WO2015060343A1 - 1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物及びその製造方法、並びに芳香族ポリカーボネート樹脂及びその製造方法 - Google Patents

1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物及びその製造方法、並びに芳香族ポリカーボネート樹脂及びその製造方法 Download PDF

Info

Publication number
WO2015060343A1
WO2015060343A1 PCT/JP2014/078087 JP2014078087W WO2015060343A1 WO 2015060343 A1 WO2015060343 A1 WO 2015060343A1 JP 2014078087 W JP2014078087 W JP 2014078087W WO 2015060343 A1 WO2015060343 A1 WO 2015060343A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxyphenyl
ethyladamantane
bis
polycarbonate resin
aromatic polycarbonate
Prior art date
Application number
PCT/JP2014/078087
Other languages
English (en)
French (fr)
Inventor
中村 剛
小黒 大
藤田 英明
文哉 在間
源希 杉山
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2015543882A priority Critical patent/JP6327255B2/ja
Priority to CN201480057079.XA priority patent/CN105658610A/zh
Priority to US15/027,185 priority patent/US20160244389A1/en
Priority to EP14856110.3A priority patent/EP3061742A1/en
Priority to KR1020167006014A priority patent/KR20160078326A/ko
Publication of WO2015060343A1 publication Critical patent/WO2015060343A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving hydroxy groups of phenols or alcohols or the ether or mineral ester group derived therefrom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes

