WO2015062273A1 - 阵列基板及其制作方法、显示装置 - Google Patents

阵列基板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2015062273A1
WO2015062273A1 PCT/CN2014/079448 CN2014079448W WO2015062273A1 WO 2015062273 A1 WO2015062273 A1 WO 2015062273A1 CN 2014079448 W CN2014079448 W CN 2014079448W WO 2015062273 A1 WO2015062273 A1 WO 2015062273A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmission
line
impedance
array substrate
transmission line
Prior art date
Application number
PCT/CN2014/079448
Other languages
English (en)
French (fr)
Inventor
张明
祖华兴
张银忠
郝昭慧
尹雄宣
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/429,618 priority Critical patent/US10127855B2/en
Publication of WO2015062273A1 publication Critical patent/WO2015062273A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/2783Reworking, e.g. shaping
    • H01L2224/27831Reworking, e.g. shaping involving a chemical process, e.g. etching the layer connector
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance

Definitions

  • a signal transmission line in a display panel such as a data line or a gate line, in a fenout. It is set to several specific pad areas on the periphery of the display panel to realize signal transmission with devices outside the display panel.
  • the signal transmission line near the edge of the line area is the longest.
  • the signal transmission line 1 in Figure 1 has the largest line resistance, which is Rmax.
  • the signal transmission line located at the center of the hub area is the shortest.
  • the signal transmission line 3 in Fig. 1 has a minimum line resistance of Rmin.
  • a zigzag design is usually used, as shown by the signal transmission lines 2 and 3 in FIG.
  • the line resistance of the signal transmission line in the center region of the cluster region is increased. That is, by increasing the Rmin value, the resistance gap between Rmax and Rmin is reduced to achieve equal resistance design of different signal transmission lines.
  • the fold line design increases the width of the signal transmission line
  • the width of the signal transmission line 3 in FIG. 1 is d, and the area of the port area and the line area is limited, thereby causing a signal transmission line disposed in the port area.
  • the number is reduced. This requires more port areas on the pand to enable signal extraction, which not only increases the production cost of the display panel, but also displays The layout of the panel has increased the difficulty.
  • Rmax/Rmin is greater than 3: ⁇ , which may cause signal delay and poor formation.
  • the invention provides an array substrate, a manufacturing method thereof and a display device, so that the electric ffi ratio between the signal transmission channels corresponding to each signal transmission line in the port region can be realized in a preset range without increasing the port area. Inside, to reduce signal delay.
  • An embodiment of the present invention provides an array substrate, where a line region of the array substrate includes a plurality of signal transmission lines for transmitting signals between a driving chip and a display area of the array substrate, and each of the signal transmission lines corresponds to one data.
  • the transmission channel, the array substrate further includes:
  • the first preset condition is:
  • the difference in impedance of at least one pair of data transmission channels after the impedance balance line is configured is less than the difference in impedance of the pair of data transmission channels before the impedance balance line is configured.
  • the first preset condition is:
  • the impedance difference between the data transmission channel having the largest impedance value and the data transmission channel having the smallest impedance value in the hub region is smaller than the data having the largest impedance value in the hub region before configuring the impedance balance line.
  • the impedance difference between the transmission channel and the data transmission channel with the lowest impedance value is smaller than the data having the largest impedance value in the hub region before configuring the impedance balance line.
  • the first preset condition is:
  • the maximum impedance difference between each data transmission channel in the hub area is within a preset threshold range.
  • the impedance balance line and the associated signal transmission line are formed in different layers.
  • the impedance balancing line is formed in a conductive layer of the array substrate, and the conductive layer includes at least one of a pixel electrode layer, a common electrode layer, a source/drain metal layer, and a gate layer.
  • the impedance balance line is in direct contact with the associated signal transmission line, or the impedance balance line and the associated signal transmission line are electrically connected through the via hole.
  • the ffi anti-balance line consists of at least one electrically conductive line.
  • the impedance balance lines belonging to different signal transmission lines have different conductive areas and/or materials.
  • ffi anti-balancing lines belonging to different signal transmission lines are set to:
  • the resistivity of the material of the impedance balance line is smaller.
  • the signal transmission line is formed in a source/drain metal layer, and the impedance balance line is formed in the pixel electrode layer and the Z or gate layer.
  • the embodiment of the present invention further provides a method for fabricating an array substrate, wherein the line region of the array substrate includes a plurality of signal transmission lines for transmitting signals between the driving chip and the display area of the array substrate, and each signal transmission line corresponds to In a data transmission channel, the method includes:
  • the first preset condition Forming an impedance balance line on the associated signal transmission line of the plurality of signal transmission lines, the impedance balance line being electrically connected to the associated signal transmission line, such that the impedance difference of different data transmission channels in the line region is consistent The first preset condition.
  • step of forming an impedance balance line on the associated signal transmission line of the plurality of signal transmission lines includes:
  • An impedance balance line pattern is formed over the signal transmission line.
  • step of forming an impedance balance line on the associated signal transmission line of the plurality of signal transmission lines includes:
  • An impedance balance line pattern is formed over the layer above the signal transmission line, and at the via location.
  • the embodiment of the present invention further provides a display device, which may specifically include the array substrate provided by the above embodiments of the present invention.
  • the array substrate and the manufacturing method thereof and the display device include signals for transmitting between the driving chip and the display area of the array substrate in the line region of the array substrate.
  • a plurality of signal transmission lines each of the signal transmission lines corresponding to a data transmission channel
  • the column substrate further includes: at least one impedance balance line corresponding to the associated signal transmission line of the plurality of signal transmission lines;
  • the line is electrically connected to the associated signal transmission line such that the difference in impedance of the different data transmission channels in the line region meets the first predetermined condition. Therefore, the resistance ratio between the signal transmission channels corresponding to each signal transmission line in the port area can be realized within a preset range without increasing the port area, so as to reduce the signal delay.
  • FIG. 1 is a schematic structural view of an array substrate provided by the prior art
  • FIG. 2 is a schematic structural view 1 of an array substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view 2 of an array substrate according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an array substrate according to an embodiment of the present invention: i.
  • Figure 5 is a view of the present invention: an array substrate provided;
  • Embodiments of the present invention provide an array substrate.
  • the fenout of the array substrate includes a plurality of signal transmission lines 20 for transmitting signals between the driving chip and the display area of the array substrate, and each of the signal transmission lines 20 corresponds to a data transmission channel.
  • the array substrate further includes:
  • At least one impedance balancing line 10 corresponding to the signal transmission line 20 of the plurality of signal transmission lines 20;
  • the impedance equalization line 10 is electrically connected to the associated signal transmission line 20 such that the difference in impedance of the different data transmission channels in the line region meets the first predetermined condition.
  • the impedance value of the data transmission channel corresponding to the different signal transmission lines is adjusted by configuring the impedance balance line for the signal transmission line, thereby not increasing In the case of the port area, the difference between the impedances of the signal transmission channels corresponding to the different signal transmission lines 20 in the hub area is achieved according to the first preset condition to reduce the signal delay.
  • the first preset condition may be flexibly set.
  • the first preset condition may be: at least one pair after the impedance balancing line 10 is configured.
  • the difference in impedance of the data transmission channel is less than the difference in impedance of the pair of data transmission channels before the impedance balance line 10 is configured.
  • the impedance difference between the first data transmission channel and the second data transmission channel is 5 (the unit is omitted) in the hub region of the array substrate, wherein the first data transmission channel
