z方向)に吹付気流C47が生じるように第1の吹付用送風動作を実行する。したがって、吹付用ファン47の第2の吹付用送風動作がベルト52上に載置された基板10の移動に影響を与えることはない。
すなわち、第1方向吹付用ファンである吹付用ファン46は、第1の吹付方向である+Z方向に沿って、原料ミストMTを成膜経路RF1に向けて吹き付ける第1の吹付用送風動作を実行する。同様に、第2方向吹付用ファンである吹付用ファン47は、第2の吹付方向である-Z方向に沿って、原料ミストMTを成膜経路RF1に向けて吹き付ける第2の吹付用送風動作を実行する。
図1及び図8に示すように、コンベア53によるミスト空間通過処理は、ミスト空間SM1の成膜経路RF1を通過するように、複数の基板10を移動させる処理である。
このような構成において、成膜装置14Aは、実施の形態3の成膜装置13Aと同様、一対の循環用ファン45の循環用送風動作によって一対の循環気流C45を生成することにより、ミスト空間SM1における原料ミストMTの均一化を図っている。
さらに、成膜装置14Aは、吹付用ファン46の第1の吹付用送風動作により、上方の成膜経路RF1に向けて吹付気流C46を発生させ、吹付用ファン47の第2の吹付用送風動作により、下方の成膜経路RF1に向けて吹付気流C47を発生させている。
したがって、第1方向及び第2方向吹付用ファンである吹付用ファン46及び47が実行する第1及び第2の吹付用送風動作によって、原料ミストMTの成膜経路RF1への供給速度を高くし、成膜経路RF1における原料ミストMTの濃度を高い状態で均一にすることができる。
成膜室902Cも成膜室901Cと同様な構成であり、内部に一対の循環用ファン45、吹付用ファン46及び47が設けられる。なお、ミスト空間SM2はミスト空間SM1に対応し、成膜経路RF2は成膜経路RF1に対応する。
次に、図9で示した成膜装置14Bの成膜室191Cについて説明する。
成膜室191C及び192Cの内部構成は同じであるため、以下では、図9を参照して、成膜室191Cを中心に説明する。
成膜室191Cは、成膜室191Bと同様、一対の循環用ファン45を有し、さらに、以下の特徴を有している。
成膜室191C内において、下部容器34の一方の側面(-Y側の側面)に設けられた一対の取付部材58を介して吹付用ファン48を設けている。成膜室191C内において、下部容器34の他方の側面(+Y側の側面)に設けられた取付部材59を介して吹付用ファン49を設けている。
吹付用ファン48及び49は同じ高さで、かつ、XZ平面で平面視して基板10の通過領域と重複するように配置される。さらに、吹付用ファン48及び49は、XZ平面で平面視して互いに合致する。
図9に示すように、成膜室191Cは、実施の形態3の成膜室191Bの構成に加え、さらに、上述した吹付用ファン48及び49を設けたことを特徴としている。
図3及び図9に示すように、搬送チェーン25による第1のミスト空間通過処理は、ミスト空間SM1の成膜経路RF11を通過するように、複数の基板10を移動させる処理である。
このような構成において、成膜装置14Bは、成膜装置13Bと同様、一対の循環用ファン45の循環用送風動作によって一対の循環気流C45を生成することにより、ミスト空間SM1における原料ミストMTの均一化を図っている。
さらに、成膜装置14Bは、吹付用ファン48の第1の吹付用送風動作により、右方(+Y方向)の成膜経路RF11に向けて吹付気流C48を発生させ、吹付用ファン49の第2の吹付用送風動作により、左方(-Y方向)の成膜経路RF11に向けて吹付気流C49を発生させている。
すなわち、第1方向吹付用ファンである吹付用ファン48は、第1の吹付方向である+Y方向に沿って、原料ミストMTを成膜経路RF11に向けて吹き付ける第1の吹付用送風動作を実行する。同様に、第2方向吹付用ファンである吹付用ファン49は、第2の吹付方向である-Y方向に沿って、原料ミストMTを成膜経路RF11に向けて吹き付ける第2の吹付用送風動作を実行する。
したがって、吹付用ファン48及び49が実行する第1及び第2の吹付用送風動作によって、原料ミストMTの成膜経路RF1への供給速度を高くすることにより、成膜経路RF11における原料ミストMTの濃度を高い状態で均一にすることができる。
成膜室192Cも成膜室191Cと同様な構成であり、内部に一対の循環用ファン45、吹付用ファン48及び49が設けられる。なお、ミスト空間SM2はミスト空間SM1に対応し、成膜経路RF12は成膜経路RF11に対応する。