Definitions

  • the present invention relates to a novel 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound which is a raw material excellent in improving the heat resistance, optical properties and mechanical strength properties of various resins, its production method, and the compound
  • the present invention relates to an aromatic polycarbonate resin comprising
  • Resins manufactured using bisphenols as raw materials are used in various applications taking advantage of heat resistance, optical characteristics, and mechanical strength characteristics.
  • bisphenols that are the raw materials 1,3-bis (4-hydroxy) synthesized as a bisphenol having an adamantane skeleton by reacting 1,3-dibromo-5,7-dimethyladamantane with phenol is disclosed in Patent Document 1. Phenyl) -5,7-dimethyladamantane is described.
  • Patent Document 2 describes 1,3-bis (4-hydroxyphenyl) adamantane synthesized by reacting 1,3-adamantanediol and phenol in the presence of an acid catalyst.
  • Patent Document 3 discloses 1,3-bis (4-hydroxyphenyl) adamantanes synthesized by reacting 1,3-adamantanediols and substituted phenols in the presence of an acid catalyst, and 1,3-bis (2- Hydroxyphenyl) adamantanes are described.
  • adamantane skeleton part of 1,3-bis (hydroxyphenyl) adamantanes known hitherto is only adamantane having no substituent or dimethyladamantane, and 1,3 whose adamantane skeleton part is ethyladamantane.
  • -Bis (hydroxyphenyl) -5-ethyladamantane compounds are not known.
  • Patent Document 4 discloses a method for producing 1,3-dihydroxy-5-ethyladamantane by oxidizing 1-ethyladamantane with chromic acid in an aqueous acetic acid solution as a method for producing a derivative of ethyladamantane. Is described.
  • Patent Document 5 discloses a fragrance excellent in heat resistance and optical properties obtained by reacting a polycarbonate precursor with an aromatic dihydroxy compound mainly composed of 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane. Group polycarbonate resins are described.
  • An aromatic polycarbonate resin obtained by using 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane described in Patent Document 5 as an aromatic dihydroxy compound has very high heat resistance, Since the glass transition temperature is too high, molding is not easy, and an improvement has been desired.
  • An object of the present invention is to provide an aromatic polycarbonate resin having both heat resistance and moldability, and 1,3-bis (hydroxyphenyl) -5 which is a bisphenol compound having a novel adamantane skeleton as a raw material. It is to provide an ethyladamantane compound and a method for producing the same.
  • R represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a phenyl group, and n represents an integer of 0 to 2)
  • a process for producing 1,3-bis (4-hydroxyphenyl) -5-ethyladamantane comprising reacting 1,3-dihydroxy-5-ethyladamantane with phenol in the presence of an acid catalyst.
  • An aromatic polycarbonate resin comprising a repeating unit represented by the following formula (2) and having a viscosity average molecular weight of 1 ⁇ 10 4 to 5 ⁇ 10 4 .
  • R represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a phenyl group, and n represents an integer of 0 to 2
  • An aromatic polycarbonate resin comprising a repeating unit represented by the following formula (3) and having a viscosity average molecular weight of 1 ⁇ 10 4 to 5 ⁇ 10 4 .
  • An aromatic polycarbonate resin comprising a repeating unit represented by the following formula (4) and having a viscosity average molecular weight of 1 ⁇ 10 4 to 5 ⁇ 10 4 .
  • the 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound represented by the formula (1) of the present invention is excellent as a raw material for an aromatic polycarbonate resin having excellent optical characteristics and having both heat resistance and moldability. Can be used.
  • the GC / MS analysis result of the product obtained in Example 1 is shown.
  • the result of 1H-NMR analysis of the product obtained in Example 1 is shown.
  • the 1H-NMR peak assignments of the product obtained in Example 1 are shown.
  • the results of 13C-NMR analysis of the product obtained in Example 1 are shown.
  • the result of DEPT135 ° -NMR analysis of the product obtained in Example 1 is shown.
  • the 13C-NMR peak assignments of the product obtained in Example 1 are shown.
  • the GC / MS analysis result of the product obtained in Example 2 is shown.
  • the result of 1H-NMR analysis of the product obtained in Example 2 is shown.
  • the assignment of the 1H-NMR peak of the product obtained in Example 2 is shown.
  • the result of 13C-NMR analysis of the product obtained in Example 2 is shown.
  • the result of DEPT135 ° -NMR analysis of the product obtained in Example 2 is shown.
  • the 13C-NMR peak assignments of the product obtained in Example 2 are
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound of the present embodiment is represented by the following formula (1).
  • R represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a phenyl group, and n represents an integer of 0 to 2)
  • —OH may be bonded to any of the ortho, meta, and para positions of the benzene ring, but is preferably bonded to the para position (position 4).
  • —R may be bonded to any of the benzene rings, but is preferably bonded to the 3-position or 5-position.
  • the alkyl group having 1 to 6 carbon atoms represented by R is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, i -Butyl group, t-butyl group, n-pentyl group, n-hexyl group and the like.
  • examples of the cycloalkyl group having 3 to 6 carbon atoms represented by R include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group, and among them, a cyclohexyl group is preferable.
  • 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound represented by the formula (1) of the present embodiment 1,3-bis (4-hydroxyphenyl) -5-ethyladamantane, 1,3 -Bis (3-methyl-4-hydroxyphenyl) -5-ethyladamantane, 1,3-bis (2-methyl-4-hydroxyphenyl) -5-ethyladamantane, 1,3-bis (3,5-dimethyl) -4-hydroxyphenyl) -5-ethyladamantane, 1- (4-hydroxyphenyl) -3- (3-hydroxyphenyl) -5-ethyladamantane, 1- (4-hydroxyphenyl) -3- (2-hydroxy Phenyl) -5-ethyladamantane, 1- (3-methyl-4-hydroxyphenyl) -3- (2-methyl-3-hydroxyphenyl) -5-ethyladamantane, 1- (3-methyl-4-hydroxyphenyl) -3- (4-methyl
  • the 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound represented by the formula (1) of the present embodiment preferably has a melting point of 130 to 180 ° C, and preferably 135 to 175 ° C. More preferably, it is 135 ° C. to 170 ° C.
  • 1,3-bis (4-hydroxyphenyl) -adamantane (melting point: 203 to 204 ° C.) )
  • 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane (melting point: 225 ° C.). If the melting point is 130 to 180 ° C., the melting point is higher than that of these similar substances. Since it is significantly low, there is an advantage that handling in a molten state such as during purification becomes easy.
  • the 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound represented by the formula (1) of the present embodiment is, for example, a raw material such as an epoxy resin, a photosensitive resin, a cyanate resin, a polyester resin, and a polycarbonate resin.
  • a resin excellent in heat resistance, optical properties, and mechanical strength properties can be produced.
  • the method for producing a 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound comprises reacting 1,3-dihydroxy-5-ethyladamantane with phenol or a substituted phenol in the presence of an acid catalyst. It is characterized by.
  • 1,3-dihydroxy-5-ethyladamantane used as a raw material in the present embodiment is a method in which 1-ethyladamantane is oxidized with oxygen in the presence of an imide compound and a vanadium compound; oxidized with hypochlorites in the presence of a ruthenium compound. It can be synthesized by a known method such as a method of oxidizing 1-ethyladamantane with chromic acid; a method of dihalogenating 1-ethyladamantane and hydrolyzing it. In this embodiment, 1,3-dihydroxy-5-ethyladamantane synthesized by any of the above or other methods can also be used.
  • phenol or substituted phenols to be reacted with 1,3-dihydroxy-5-ethyladamantane in this embodiment include phenol, o-cresol, m-cresol, p-cresol, 2,6-xylenol, 2,3- Examples include xylenol, 2,4-xylenol, 2,5-xylenol, 3,4-xylenol, 3,5-xylenol and the like.
  • the phenol or substituted phenol may be used in order to improve the yield of 1,3-bis (hydroxyphenyl) -5-ethyladamantanes relative to 1,3-dihydroxy-5-ethyladamantane. -It is preferable to add an excessive amount to ethyladamantane, but if it is too much, only the amount to be discarded is increased.
  • the amount of phenol or substituted phenols used is preferably 2 to 15 times, more preferably 6 to 10 times in terms of a molar ratio to 1,3-dihydroxy-5-ethyladamantane.
  • the acid catalyst used in the present embodiment may be any strong acid such as sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, hydrochloric acid, hydrobromic acid, strong acidic cation exchange resin, etc.
  • Aqueous acids are preferred.
  • More preferred catalysts include concentrated sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, and strongly acidic cation exchange resin.
  • the amount of the acid catalyst used is usually preferably 10 to 300 mol%, more preferably 30 to 200 mol%, and more preferably 50 to 150 mol% with respect to 1,3-dihydroxy-5-adamantane. Is particularly preferred.
  • the reaction temperature in this embodiment is usually preferably 60 to 150 ° C, more preferably 80 to 130 ° C, and particularly preferably 90 to 120 ° C.
  • the reaction method of the present embodiment is not particularly limited, and examples thereof include a batch-type reaction method in which a raw material and an acid catalyst are charged in a reactor and the reaction is performed at a predetermined reaction temperature.
  • the product obtained by the reaction of this embodiment can be purified according to conventional methods such as distillation, extraction, column chromatography, etc. after neutralizing and separating the acid catalyst. By performing such purification, a novel 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound represented by the above formula (1) can be obtained.
  • the aromatic polycarbonate resin of this embodiment is a resin containing a repeating unit represented by the following formula (2). (Wherein R represents an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a phenyl group, and n represents an integer of 0 to 2)
  • —O— or —C ( ⁇ O) —O— may be bonded to any of the ortho, meta, and para positions of the benzene ring, but bonded to the para position (position 4). It is preferable to do this. It is preferable that —OH is bonded to the para position from the viewpoint of reactivity when synthesizing a polycarbonate resin.
  • —R may be bonded to any of the benzene rings, but is preferably bonded to the 3rd or 5th position from the viewpoint of reactivity when the polycarbonate resin is synthesized.
  • the alkyl group having 1 to 6 carbon atoms represented by R is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, i -Butyl group, t-butyl group, n-pentyl group, n-hexyl group and the like.
  • a methyl group, an ethyl group, and an n-propyl group are preferable, a methyl group and an ethyl group are more preferable, and a methyl group is particularly preferable.
  • examples of the cycloalkyl group having 3 to 6 carbon atoms represented by R include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group, and among them, a cyclohexyl group is preferable.
  • the aromatic polycarbonate resin of this embodiment is particularly preferably a resin containing a repeating unit represented by the following formula (3) or the following formula (4).
  • the aromatic polycarbonate resin of this embodiment may contain a repeating unit other than the repeating unit represented by the formula (2) as a copolymerization component.
  • the copolymer component is not particularly limited as long as it is a component derived from an aromatic dihydroxy compound other than the aromatic dihydroxy compound represented by the formula (1).
  • 1,3-bis (4-hydroxyphenyl) -adamantane and A component derived from 1,3-bis (4-hydroxyphenyl) -5,7-dimethyl adamantane.
  • aromatic dihydroxy compounds can be used alone or in admixture of two or more.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound, or a polymer or oligomer having a siloxane structure and containing both terminal phenolic OH groups may be used. May be.
  • the viscosity average molecular weight of the aromatic polycarbonate resin of this embodiment is preferably 1 ⁇ 10 4 to 5 ⁇ 10 4 , and more preferably 1.5 ⁇ 10 4 to 4 ⁇ 10 4 . By being in such a range, it becomes possible to more effectively maintain a balance between good fluidity and mechanical strength during molding.