  • the ffi resistance value of the corresponding first signal transmission line is greater than the impedance value of the second signal transmission line corresponding to the second data transmission channel.
  • the impedance difference between the first data transmission channel and the second data transmission channel is less than 5.
  • the difference between the impedances between the first data transmission channel and the second data transmission channel is equal to or close to zero.
  • the first preset condition may further be: an impedance between the data transmission channel having the largest impedance value and the data transmission channel having the smallest impedance value after the impedance balance line 10 is configured. The difference is smaller than the impedance difference between the data transmission channel having the largest impedance value and the data transmission channel having the smallest impedance value in the front line region before the impedance balance line 10 is configured.
  • the signal transmission line 20 located at the edge of the line area has the largest impedance value
  • the signal transmission line 21 located at the center of the line area has the lowest impedance value.
  • an impedance balance line 10 can be disposed for the signal transmission line 20, thereby reducing the impedance value of the data transmission channel corresponding to the signal transmission line 20. Therefore, in the case that the impedance value of the data transmission channel corresponding to the signal transmission line 21 is constant, the ratio of the impedance value between the data transmission channel corresponding to the signal transmission line 20 and the data transmission channel corresponding to the signal transmission line 21 is reduced, and the two data transmission channels are reduced.
  • the difference between the impedances causes the difference to conform to a predetermined condition, such as equal to or near zero.
  • the first preset condition may further be: after the impedance balancing line 10 is configured, the maximum impedance difference between each data transmission channel in the line region is within a preset threshold.
  • the "maximum impedance difference" involved in the embodiment of the present invention may specifically refer to the impedance difference between the two channels having the largest value among the impedances between any two data transmission channels.
  • the impedance values may be configured differently for different signal transmission lines 20.
  • the impedance is balanced by the line 10, and the signal transmission time can be adjusted in the line area.
  • the impedance value of the signal line 20 of the line region is adjusted by setting the impedance balance line 10 of different impedance values, and matching with the ffi value of the original signal transmission line in the array substrate, thereby adjusting the signal transmission time.
  • the ffi anti-equalization line 10 for which one or some of the signal transmission lines 20, which can be arbitrarily determined based on actual needs.
  • the impedance balance line 10 with different conductive areas and/or different materials may be configured for different signal transmission lines 20 to achieve The above purpose.
  • the conductive areas are different, and can be realized by adjusting the length, width, thickness, and the like of the impedance balance line 10.
  • the impedance value of the data transmission channel can be adjusted by adjusting at least one of the length and the material of the impedance balance line 10.
  • the embodiment of the present invention may set impedance balance lines belonging to different signal transmission lines according to at least one of the following principles:
  • the above principles can also be arbitrarily increased and adjusted based on actual needs.
  • the impedance balancing line 10 may be specifically formed in any conductive layer of the array substrate, such as the ITO layer 50, the common electrode layer, the source/drain metal layer 30, the gate layer 60, and the like. At least one of the layers.
  • the impedance balance line 10 and its associated signal transmission line 20 may be formed. In different layers.
  • the impedance balance line 10 in the different layers and the signal transmission line 20 to which it belongs may be electrically connected by direct contact or via holes.
  • the embodiment of the present invention further provides a method for fabricating an array substrate, and the method may specifically include:
  • An impedance balance line 10 is formed on the associated signal transmission line 20 of the plurality of signal transmission lines 20, and the impedance balance line 10 is electrically connected to the associated signal transmission line 20 such that the impedance difference of different data transmission channels in the line region is different. Meet the first preset condition.
  • the step of forming an impedance balance line on the associated signal transmission line 20 of the plurality of signal transmission lines 20 may specifically include:
  • a pattern of the signal transmission line 20 and a layer above the signal transmission line 20 are formed;
  • An impedance balance line 10 pattern is formed over the signal transmission line 20.
  • the implementation of this embodiment enables the impedance balancing line 10 to be electrically connected in direct contact with its associated signal transmission line 20.
  • a source/drain metal layer 30 may be deposited on an existing pattern of the array substrate (for example, the gate layer 60, the gate insulating layer 70, etc.), and a signal transmission line is formed through a patterning process. 20 patterns.
  • a pattern such as a passivation layer 40 is then formed on the signal transmission line 20.
  • the passivation layer 40 on the signal transmission line 20 at the edge of the junction region is etched away in a Via etching process by modifying the mask structure.
  • a pixel electrode ITO layer 50 pattern is then formed directly on the exposed signal transmission line 20, and the ITO layer 50 pattern is used as the impedance balance line 10 of the signal transmission line 20.
  • the ITO layer 50 is electrically conductive, the presence of the ITO layer 50 pattern increases the conductive area of the corresponding signal transmission line 20.
  • the principle is similar to the fact that the total resistance of the plurality of resistors in parallel is smaller than the respective sub-resistors, so that the line resistance of the signal transmission line 20 at the edge of the line region can be effectively reduced, thereby reducing the impedance value of the data transmission channel at the edge of the line region.
  • the parameters such as the length of the layer 50 pattern may be determined according to the position and length of each signal transmission line 20. For example, the ffi anti-balancing line configured by the signal transmission line 20 shown in FIG. 3 can be the longest. Then, in the direction toward the center of the hub area (ie, the direction of the signal transmission line 21 in FIG. 3), the length of the impedance balance line 10 configured by each of the signal transmission lines 20 is sequentially shortened (provided that all the signal transmission lines 20 in the hub area are configured.
  • the ⁇ layer 50 pattern, that is, the impedance balance line 10 is of the same quality).
  • the signal transmission line 20 may not be provided with the corresponding impedance balance line 10. That is, the overall objective of the embodiment of the present invention is to reduce the impedance value of the signal transmission line 20 at the periphery of the line region, that is, the resistance, and to make the ratio of the difference of the ffi resistance between the data transmission channels corresponding to each signal transmission line 20 in the line region.
  • the preset range is reached, for example, the ratio is 1 or close to 1.
  • the impedance balance line formed on the ITO layer 50 can be etched into strips. Therefore, in an embodiment of the invention, the impedance balance line 10 can be specifically composed of at least one conductive line.
  • the above embodiment is described by taking the signal transmission line 20 formed on the source/drain metal layer 30 (SD layer) and the impedance equalization line 10 being formed on the ITO layer 50 as an example.
  • the pattern of the signal transmission line 20 may also be formed in the gate layer 60, and then the gate insulating layer 70 may be covered by etching away the signal transmission line 20, and the source/drain metal layer may be directly covered on the bare signal transmission line 20.
  • a material of 30, that is, an impedance balance line 10, may be formed in the source/drain metal layer 30.
  • the impedance balance line 10 is formed in one layer. Further, a pattern of the impedance balance lines 10 may be formed in a plurality of layers, and both of them are electrically connected to the signal transmission lines 20 formed in the gate layer 60 by direct contact.
  • the signal transmission line 20 is formed in the gate layer 60, and the first impedance balance line is formed on the source/drain metal layer 30 as an example.
  • the passivation layer 40 on the first impedance balance line is etched away, and then the second impedance balance line formed on the ITO layer 50 is directly covered on the first impedance balance line.
  • the bundle is combined with the first impedance balance line and the second impedance balance line to form an impedance balance line 10 corresponding to the signal transmission line 20.
  • the impedance balance line 10 in this embodiment can be composed of different conductive lines formed in a plurality of layers, the conductive area of the signal transmission line 20 can be significantly increased, and the impedance of the data transmission channel corresponding to the signal transmission line 20 can be significantly reduced. Value, such as reducing the impedance value by more than 50%.
  • the step of forming an impedance balance line on the associated signal transmission line 20 in the transmission line 20 may further include:
  • an implementation of the ffi flattening is formed to electrically connect the impedance balancing line 10 with its associated signal transmission line 20 through the via. .
  • the column substrate according to the embodiment of the present invention is an example of a bottom-arc array substrate. Give an example for explanation.
  • the signal transmission line 20 and the impedance balance line 10 formed in the plurality of layers may be connected by the uppermost conductive layer of the array substrate.
  • the prior art and the process can be used to form the gate line (gata line) and the common electrode line (com line) in the gate layer 60.
  • a reserved gate layer 60 metal line is formed as the impedance balance line 10.
  • the signal transmission line 20 is formed in the drain layer 60, when a source/drain metal line (i.e., a data line) is formed in the source/drain metal layer 30, at a position where the signal transmission line 20 (formed in the gate layer 60) is located, The source and drain metal lines are also reserved as the impedance balance line 10.
  • via holes are formed in the preset position and in the preset layer.
  • the uppermost layer of the column substrate i.e., the last formed conductive layer, such as the ITO layer 50 pattern, is electrically connected between the two or more conductive layers (including the impedance balancing line 10 and the signal transmission line 20) through the via holes.
  • the uppermost conductive layer itself may also be a part of the impedance balance line 10.
  • the feature of this solution is that the existing process method can be used to smoothly reduce the impedance value of the data transmission channel without adding a mask.
  • the process of using the uppermost conductive layer of the array substrate to connect the signal transmission line 20 and the impedance balance line 10 formed in the plurality of layers is described in detail for the different via etching process schemes.
  • the 4mask array substrate fabrication process is taken as an example.
  • the via hole 90 (specifically, as shown in FIG. 5) is not retained in the embodiment of the present invention.
  • the SDT etch (Etch) process the source/drain metal layer 30 and the active layer 80 at the via 90 are etched away.
  • a via 90 is formed at this position.
  • the passivation layer 40 and the gate insulating layer 70 at the position of the via 90 can be etched away by a common via etching process.
  • the electrical connection between the signal transmission line 20 and the impedance equalization line 10 formed in the source/drain metal layer 30 and the metal layer 60 layer metal layer can be realized by deposition of the subsequent germanium layer 50 metal material.
  • the material of the passivation layer 40 on the sidewall of the via 90 needs to be etched to ensure that the ITO layer deposited on the sidewall can be utilized after depositing the ITO layer 50.
  • the metal material is 50, so that the signal transmission line 20 and the impedance balance line 10 in different layers are connected through the ITO layer 50.
  • the data transfer channel at this time includes three layers of conductive layers.
  • the signal transmission line 20 formed in the source/drain metal layer 30 and the impedance balance line 10 formed in the gate layer 60 and the ITO layer 50, or the signal transmission line 20 formed in the gate layer 60 and the source/drain metal layer 30 neutralizes the impedance balance line of the ITO layer 50.
  • the pattern of the ITO layer 50 of the top layer is not retained, then only the material of the ITO layer 50 exists on the sidewall of the via 90, and the material of the ITO layer 50 exists only to turn on the signal transmission line 20 and the impedance.
  • the balance line 10 is formed.
  • the data transmission channel at this time includes two conductive layers, that is, the signal transmission line 20 formed in the source/drain metal layer 30 and the impedance balance line 10 formed in the gate layer 60, or The signal transmission line 20 formed in the gate layer 60 and the impedance balance line 10 formed in the source/drain metal layer 30.
  • the column substrate structure produced by this scheme can be as shown in FIG.
  • the drain electrode and the pixel electrode located in the pixel region may be in the normal via etching process.
  • a via hole 91 (not shown in the drawing, reference numeral 91 is used to identify that the via hole and the via hole 90 are different via holes) is subjected to a ffi half exposure technique, and the via hole 90 according to the embodiment of the present invention is provided. Adopt full exposure technology. Thereby, when the via hole 90 is turned on to the gate layer 60, the via hole 91 connecting the drain electrode and the pixel electrode position can be smoothly formed in a mask.
  • etching process sequence is:
  • Dry etching ashing process etches off the PR glue on the via 91;
  • the deposited germanium layer 50 is used to connect the signal transmission line 20 and the impedance balance line 10 respectively in each layer, and the ITO layer 50 may be considered to form a three-layer conductive structure, or only retained.
  • the ITO layer 50 of the hole position is made of a material to form a two-layer conductive structure.
  • the ITO layer 50 is connected to the drain electrode at the position of the via 91, and the via structure of the ITO layer 50 connecting the signal transmission line 20 and the impedance balance line 10 is formed at the position of the via 90.
  • the conventional via etching only needs to etch away the passivation layer 40 connecting the drain electrode and the pixel electrode in the pixel region, and the passivation layer 40 and the gate insulating layer 70 in the line region. Therefore, in the embodiment of the present invention, The gate insulating layer 70 in the etched via 90 is fully achievable both in principle and in practice.
  • the via etch scheme provided by the scheme can directly realize the simultaneous etching of 3 ⁇ 4 vias in a mask.
  • the array substrate formed by the above-described via etching process can also be as shown in FIG.
  • a plurality of via etching processes may be employed to effect electrical connection between the signal transmission line 20 and the impedance balancing line 10 in different layers.
  • a mask process is added after the active layer 80 is deposited, and the connection gate layer 60 and the source/drain metal layer 30 are formed in the active layer 80 and the gate insulating layer 70. Hole 90. Then, a pattern of the source/drain metal layer 30 (which may be the signal transmission line 20 or the impedance balance line 10) is formed by a process. Since the sidewalls of the via 90 are covered with the quality of the source/drain metal layer 30, the gate layer 60 and Electrical connection is made between the source and drain metal layers 30.
  • the passivation layer 40 is covered on the source/drain metal layer 30, and again through a mask process, a via 91 is formed at the position of the via 90 in the passivation layer 40.
  • the ITO layer 50 is covered at the position of the via 91 and the passivation layer 40, thereby electrically connecting the gate layer 60, the source/drain metal layer 30, and the ITO layer 50, thereby forming a three-layer conductive structure.
  • the technical solutions shown in FIG. 4 and FIG. 5 may be combined, and the ffi may be the array substrate according to the embodiment of the present invention.
  • the passivation layer 40 and the portion of the gate insulating layer 70 located at the position of the signal transmission line 20 are etched to form a strip-shaped shallow channel.
  • the ITO layer 50 is then deposited on the trench, which also enables electrical connection between the signal transmission line 20 and the impedance balancing line 10 in different layers. This has the advantage that the ITO layer 50 film can directly contact the metal of the source/drain metal layer 30 to improve the reliability and yield of the process.
  • the embodiment of the present invention further provides a display device, and the device may specifically include the column substrate provided by the embodiment of the present invention.
  • the display device may specifically be a display device such as a liquid crystal panel, a liquid crystal television, a liquid crystal display, an OLED (Organic Light Emitting Diode) panel, an OLED display, a plasma display, or an electronic paper.
  • a display device such as a liquid crystal panel, a liquid crystal television, a liquid crystal display, an OLED (Organic Light Emitting Diode) panel, an OLED display, a plasma display, or an electronic paper.
  • the wiring region of the array substrate includes: transmitting signals between the driving chip and the display region of the array substrate.
  • the difference in impedance of different data transmission channels in the hub region is made to comply with a first preset condition. Therefore, the resistance ratio between the signal transmission channels corresponding to each signal transmission line in the port area can be realized within a preset range without increasing the port area, so as to reduce the signal delay.
  • the implementation of the technical solution provided by the embodiment of the present invention can reduce the width of the signal transmission line, so that more signal transmission lines can be set in one port area, and the port area set in the display panel can be reduced, which is advantageous for the narrow border.
  • a driving circuit can drive as many signal transmission lines as possible, reduce the number of driving circuits, and reduce the production cost of the display panel.
  • the technical solution provided by the embodiment of the present invention can also be applied together with the existing fold line design, so that the purpose of making the difference of the impedance between the data transmission channels conform to the preset condition can also be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板,其集线区内包括用于在驱动芯片和阵列基板的显示区之间传输信号的多条信号传输线(20),每条信号传输线(20)对应于一数据传输通道,所述阵列基板还包括:与所述多条信号传输线中的所属信号传输线(20)对应设置的至少一条阻抗平衡线(10);所述阻抗平衡线(10)与所属信号传输线(20)之间电连接,使得所述集线区内的不同数据传输通道的阻抗的差值符合第一预设条件。