このように、実施の形態4の成膜装置14Aは、吹付用ファン46及び47が実行する吹付用送風動作(第1及び第2の吹付用送風動作)によって、成膜室901C(902C)内の成膜経路RF1(RF2)における原料ミストMTの濃度を高い状態で均一にすることができる。
同様に、実施の形態4の成膜装置14Bは、吹付用ファン48及び49が実行する吹付用送風動作によって、成膜室191C(192C)内の成膜経路RF11(RF12)における原料ミストMTの濃度が高い状態で均一にすることができる。
その結果、実施の形態4の成膜装置14(14A及び14B)は、薄膜の成膜速度及び成膜精度を高めることができる。
さらに、実施の形態4の成膜装置14Aは、高さ方向(Z方向)において成膜経路RF1(RF2)を挟んで対向する吹付用ファン46及び47が実行する第1及び第2の吹付用送風動作によって、成膜経路RF1における原料ミストMTの濃度をより高く、かつ、より均一にすることができる。
同様に、実施の形態4の成膜装置14Bは、水平方向(Y方向)において成膜経路RF11(RF12)を挟んで対向する吹付用ファン48及び49が実行する第1及び第2の吹付用送風動作によって、成膜経路RF11における原料ミストMTの濃度をより高く、かつ、より均一にすることができる。
なお、前述したように、第1方向吹付用ファンに、成膜装置14Aの吹付用ファン46及び成膜装置14Bの吹付用ファン48が相当し、第2方向吹付用ファンに、成膜装置14Aの吹付用ファン47及び成膜装置14Bの吹付用ファン49が相当する。
<実施の形態5>
図10は実施の形態5の成膜装置15の概略構成を示す説明図である。図10にXYZ直交座標系を記している。
図10は実施の形態5の成膜装置15の概略構成を示す説明図である。図10にXYZ直交座標系を記している。
図10に示すように、実施の形態5の成膜装置15は、成膜室500、赤外光照射器4及びコンベア53を主要構成要素として含んでいる。
基板搬送部であるコンベア53はベルト52の上面に複数の基板10を載置しつつ、複数の基板10を搬送方向(X方向)に搬送している。コンベア53は左右両端に設けられた搬送用の一対のローラ51と、一対のローラ51に架け渡された無端状の搬送用のベルト52とを備えている。
コンベア53は、一対のローラ51の回転駆動によって、上方側(+Z方向側)のベルト52を搬送方向(X方向)に沿って移動させることができる。
コンベア53の一対のローラ51のうち、一方は成膜室500の左方(-X方向)に設けられ、他方は成膜室500の右方(+X方向)に設けられる。また、ベルト52の中央部は、成膜室500の内部に設けられる。
したがって、ベルト52は一対のローラ51の回転駆動により、成膜室500の左右(-X方向,+X方向)の側面の一部に設けられる一対の開口部68を介して、成膜室500の内部及び外部との間を移動することができる。
成膜室500の周辺において、赤外光照射器4は上部容器31外の上方(+Z方向)側のコンベア53から離れた位置に、図示しない固定手段より固定される。赤外光照射器4により加熱機構が構成される。
なお、赤外光照射器4は、成膜室500内のベルト52の上面領域と平面視して重複する位置に配置される。
赤外光照射器4はランプ載置台41及び複数の赤外光ランプ42から構成され、ランプ載置台41の下部に複数の赤外光ランプ42が取り付けられる。したがって、赤外光照射器4は複数の赤外光ランプ42から下方(-Z方向)に向けて赤外光を照射することができる。
したがって、第2方向加熱部である赤外光照射器4は、-Z方向(第2の方向)を照射方向とした赤外光を加熱空間HS5に向けて照射して、加熱空間HS5を加熱する加熱処理を行う。したがって、加熱空間HS5内にベルト52上に載置された基板10が存在する場合は、加熱処理によって基板10を加熱することができる。
このように、実施の形態5の成膜装置15は、加熱機構として成膜室500の外部に赤外光照射器4を有している。そして、赤外光照射器4によって、成膜室500内の加熱空間HS5を加熱する加熱処理を実行している。
成膜室500は上部容器31、下部容器32、2つの超音波振動子38を主要構成要素として含んでいる。