  • the viscosity average molecular weight (Mv) was measured by measuring 0.5 g / deciliter of an aromatic polycarbonate resin in dichloromethane using an Ubbelohde capillary viscometer at a temperature of 25 ° C., and using a Haggins constant of 0.45 and an intrinsic viscosity [ ⁇ ] deciliter / Gram is calculated and calculated by the following formula.
  • the glass transition temperature of the aromatic polycarbonate resin of the present embodiment is preferably 170 to 245 ° C., more preferably 175 to 240 ° C., and particularly preferably 180 to 230 ° C.
  • the resin has sufficient heat resistance and excellent moldability that can be molded by various methods.
  • the aromatic polycarbonate resin of the present embodiment can be synthesized based on a known method, and examples thereof include various synthesis methods including an interfacial polymerization method and a transesterification method.
  • an aromatic dihydroxy compound or a small amount thereof and a small amount of a polyhydroxy compound, carbonyl chloride generally known as phosgene, or a carbonic acid diester represented by dimethyl carbonate or diphenyl carbonate, carbon monoxide or carbon dioxide
  • phosgene phosgene
  • a carbonic acid diester represented by dimethyl carbonate or diphenyl carbonate, carbon monoxide or carbon dioxide
  • It is a polymer or copolymer of a linear or branched thermoplastic aromatic polycarbonate obtained by reacting with a carbonyl compound.
  • phloroglucin 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptene-2,4,6-dimethyl-2,4,6-tris ( 4-hydroxyphenyl) heptane, 2,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptene-3, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1
  • a polyhydroxy compound represented by tris (4-hydroxyphenyl) ethane or the like, or 3,3-bis (4-hydroxyaryl) oxindole ( isatin bisphenol), 5-chlorisatin bisphenol, 5,7 -One of the above-mentioned aromatic dihydroxy compounds such as dichlorouisatin bisphenol and 5-bromoisatin bisphenol. It may be used as the usage is preferably 0.01 to 10 mol%, preferably from 0.1 to 3 mol%.
  • the pH is usually kept at 10 or more, an aromatic dihydroxy compound and a molecular weight modifier (terminal stopper), if necessary
  • a polymerization catalyst such as tertiary amine or quaternary ammonium salt
  • conducting interfacial polymerization A polycarbonate resin can be obtained.
  • the addition of the molecular weight modifier is not particularly limited as long as it is from the time of phosgenation to the start of the polymerization reaction.
  • the reaction temperature is 0 to 35 ° C., and the reaction time is several minutes to several hours.
  • Examples of the organic solvent inert to the reaction include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene, and aromatic hydrocarbons such as benzene, toluene and xylene. Can do.
  • a compound having a monovalent phenolic hydroxyl group can be used as a molecular weight modifier or a terminal terminator. Specifically, m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, Examples include p-tert-butylphenol and p-long chain alkyl-substituted phenol.
  • tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, pyridine; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. Can be mentioned.
  • the reaction by the transesterification method is a transesterification reaction between a carbonic acid diester and an aromatic dihydroxy compound.
  • the molecular weight and terminal hydroxyl group amount of the desired aromatic polycarbonate resin are determined by adjusting the mixing ratio of the carbonic acid diester and the aromatic dihydroxy compound or adjusting the degree of vacuum during the reaction.
  • the amount of terminal hydroxyl groups has a large effect on the thermal stability, hydrolysis stability, color tone, etc. of the aromatic polycarbonate resin, and is preferably 1000 ppm or less, more preferably 700 ppm, in order to have practical physical properties. It is as follows. It is common to use an equimolar amount or more of a carbonic acid diester with respect to 1 mol of the aromatic dihydroxy compound, and it is preferably used in an amount of 1.01 to 1.30 mol.
  • carbonic acid diesters include substitution of dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate, diphenyl carbonate or di-p-tolyl carbonate, phenyl-p-tolyl carbonate, and di-p-chlorophenyl carbonate. Examples include diphenyl carbonate. Of these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is particularly preferable. These carbonic acid diester compounds can be used alone or in admixture of two or more.
  • a transesterification catalyst When synthesizing an aromatic polycarbonate resin by a transesterification method, a transesterification catalyst is usually used.
  • the transesterification catalyst is not particularly limited, but alkali metal compounds and / or alkaline earth metal compounds are mainly used. Auxiliary basic boron compounds, basic phosphorus compounds, basic ammonium compounds, or amine-based catalysts are used. It is also possible to use a basic compound such as a compound in combination.
  • the reaction is performed at a temperature of 100 to 320 ° C., and finally, by-products such as aromatic hydroxy compounds are produced under a reduced pressure of 2.7 ⁇ 10 2 Pa ( 2 mmHg) or less.
  • a compound that neutralizes the catalyst for example, a sulfur-containing acidic compound, or a derivative formed therefrom, as a deactivator of the catalyst in the aromatic polycarbonate resin. It is added in an amount of 0.5 to 10 equivalents, preferably 1 to 5 equivalents relative to the alkali metal of the catalyst, and is usually added in an amount of 1 to 100 ppm, preferably 1 to 20 ppm relative to the aromatic polycarbonate resin.
  • additives may be blended in the aromatic polycarbonate resin of the present embodiment without departing from the spirit of the present invention.
  • the additive include at least one additive selected from the group consisting of a heat stabilizer, an antioxidant, a flame retardant, an ultraviolet absorber, a release agent, and a colorant.
  • an antistatic agent, a fluorescent whitening agent, an antifogging agent, a fluidity improving agent, a plasticizer, a dispersing agent, an antibacterial agent and the like may be added as long as desired physical properties are not significantly impaired.
  • the aromatic polycarbonate resin of the present embodiment is suitably used for various optical equipment materials such as various lenses and liquid crystal panels because it has excellent optical properties, heat resistance, and mechanical properties. Since the aromatic polycarbonate resin of the present embodiment is excellent in moldability, the method for producing a molded product when used in these applications is not particularly limited, and any molding method generally employed for the polycarbonate resin composition can be used. Can be adopted. Examples include injection molding methods, ultra-high speed injection molding methods, injection compression molding methods, two-color molding methods, hollow molding methods such as gas assist, molding methods using heat insulating molds, molding methods using rapid heating molds. , Foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, etc. be able to.
  • Viscosity average molecular weight (Mv) of polycarbonate resin Viscosity average molecular weight (Mv) was measured at a temperature of 25 ° C. using a Ubbelohde capillary viscometer with a dichloromethane solution of an aromatic polycarbonate resin of 0.5 g / deciliter. The intrinsic viscosity [ ⁇ ] deciliter / gram was obtained with a Huggins constant of 0.45, and calculated according to the following formula.
  • reaction was continued for 3.5 hours while maintaining the liquid temperature at 80 to 90 ° C.
  • reaction product was cooled to room temperature, and the precipitated crystals were separated with a glass filter to obtain 221 g of 1,3-dihydroxy-5-ethyladamantane crude crystals.
  • the resulting crude crystals were purified by recrystallization from acetone to obtain 204 g of 1,3-dihydroxy-5-ethyladamantane having a GC purity of 99.2%.
  • the liquid temperature was adjusted to 90 ° C., and the reaction was continued for 5 hours. After 5 hours, the reaction solution was poured into a container containing 2 L of ice water. Further, a 24% aqueous sodium hydroxide solution was added until the pH reached 7, and neutralized. To the resulting reaction product, 500 ml of ethyl acetate was added, and extraction with ethyl acetate was repeated three times. The extracted ethyl acetate solution was washed with 500 ml of saturated brine, and magnesium sulfate was added to the separated ethyl acetate solution phase.
  • Example 1 ⁇ Identification of the product of Example 1>
  • the GC / MS analysis result of the product obtained in Example 1 is shown in FIG. From the mass spectrum, the molecular weight of the product was considered to be 348.
  • the NMR measurement results of the product obtained in Example 1 are shown below.
  • FIG. 2 shows a chart of 1H-NMR
  • FIG. 3 shows assignment of peaks of 1H-NMR
  • FIG. 4 shows the 13C-NMR chart
  • FIG. 5 shows the DEPT135 ° -NMR chart
  • FIG. 6 shows the assignment of the 13C-NMR peak.
  • the melting point of 1,3-bis (4-hydroxyphenyl) adamantane not included in the compound of the present invention represented by the formula (1) is 203 to 204 ° C., and 1,3-bis (4-hydroxyphenyl) ) -5,7-dimethyladamantane had a melting point of 225 ° C.
  • Example 2 Synthesis of 1,3-bis (3-methyl-4-hydroxyphenyl) -5-ethyladamantane 170 g (0.866 mol) 1,3-dihydroxy-5-ethyladamantane and 750 g (6.94 mol) o-cresol was put in a 2 L separable flask and heated to 65 ° C. while stirring with a mechanical stirrer. When the temperature reached 65 ° C., 85 g (0.867 mol) of concentrated sulfuric acid was added dropwise over 30 minutes. During the dropping, heat was generated and the temperature rose up to 90 ° C. After completion of the dropping, the liquid temperature was adjusted to 93 ° C., and the reaction was continued for 7 hours.
  • the toluene / ethyl acetate mixed solvent was concentrated with an evaporator and further dried with a drier to obtain 103 g of an oily product.
  • the area% of the peak other than the solvent was 91.60%.
  • the melting point of the obtained product was measured and found to be 146-149 ° C.
  • FIG. 7 shows the GC / MS analysis result of the product obtained in Example 2. From the mass spectrum, the molecular weight of the product was considered to be 376.
  • FIG. 8 shows a chart of 1H-NMR
  • FIG. 9 shows assignment of peaks of 1H-NMR.
  • FIG. 10 shows the 13C-NMR chart
  • FIG. 11 shows the DEPT135 ° -NMR chart
  • FIG. 9 shows assignment of peaks of 1H-NMR.
  • Example 12 shows the assignment of the 13C-NMR peak. Judging comprehensively from these measurement results, the main component of the product obtained in Example 2 was identified as 1,3-bis (3-methyl-4-hydroxyphenyl) -5-ethyladamantane. It was done.
  • Example 4 1,3-bis (3-methyl-4-hydroxyphenyl) -5-ethyladamantane 55 prepared in Example 2 instead of 51.6 g of 1,3-bis (4-hydroxyphenyl) -5-ethyladamantane
  • a polycarbonate resin powder was obtained in the same manner as in Example 3 except that 0.8 g was used.
  • the resulting polycarbonate resin powder had a viscosity average molecular weight of 24,500 and a glass transition point of 183 ° C.
  • Example 1 Except that 51.6 g of 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane was used instead of 51.6 g of 1,3-bis (4-hydroxyphenyl) -5-ethyladamantane, The same operation as in Example 3 was performed to obtain a polycarbonate resin powder.
  • the polycarbonate resin powder obtained had a viscosity average molecular weight of 23700 and a glass transition point of 252 ° C.
  • molding process will be difficult when a glass transition point is as high as 252 degreeC.
  • the 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound represented by the above formula (1) of the present invention is used as a raw material for, for example, epoxy resins, photosensitive resins, cyanate resins, polyester resins, polycarbonate resins and the like. Can be used.
  • the aromatic polycarbonate resin using the 1,3-bis (hydroxyphenyl) -5-ethyladamantane compound is a resin excellent in heat resistance, optical properties, and mechanical strength properties, and therefore has great industrial significance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明によれば、下記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物及びその製造方法、並びに当該化合物を含んでなる芳香族ポリカーボネート樹脂及びその製造方法を提供することができる。 (式中、Rは炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、又はフェニル基を表し、nは0~2の整数を示す。)