Description

阵列基板及其制作方法、 显示装置
本申请主张在 2013 年 10 月 31 日在中国提交的中国专利申请号 No. 201310530006.5的优先权, 其全部内容通过引用包含于此。
Figure imgf000002_0001
在现有技术中, 如图 1所示, 需要将显示面板(pand )中的信号传输线, 如数据线 (data线) 或者栅线 (gate线) 等在集线区 (fenout) 集中后, 引入 至设置在显示面板外围几个特定的端口 (pad) 区域, 以实现与显示面板外的 设备进行信号传输。
由于不同信号传输线距离端口区域有长有短, 如在集线区域中, 靠近集 线区域边缘外围的信号传输线最长, 例如險图 1 中的信号传输线 1, 其线电 阻最大, 为 Rmax。而位于集线区域中央的信号传输线最短, 例如附图 1中的 信号传输线 3, 其线电阻也为最小, 为 Rmin。
由于不同信号传输线之间存在因长度不同而导致的线电阻不同, 因此导 致当加载信号时, 不同信号传输线间存在信号延迟 (delay) 等问题。
在现有技术中, 通常是采用折线设计(Zigzag), 如图 1中信号传输线 2、 3 所示。 通过增大集线区的中心区域的信号传输线长度, 从而增加集线区中 心区域信号传输线的线电阻。 即通过增大 Rmin值, 来减小 Rmax与 Rmin之 间电阻差距, 以实现不同信号传输线的等电阻设计。
但是在实际操作中, 由于折线设计增加了信号传输线的宽度, 如 图 1 中的信号传输线 3 的宽度值为 d, 而端口区域和集线区域的面积有限, 因此 导致端口区域内设置的信号传输线数量降低。这就需要在 pand上设置更多的 端口区域以实现信号的引出, 这不但增加了显示面板的制作成本, 还给显示 面板的走线设计增加了难度。
而在不增加端口区域的情况下, 由于端口区域和集线区域的面积限制, 导致现有的折线设计,无法使集线区域的信号传输线达到理想的等电阻设计。 一般 Rmax/Rmin大于 3 : 〗, 就可能导致信号延迟而形成不良。
(一) 要解决的技术问题
本发明提供一种阵列基板及其制作方法、 显示装置, 从而可在不增加端 口区域的情况下, 实现端口区域中每一条信号传输线对应的信号传输通道间 的电 ffi比值在一预设的范围内, 以减少信号延迟情况。
(二) 技术方案
本发明实施例所提供的技术方案如下:
本发明实施例提供了一种阵列基板, 所述阵列基板的集线区内包括用于 在驱动芯片和阵列基板的显示区之间传输信号的多条信号传输线, 每条信号 传输线对应于一数据传输通道, 所述阵列基板还包括:
与所述多条信号传输线中的所属信号传输线对应设置的阻抗平衡线; 所述阻抗平衡线与所属信号传输线之间电连接, 使得所述集线区内的不 同数据传输通道的阻抗的差值符合第一预设条件。
此外, 所述第一预设条件为:
配置阻抗平衡线后至少一对数据传输通道的阻抗的差值小于配置阻抗平 衡线前所述一对数据传输通道的阻抗的差值。
此外, 所述第一预设条件为:
配置阻抗平衡线后所述集线区内阻抗值最大的数据传输通道与阻抗值最 小的数据传输通道之间的阻抗差值, 小于配置阻抗平衡线前所述集线区内阻 抗值最大的数据传输通道与阻抗值最小的数据传输通道之间的阻抗差值。
此外, 所述第一预设条件为:
配置阻抗平衡线后所述集线区内的各数据传输通道间的阻抗最大差值在 预设阈值范围内。
此外, 所述阻抗平衡线与所属信号传输线, 形成于不同图层中。 此外, 所述阻抗平衡线形成于阵列基板的导电图层中, 所述导电图层包 括像素电极层、 公共电极层、 源漏金属层、 栅极层中的至少一层。
此外, 所述阻抗平衡线与所属信号传输线之间直接接触, 或者所述阻抗 平衡线与所属信号传输线之间通过过孔实现电连接。
此外, 所述 ffi抗平衡线由至少一条导电线组成。
此外, 分属于不同信号传输线的阻抗平衡线的导电面积不同和 /或材质不 同。
此外, 分属于不同信号传输线的 ffi抗平衡线被设置为:
自身阻抗越大的信号传输线对应的阻抗平衡线的长度越长; 和 /或 自身阻抗越大的信号传输线对应的阻抗平衡线的横截面积越大; 和 /或 自身阻抗越大的信号传输线对应的阻抗平衡线的材质的电阻率越小。 此外, 所述信号传输线形成于源漏金属层, 所述阻抗平衡线形成于像素 电极层和 Z或栅极层中。
本发明实施例还提供了一种阵列基板制作方法, 所述阵列基板的集线区 内包括用于在驱动芯片和阵列基板的显示区之间传输信号的多条信号传输 线, 每条信号传输线对应于一数据传输通道, 所述方法包括:
在阵列基板的集线区内的预设位置处形成多条信号传输线;
在所述多条信号传输线中的所属信号传输线上形成阻抗平衡线, 所述阻 抗平衡线与所属信号传输线之间电连接, 使得所述集线区内的不同数据传输 通道的阻抗的差值符合第一预设条件。
此外, 所述在所述多条信号传输线中的所属信号传输线上形成阻抗平衡 线的步骤包括:
在集线区预设位置处, 形成信号传输线图案, 以及位于信号传输线之上 的图层;
通过刻蚀工艺中, 刻蚀掉位于信号传输线之上的图层; 以及
在所述信号传输线之上形成阻抗平衡线图案。
此外, 所述在所述多条信号传输线中的所属信号传输线上形成阻抗平衡 线的歩骤包括:
在集线区预设位置处, 形成信号传输线图案, 以及位于信号传输线之上 在所述信号传输线之上的图层之上, 以及所述过孔位置处, 形成阻抗平 衡线图案。
本发明实施例还提供了一种显示装置, 所述装置具体可以包括上述本发 明实施例提供的阵列基板。
(三) 有益效果
本发明实施例至少具有如下有益效果:
从以上所述可以看出, 根据本公开文本提供的阵列基板及其制作方法、 显示装置, 在所述阵列基板的集线区内包括用于在驱动芯片和阵列基板的显 示区之间传输信号的多条信号传输线, 每条信号传输线对应于一数据传输通 道, 并且所述 列基板还包括: 与所述多条信号传输线中的所属信号传输线 对应设置的至少一条阻抗平衡线; 所述阻抗平衡线与所属信号传输线之间电 连接, 使得所述集线区内的不同数据传输通道的阻抗的差值符合第一预设条 件。 从而可在不增加端口区域的情况下, 实现端口区域中每一条信号传输线 对应的信号传输通道间的电阻比值在一预设的范围内, 以减少信号延迟情况。
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 ;述中所需要使) ¾的附图作筒单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些 图获得其他的 图。
图 1为现有技术所提供的阵列基板的结构示意图;
图 2为本发明实施例提供的阵列基板的结构示意图一;
图 3为本发明实施例提供的阵列基板的结构示意图二;
图 4为本发明实施例提供的阵列基板的结: i示意图三;
图 5为本发明: 提供的阵列基板 ;意图四;
图 6为本发明实施例提供的阵列基板的结; i示意图五; 图 7
图 8
Figure imgf000006_0001
实施例仅用于说明本发明, 但不 ffi来限制本发明的范围。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的 f†图, 对本发明实施例的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员所获得的所有其他实施例, 都属 于本发明保护的范園。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一 "、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个"或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "连接"或者 "相连" 等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右 等仅用于表示相对位置 关系, 当被描述对象的绝对位置改变后, 则该相对位置关系 ffi相应地改变。
本发明实施例提供了一种阵列基板。所述阵列基板的集线区(fenout) 内 包括用于在驱动芯片和阵列基板的显示区之间传输信号的多条信号传输线 20, 每条信号传输线 20对应于一数据传输通道。
具体的, 如图 2所示, 所述阵列基板还包括:
与所述多条信号传输线 20中所属信号传输线 20对应设置的至少一条阻 抗平衡线 10;
所述阻抗平衡线 10与所属信号传输线 20之间电连接, 使得所述集线区 内的不同数据传输通道的阻抗的差值符合第一预设条件。
根据本公开文本提供的阵列基板, 通过为信号传输线配置阻抗平衡线的 方式, 调整不同信号传输线对应的数据传输通道的阻抗值, 从而可在不增加 端口区域的情况下,实现集线区中不同信号传输线 20对应的信号传输通道间 的阻抗的差值符合第一预设条件, 以减少信号延迟情况。
在本发明不同的实施例中, 所述第一预设条件可以被灵活的设置, 例如: 在一具体实施例中, 上述第一预设条件具体可为: 配置阻抗平衡线 10后 至少一对数据传输通道的阻抗的差值小于配置阻抗平衡线 10 前这一对数据 传输通道的阻抗的差值。