成膜室500の左右の側面の一部に一対の開口部68が設けられる。一対の開口部68は、Z方向である高さ方向において上部容器31と下部容器32との間に一対の開口部68が設けられる。そして、成膜室500内の開口部68,68間にコンベア53が設けられる。
原料溶液用容器である下部容器32は原料溶液36を収容している。2つの超音波振動子38(少なくとも一つの超音波振動子)は下部容器32の底面に設けられる。
成膜室500は、2つの超音波振動子38による超音波振動動作によって、原料溶液36をミスト化して原料ミストMTを生成する。その結果、原料ミストMTが成膜室500内で滞留し、充満することによりミスト空間SM5が得られる。このように、成膜室500はミスト発生機能を有している。
また、ミスト空間SM5及び加熱空間HS5は共に成膜室500内に存在し、ミスト空間SMと加熱空間HS5とは大部分が互いに重複する関係になる。
このように、実施の形態5の成膜装置15は、成膜室500内にミスト空間SM5を生成している。
基板搬送部であるコンベア53は、搬送処理として、成膜室500内のミスト空間SMを通過するように複数の基板10を移動させるミスト空間通過処理を実行することができる。ミスト空間通過処理の実行時に複数の基板10は成膜経路RF5を通過する。
加熱空間HS5とミスト空間SMとが重複しているため、ミスト空間通過処理の実行時に、同時に加熱空間HSに存在する複数の基板10を加熱することができる。
成膜室500は、ミスト空間通過処理が実行される際、エアカーテン7により一対の開口部68を塞ぐことにより、ベルト52上に載置された複数の基板10、ミスト空間SM5及び加熱空間HS5を外部から遮断することができる。
したがって、実施の形態5の成膜装置15は、エアカーテン7によって成膜室500の一対の開口部68を閉状態にし、コンベア53のベルト52を搬送方向(X方向)に沿って移動させる搬送処理を実行することにより、成膜環境を設定することができる。上述したように、搬送処理には、ミスト空間通過処理が含まれる。
以下、同一の基板10を成膜対象として実施の形態5の成膜装置15の成膜内容を説明する。
実施の形態5の成膜装置15は、上記成膜環境下で、コンベア53による搬送処理として、上記ミスト空間通過処理を実行する。このミスト空間通過処理の実行時に赤外光照射器4による加熱空間HS5を加熱する加熱処理が併せて実行される。したがって、上記ミスト空間通過処理の実行時に成膜対象の基板10は加熱される。
その結果、実施の形態5の成膜装置15は、成膜室500内にて、ベルト52の上面に載置された基板10の表面上に薄膜を成膜することができる。
このように、実施の形態5の成膜装置15は、基板10と接触関係をもたせることなく、赤外光照射器4によって基板10を加熱することができるため、基板10の形状に関わらず均一な加熱を、基板10を変形させることなく行うことができる。
その結果、実施の形態5の成膜装置15は、成膜品質や成膜速度を落とすことなく、基板10の表面上に薄膜を成膜することができる。
実施の形態5の成膜装置15は、実施の形態1の成膜装置11と同様、成膜室500がミスト発生機能を有している。このため、成膜装置15は、原料ミストMTの利用効率が高いミスト空間SM内で薄膜を成膜することができるため、原料溶液36を有効に利用することができる効果を奏する。
さらに、実施の形態5の成膜装置15は、基板搬送部であるコンベア53によるミスト空間通過処理の実行時に成膜対象の基板10は加熱されるため、比較的短期間で複数の基板10の表面上に薄膜を成膜することができる。
加えて、ミスト空間通過処理時に成膜対象の基板10が加熱されるため、成膜対象の基板10の温度設定を熱効率良く行える。
<変形例>
図1及び図2で示した実施の形態1である成膜装置11の変形例として、理想環境を実現するための構成を考察する。
図1及び図2で示した実施の形態1である成膜装置11の変形例として、理想環境を実現するための構成を考察する。
以下では、搬送処理の搬送方向(X方向)における搬送用移動速度VMが一定であることを前提として、加熱室801内で実行される第1の加熱空間通過処理と、成膜室901内で実行される第1のミスト空間通過処理について考察する。なお、搬送処理には、第1及び第2の加熱空間通過処理並びに第1及び第2のミスト空間通過処理が含まれる。
ここで、理想環境を実現するには、加熱室801内で実行される第1の加熱空間通過処理は、必要加熱空間通過時間THを必要とし、成膜室901内で第1のミスト空間通過処理は必要ミスト空間通過時間TMの実行を必要とすると場合を考える。