Description

1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物及びその製造方法、並びに芳香族ポリカーボネート樹脂及びその製造方法
 本発明は、各種樹脂類の耐熱性、光学特性、機械強度特性の改良に優れた原料である新規な1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物及びその製造方法、並びに当該化合物を含んでなる芳香族ポリカーボネート樹脂及びその製造方法に関する。
 ビスフェノール類を原料として製造される樹脂類は、耐熱性、光学特性、機械強度特性を生かして各種の用途で使用されている。その原料であるビスフェノール類のうちアダマンタン骨格を有するビスフェノール類として、特許文献1に、1,3-ジブロモ-5,7-ジメチルアダマンタンとフェノールを反応させて合成した1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタンが記載されている。
 また、特許文献2に1,3-アダマンタンジオールとフェノールを酸触媒存在下で反応させて合成した1,3-ビス(4-ヒドロキシフェニル)アダマンタンが記載されている。
 さらに、特許文献3に1,3-アダマンタンジオール類と置換フェノール類を酸触媒存在下で反応させて合成した1,3-ビス(4-ヒドロキシフェニル)アダマンタン類および1,3-ビス(2-ヒドロキシフェニル)アダマンタン類が記載されている。
 しかし、従来知られている1,3-ビス(ヒドロキシフェニル)アダマンタン類のアダマンタン骨格部分は、置換基を有さないアダマンタン、もしくはジメチルアダマンタンのみであり、アダマンタン骨格部分がエチルアダマンタンである1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物は知られていない。
 また、特許文献4には、エチルアダマンタンの誘導体を製造する方法として、1-エチルアダマンタンを含水酢酸溶液中でクロム酸を用いて酸化して1,3-ジヒドロキシ-5-エチルアダマンタンを製造する方法が記載されている。
 特許文献5には、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタンを主とする芳香族ジヒドロキシ化合物にポリカーボネート前駆物質を反応させてなる耐熱性と光学特性に優れた芳香族ポリカーボネート樹脂が記載されている。
米国特許3594427号公報 特開2000--95720号公報 特開2003--306460号公報 米国特許3383424号公報 特開平5--78467号公報
 特許文献5に記載されている1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタンを芳香族ジヒドロキシ化合物として用いて得られる芳香族ポリカーボネート樹脂は非常に高い耐熱性を有するものの、そのガラス転移温度が高すぎるため成形が容易でなく、その改善が望まれていた。
 本発明の課題は、耐熱性と成形性を両立する芳香族ポリカーボネート樹脂を提供すること、及び、その原料となる新規なアダマンタン骨格を有するビスフェノール化合物である1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物、及びその製造方法を提供することにある。
 本発明者らは、鋭意検討を重ねた結果、1,3-ジヒドロキシ-5-エチルアダマンタンとフェノール又は置換フェノール類とを酸触媒存在下で反応させることにより、1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン類が製造できることを見出した。
 また、該1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン類を炭酸エステル形成化合物と反応させて得られる芳香族ポリカーボネート樹脂が、耐熱性と成形性を両立する樹脂であることを見出した。
 本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は次のとおりである。
[1]下記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物。
Figure JPOXMLDOC01-appb-C000010
(式中、Rは炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、又はフェニル基を表し、nは0~2の整数を示す。)
[2]下記構造式で表される1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタン。
Figure JPOXMLDOC01-appb-C000011
[3]下記構造式で表される1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタン。
Figure JPOXMLDOC01-appb-C000012
[4]下記構造式で表される1,3-ジヒドロキシ-5-エチルアダマンタンとフェノール又は置換フェノール類とを酸触媒存在下に反応させることを特徴とする、下記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[5]1,3-ジヒドロキシ-5-エチルアダマンタンとフェノールを酸触媒存在下に反応させることを特徴とする1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタンの製造方法。
[6]1,3-ジヒドロキシ-5-エチルアダマンタンとo-クレゾールを酸触媒存在下に反応させることを特徴とする1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタンの製造方法。
[7]下記式(2)で表される繰り返し単位を含んでなり、かつ粘度平均分子量が1×10~5×10であることを特徴する芳香族ポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000015
(式中、Rは炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、又はフェニル基を表し、nは0~2の整数を示す。)
[8]下記式(3)で表される繰り返し単位を含んでなり、かつ粘度平均分子量が1×10~5×10であることを特徴する芳香族ポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000016
[9]下記式(4)で表される繰り返し単位を含んでなり、かつ粘度平均分子量が1×10~5×10であることを特徴する芳香族ポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000017
[10]ガラス転移温度が170~245℃である[7]~[9]のいずれかに記載の芳香族ポリカーボネート樹脂。
[11]下記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物を、炭酸エステル形成化合物と反応させることを特徴とする、[7]に記載の芳香族ポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000018
[12]1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタンを、炭酸エステル形成化合物と反応させることを特徴とする、[8]に記載の芳香族ポリカーボネート樹脂の製造方法。
[13]1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタンを、炭酸エステル形成化合物と反応させることを特徴とする、[9]に記載の芳香族ポリカーボネート樹脂の製造方法。
 本発明の式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物は、光学特性に優れ、耐熱性と成形性を両立する芳香族ポリカーボネート樹脂の原料として好適に用いることが出来る。
実施例1で得られた生成物のGC/MS分析結果を示す。 実施例1で得られた生成物の1H-NMR分析の結果を示す。 実施例1で得られた生成物の1H-NMRのピークの帰属を示す。 実施例1で得られた生成物の13C-NMR分析の結果を示す。 実施例1で得られた生成物のDEPT135°-NMR分析の結果を示す。 実施例1で得られた生成物の13C-NMRのピークの帰属を示す。 実施例2で得られた生成物のGC/MS分析結果を示す。 実施例2で得られた生成物の1H-NMR分析の結果を示す。 実施例2で得られた生成物の1H-NMRのピークの帰属を示す。 実施例2で得られた生成物の13C-NMR分析の結果を示す。 実施例2で得られた生成物のDEPT135°-NMR分析の結果を示す。 実施例2で得られた生成物の13C-NMRのピークの帰属を示す。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
 本実施形態の1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物は下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000019
(式中、Rは炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、又はフェニル基を表し、nは0~2の整数を示す。)
 前記式(1)中、-OHはベンゼン環のオルト位、メタ位、パラ位のいずれに結合してもよいが、パラ位(4位)に結合するのが好ましい。また、-Rもベンゼン環のいずれに結合してもよいが、3位または5位に結合するのが好ましい。
 前記式(1)中、Rで表される炭素数1~6のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。中でも、メチル基、エチル基、及びn-プロピル基が好ましく、メチル基及びエチル基がより好ましく、メチル基が特に好ましい。
 前記式(1)中、Rで表される炭素数3~6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、及びシクロヘキシル基が挙げられ、中でも、シクロヘキシル基が好ましい。
 本実施形態の前記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物として、1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタン、1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタン、1,3-ビス(2-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタン、1,3-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-5-エチルアダマンタン、1-(4-ヒドロキシフェニル)-3-(3-ヒドロキシフェニル)-5-エチルアダマンタン、1-(4-ヒドロキシフェニル)-3-(2-ヒドロキシフェニル)-5-エチルアダマンタン、1-(3-メチル-4-ヒドロキシフェニル)-3-(2-メチル-3-ヒドロキシフェニル)-5-エチルアダマンタン、1-(3-メチル-4-ヒドロキシフェニル)-3-(4-メチル-3-ヒドロキシフェニル)-5-エチルアダマンタン、1-(3-メチル-4-ヒドロキシフェニル)-3-(3-メチル-2-ヒドロキシフェニル)-5-エチルアダマンタン、1,3-ビス(3-エチル-4-ヒドロキシフェニル)-5-エチルアダマンタン、1,3-ビス(2-エチル-4-ヒドロキシフェニル)-5-エチルアダマンタン、1,3-ビス(3,5-ジエチル-4-ヒドロキシフェニル)-5-エチルアダマンタン、1-(3-エチル-4-ヒドロキシフェニル)-3-(2-エチル-3-ヒドロキシフェニル)-5-エチルアダマンタン、1-(3-エチル-4-ヒドロキシフェニル)-3-(4-エチル-3-ヒドロキシフェニル)-5-エチルアダマンタン、1-(3-エチル-4-ヒドロキシフェニル)-3-(3-エチル-2-ヒドロキシフェニル)-5-エチルアダマンタンなどが例示され、より好ましい化合物として1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタン、1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタン、1,3-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-5-エチルアダマンタンが例示され、さらに好ましい化合物として1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタン、及び1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタンが例示される。
 本実施形態の前記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物は、融点が130~180℃であるのが好ましく、135~175℃であるのがより好ましく、135℃~170℃であるのが特に好ましい。前記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物に類似した化合物として、1,3-ビス(4-ヒドロキシフェニル)-アダマンタン(融点:203~204℃)や1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン(融点:225℃)が挙げられるが、融点が130~180℃であれば、これらの類似物質に比べて融点が大幅に低いので、精製時など溶融状態での取扱いが容易となる利点がある。