举例说明, 在配置阻抗平衡线前, 在阵列基板的集线区内, 第一数据传 输通道和第二数据传输通道间的阻抗差值为 5 (单位略去), 其中, 第一数据 传输通道对应的第一信号传输线的 ffi抗值大于第二数据传输通道对应的第二 信号传输线的阻抗值。 那么, 在本发明实施例中, 可为第一信号传输线配置 一阻抗平衡线】0, 从而例如通过增大第一信号传输线的导电面积的方式, 降 低第一信号传输线的阻抗值, 即降低了第一数据传输通道的阻抗值。 那么, 在第二数据传输通道阻抗值不变的情况下, 使第一数据传输通道和第二数据 传输通道间的阻抗差值小于 5。 最理想的情况是使第一数据传输通道和第二 数据传输通道间的阻抗的差值等于或接近零。
在另一具体实施例中, 上述第一预设条件具体还可为: 配置阻抗平衡线 10后所述集线区内阻抗值最大的数据传输通道与阻抗值最小的数据传输通道 之间的阻抗差值,小于配置阻抗平衡线 10前所述集线区内阻抗值最大的数据 传输通道与阻抗值最小的数据传输通道之间的阻抗差值。
举例说明, 如图 3所示, 通常, 位于集线区边缘的信号传输线 20对应的 数据传输通道的阻抗值最大,而位于集线区中心部分的信号传输线 21对应的 数据传输通道的阻抗值最小。 因此, 在本发明实施例中, 可通过为信号传输 线 20配置一阻抗平衡线 10, 从而降低信号传输线 20对应的数据传输通道的 阻抗值。 从而在信号传输线 21所对应的数据传输通道阻抗值不变的情况下, 降低信号传输线 20对应的数据传输通道与信号传输线 21所对应的数据传输 通道之间的阻抗值比例, 降低两数据传输通道阻抗间的差值, 使该差值符合 一预设条件, 例如等于或接近零。
在另一具体实施例中, 上述第一预设条件具体还可为: 配置阻抗平衡线 10后所述集线区内的各数据传输通道间的阻抗最大差值在预设阈值范围内。 这里需要说明的是, 本发明实施例所涉及的 "阻抗最大差值", 具体可以 是指任意两条数据传输通道之间的阻抗中,值最大的那两条通道的阻抗差值。
由于在阵列基板中, 各器件基于一信号执行启动或执行某一操作步骤的 时间可能存在一定的时间顺序, 因此, 在本发明实施例中, 同样可以通过为 不同的信号传输线 20配置阻抗值不同的阻抗平衡线 10的方式, 在集线区即 可实现信号传输时间的调整。或者, 通过设置不同阻抗值的阻抗平衡线 10调 整集线区信号传输线 20的阻抗值,并与阵列基板中原有信号传输线的 ffi抗值 的配合, 从而实现信号传输时间的调整。
在本发明实施例中,具体需要为哪一根或一些信号传输线 20配置 ffi抗平 衡线 10, 可基于实际需要, 任意决定。
由于在集线区内, 不同信号传输线 20由于长度不同而导致阻抗值不同。 因此,为了使不同信号传输线 20所对应的数据传输通道的阻抗的差值符合第 一预设条件, 具体可通过为不同信号传输线 20配置导电面积不同和 /或材质 不同的阻抗平衡线 10以实现上述目的。而所述导电面积不同, 具体可通过调 整阻抗平衡线 10的长度、 宽度、 厚度等实现。
这是因为, 导电性 (如阻抗平衡线 10 ) 导电面积的不同, 可以影响导电 性的阻抗。 另外, 不同材质的导电率, 也可以使不同导电线的电阻不同。 因 此,在本发明实施例中可通过调配阻抗平衡线 10的长度、材质中的至少一项, 实现数据传输通道阻抗值的调整。
因此, 在一具体实施例中, 本发明实施例可按照以下原则中的至少一种, 设置分属于不同信号传输线的阻抗平衡线:
自身阻抗越大的信号传输线对应的阻抗平衡线的长度越长;
自身阻抗越大的信号传输线对应的阻抗平衡线的横截面积越大; 自身阻抗越大的信号传输线对应的阻抗平衡线的材质的电阻率越小。 上述原则, 还可基于实际需要, 任意增加和调整。
本发明实施例所涉及的阻抗平衡线 10, 具体可形成于阵列基板的任一导 电图层中, 例如像素电极层即 ITO层 50、 公共电极层、源漏金属层 30、 栅极 层 60等中的至少一层。
即在本发明实施例中, 阻抗平衡线 10与其所属信号传输线 20, 可形成 于不同图层中。
而处于不同图层中的阻抗平衡线 10与其所属信号传输线 20之间, 可通 过直接接触, 或者设置过孔的方式实现电连接。
为了制作本发明实施例所提供的阵列基板, 本发明实施例还提供了一种 阵列基板制作方法, 该方法具体可以包括:
在阵列基板的集线区内的预设位置处形成多条信号传输线 20;
在多条信号传输线 20中的所属信号传输线 20上形成阻抗平衡线 10, 所 述阻抗平衡线 10与所属信号传输线 20之间电连接, 使得集线区内的不同数 据传输通道的阻抗的差值符合第一预设条件。
在一具体实施例中, 在所述多条信号传输线 20中的所属信号传输线 20 上形成阻抗平衡线的步骤具体可以包括:
在集线区的预设位置处, 形成信号传输线 20图案, 以及位于信号传输线 20之上的图层;
通过刻蚀工艺中, 刻蚀掉位于信号传输线 20之上的图层; 以及
在信号传输线 20之上形成阻抗平衡线 10图案。
此实施例的实现, 可使阻抗平衡线 10与其所属信号传输线 20通过直接 接触的方式实现电连接。
具体的, 该实施例的具体实现过程可如下所示:
如图 4所示, 在本发明实施例中, 可在阵列基板的已有图形 (例如栅极 层 60、 栅绝缘层 70等) 上, 沉积源漏金属层 30, 通过构图工艺, 形成信号 传输线 20的图案。然后在信号传输线 20上形成钝化层 40等图案。通过修改 掩模(mask) 结构, 在过孔 (Via) 刻蚀工艺中, 将集线区边缘的信号传输线 20上的钝化层 40刻蚀掉。 然后在裸露出的信号传输线 20上直接形成像素电 极 ITO层 50图案, 由 ITO层 50图案作为信号传输线 20的阻抗平衡线 10。 由于 ITO层 50材质导电, 因此 ITO层 50图案的存在增大了对应信号传输线 20的导电面积。 其原理类似于多个电阻并联后总电阻小于各个子电阻, 因此 可有效降低集线区边缘处的信号传输线 20的线电阻,从而降低集线区边缘处 的数据传输通道的阻抗值。
在本发明实施例中,是否形成 ITO层 50图案即阻抗平衡线 10以及该 ITO 层 50图案的长度等参数, 可根据每根信号传输线 20的位置和长度而定。 例 如图 3中所示的信号传输线 20所配置的 ffi抗平衡线】0可最长。 然后沿向集 线区中心位置方向 (即图 3信号传输线 21所在方向), 依次缩短每一个信号 传输线 20所配置的阻抗平衡线 10的长度 (前提是集线区内所有信号传输线 20所配置的 ΠΌ层 50图案即阻抗平衡线 10的 质相同)。 由于图 3中信号 传输线 20的长度最短, 因此信号传输线 20可不配置对应的阻抗平衡线 10。 即本发明实施例的总体目标是阶梯性的降低集线区域外围的信号传输线 20 的阻抗值即电阻,使集线区每一条信号传输线 20对应的数据传输通道之间的 ffi抗的差值比例达到预设范围, 例如比值为 1或接近 1。
由于在本发明实施例中,可将形成于 ITO层 50的阻抗平衡线刻蚀成条状, 因此, 在本发明一具体实施例中, 阻抗平衡线 10具体可由至少一条导电线组 成。
上述实施例是以信号传输线 20形成于源漏金属层 30 ( SD层), 阻抗平 衡线 10形成于 ITO层 50为例进行说明。 但这在实际应用中, 也可以在栅极 层 60形成信号传输线 20的图案,然后通过刻蚀掉信号传输线 20上覆盖栅绝 缘层 70, 并在裸露的信号传输线 20上直接覆盖源漏金属层 30的材质, 即阻 抗平衡线 10可形成于源漏金属层 30中。
以上描述是基于阻抗平衡线 10形成在一个图层的实施例进行说明。进一 步的, 还可在多个图层中形成阻抗平衡线 10的图案, 并均通过直接接触的方 式, 实现与形成于栅极层 60中的信号传输线 20电连接。
例如, 以信号传输线 20形成于栅极层 60中, —巨.第一阻抗平衡线形成于 源漏金属层 30为例进行说明。在后续工艺中, 可通过刻蚀掉第一阻抗平衡线 上的钝化层 40, 然后在第一阻抗平衡线上直接覆盖形成于 ITO层 50的第二 阻抗平衡线。 丛而由第一阻抗平衡线和第二阻抗平衡线组合形成信号传输线 20对应的阻抗平衡线 10。 由于该实施例中的阻抗平衡线 10可由形成于多个 图层中不同导电线组成, 因此可显著增大信号传输线 20的导电面积, 丛而可 显著降低信号传输线 20对应的数据传输通道的阻抗值,如降低超过 50%以上 的阻抗值。
而在本发明的另一具体实施例中, 本发明实施例所涉及的在所述多条信 号传输线 20中的所属信号传输线 20上形成阻抗平衡线的步骤具体还可以包 括:
在集线区预设位置处, 形成信号传输线 20 图案, 以及位于信号传输线 20之上的图层;
在所述信号传输线 20图案和 /或位于信号传输线 20之上的图层的预设位 置处形成过孔; 以及
在所述信号传输线之上的图层之上, 以及所述过孔位置处, 形成 ffi抗平 此实施例的实现, 可使阻抗平衡线 10与其所属信号传输线 20通过过孔 的方式实现电连接。