必要加熱空間通過時間THは、第1の加熱機構(赤外光照射器2及び4)の第1の加熱処理の加熱内容等を考慮して決定され、必要ミスト空間通過時間TMはミスト空間SM1内の原料ミストMTの濃度設定内容等を考慮して決定される。
したがって、必要加熱空間通過時間THを要する第1の加熱空間通過処理が実行され、その後、必要ミスト空間通過時間TMを要する第1のミスト空間通過処理を実行することにより、成膜室901内にて目標膜厚を満足する薄膜を高品質に成膜する理想環境が実現できる。理想環境となる構成を実現したのが実施の形態1の変形例となる。
図1に示すように、加熱空間HS1における搬送方向の距離が加熱工程長LHとして規定され、ミスト空間SM1(成膜経路RF1)における搬送方向の距離が成膜工程長LMとして規定される。そして、コンベア53の搬送処理における基板10の移動速度が搬送用移動速度VMして規定され、搬送用移動速度VMは一定である。
実施の形態1の変形例では、加熱工程長LH及び搬送用移動速度VMは、必要加熱空間通過時間THを満足するように設定される。すなわち、式(1){LH/VM=TH…(1)}を満足するように、加熱工程長LH及び搬送用移動速度VMが設定される。
同様にして、実施の形態1の変形例では、成膜工程長LM及び搬送用移動速度VMは、必要ミスト空間通過時間TMを満足するように設定される。すなわち、式(2){LM/VM=TM…(2)}を満足するように、成膜工程長LM及び搬送用移動速度VMが設定される。
例えば、所定の温度に加熱された加熱空間HS1内で基板10が目標温度に到達するまでの必要加熱空間通過時間THが10秒の場合、搬送用移動速度VMが10cm/sの速度の際、加熱工程長LHを100cmに設定すれば良い。
さらに、ミスト空間SM1内で基板10が目標膜厚に到達するまでの必要ミスト空間通過時間TMが15秒の場合、搬送用移動速度VMが10cm/sの速度の際、成膜工程長LMを150cmに設定すれば良い。
このように、実施の形態1の変形例は、加熱工程長LH及び搬送用移動速度VMを、式(1)を満足するように設定し、成膜工程長LM及び搬送用移動速度VMを、式(2)を満足するように設定している。
このため、実施の形態1の変形例は、加熱空間HS1の設定温度を必要以上に高めることなく、成膜対象の基板10の温度が目標温度に達成するように第1の加熱処理を実行することができる。
さらに、実施の形態1の変形例は、ミスト空間SM1における原料ミストMTの濃度を必要以上に高めることなく、成膜対象の基板10上に精度良く目標膜厚の薄膜を成膜することができる。
なお、加熱室802においても、加熱室801と同様に、加熱工程長LH及び搬送用移動速度VMを設定することができ、成膜室902においても成膜室901と同様に成膜工程長LM及び搬送用移動速度VMを設定することができる。
また、実施の形態2においても、実施の形態1の変形例と同様、加熱工程長LH、成膜工程長LM及び搬送用移動速度VMが設定された変形例が実現可能である。
<その他>
図1,図3、図5及び図10~図12では、模式的にエアカーテン7を図示している。エアカーテン7は、加熱室や成膜室の内部に設けても、加熱室や成膜室の外部に設けても良い。要は、加熱室や成膜室の内部を外部から遮断できれば良い。
図1,図3、図5及び図10~図12では、模式的にエアカーテン7を図示している。エアカーテン7は、加熱室や成膜室の内部に設けても、加熱室や成膜室の外部に設けても良い。要は、加熱室や成膜室の内部を外部から遮断できれば良い。
なお、本開示は、その開示の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
例えば、実施の形態5では、実施の形態1と同様、基板搬送部としてコンベア53を用いたが、実施の形態2のように、基板搬送部として搬送チェーン25を用いても良い。この場合、加熱機構として、赤外光照射器4に代えて赤外光照射器2L及び2Rが用いられる。
また、実施の形態5の成膜装置15における成膜室500内に実施の形態3で示した一対の循環用ファン45を設ける構成や、実施の形態4で示した吹付用ファン46及び47を設ける構成も可能である。
2,2R,2L,4 赤外光照射器
11~15,13A,13B,14A,14B 成膜装置
181,182,801,802 加熱室
191,191B,191C,192,192B,192C,500,901,901B,901C,902,902B,902C 成膜室
21,41 ランプ載置台
22,42 赤外光ランプ
25 搬送チェーン
31,33,81 上部容器
32,34,82 下部容器
36 原料溶液
38 超音波振動子
45 循環用ファン
46~49 吹付用ファン
51 ローラ
52 ベルト
53 コンベア
68,88,89,98,99 開口部
85 右方容器
86 左方容器
HS1,HS2,HS5 加熱空間
MT 原料ミスト
SM1,SM2,SM5 ミスト空間
11~15,13A,13B,14A,14B 成膜装置
181,182,801,802 加熱室
191,191B,191C,192,192B,192C,500,901,901B,901C,902,902B,902C 成膜室
21,41 ランプ載置台
22,42 赤外光ランプ
25 搬送チェーン
31,33,81 上部容器
32,34,82 下部容器
36 原料溶液
38 超音波振動子
45 循環用ファン
46~49 吹付用ファン
51 ローラ
52 ベルト
53 コンベア
68,88,89,98,99 開口部
85 右方容器
86 左方容器
HS1,HS2,HS5 加熱空間
MT 原料ミスト
SM1,SM2,SM5 ミスト空間
Claims (11)
- 基板を搬送する搬送処理を実行する基板搬送部と、
原料ミストが存在するミスト空間を内部に有する成膜室とを備え、
前記成膜室は、
原料溶液を収容する原料溶液用容器と、
前記原料溶液用容器の底面に設けられる少なくとも一つの超音波振動子とを含み、
前記少なくとも一つの超音波振動子による超音波振動動作によって、前記原料溶液をミスト化して前記原料ミストを生成することにより、前記ミスト空間が得られ、
前記基板搬送部による前記搬送処理は、前記ミスト空間を通過するように前記基板を移動させるミスト空間通過処理を含み、前記ミスト空間通過処理の実行時に前記基板上に薄膜が成膜される、
成膜装置。 - 請求項1記載の成膜装置であって、
加熱空間にて前記基板を加熱する加熱処理を実行する加熱機構をさらに備え、
前記加熱空間と前記ミスト空間とが互いに影響を受けないように、前記加熱機構及び前記成膜室は分離して配置され、
前記基板搬送部による前記搬送処理は、前記加熱空間を通過するように前記基板を移動させる加熱空間通過処理を含み、
前記加熱空間通過処理の実行後に、前記ミスト空間通過処理が実行される、
成膜装置。 - 請求項2記載の成膜装置であって、
前記加熱機構は、
第1の方向を照射方向とした赤外光を前記加熱空間に向けて照射して、前記基板を加熱する第1方向加熱処理を行う第1方向加熱部と、
第2の方向を照射方向とした赤外光を前記加熱空間に向けて照射して、前記基板を加熱する第2方向加熱処理を行う第2方向加熱部とを含み、
前記第2の方向は前記第1の方向の反対方向であり、
前記加熱処理は前記第1方向加熱処理と前記第2方向加熱処理とを含む、
成膜装置。 - 請求項2または請求項3に記載の成膜装置であって、
前記加熱機構は、第1~第n(n≧2)の加熱空間にて第1~第nの加熱処理を実行する第1~第nの加熱機構を含み、前記加熱空間は第1~第nの加熱空間を含み、前記加熱処理は第1~第nの加熱処理を含み、
前記成膜室は、各々が前記原料溶液用容器及び前記少なくとも一つの超音波振動子を有する第1~第nの成膜室を含み、第1~第nの成膜室内で第1~第nのミスト空間が得られ、前記ミスト空間は第1~第nのミスト空間を含み、
前記ミスト空間通過処理は、前記第1~第nのミスト空間を通過するように前記基板を移動させる第1~第nのミスト空間通過処理を含み、
前記加熱空間通過処理は、前記第1~第nの加熱空間を通過するように前記基板を移動させる第1~第nの加熱空間通過処理を含み、
前記第1~第nの加熱空間及び前記第1~第nのミスト空間が影響を受けないように、前記第1~第nの加熱機構及び前記第1~第nの成膜室はそれぞれ分離して配置され、
前記第1~第nの加熱空間通過処理と前記第1~第nのミスト空間通過処理とが第1~第nの順で交互に実行されることを特徴とする、
成膜装置。 - 請求項1から請求項4のうち、いずれか1項に記載の成膜装置であって、
前記基板搬送部は、前記基板の表面が前記原料溶液用容器の底面と平行となる平行配置関係で前記ミスト空間通過処理を実行する、
成膜装置。 - 請求項1から請求項4のうち、いずれか1項に記載の成膜装置であって、
前記基板搬送部は、前記基板の表面が前記原料溶液用容器の底面と垂直となる垂直配置関係で前記ミスト空間通過処理を実行する、
成膜装置。 - 請求項1から請求項6のうち、いずれか1項に記載の成膜装置であって、
前記成膜室は、
前記原料溶液用容器の上方に配置される上方容器と、
前記ミスト空間内で前記原料ミストを循環させる循環用送風動作を実行する循環用ファンとをさらに含む、
成膜装置。 - 請求項7記載の成膜装置であって、
前記基板搬送部による前記ミスト空間通過処理は、前記ミスト空間内の成膜経路を通過するように前記基板を移動させる処理であり、
前記成膜室は、
前記成膜経路に向けて前記原料ミストを吹き付けるための吹付用送風動作を実行する吹付用ファンをさらに含む、
成膜装置。 - 請求項8記載の成膜装置であって、
前記吹付用ファンは、
第1の吹付方向に沿って、前記原料ミストを前記成膜経路に向けて吹き付ける第1の吹付用送風動作を実行する第1方向吹付用ファンと、
第2の吹付方向に沿って、前記原料ミストを前記成膜経路に向けて吹き付ける第2の吹付用送風動作を実行する第2方向吹付用ファンとを含み、
前記第2の吹付方向は、前記第1の吹付方向と反対方向であり、
前記吹付用送風動作は、前記第1及び第2の吹付用送風動作を含む、
成膜装置。 - 請求項2記載の成膜装置であって、
前記基板搬送部が実行する前記搬送処理において、前記基板の搬送方向に沿った移動速度が搬送用移動速度として規定され、
前記加熱空間における前記搬送方向の距離が加熱工程長として規定され、前記ミスト空間における前記搬送方向の距離が成膜工程長として規定され、
前記加熱空間通過処理は必要加熱空間通過時間の実行を必要とし、前記ミスト空間通過処理は必要ミスト空間通過時間の実行を必要とし、
前記加熱工程長及び前記搬送用移動速度は、前記必要加熱空間通過時間を満足するように設定され、前記成膜工程長及び前記搬送用移動速度は、前記必要ミスト空間通過時間を満足するように設定される、
成膜装置。 - 請求項1記載の成膜装置であって、
加熱空間にて前記基板を加熱する加熱処理を実行する加熱機構をさらに備え、
前記加熱空間と前記ミスト空間とは互いに重複し、
前記基板搬送部による前記ミスト空間通過処理の実行時に前記基板は加熱される、
成膜装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/035222 WO2022059119A1 (ja) | 2020-09-17 | 2020-09-17 | 成膜装置 |
JP2021518819A JP7094649B1 (ja) | 2020-09-17 | 2020-09-17 | 成膜装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/035222 WO2022059119A1 (ja) | 2020-09-17 | 2020-09-17 | 成膜装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022059119A1 true WO2022059119A1 (ja) | 2022-03-24 |
Family
ID=80776610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035222 WO2022059119A1 (ja) | 2020-09-17 | 2020-09-17 | 成膜装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7094649B1 (ja) |
WO (1) | WO2022059119A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016133131A1 (ja) * | 2015-02-18 | 2016-08-25 | 株式会社ニコン | 薄膜製造装置、及び薄膜製造方法 |
JP2018107240A (ja) * | 2016-12-26 | 2018-07-05 | 東芝三菱電機産業システム株式会社 | 薄膜製造装置及び薄膜製造方法 |
WO2018181809A1 (ja) * | 2017-03-31 | 2018-10-04 | 株式会社Flosfia | 処理装置および処理方法 |
WO2019234917A1 (ja) * | 2018-06-08 | 2019-12-12 | 東芝三菱電機産業システム株式会社 | 成膜装置 |
-
2020
- 2020-09-17 WO PCT/JP2020/035222 patent/WO2022059119A1/ja active Application Filing
- 2020-09-17 JP JP2021518819A patent/JP7094649B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016133131A1 (ja) * | 2015-02-18 | 2016-08-25 | 株式会社ニコン | 薄膜製造装置、及び薄膜製造方法 |
JP2018107240A (ja) * | 2016-12-26 | 2018-07-05 | 東芝三菱電機産業システム株式会社 | 薄膜製造装置及び薄膜製造方法 |
WO2018181809A1 (ja) * | 2017-03-31 | 2018-10-04 | 株式会社Flosfia | 処理装置および処理方法 |
WO2019234917A1 (ja) * | 2018-06-08 | 2019-12-12 | 東芝三菱電機産業システム株式会社 | 成膜装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7094649B1 (ja) | 2022-07-04 |
JPWO2022059119A1 (ja) | 2022-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7039151B2 (ja) | 成膜装置 | |
TWI692811B (zh) | 雷射退火裝置、雷射退火處理用連續搬運路徑、雷射光照射手段以及雷射退火處理方法 | |
TWI375135B (en) | Reduced-pressure drying device | |
JP4542577B2 (ja) | 常圧乾燥装置及び基板処理装置及び基板処理方法 | |
TWI695750B (zh) | 雷射處理裝置整流裝置以及雷射處理裝置 | |
WO2005064663A1 (ja) | 紫外線洗浄装置および洗浄方法 | |
WO2022059119A1 (ja) | 成膜装置 | |
TWI413564B (zh) | 切割基板的設備和使用其切割基板的方法 | |
KR101243744B1 (ko) | 이온주입장치 | |
JP2013108155A (ja) | 成膜装置および成膜方法 | |
JP6563717B2 (ja) | 成膜装置 | |
JP3964131B2 (ja) | ドライ洗浄装置 | |
KR102487935B1 (ko) | 성막 장치 | |
KR930020226A (ko) | 화학적 증폭 레지스트(resist)용 음형(negative type)조성물과 화학적 증폭 레지스트 패턴(Pattern)의 형성방법 및 장치 | |
KR101099735B1 (ko) | 기판 처리 시스템 및 이를 이용한 기판 처리 방법 | |
JP2006100804A5 (ja) | ||
KR102507701B1 (ko) | 성막 장치 | |
KR101509401B1 (ko) | 양면 자외선 경화장치 | |
JP6855147B2 (ja) | 成膜装置 | |
KR102461306B1 (ko) | 성막장치 및 성막방법 | |
JP7009122B2 (ja) | 基板処理装置および基板処理方法 | |
JP2018029130A (ja) | 基板処理装置 | |
JP2010008906A (ja) | 液晶装置の製造装置 | |
JP2007025333A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021518819 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20954105 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20954105 Country of ref document: EP Kind code of ref document: A1 |