 本実施形態の前記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物は、例えば、エポキシ樹脂、感光性樹脂、シアネート樹脂、ポリエステル樹脂、ポリカーボネート樹脂等の原料として使用することができ、該1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物を用いることにより、耐熱性、光学特性、機械強度特性に優れた樹脂を製造することができる。
 本実施形態の1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物の製造方法は、1,3-ジヒドロキシ-5-エチルアダマンタンとフェノール又は置換フェノール類とを酸触媒存在下に反応させることを特徴とする。
 本実施形態で原料として使用する1,3-ジヒドロキシ-5-エチルアダマンタンは、1-エチルアダマンタンをイミド化合物とバナジウム化合物存在下で酸素酸化させる方法;ルテニウム化合物存在下、次亜塩素酸塩類で酸化する方法;1-エチルアダマンタンをクロム酸で酸化する方法;1-エチルアダマンタンをジハロゲン化し、加水分解する方法などの公知の方法で合成することが可能である。
 本実施形態では上記又は上記以外のいずれの方法で合成された1,3-ジヒドロキシ-5-エチルアダマンタンでも使用することが出来る。
 本実施形態で1,3-ジヒドロキシ-5-エチルアダマンタンに反応させるフェノール又は置換フェノール類として、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,6-キシレノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 前記フェノール又は置換フェノール類は、1,3-ジヒドロキシ-5-エチルアダマンタンに対する1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン類の収率を向上させるために、1,3-ジヒドロキシ-5-エチルアダマンタンに対して、過剰量添加することが好ましいが、多すぎても廃棄する量が増えるだけである。フェノール又は置換フェノール類の使用量は、1,3-ジヒドロキシ-5-エチルアダマンタンに対するモル比で2~15倍とするのが好ましく、6~10倍とするのがより好ましい。
 本実施形態で使用する酸触媒は、硫酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、塩酸、臭化水素酸、強酸性カチオン交換樹脂など、強酸であれば何でも良いが、非水系の酸が好ましい。より好ましい触媒として、濃硫酸、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、及び強酸性カチオン交換樹脂が挙げられる。
 前記酸触媒の使用量は、1,3-ジヒドロキシ-5-アダマンタンに対して、通常、10~300mol%であるのが好ましく、30~200mol%であるのがより好ましく、50~150mol%であるのが特に好ましい。
 本実施形態の反応温度は、通常、60~150℃が好ましく、80~130℃がより好ましく、90~120℃が特に好ましい。
 本実施形態の反応方法は特に限定されないが、反応器中に原料、酸触媒を仕込み、所定の反応温度に設定して反応を行う回分式の反応方法などが例示される。
 本実施形態の反応で得られた生成物は、酸触媒の中和や分離を行った後、蒸留や抽出、カラムクロマトグラフィーなどの常法に従い精製することができる。このような精製を行うことにより、高純度の前記式(1)で表される新規な1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物を得ることができる。
 本実施形態の芳香族ポリカーボネート樹脂は、下記式(2)で表される繰り返し単位を含む樹脂である。
Figure JPOXMLDOC01-appb-C000020
(式中、Rは炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、又はフェニル基を表し、nは0~2の整数を示す。)
 前記式(2)中、-O-または-C(=O)-O-はベンゼン環のオルト位、メタ位、パラ位のいずれに結合してもよいが、パラ位(4位)に結合するのが好ましい。-OHはパラ位に結合している方が、ポリカーボネート樹脂を合成する際の反応性の面から好ましい。また、-Rもベンゼン環のいずれに結合してもよいが、ポリカーボネート樹脂を合成する際の反応性の面から3位または5位に結合するのが好ましい。
 前記式(2)中、Rで表される炭素数1~6のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。中でも 、メチル基、エチル基、及びn-プロピル基が好ましく、メチル基及びエチル基がより好ましく、メチル基が特に好ましい。
 前記式(2)中、Rで表される炭素数3~6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、及びシクロヘキシル基が挙げられ、中でも、シクロヘキシル基が好ましい。
 本実施形態の芳香族ポリカーボネート樹脂で特に好ましいのは、下記式(3)あるいは下記式(4)で表される繰り返し単位を含む樹脂である。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 本実施形態の芳香族ポリカーボネート樹脂は、共重合成分として前記式(2)で表される繰り返し単位以外の繰り返し単位を含んでいても良い。
 共重合成分としては、前記式(1)で表される芳香族ジヒドロキシ化合物以外の芳香族ジヒドロキシ化合物に由来する成分であれば特に限定されないが、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、4,4'-ジヒドロキシジフェニル、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジフェニルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス-(4-ヒドロキシフェニル)メタン、ビス-(4-ヒドロキシ-3-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン[=ビスフェノールZ]、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、4,4’-ジヒドロキシ-2,5-ジエトキシジフェニルエーテル、1-フェニル-1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1-フェニル-1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,3-ビス(4-ヒドロキシフェニル)-アダマンタン、1,3-ビス(3-メチル-4-ヒドロキシフェニル)-アダマンタン、および1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等に由来する成分を挙げることができるが、より好ましくは、1,3-ビス(4-ヒドロキシフェニル)-アダマンタン、および1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタンに由来する成分である。これらの芳香族ジヒドロキシ化合物は、単独で、または、2種以上を混合して使用することができる。また、ジヒドロキシ化合物の一部として、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物、または、シロキサン構造を有する両末端フェノール性OH基含有のポリマー若しくはオリゴマー等を併用してもよい。
 本実施形態の芳香族ポリカーボネート樹脂の粘度平均分子量は1×10~5×10であることが好ましく、1.5×10~4×10であるのがより好ましい。このような範囲であることにより、成形時の良好な流動性と機械的強度のバランスをより効果的に保つことが可能になる。
 粘度平均分子量(Mv)は、0.5グラム/デシリットルの芳香族ポリカーボネート樹脂のジクロロメタン溶液を、ウベローデ毛管粘度計によって25℃の温度で測定し、ハギンズ定数0.45で極限粘度[η]デシリットル/グラムを求め、次式により算出する。
Figure JPOXMLDOC01-appb-M000023
 本実施形態の芳香族ポリカーボネート樹脂のガラス転移温度は、170~245℃であるのが好ましく、175~240℃であるのがより好ましく、180~230℃であるのが特に好ましい。ガラス転移温度が170~245℃であることで、十分な耐熱性を有し、かつ各種の方法で成形を行うことが出来る優れた成形性を有する樹脂となる。
 本実施形態の芳香族ポリカーボネート樹脂は、公知の方法に基づき合成することができ、例えば、界面重合法、エステル交換法をはじめとする各種合成方法を挙げることができる。具体的には、芳香族ジヒドロキシ化合物またはこれと少量のポリヒドロキシ化合物と、一般にホスゲンとして知られている塩化カルボニル、または、ジメチルカーボネートやジフェニルカーボネートに代表される炭酸ジエステル、一酸化炭素や二酸化炭素と云ったカルボニル系化合物とを、反応させることによって得られる、直鎖状、または、分岐していても良い熱可塑性芳香族ポリカーボネートの重合体または共重合体である。
 分岐した芳香族ポリカーボネート樹脂を得るには、フロログルシン、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプテン-2、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、2,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプテン-3、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン等で表されるポリヒドロキシ化合物、あるいは、3,3-ビス(4-ヒドロキシアリール)オキシインドール(=イサチンビスフェノール)、5-クロルイサチンビスフェノール、5,7-ジクロルイサチンビスフェノール、5-ブロムイサチンビスフェノール等を上述した芳香族ジヒドロキシ化合物の一部として用いればよく、使用量は、0.01~10モル%、好ましくは、0.1~3モル%である。
 界面重合法による反応にあっては、反応に不活性な有機溶媒、アルカリ水溶液の存在下で、通常pHを10以上に保ち、芳香族ジヒドロキシ化合物および分子量調整剤(末端停止剤)、必要に応じて芳香族ジヒドロキシ化合物の酸化防止のための酸化防止剤を用い、ホスゲンと反応させた後、第三級アミン若しくは第四級アンモニウム塩等の重合触媒を添加し、界面重合を行うことによって芳香族ポリカーボネート樹脂を得ることができる。分子量調整剤の添加は、ホスゲン化時から重合反応開始時までの間であれば、特に限定されない。尚、反応温度は0~35℃であり、反応時間は数分~数時間である。
 ここで、反応に不活性な有機溶媒として、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素等を挙げることができる。分子量調整剤あるいは末端停止剤として、一価のフェノール性水酸基を有する化合物を使用することができ、具体的には、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等を挙げることができる。重合触媒として、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン、ピリジン等の第三級アミン類;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等を挙げることができる。
 エステル交換法による反応は、炭酸ジエステルと芳香族ジヒドロキシ化合物とのエステル交換反応である。通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率を調整したり、反応時の減圧度を調整したりすることによって、所望の芳香族ポリカーボネート樹脂の分子量と末端ヒドロキシル基量が決められる。末端ヒドロキシル基量は、芳香族ポリカーボネート樹脂の熱安定性、加水分解安定性、色調等に大きな影響を及ぼし、実用的な物性を持たせるためには、好ましくは1000ppm以下であり、より好ましくは700ppm以下である。芳香族ジヒドロキシ化合物1モルに対して炭酸ジエステルを等モル量以上用いることが一般的であり、好ましくは1.01~1.30モルの量で用いられる。
 炭酸ジエステルとして、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物、ジフェニルカーボネートあるいはジ-p-トリルカーボネート、フェニル-p-トリルカーボネート、ジ-p-クロロフェニルカーボネート等の置換ジフェニルカーボネート等が挙げられる。中でもジフェニルカーボネート、置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートが好ましい。
 これらの炭酸ジエステル化合物は、単独で、または、2種以上を混合して使用することができる。
 エステル交換法により芳香族ポリカーボネート樹脂を合成する際には、通常、エステル交換触媒が使用される。エステル交換触媒としては、特に制限はないが、主としてアルカリ金属化合物および/またはアルカリ土類金属化合物が使用され、補助的に塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、あるいは、アミン系化合物等の塩基性化合物を併用することも可能である。このような原料を用いたエステル交換反応では、100~320℃の温度で反応を行い、最終的には2.7×10Pa(2mmHg)以下の減圧下、芳香族ヒドロキシ化合物等の副生成物を除去しながら溶融重縮合反応を行う方法が挙げられる。エステル交換法において、芳香族ポリカーボネート樹脂中の触媒の失活剤として、触媒を中和する化合物、例えばイオウ含有酸性化合物、または、それより形成される誘導体を使用することが好ましく、その量は、触媒のアルカリ金属に対して0.5~10当量、好ましくは1~5当量の範囲であり、芳香族ポリカーボネート樹脂に対して通常1~100ppm、好ましくは1~20ppmの範囲で添加する。