在本发明实施例中, 利用过孔实现阻抗平衡线 10与所属信号传输线 20 之间实现电连接的方式有很多, 下面以本发明实施例所涉及的 列基板为底 欐型阵列基板为例, 举例进行说明。
在一具体实施例中, 可利用阵列基板最上层导电图层连通形成于多个图 层中的信号传输线 20以及阻抗平衡线 10。
具体的, 如果信号传输线 20形成于源漏金属层 30时, 可利) ¾现有技术 及工艺, 在栅极层 60形成栅线 (gata线) 和公共电极线 (com线) 的同时, 也在信号传输线 20所在位置处的栅极层 60中,形成预留的栅极层 60金属线, 作为阻抗平衡线 10。 如果信号传输线 20形成于欐极层 60中, 则可以在源漏 金属层 30中形成源漏金属线 (即 data线) 时, 在信号传输线 20 (形成于栅 极层 60中) 所在位置处, 也预留源漏金属线, 作为阻抗平衡线 10。
然后, 通过过孔 (Via) 刻蚀工艺, 在预设位置以及预设图层中, 形成过 孔。
最后,利用 列基板最上层即最后形成的导电图层,例如 ITO层 50图案, 通过过孔, 使两层以上的导电图层 (包括阻抗平衡线 10和信号传输线 20) 之间实现电连接。此时, 最上层的导电图层本身也可以是阻抗平衡线 10的一 部分。
该方案的特点是可以利用现有工艺方法顺利实现降低数据传输通道阻抗 值的目的, 不需要添加掩模。 下面, 针对不同过孔刻蚀工艺方案, 对本发明实施例提供的利用阵列基 板最上层导电图层连通形成于多个图层中的信号传输线 20 以及阻抗平衡线 10的过程进行详细的描述:
刻蚀工艺方案一:
在本方案中, 以 4mask阵列基板制作工艺为例, 在源漏极 (SDT) mask 工艺时, 在本发明实施例所涉及的导通过孔 90 (具体可如图 5所示) 处不保 留光刻胶 (PR胶)。 这样, 在 SDT刻蚀 (Etch) 工艺后, 过孔 90位置处的 源漏金属层 30和有源层 80会被刻蚀掉。 在钝化层 40剥离 (dep) 结束后, 在该位置处形成过孔 90。 在本发明实施例中, 可采用常见的过孔刻蚀工艺即 可实现将过孔 90位置处的钝化层 40和栅绝缘层 70刻蚀掉。通过后续 ΠΌ层 50金属材质的沉积, 即能够实现形成于源漏金属层 30与 »极层 60层金属的 信号传输线 20和阻抗平衡线 10之间的电连接。
需要注意的是, 在过孔 90刻蚀工艺中, 需要刻蚀掉过孔 90侧壁上的钝 化层 40材质,这样才能保证在沉积 ITO层 50后,可利用沉积在侧壁上的 ITO 层 50金属材质,使处于不同图层中的信号传输线 20和阻抗平衡线 10通过 ITO 层 50实现连接线。
若保留顶层的 ITO层 50图案,则此时的数据传输通道中包括三层导电图 层。例如形成于源漏金属层 30中的信号传输线 20以及形成于栅极层 60和 ITO 层 50中的阻抗平衡线 10, 或者形成于栅极层 60中的信号传输线 20以及形 成于源漏金属层 30中和 ITO层 50的阻抗平衡线。 另一方面, 若不保留顶层 的 ITO层 50图案, 则此时只有在过孔 90的侧壁上的存在 ITO层 50材质, 则存在的 ITO层 50材质只起到导通信号传输线 20和阻抗平衡线 10的作) ¾, 此时的数据传输通道中包括两层导电图层,即形成于源漏金属层 30中的信号 传输线 20以及形成于栅极层 60中的阻抗平衡线 10, 或者形成于栅极层 60 中的信号传输线 20以及形成于源漏金属层 30中的阻抗平衡线 10。
此方案做制作的 列基板结构可如图 5所示。
刻蚀工艺方案二:
在本方案中,若本发明实施例不在源漏极(SDT) mask进行过孔的刻蚀, 则可以在正常的过孔刻蚀工艺中, 对位于像素区中连通漏电极与像素电极位 置的过孔 91 (附图中未示出, 附图标记 91用于标识该过孔与过孔 90为不同 过孔)采 ffi半曝光技术, 而对于本发明实施例所涉及的过孔 90采^全曝光技 术。 从而实现当过孔 90导通到栅极层 60时, 而连通漏电极与像素电极位置 的过孔 91也能在一个掩模 (mask) 中顺利形成。
具体的, 当过孔掩模 (mask) 后, 过孔 91 上还存在 PR胶 (半曝光), 此时过孔 90上无 PR胶。 刻蚀工艺顺序为:
干法刻蚀掉过孔 90上的钝化层 40;
湿法刻蚀掉过孔 90的源漏金属层 30;
干法刻蚀掉过孔 90中的有源层 80;
干法刻蚀灰化工艺刻蚀掉过孔 91上的 PR胶;
二次过孔刻蚀 (2nd Via Etch) , 刻蚀掉过孔 91中的钝化层 40、 过孔 90 中的 *绝缘层 70、集线区的钝化层 40和 *绝缘层 70,其中 2nd Via Etch二次 过孔刻蚀过程可与常规的过孔刻蚀工艺相同。
刻蚀完成后, 同刻蚀方案一,利用沉积的 ΠΌ层 50连通分别处于各图层 的信号传输线 20和阻抗平衡线 10, 并可以考虑保留 ITO层 50形成三层导电 结构,或者仅保留过孔位置的 ITO层 50 .材质而形成两层导电结构。这样在过 孔 91位置处就会形成 ITO层 50连接漏电极,在过孔 90位置处就会形成 ITO 层 50连接信号传输线 20和阻抗平衡线 10的过孔结构。
由于传统的过孔刻蚀只需刻蚀掉像素区连通漏电极与像素电极的钝化层 40以及集线区的钝化层 40和栅绝缘层 70, 故在本发明实施例所涉及的, 采 )¾二次过孔刻蚀 (2nd Via Etch ) 工艺刻蚀过孔 90中的栅绝缘层 70在原理与 实际操作上均完全可以实现。
该方案所提供的过孔刻蚀方案, 可以在一道掩模 (mask) 中直接实现不 同作) ¾过孔的同步刻蚀。
经过上述过孔刻蚀工艺形成的阵列基板同样可如图 5所示。
在本发明的另一具体实施例中, 还可采用多次过孔刻蚀工艺, 以使不同 图层中的信号传输线 20和阻抗平衡线 10之间实现电连接。
举例说明, 如图 6所示, 在有源层 80沉积后添加掩模(mask)工艺, 在 有源层 80和栅绝缘层 70中形成连接栅极层 60和源漏金属层 30中的过孔 90。 然后通过工艺形成源漏金属层 30 图案 (可以信号传输线 20, 也可以是阻抗 平衡线 10), 由于过孔 90的侧壁上覆盖了源漏金属层 30的 质, 因此, 栅 极层 60和源漏金属层 30之间实现电连接。
然后, 在源漏金属层 30上覆盖钝化层 40, 并再次通过掩模 (mask) 工 艺, 在钝化层 40中过孔 90所在位置处形成过孔 91。 后续通过在过孔 91位 置处以及钝化层 40上覆盖 ITO层 50, 从而使栅极层 60、源漏金属层 30以及 ITO层 50之间实现电连接, 从而形成三层导电结构。
虽然此实施例中增加了一道掩模 (mask) (在有源层 80沉积后, 增加一 道掩模(mask)工艺并采用干法刻蚀做出过孔 91 ), 但此实施例中降低了 ΠΌ 层 50的爬坡高度, 从而提高了工艺的可靠性与良率。
在本发明另一具体实施例中, 还可以将如图 4、 图 5所示的技术方案相 结合, ffi可以本发明实施例所涉及的阵列基板。
具体的, 如图 7、 8所示, 在过孔刻蚀时, 刻蚀掉位于信号传输线 20位 置处的钝化层 40和部分栅绝缘层 70, 形成条状浅沟道。 然后在该沟道上沉 积 ITO层 50, 这样也能实现不同图层中的信号传输线 20和阻抗平衡线 10之 间实现电连接。 这样的好处是 ITO层 50薄膜能与源漏金属层 30金属直接接 角虫, 丛而提高了工艺的可靠性与良率。
本发明实施例还提供了一种显示装置, 所述装置具体可以包括上述本发 明实施例提供的 列基板。
该显示装置具体可以为液晶面板、 液晶电视、 液晶显示器、 OLED (有机 发光二极管) 面板、 OLED显示器、 等离子显示器或电子纸等显示装置。
从以上所述可以看出, 根据本公开文本提供的阵列基板及其制作方法、 显示装置, 所述阵列基板的集线区内包括) ¾于在驱动芯片和阵列基板的显示 区之间传输信号的多条信号传输线,每条信号传输线对应于一数据传输通道, 所述阵列基板还包括: 与信号传输线对应设置的至少一条阻抗平衡线; 所述 阻抗平衡线与所属信号传输线之间电连接, 使得所述集线区内的不同数据传 输通道的阻抗的差值符合第一预设条件。从而可在不增加端口区域的情况下, 实现端口区域中每一条信号传输线对应的信号传输通道间的电阻比值在一预 设的范围内, 以减少信号延迟情况。 同时, 本发明实施例所提供技术方案的实现, 可以降低信号传输线的宽 度, 因此可使一个端口区域内容设置更多的信号传输线, 丛而可减少显示面 板中设置的端口区域, 有利于窄边框的实现。 同时, 在较小的区域利^一个 驱动电路即可驱动尽可能多的信号传输线, 减小驱动电路数量, 丛而降低显 示面板的生产成本。
另外, 本发明实施例所提供的技术方案, 还可与现有折线设计共同应用, 从而也可实现使数据传输通道间的阻抗的差值的符合预设条件的目的。
以上所述仅是本发明的实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以作出若千改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

1 . 一种阵列基板, 所述阵列基板的集线区内包括^于在驱动芯片和阵列 基板的显示区之间传输信号的多条信号传输线, 每条信号传输线对应于一数 据传输通道, 其中, 所述阵列基板还包括:
与多条信号传输线中的所属信号传输线对应设置的至少一条阻抗平衡 所述阻抗平衡线与所属信号传输线之间电连接, 使得所述集线区内的不 同数据传输通道的阻抗的差值符合第一预设条件。
2. 如权利要求 1所述的阵列基板, 其中, 所述第一预设条件为: 配置阻抗平衡线后至少一对数据传输通道的 ffi抗的差值小于配置 ffi抗平 衡线前所述一对数据传输通道的阻抗的差值。
3. 如权利要求 1所述的阵列基板, 其中, 所述第一预设条件为: 配置阻抗平衡线后所述集线区内阻抗值最大的数据传输通道与阻抗值最 小的数据传输通道之间的阻抗差值, 小于配置阻抗平衡线前所述集线区内阻 抗值最大的数据传输通道与阻抗值最小的数据传输通道之间的阻抗差值。
4. 如权利要求 1所述的阵列基板, 其中, 所述第一预设条件为: 配置阻抗平衡线后所述集线区内的各数据传输通道间的阻抗最大差值在 预设阈值范围内。
5. 如权利要求 1-4中任一项所述的阵列基板, 其中, 所述阻抗平衡线与 所属信号传输线, 形成于不同图层中。
6. 如权利要求 1-5中任一项所述的阵列基板, 其中, 所述阻抗平衡线形 成于阵列基板的导电图层中, 所述导电图层包括像素电极层、 公共电极层、 源漏金属层、 栅极层中的至少一层。
7. 如权利要求 1-6中任一项所述的阵列基板, 其中, 所述阻抗平衡线与 所属信号传输线之间直接接触, 或者所述阻抗平衡线与所属信号传输线之间 通过过孔实现电连接。
8. 如权利要求 1-7中任一项所述的阵列基板, 其中, 所述阻抗平衡线由 至少一条导电线组成。
9. 如权利要求 1-8中任一项所述的 列基板,,分属于不同信号传输线的 阻抗平衡线的导电面积不同和 /或材质不同。
1 0. 如权利要求】 9中任一项所述的阵列基板, 其中, 分属于不同信号传 输线的阻抗平衡线被设置为:
自身阻抗越大的信号传输线对应的阻抗平衡线的长度越长; 和 /或 自身阻抗越大的信号传输线对应的阻抗平衡线的横截面积越大; 和 /或 自身阻抗越大的信号传输线对应的阻抗平衡线的材质的电阻率越小。
11 . 如权利要求 5-10中任一项所述的阵列基板, 其中, 所述信号传输线 形成于源漏金属层, 所述阻抗平衡线形成于像素电极层和 /或栅极层中。
12. —种阵列基板制作方法, 所述阵列基板的集线区内包括 ffi于在驱动 芯片和阵列基板的显示区之间传输信号的多条信号传输线, 每条信号传输线 对应于一数据传输通道, 其中, 所述方法包括:
在阵列基板的集线区内的预设位置处形成所述多条信号传输线; 在所述多条信号传输线中的所属信号传输线上形成阻抗平衡线, 所述阻 抗平衡线与所属信号传输线之间电连接, 使得所述集线区内的不同数据传输 通道的阻抗的差值符合第一预设条件。
13. 如权利要求 12所述的方法, 其中, 所述在所述多条信号传输线中的 所属信号传输线上形成阻抗平衡线的步骤包括:
在所述集线区内的预设位置处, 形成信号传输线图案, 以及位于信号传 输线之上的图层;
通过刻蚀工艺中, 刻蚀掉位于信号传输线之上的图层; 以及
在所述信号传输线之上形成阻抗平衡线图案。
14. 如权利要求 12所述的方法, 其中, 所述在所述多条信号传输线中的 所属信号传输线上形成阻抗平衡线的步骤包括:
在所述集线区内的预设位置处, 形成信号传输线图案, 以及位于信号传 输线之上的图层;
在所述信号传输线图案和 /或位于信号传输线之上的图层的预设位置处 形成过孔; 以及
在所述信号传输线之上的图层之上, 以及所述过孔位置处, 形成阻抗平 衡线图案。
15. —种显示装置,至少包括如权利要求 1-11中任一项所述的阵列基板 (
PCT/CN2014/079448 2013-10-31 2014-06-09 阵列基板及其制作方法、显示装置 WO2015062273A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/429,618 US10127855B2 (en) 2013-10-31 2014-06-09 Array substrate, its manufacturing method, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310530006.5 2013-10-31
CN201310530006.5A CN103560134B (zh) 2013-10-31 2013-10-31 一种阵列基板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2015062273A1 true WO2015062273A1 (zh) 2015-05-07

Family

ID=50014343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079448 WO2015062273A1 (zh) 2013-10-31 2014-06-09 阵列基板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US10127855B2 (zh)
CN (1) CN103560134B (zh)
WO (1) WO2015062273A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835858A4 (en) * 2018-08-07 2022-04-20 Boe Technology Group Co., Ltd. NETWORK SUBSTRATE AND DISPLAY DEVICE

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560134B (zh) 2013-10-31 2016-11-16 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN104637409B (zh) * 2014-12-26 2017-08-15 小米科技有限责任公司 窄边框及配置有窄边框的显示器
CN105047125A (zh) * 2015-09-18 2015-11-11 京东方科技集团股份有限公司 移位寄存器、其修复方法、栅极集成驱动电路及相应装置
CN107689208A (zh) * 2016-08-04 2018-02-13 上海和辉光电有限公司 一种改善oled驱动线信号延迟的结构及其制备方法
CN107065331A (zh) * 2016-12-30 2017-08-18 南京中电熊猫液晶显示科技有限公司 液晶显示面板
CN106653819B (zh) 2017-02-17 2020-02-14 京东方科技集团股份有限公司 阵列基板和显示装置
US10228596B2 (en) * 2017-03-10 2019-03-12 HKC Corporation Limited Substrate, display panel and display apparatus
CN107634072B (zh) * 2017-10-25 2020-04-03 厦门天马微电子有限公司 阵列基板及显示面板
CN108598088B (zh) * 2018-04-27 2019-10-11 武汉华星光电技术有限公司 Tft阵列基板及显示装置
CN109270755B (zh) * 2018-09-30 2020-10-16 惠科股份有限公司 一种显示面板和显示装置
US11049891B2 (en) 2018-12-05 2021-06-29 Au Optronics Corporation Pixel array substrate
CN109461399A (zh) * 2018-12-14 2019-03-12 惠科股份有限公司 显示面板
CN109950222B (zh) * 2019-03-28 2021-08-31 京东方科技集团股份有限公司 一种柔性显示面板和显示装置
CN111369945B (zh) * 2020-04-30 2021-05-04 京东方科技集团股份有限公司 电路板组件、显示装置、终端和信号处理系统
CN113763818B (zh) * 2021-09-07 2023-06-02 武汉华星光电技术有限公司 显示装置
CN114241914B (zh) * 2021-12-21 2024-02-20 上海中航光电子有限公司 一种显示面板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050206798A1 (en) * 2004-03-17 2005-09-22 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US20080203391A1 (en) * 2007-02-28 2008-08-28 Samsung Electronics Co., Ltd. Array substrate, display apparatus having the same
CN102998865A (zh) * 2012-11-16 2013-03-27 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN103022033A (zh) * 2012-12-11 2013-04-03 京东方科技集团股份有限公司 阵列基板、制作方法及显示装置
CN103149753A (zh) * 2013-03-28 2013-06-12 深圳市华星光电技术有限公司 阵列基板及其扇出线结构
CN203241671U (zh) * 2013-05-13 2013-10-16 深圳市华星光电技术有限公司 阵列基板的扇出线结构及显示面板
CN103474435A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 阵列基板及其制作方法
CN103560134A (zh) * 2013-10-31 2014-02-05 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040060619A (ko) * 2002-12-30 2004-07-06 삼성전자주식회사 액정 표시 장치
TWI277133B (en) * 2005-09-05 2007-03-21 Au Optronics Corp Fan-out wire structure
KR20070117268A (ko) * 2006-06-08 2007-12-12 삼성전자주식회사 박막 트랜지스터 기판 및 이를 포함하는 액정 표시판
TWI330279B (en) * 2006-09-20 2010-09-11 Au Optronics Corp Liquid crystal display panel
KR101395282B1 (ko) * 2006-12-04 2014-05-15 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조방법
KR101252004B1 (ko) * 2007-01-25 2013-04-08 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
TWI395007B (zh) * 2009-09-30 2013-05-01 Au Optronics Corp 扇出線路以及顯示面板
TWI397736B (zh) * 2009-10-13 2013-06-01 Au Optronics Corp 主動元件陣列基板以及顯示裝置
KR101906182B1 (ko) * 2011-12-08 2018-10-11 삼성디스플레이 주식회사 표시장치
US20130328645A1 (en) * 2012-06-08 2013-12-12 International Business Machines Corporation Plating Stub Resonance Shift with Filter Stub Design Methodology

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050206798A1 (en) * 2004-03-17 2005-09-22 Lg. Philips Lcd Co., Ltd. Liquid crystal display device
US20080203391A1 (en) * 2007-02-28 2008-08-28 Samsung Electronics Co., Ltd. Array substrate, display apparatus having the same
CN102998865A (zh) * 2012-11-16 2013-03-27 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN103022033A (zh) * 2012-12-11 2013-04-03 京东方科技集团股份有限公司 阵列基板、制作方法及显示装置
CN103149753A (zh) * 2013-03-28 2013-06-12 深圳市华星光电技术有限公司 阵列基板及其扇出线结构
CN203241671U (zh) * 2013-05-13 2013-10-16 深圳市华星光电技术有限公司 阵列基板的扇出线结构及显示面板
CN103474435A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 阵列基板及其制作方法
CN103560134A (zh) * 2013-10-31 2014-02-05 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835858A4 (en) * 2018-08-07 2022-04-20 Boe Technology Group Co., Ltd. NETWORK SUBSTRATE AND DISPLAY DEVICE
US11658186B2 (en) 2018-08-07 2023-05-23 Boe Technology Group Co., Ltd. Array substrate and display device

Also Published As

Publication number Publication date
CN103560134B (zh) 2016-11-16
US20160063912A1 (en) 2016-03-03
CN103560134A (zh) 2014-02-05
US10127855B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2015062273A1 (zh) 阵列基板及其制作方法、显示装置
US11923382B2 (en) Method of fabricating array substrate, array substrate and display device
US10013097B2 (en) Touch screen panel including touch electrode patterns and driving circuit wirings having a low resistance wiring layer and connected thereto and manufacturing method thereof
WO2020192556A1 (zh) 柔性显示基板、显示面板、显示装置及制作方法
WO2016183899A1 (zh) 无边框显示装置及其制作方法
WO2020113761A1 (zh) 阵列基板及其制作方法、显示装置
WO2014190698A1 (zh) 一种阵列基板及其制作方法
JP2017073560A5 (zh)
WO2020015071A1 (zh) 阵列基板及其制作方法
WO2016090896A1 (en) Touch display substrate, fabrication method and touch display device
US10644010B2 (en) Semiconductor device and fabrication method thereof
WO2017197958A1 (zh) 阵列基板及其制备方法、触摸屏
CN103811310B (zh) 电阻结构及其形成方法
WO2015067068A1 (zh) 低温多晶硅薄膜晶体管阵列基板及其制作方法、显示装置
WO2015010404A1 (zh) 薄膜晶体管及其制作方法、阵列基板及显示装置
KR102191221B1 (ko) 저항 소자 및 이를 포함하는 반도체 소자
WO2017206624A1 (zh) 走线结构、阵列基板及其制备方法、显示面板
WO2014172970A1 (zh) 阵列基板及其制造方法和显示装置
WO2020087786A1 (zh) 内嵌式触控显示面板及显示装置
TWI618214B (zh) 具有重佈線路層的晶片結構
WO2018000481A1 (zh) 阵列基板及其制造方法、液晶显示面板
WO2015070610A1 (zh) 一种阵列结构及其制造方法
TWI708298B (zh) 半導體結構及其製備方法
TW202113443A (zh) 半導體裝置
CN104835827B (zh) 显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14429618

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14859227

Country of ref document: EP

Kind code of ref document: A1