 本実施形態の芳香族ポリカーボネート樹脂には、本発明の趣旨を逸脱しない範囲で各種添加剤が配合されていてもよい。添加剤としては、熱安定剤、酸化防止剤、難燃剤、紫外線吸収剤、離型剤および着色剤から成る群から選択された少なくとも1種類の添加剤が例示される。
 また、所望の諸物性を著しく損なわない限り、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤等を添加してもよい。
 本実施形態の芳香族ポリカーボネート樹脂は、優れた光学特性、耐熱性、機械特性を有することより、各種レンズ、液晶パネル等の各種光学機器用素材の用途に好適に使用される。
 本実施形態の芳香族ポリカーボネート樹脂は成形性に優れるために、これらの用途に使用する場合の成形品の製造方法は、特に限定されず、ポリカーボネート樹脂組成物について一般に採用されている成形法を任意に採用することができる。その例として、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法等を挙げることができる。
 以下に実施例を挙げて、本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
〔分析方法〕
(1)GC-FID分析
 Agilent製キャピラリーカラム DB-1 30m、内径0.53mm、膜厚1.5μmを、Hewlett Packard製のガスクロマトグラフ HP-6890に取り付け、FID検出器にて分析を行った。
(2)GC/MS分析
 Agilent製キャピラリーカラムDB-1MS 30m、内径0.250mm、膜厚0.25μmを島津製作所製ガスクロマトグラフ質量分析計GCMS-QP2010 Ultraに取り付けて分析を行った。
(3)NMR分析
 測定資料をアセトン-D6に溶解させ、10%溶液にし、日本電子製JNM-AL400型核磁気共鳴装置を用いて測定した。
(4)融点
 METTLER TOLEDO製 全自動融点測定装置 FP62を使用して融点を測定した。0.2℃/分での昇温時の融点を測定した。
(5)ポリカーボネート樹脂の粘度平均分子量(Mv)の測定
 粘度平均分子量(Mv)は、0.5グラム/デシリットルの芳香族ポリカーボネート樹脂のジクロロメタン溶液を、ウベローデ毛管粘度計によって25℃の温度で測定し、ハギンズ定数0.45で極限粘度[η]デシリットル/グラムを求め、次式により算出した。
Figure JPOXMLDOC01-appb-M000024
(6)ポリカーボネート樹脂のガラス転移点の測定
 セイコーインスツルメンツ株式会社製DSC220を使用し、窒素50ml/minのガスフロー環境下、270℃加熱融解で試料前処理を行った後、10℃/minの昇温速度で測定した。
〔製造例〕1,3-ジヒドロキシ-5-エチルアダマンタンの合成
 米国特許3383424号公報のExample VIに記載の方法に従って1,3-ジヒドロキシ-5-エチルアダマンタンの合成を行った。
 即ち、容量5Lのセパラブルフラスコに含水酢酸1890g(水分濃度15%)、及びクロム酸源として三酸化クロム609gを仕込み、これにメカニカルスターラーで攪拌しながら1-エチルアダマンタン200gを30分かけて滴下した。滴下中、発熱し液温が室温から最高で90℃まで上昇した。以後、液温を80~90℃に維持して3.5時間反応を継続した。
 反応終了後、反応生成物を室温まで冷却し、析出した結晶をガラスフィルターで分離し、1,3-ジヒドロキシ-5-エチルアダマンタンの粗結晶221gを得た。得られた粗結晶をアセトンによる再結晶で精製し、GC純度99.2%の1,3-ジヒドロキシ-5-エチルアダマンタン204gを得た。
〔1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物の製造〕
<実施例1>
 1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタンの合成
 1,3-ジヒドロキシ-5-エチルアダマンタン170g(0.866モル)とフェノール652g(6.93モル)を2Lのセパラブルフラスコに入れ、メカニカルスターラーで撹拌を行いながら、85℃まで昇温を行った。85℃に達したところで濃硫酸85g(0.867モル)を20分かけて滴下した。滴下中、発熱し最高で95℃まで上昇した。滴下が終了してから、液温を90℃に調整して、5時間反応を継続した。5時間後に2Lの氷水を入れた容器に反応液を注いだ。さらに、24%水酸化ナトリウム水溶液をpHが7になるまで入れ、中和した。
 得られた反応生成物に酢酸エチル500mlを加え、酢酸エチルによる抽出を3回繰り返した。抽出した酢酸エチル溶液を飽和食塩水500mlで洗浄し、さらに、分液した酢酸エチル溶液相に硫酸マグネシウムを添加した。
 酢酸エチル溶液から硫酸マグネシウムを濾過により取り除き、酢酸エチルをエバポレーターで濃縮した。濃縮液650gに対してヘキサン1.5Lを加えて撹拌を行い、静置すると二層に分離したので、上澄みのヘキサン層をデカントで分離した。ヘキサン1.5Lによる洗浄をさらに2回繰り返した。
 洗浄した液をカラムクロマトグラフィーにより精製した。シリカゲルカラムを使用し、まずトルエンで展開し、フェノールが検出できなくなるまでトルエンで展開し、次にトルエン:酢酸エチル=4:1混合溶媒で展開した。トルエン/酢酸エチル混合溶媒をエバポレーターで濃縮し、さらに乾燥機で乾燥することで、オイル状の生成物172gが得られた。生成物のエタノール溶液をGC-FIDで分析した結果、溶媒以外のピークの面積%は、99.51%だった。
 得られた生成物の融点を測定したところ、164~167℃であった。
<実施例1の生成物の同定>
 実施例1で得られた生成物のGC/MS分析結果を図1に示す。マススペクトルより生成物の分子量は348と考えられた。
 実施例1で得られた生成物のNMR測定結果を以下に示す。
 1H-NMR(400MHz)(ACETONE-D6) δ:8.07 (2H,s)、 7.24 (4H,dt,J=9.3,2.6Hz)、6.78(4H,dt,J=9.3, 2.6Hz)、2.31~2.28(1H,m)、1.86~1.79(6H,m)、1.58(4H,br s)、 1.49 (2H, br s)、1.27(2H,q,J=7.6 Hz)、0.86(3H,t,J=7.6Hz)
 13C-NMR(100MHz)(ACETONE-D6)δ:156.0、142.5、126.7、115.6、50.1、48.0、42.9、40.9、38.0、37.0、34.9、31.0、7.4
 図2に1H-NMRのチャート、図3に1H-NMRのピークの帰属を示す。図4に13C-NMRのチャート、図5にDEPT135°-NMRのチャート、図6に13C-NMRのピークの帰属を示す。これらの測定結果から総合的に判断して、実施例1で得られた生成物の主成分は、1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタンであると同定された。
 なお、式(1)で表される本発明の化合物に包含されない1,3-ビス(4-ヒドロキシフェニル)アダマンタンの融点は、203~204℃であり、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタンの融点は、225℃であった。
<実施例2>
 1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタンの合成
 1,3-ジヒドロキシ-5-エチルアダマンタン170g(0.866モル)とo-クレゾール750g(6.94モル)を2Lのセパラブルフラスコに入れ、メカニカルスターラーで撹拌を行いながら、65℃まで昇温を行った。65℃に達したところで濃硫酸 85g(0.867モル)を30分かけて滴下した。滴下中、発熱し最高で90℃まで上昇した。滴下が終了してから、液温を93℃に調整して、7時間反応を継続した。7時間経過後にトルエン:酢酸エチル=1:1混合溶媒600mlを添加して、希釈し、さらに24%水酸化ナトリウム水溶液を中性になるまで添加した。
 得られた反応生成物に酢酸エチル500mlを加え、酢酸エチルによる抽出を3回繰り返した。抽出した酢酸エチル溶液を飽和食塩水500mlで洗浄し、さらに、分液した酢酸エチル溶液相に硫酸マグネシウムを添加した。
 酢酸エチル溶液から硫酸マグネシウムを濾過により取り除き、酢酸エチルをエバポレーターで濃縮した。濃縮液550gに対してヘキサン1Lを加えて撹拌を行い、静置すると二層に分離したので、上澄みのヘキサン層をデカントで分離した。ヘキサン1Lによる洗浄をさらに2回繰り返した。
 洗浄した液をカラムクロマトグラフィーにより精製した。シリカゲルカラムを使用し、まずトルエンで展開し、o-クレゾールが検出できなくなるまでトルエンで展開し、次にトルエン:酢酸エチル=4:1混合溶媒で展開した。トルエン/酢酸エチル混合溶媒をエバポレーターで濃縮し、さらに乾燥機で乾燥することで、オイル状の生成物103gが得られた。生成物のエタノール溶液をGC-FIDで分析した結果、溶媒以外のピークの面積%は、91.60%だった。
 得られた生成物の融点を測定したところ、146~149℃であった。
<実施例2の生成物の同定>
 実施例2で得られた生成物のGC/MS分析結果を図7に示す。マススペクトルより生成物の分子量は376と考えられた。
 実施例2で得られた生成物のNMR測定結果を以下に示す。
 1H-NMR(400MHz)(ACETONE-D6) δ:7.89(2H,s)、7.15(2H,d,J=2.2Hz)、7.04(2H,dd,J=8.3,2.2Hz)、6.74 (2H,d,J=8.3Hz)、2.29~2.28(1H,m)、2.19(6H,s)、1.86~1.78(6H,m)、1.57(4H,br s)、1.48(2H,br s)、1.26(2H,q,J=7.6Hz)、0.86(3H,t,J=7.6Hz)
 13C-NMR(100MHz)(ACETONE-D6) δ:153.9、142.5、128.1、124.1、123.8、115.0、50.2、48.1、42.9、40.9、37.9、37.0、34.9、31.0、16.5、7.4
 図8に1H-NMRのチャート、図9に1H-NMRのピークの帰属を示す。図10に13C-NMRのチャート、図11にDEPT135°-NMRのチャート、図12に13C-NMRのピークの帰属を示す。これらの測定結果から総合的に判断して、実施例2で得られた生成物の主成分は、1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタンであると同定された。
〔芳香族ポリカーボネート樹脂の製造〕
<実施例3>
 4.5w/w%の水酸化ナトリウム水溶液600mlに、実施例1で製造した1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタン51.6gとハイドロサルファイト0.3gを加えて溶解した。これにジクロロメタン300mlを加え、撹拌しながら、溶液温度を15℃~25℃の範囲に保ちつつ、ホスゲン23.5gを20分かけて吹き込んだ。
 ホスゲンの吹き込み終了後、ジクロロメタン100ml、及び、パラターシャリ-ブチルフェノール0.402gをジクロロメタン50mlに溶解させた溶液を加え、激しく撹拌して乳化させた後、重合触媒として1mlのトリエチルアミンを加え約40分間重合させた。
 重合液を水相と有機相に分離し、有機相をリン酸で中和し、洗液のpHが中性になるまで純水で水洗を繰り返した。この精製されたポリカーボネート樹脂溶液から有機溶媒を蒸発留去することによりポリカーボネート樹脂粉末を得た。
 得られたポリカーボネート樹脂粉末の粘度平均分子量は35500であり、ガラス転移点は230℃であった。
<実施例4>
 1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタン51.6gに代えて、実施例2で製造した1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタン55.8gを使用した以外は、実施例3と同様に操作してポリカーボネート樹脂粉末を得た。
 得られたポリカーボネート樹脂粉末の粘度平均分子量は24500であり、ガラス転移点は183℃であった。
<比較例1>
 1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタン51.6gに代えて、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン51.6gを使用した以外は、実施例3と同様に操作してポリカーボネート樹脂粉末を得た。
 得られたポリカーボネート樹脂粉末の粘度平均分子量は23700であり、ガラス転移点は252℃であった。なお、ガラス転移点が252℃と高いと、成形加工が難しいという問題がある。
 本発明の前記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物は、例えば、エポキシ樹脂、感光性樹脂、シアネート樹脂、ポリエステル樹脂、ポリカーボネート樹脂等の原料として使用することができる。該1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物を用いる芳香族ポリカーボネート樹脂は、耐熱性、光学特性、機械強度特性に優れた樹脂であるため、その工業的な意義は大きい。

Claims (13)

  1.  下記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、又はフェニル基を表し、nは0~2の整数を示す。)
  2.  下記構造式で表される1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタン。
    Figure JPOXMLDOC01-appb-C000002
  3.  下記構造式で表される1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタン。
    Figure JPOXMLDOC01-appb-C000003
  4.  下記構造式で表される1,3-ジヒドロキシ-5-エチルアダマンタンとフェノール又は置換フェノール類とを酸触媒存在下に反応させることを特徴とする、下記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
  5.  1,3-ジヒドロキシ-5-エチルアダマンタンとフェノールを酸触媒存在下に反応させることを特徴とする1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタンの製造方法。
  6.  1,3-ジヒドロキシ-5-エチルアダマンタンとo-クレゾールを酸触媒存在下に反応させることを特徴とする1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタンの製造方法。
  7.  下記式(2)で表される繰り返し単位を含んでなり、かつ粘度平均分子量が1×10~5×10であることを特徴する芳香族ポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、又はフェニル基を表し、nは0~2の整数を示す。)
  8.  下記式(3)で表される繰り返し単位を含んでなり、かつ粘度平均分子量が1×10~5×10であることを特徴する芳香族ポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000007
  9.  下記式(4)で表される繰り返し単位を含んでなり、かつ粘度平均分子量が1×10~5×10であることを特徴する芳香族ポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000008
  10.  ガラス転移温度が170~245℃である請求項7~9のいずれか一項に記載の芳香族ポリカーボネート樹脂。
  11.  下記式(1)で表される1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物を、炭酸エステル形成化合物と反応させることを特徴とする、請求項7に記載の芳香族ポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000009
  12.  1,3-ビス(4-ヒドロキシフェニル)-5-エチルアダマンタンを、炭酸エステル形成化合物と反応させることを特徴とする、請求項8に記載の芳香族ポリカーボネート樹脂の製造方法。
  13.  1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5-エチルアダマンタンを、炭酸エステル形成化合物と反応させることを特徴とする、請求項9に記載の芳香族ポリカーボネート樹脂の製造方法。
PCT/JP2014/078087 2013-10-25 2014-10-22 1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物及びその製造方法、並びに芳香族ポリカーボネート樹脂及びその製造方法 WO2015060343A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015543882A JP6327255B2 (ja) 2013-10-25 2014-10-22 1,3−ビス(ヒドロキシフェニル)−5−エチルアダマンタン化合物及びその製造方法、並びに芳香族ポリカーボネート樹脂及びその製造方法
CN201480057079.XA CN105658610A (zh) 2013-10-25 2014-10-22 1,3-双(羟基苯基)-5-乙基金刚烷化合物及其制造方法以及芳香族聚碳酸酯树脂及其制造方法
US15/027,185 US20160244389A1 (en) 2013-10-25 2014-10-22 1,3-bis(hydroxyphenyl)-5-ethyladamantane compound and method for production thereof, and aromatic polycarbonate resin and method for production thereof
EP14856110.3A EP3061742A1 (en) 2013-10-25 2014-10-22 1,3-bis(hydroxyphenyl)-5-ethyladamantane compound and method for production thereof, and aromatic polycarbonate resin and method for production thereof
KR1020167006014A KR20160078326A (ko) 2013-10-25 2014-10-22 1,3-비스(하이드록시페닐)-5-에틸아다만탄 화합물 및 그 제조방법, 그리고 방향족 폴리카보네이트 수지 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-222022 2013-10-25
JP2013222022 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015060343A1 true WO2015060343A1 (ja) 2015-04-30

Family

ID=52992933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078087 WO2015060343A1 (ja) 2013-10-25 2014-10-22 1,3-ビス(ヒドロキシフェニル)-5-エチルアダマンタン化合物及びその製造方法、並びに芳香族ポリカーボネート樹脂及びその製造方法

Country Status (7)

Country Link
US (1) US20160244389A1 (ja)
EP (1) EP3061742A1 (ja)
JP (1) JP6327255B2 (ja)
KR (1) KR20160078326A (ja)
CN (1) CN105658610A (ja)
TW (1) TW201529548A (ja)
WO (1) WO2015060343A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138013A1 (ja) * 2018-12-28 2020-07-02 三菱瓦斯化学株式会社 光学レンズ及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383424A (en) 1964-12-28 1968-05-14 Sun Oil Co Preparation of diols containing an adamantane nucleus
US3594427A (en) 1969-02-26 1971-07-20 Sun Oil Co Adamantane bisphenols
JPS5022099A (ja) * 1973-05-25 1975-03-08
JPH0578467A (ja) 1991-09-20 1993-03-30 Teijin Chem Ltd 新規芳香族ポリカーボネート樹脂
JPH1017664A (ja) * 1996-07-05 1998-01-20 Teijin Chem Ltd 改質ポリカーボネート樹脂及びそれから形成された光学成形品
JP2000095720A (ja) 1998-09-18 2000-04-04 Daicel Chem Ind Ltd 芳香族ジヒドロキシ化合物の製造法
JP2003212987A (ja) * 2002-01-28 2003-07-30 Idemitsu Kosan Co Ltd 芳香族ポリカーボネート樹脂とその製造方法
JP2003306460A (ja) 2002-02-15 2003-10-28 Honshu Chem Ind Co Ltd 1,3−ビス(ヒドロキシフェニル)アダマンタン類及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525274A (en) 1994-06-29 1996-06-11 Davidson Textron Inc. Process for manufacturing plastic microspheres
US6112088A (en) 1996-08-30 2000-08-29 Telefonaktiebolaget, L.M. Ericsson Radio communications system and method for mobile assisted handover between a private network and a public mobile network
JP3979851B2 (ja) * 2002-01-23 2007-09-19 出光興産株式会社 芳香族ポリカーボネート樹脂とその製造法
US6720460B2 (en) * 2002-02-15 2004-04-13 Honshu Chemical Industry Co., Ltd. Hydroxyphenyl adamantanes and process for the production of the same
JP4204880B2 (ja) * 2003-03-04 2009-01-07 出光興産株式会社 ビス(3−アミノ−4−ヒドロキシフェニル)アダマンタン誘導体及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383424A (en) 1964-12-28 1968-05-14 Sun Oil Co Preparation of diols containing an adamantane nucleus
US3594427A (en) 1969-02-26 1971-07-20 Sun Oil Co Adamantane bisphenols
JPS5022099A (ja) * 1973-05-25 1975-03-08
JPH0578467A (ja) 1991-09-20 1993-03-30 Teijin Chem Ltd 新規芳香族ポリカーボネート樹脂
JPH1017664A (ja) * 1996-07-05 1998-01-20 Teijin Chem Ltd 改質ポリカーボネート樹脂及びそれから形成された光学成形品
JP2000095720A (ja) 1998-09-18 2000-04-04 Daicel Chem Ind Ltd 芳香族ジヒドロキシ化合物の製造法
JP2003212987A (ja) * 2002-01-28 2003-07-30 Idemitsu Kosan Co Ltd 芳香族ポリカーボネート樹脂とその製造方法
JP2003306460A (ja) 2002-02-15 2003-10-28 Honshu Chem Ind Co Ltd 1,3−ビス(ヒドロキシフェニル)アダマンタン類及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138013A1 (ja) * 2018-12-28 2020-07-02 三菱瓦斯化学株式会社 光学レンズ及びその製造方法
JPWO2020138013A1 (ja) * 2018-12-28 2021-11-18 三菱瓦斯化学株式会社 光学レンズ及びその製造方法
US11960056B2 (en) 2018-12-28 2024-04-16 Mitsubishi Gas Chemical Company, Inc. Optical lens and method for manufacturing same
JP7484724B2 (ja) 2018-12-28 2024-05-16 三菱瓦斯化学株式会社 光学レンズ及びその製造方法

Also Published As

Publication number Publication date
KR20160078326A (ko) 2016-07-04
JP6327255B2 (ja) 2018-05-23
US20160244389A1 (en) 2016-08-25
TW201529548A (zh) 2015-08-01
EP3061742A1 (en) 2016-08-31
CN105658610A (zh) 2016-06-08
JPWO2015060343A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
KR101076178B1 (ko) 개선된 유동 특성을 나타내는 고도로 분지된폴리카르보네이트 및 코폴리카르보네이트 및 그의 제법 및용도
US8507635B2 (en) Modified polycarbonates having improved surface properties
US4415723A (en) Randomly branched aromatic polycarbonate from triphenol
US4415725A (en) Aromatic branched polycarbonate from tetraphenol
US4277600A (en) Tetraphenolic compounds and polycarbonates containing the same
TW200402433A (en) Polycarbonates, polyester carbonates and polyesters with special branched terminal groups
TWI540152B (zh) Polycarbonate resin and method for producing the same
WO2016063889A1 (ja) 1,3-ビス(3-メチル-4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン及びその製造方法、並びに芳香族ポリカーボネート樹脂及びその製造方法
JP6327255B2 (ja) 1,3−ビス(ヒドロキシフェニル)−5−エチルアダマンタン化合物及びその製造方法、並びに芳香族ポリカーボネート樹脂及びその製造方法
TW201446834A (zh) 聚碳酸酯之製造方法及聚碳酸酯
TW201930242A (zh) 具有萘骨架之雙芳基醇類及其製造方法
JP3603921B2 (ja) コポリカーボネート重合体およびその製造方法
JP4685204B2 (ja) 芳香族−脂肪族共重合ポリカーボネートの製造方法
US10759755B2 (en) Bisphenol compound and aromatic polycarbonate
TW201504278A (zh) 液晶構件用聚碳酸酯樹脂、包含其之液晶構件用聚碳酸酯樹脂組合物及液晶構件
JPH0564935B2 (ja)
KR20180058223A (ko) 폴리카보네이트 수지 및 그 제조 방법, 및 그것을 사용하여 형성된 성형품, 시트, 필름 및 그 제조 방법
JPS59134742A (ja) トリフエノ−ル系化合物及びそれを含むポリカ−ボネ−ト
JP2015093888A (ja) ポリカーボネート樹脂組成物
JP6097113B2 (ja) ポリカーボネート共重合体及びその製造方法
TW202116865A (zh) 聚碳酸酯樹脂及其製造方法、聚碳酸酯樹脂組成物以及成形體
US5021541A (en) Polycarbonate resin from bis(hydroxy benzoyl oxy-tetra oxa spiro) cpd.
JP2008024870A (ja) 分岐状ポリカーボネート樹脂およびその製造方法
JPH06256499A (ja) ポリカーボネート
JPH0668022B2 (ja) 新規なポリカ−ボネ−トおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015543882

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167006014

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014856110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014856110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15027185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE