WO2015060166A1 - 撮像レンズ - Google Patents
撮像レンズ Download PDFInfo
- Publication number
- WO2015060166A1 WO2015060166A1 PCT/JP2014/077359 JP2014077359W WO2015060166A1 WO 2015060166 A1 WO2015060166 A1 WO 2015060166A1 JP 2014077359 W JP2014077359 W JP 2014077359W WO 2015060166 A1 WO2015060166 A1 WO 2015060166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- refractive power
- imaging lens
- imaging
- numerical example
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
Definitions
- the present invention relates to an imaging lens that forms an image of a subject on a solid-state imaging device of a CCD sensor or C-MOS sensor used in a small imaging device.
- high-functional products such as smart TVs and 4K TVs, information terminal devices such as game consoles and PCs, and imaging devices mounted on mobile terminal devices such as smartphones, mobile phones, and PDAs (Personal Digital Assistants).
- the present invention relates to an imaging lens built in the apparatus.
- An imaging lens applied to a device having such a high resolving power is required to be a small lens system having a high resolving power, a small size, a wide angle of view, and a bright lens system.
- an imaging device incorporated in a mobile terminal device such as a smartphone has often employed an image sensor having a size of about 1 / 3.2 to 1/4 inch suitable for downsizing the device, and has 5 million pixels. The one with about 8 million pixels was the mainstream.
- an imaging lens to be applied has been required to have a resolution suitable for the number of pixels of the imaging element with a small size suitable for the size.
- a relatively large image sensor of 1/2 inch or less can be applied to an image pickup apparatus incorporated in a high-functional product pursuing a resolution much higher than that of conventional high-definition television such as a smart TV or a 4K TV.
- the downsizing of the imaging lens here refers to a level in which TTL / 2ih is 1.0 or less when the total optical length is TTL and the diagonal length of the effective imaging surface of the imaging device is 2 ih. .
- the optical total length is on the optical axis from the object side surface of the optical element located closest to the object side to the image pickup surface when the filters arranged between the image pickup lens and the image pickup element in the optical system are removed. Means distance.
- the diagonal length of the effective imaging surface of the image sensor is the height perpendicular to the optical axis at the position where the light beam from the maximum angle of view incident on the imaging lens is incident on the imaging surface, that is, the maximum image height is the radius. Treated as the same as the diameter of the effective image circle.
- Conditional expression (1) defines the ratio between the radius of curvature of the object-side surface of the first lens and the focal length of the entire imaging lens system within an appropriate range.
- the radius of curvature of the object side surface of the first lens becomes too small, and the coma aberration tends to increase in addition to the decrease in the spherical aberration correction effect.
- the edge thickness of the lens peripheral portion is increased, which makes it difficult to reduce the size of the imaging lens.
- Conditional expression (2) defines the ratio between the positive refractive power of the first lens and the refractive power of the entire imaging lens within an appropriate range when the first lens has a positive refractive power.
- Conditional expression (3) defines the ratio between the negative refractive power of the first lens and the refractive power of the entire imaging lens in an appropriate range when the first lens has negative refractive power.
- the second lens has a biconvex shape and satisfies the following conditional expression (4).
- r3 is the radius of curvature of the object side surface of the second lens
- r4 is the radius of curvature of the image side surface of the second lens.
- the second lens Since the second lens has a biconvex shape and can generate strong positive refractive power on the convex surface of the object side surface and the image side surface, it contributes to shortening of the optical total length.
- Conditional expression (4) defines the shape of the object side surface and the image side surface of the second lens. If it is within the range of conditional expression (4), an increase in tolerance sensitivity of each lens surface can be suppressed. In addition, the occurrence of excessive spherical aberration in the second lens is suppressed.
- the negative refractive power of the third lens and the aspheric surfaces formed on both surfaces correct chromatic aberration generated in the first lens and the second lens very well.
- the imaging lens having the above configuration satisfies the following conditional expression (5).
- (5) 0.8 ⁇
- f is the focal length of the entire imaging lens system
- f4 is the focal length of the fourth lens.
- Conditional expression (5) is a condition for defining a ratio between the refractive power of the fourth lens and the refractive power of the entire imaging lens within an appropriate range and realizing good aberration correction.
- conditional expression (5) When the lower limit value of conditional expression (5) is not reached, the refractive power of the fourth lens becomes too strong, and in particular, astigmatism and coma aberration deteriorate.
- the fifth lens has a shape with a convex surface facing the image surface side, and an aspheric surface is formed on both surfaces.
- the convex shape on the image plane side of the fifth lens and the aspherical shape formed on both surfaces make it easy to enter the sixth lens while suppressing the exit angle of the off-axis ray emitted from the fifth lens. Corrects various off-axis aberrations, mainly astigmatism and curvature of field.
- the fifth lens has a relatively strong positive refractive power among the lenses constituting the imaging lens. By appropriately balancing the strong positive refractive power of the second lens, the fifth lens can be made compact. Make it possible.
- the image plane side surface of the sixth lens has a concave surface facing the image plane side and an aspheric surface having an inflection point at a position other than on the optical axis. .
- the sixth lens makes it easy to secure the back focus by forming a concave surface on the image side. Further, by forming an aspherical surface having an inflection point at a position other than on the optical axis on the image side surface, the lens surface changes from negative refractive power to positive refractive power toward the lens periphery. Formed on the surface.
- the aspherical surface with such a shape change mainly has an effect of correcting distortion and curvature of field, and an effect of controlling the angle of light incident on the image sensor.
- a convex surface and a concave surface shall mean the shape in a paraxial (near optical axis).
- the inflection point formed on the aspheric surface means a point on the aspheric surface where the tangent plane intersects the optical axis perpendicularly.
- Conditional expressions (6) to (8) define the Abbe number from the first lens to the third lens.
- the chromatic aberration that occurs in the first lens and the second lens is the third lens
- the chromatic aberration that occurs in the fifth lens and the sixth lens is the fourth lens. Therefore, the axial chromatic aberration and the lateral chromatic aberration can be corrected more satisfactorily for the entire imaging lens.
- conditional expression (9-1), conditional expression (10-1), and conditional expression (11-1) enables satisfactory chromatic aberration correction.
- the imaging lens having the above configuration satisfies the following conditional expression (12). (12) 0.8 ⁇ ih / f ⁇ 1.1
- f is the focal length of the entire imaging lens system
- ih is the maximum image height.
- the imaging lens having the above configuration satisfies the following conditional expression (13). (13) -1.7 ⁇ f2 / f3 ⁇ -0.5
- f2 is the focal length of the second lens
- f3 is the focal length of the third lens.
- Conditional expression (13) is a condition for appropriately balancing the refractive power of the second lens and the refractive power of the third lens.
- the upper limit of conditional expression (13) is exceeded, the positive refractive power of the second lens becomes too strong, which is advantageous for shortening the total optical length, but increases spherical aberration and chromatic aberration, making it difficult to correct aberrations satisfactorily.
- the lower limit value of conditional expression (13) is not reached, the positive refractive power of the second lens becomes too weak, making it difficult to shorten the optical total length.
- the imaging lens having the above configuration satisfies the following conditional expression (14). (14) -2.3 ⁇ f5 / f6 ⁇ -0.6
- f5 is the focal length of the fifth lens
- f6 is the focal length of the sixth lens.
- the aperture stop be disposed between the image side surface of the first lens and the object side surface of the third lens. If an aperture stop is arranged at this position and the front and back surfaces sandwiching the aperture stop are made symmetrical, aberrations occurring on these surfaces cancel each other, which is advantageous for aberration correction in widening the angle. Further, the control of the chief ray incident angle to the image sensor is facilitated, and the realization of a bright lens system is facilitated.
- the present invention it is possible to correct various aberrations satisfactorily while maintaining a wide angle of view even when applied to a large image sensor as well as to a conventional small image sensor.
- a small imaging lens can be obtained.
- FIG. 1 is a diagram illustrating a schematic configuration of an imaging lens according to Numerical Example 1.
- FIG. It is a figure which shows the spherical aberration, astigmatism, and distortion of the imaging lens of Numerical Example 1.
- 6 is a diagram illustrating a schematic configuration of an imaging lens according to Numerical Example 2.
- FIG. It is a figure which shows the spherical aberration of the imaging lens of Numerical Example 2, astigmatism, and a distortion aberration.
- It is a figure which shows schematic structure of the imaging lens of Numerical Example 3.
- FIG. It is a figure which shows the spherical aberration of the imaging lens of Numerical Example 3, astigmatism, and a distortion aberration.
- FIG. 7 It is a figure which shows schematic structure of the imaging lens of Numerical Example 7. It is a figure which shows the spherical aberration of the imaging lens of Numerical Example 7, astigmatism, and a distortion aberration. It is a figure which shows schematic structure of the imaging lens of Numerical Example 8. It is a figure which shows the spherical aberration of the imaging lens of Numerical Example 8, astigmatism, and a distortion aberration. It is a figure which shows schematic structure of the imaging lens of Numerical Example 9. FIG. It is a figure which shows the spherical aberration, astigmatism, and distortion of the imaging lens of Numerical Example 9. 11 is a diagram illustrating a schematic configuration of an imaging lens according to Numerical Example 10. FIG.
- FIG. 14 is a diagram illustrating a schematic configuration of an imaging lens according to Numerical Example 11.
- FIG. It is a figure which shows the spherical aberration, astigmatism, and distortion of the imaging lens of Numerical Example 11.
- FIG. 12 It is a figure which shows schematic structure of the imaging lens of Numerical Example 12.
- FIG. 13 It is a figure which shows the spherical aberration, astigmatism, and distortion of the imaging lens of Numerical Example 12.
- FIG. 13 shows schematic structure of the imaging lens of Numerical Example 13.
- FIG. 16 is a diagram illustrating a schematic configuration of an imaging lens according to Numerical Example 15.
- FIG. It is a figure which shows the spherical aberration, astigmatism, and distortion of the imaging lens of Numerical Example 15.
- 16 is a diagram illustrating a schematic configuration of an imaging lens according to Numerical Example 16.
- FIG. It is a figure which shows the spherical aberration of the imaging lens of Numerical Example 16, astigmatism, and a distortion aberration.
- FIG. 1 shows a schematic configuration diagram of an imaging lens according to Numerical Examples 1 to 16 of an embodiment.
- FIG. Since both have the same basic lens configuration, the configuration of the imaging lens of the present embodiment will be described here mainly with reference to the schematic configuration diagram of Numerical Example 1.
- the imaging lens of the present embodiment includes, in order from the object side to the image plane side, a first lens L1 having a positive refractive power, an aperture stop ST, and a first lens having a positive refractive power.
- a filter IR is disposed between the sixth lens L6 and the image plane IM. This filter IR can be omitted.
- the first lens L1 is a lens having a relatively weak positive refractive power among the imaging lenses, and is a meniscus lens having a concave surface facing the object side.
- the surface on the object side is formed with a large radius of curvature, and the configuration is advantageous for widening the angle by taking in light rays incident from a wide angle.
- the spherical aberration and coma generated in the second lens L2 are corrected well while suppressing the influence on the refractive power of the entire imaging lens system to be small.
- the shape and refractive power of the first lens L1 are not limited to those of the numerical value example 1, but depending on the refractive power and shape of the lens group disposed on the image plane side of the first lens L1. It is set to an appropriate shape and refractive power. It is important that the first lens L1 has a function of canceling the negative spherical aberration generated in the second lens L2, and any lens having a positive or negative refractive power provided with this function may be used.
- Numerical Example 1 to Numerical Example 8 and Numerical Example 11 are examples in which a weak positive refractive power is set for the first lens L1, and Numerical Example 9 and Numerical Example 10 are the first lens L1.
- Numerical Example 10 is an example of a meniscus shape having a convex surface with a large curvature radius on the object side surface of the first lens L1
- Numerical Example 11 Numerical Example 15 and Numerical Example 16 are examples in which the object-side surface of the first lens L1 has a biconvex shape with a large radius of curvature.
- appropriate aspheric surfaces are formed on both surfaces of the first lens L1, and aberrations are corrected more effectively.
- the second lens L2 is a biconvex lens in which both the object-side surface and the image-side surface are convex, and generates a strong positive refractive power between the object-side surface and the image-side surface. By doing so, the total optical length is shortened.
- the third lens L3 is a lens having a negative meniscus shape having a convex surface on the object side and a concave surface on the image side, and corrects chromatic aberration generated in the first lens L1 and the second lens L2. is doing.
- Various shapes can be selected for the third lens L3.
- Numerical Example 12 Numerical Example 15, and Numerical Example 16 are biconcave examples, Numerical Example 13 and Numerical Example 14.
- the object-side surface has a concave meniscus shape and the image-side surface has a convex surface.
- the object side surface of the third lens L3 is a concave surface, the deviation angle of the light beam emitted from the convex surface on the image surface side of the second lens L2 can be suppressed to be relatively small. . Therefore, in the third lens L3, the chromatic aberration generated in the first lens L1 and the second lens L2 is favorably corrected while mainly suppressing the occurrence of coma and astigmatism.
- the fourth lens L4 is a double-sided aspheric lens having a meniscus shape with a convex surface on the object side and a concave surface on the image side, and has a relatively weak negative refractive power, and mainly includes astigmatism, coma aberration, and spherical surface. Aberration is corrected. Since the fourth lens L4 is a lens for correcting aberrations, the shape changes according to the aberration to be corrected.
- Numerical Example 4 and Numerical Example 5 are examples having a biconcave shape
- Numerical Example 12 and Numerical Example 15 and Numerical Example 16 are examples having a biconvex shape
- Numerical Example 13 Numerical Example 14 is an example in which the image side surface has a convex meniscus shape.
- a biconcave shape is employed, spherical aberration and axial chromatic aberration can be corrected.
- the fifth lens L5 is a meniscus lens having a positive refractive power in which the object-side surface is concave and the image-side surface is convex, and has a strong positive refractive power. We are trying to shorten it.
- the fifth lens L5 is formed in an aspherical shape in which the positive refractive power decreases toward the lens peripheral portion, and the sixth lens L6 while suppressing the emission angle of the off-axis light beam emitted from the fifth lens L5. It is easy to make it enter. This mainly corrects astigmatism and curvature of field.
- the fifth lens L5 has a shape with a convex surface facing the image surface side, and an aspherical shape in which the positive refractive power is weakened toward the lens periphery, as in Numerical Example 4.
- a biconvex lens having a convex surface on the object side may be used.
- the sixth lens L6 is a biconcave lens in which the object side surface and the image side surface are both concave surfaces.
- a negative lens is arranged on the most image surface side to ensure the back focus.
- an aspherical surface having an inflection point at a position other than on the optical axis X is formed on the object side surface and the image side surface.
- the refractive power of the sixth lens L6 formed in such an aspherical shape has a negative refractive power in the vicinity of the optical axis X, but the negative refractive power becomes weaker toward the lens peripheral portion, and the peripheral portion. Then, it continuously changes so as to have a positive refractive power.
- the position of the aperture stop ST is disposed between the first lens L1 and the second lens L2, and the opposing surfaces across the aperture stop ST are convex. That is, since it is easy to cancel out aberrations occurring on the surfaces by sandwiching the aperture stop ST, it is advantageous in achieving a wide angle and a bright lens system.
- the aperture stop ST is similarly provided. The lens surfaces facing each other are convex with each other, and the same effect is obtained.
- the imaging lens of this embodiment employs plastic materials for all lenses. Adopting plastic materials for all lenses facilitates manufacturing and enables mass production at low cost.
- all lens surfaces are formed as aspheric surfaces, so that more preferable aberration correction can be performed.
- each lens surface may adopt a spherical surface that can be easily manufactured in accordance with required performance.
- the imaging lens according to the present embodiment exhibits preferable effects by satisfying the following conditional expressions (1) to (14).
- f indicates the focal length of the entire imaging lens system
- Fno indicates the F number
- ⁇ indicates the half angle of view
- ih indicates the maximum image height.
- i is a surface number counted from the object side
- r is a radius of curvature
- d is a distance (surface interval) between lens surfaces on the optical axis
- Nd is a refractive index of d-line (reference wavelength)
- ⁇ d is relative to d-line.
- the Abbe numbers are shown.
- a surface number i is added after the symbol * (asterisk).
- the imaging lens of Numerical Example 1 has a form in which the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2) and conditional expressions (4) to (14) All are met.
- FIG. 2 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 1.
- the spherical aberration diagram shows the amount of aberration with respect to each wavelength of the F-line (486 nm), d-line (588 nm), and C-line (656 nm).
- the astigmatism diagrams show the amount of d-line aberration on the sagittal image plane S and the tangential image plane T (FIGS. 4, 6, 8, 10, 12, 12, and 16). The same applies to FIGS. 18, 20, 22, 24, 26, 28, 30 and 32). As shown in FIG. 2, it can be seen that each aberration is well corrected.
- the ratio (TTL / 2ih) between the optical total length TTL and the maximum image height ih is 0.87, and downsizing is realized even though the configuration is six sheets.
- the basic lens data is shown in Table 2 below.
- the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2) and conditional expressions (4) to (14) All are met.
- a wide imaging angle of about 82 ° has been achieved at all angles, and a bright imaging lens system with an F value of about 2.4 has been realized.
- the ratio (TTL / 2ih) between the optical total length TTL and the maximum image height ih is 0.85, and downsizing is realized even though the configuration is six.
- the imaging lens of Numerical Example 3 has a configuration in which the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2) and conditional expressions (4) to (14) All are met.
- the imaging lens of Numerical Example 4 has a configuration in which the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2) and conditional expressions (4) to (14) All are met.
- FIG. 8 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 4. As shown in FIG. 8, it can be seen that each aberration is corrected satisfactorily.
- FIG. 12 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 6. Even when applied to a small image sensor as in Numerical Example 6, it can be seen that each aberration is well corrected as shown in FIG.
- the imaging lens of Numerical Example 7 has a form in which the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2) and conditional expressions (4) to (14) All are met.
- the imaging lens of Numerical Example 8 has a configuration in which the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2) and conditional expressions (4) to (14) All are met.
- FIG. 16 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 8. As shown in FIG. 16, it can be seen that each aberration is corrected satisfactorily.
- the ratio (TTL / 2ih) between the optical total length TTL and the maximum image height ih is 0.82, and downsizing is realized even though the configuration is six.
- conditional expressions (1) and (3), conditional expressions (4) to (8), Conditional expression (9-1), conditional expression (10-1), conditional expression (11-1), and conditional expressions (12) to (14) are all satisfied.
- FIG. 18 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 9. As shown in FIG. 18, it can be seen that each aberration is corrected satisfactorily.
- FIG. 20 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 10. As shown in FIG. 20, it can be seen that each aberration is corrected satisfactorily.
- the imaging lens of Numerical Example 11 has a configuration in which the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2) and conditional expressions (4) to (14) All are met.
- FIG. 22 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 11. As shown in FIG. 22, it can be seen that each aberration is corrected satisfactorily.
- the imaging lens of Numerical Example 12 has a configuration in which the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2), conditional expressions (4) to (8), Conditional expression (9-1), conditional expression (10-1), conditional expression (11-1), and conditional expressions (12) to (14) are all satisfied.
- the imaging lens of Numerical Example 13 has a form in which the first lens L1 has a positive refractive power. As shown in Table 17, conditional expressions (1) and (2), conditional expressions (4) to (8), Conditional expression (9-1), conditional expression (10-1), conditional expression (11-1), and conditional expressions (12) to (14) are all satisfied.
- the ratio (TTL / 2ih) between the optical total length TTL and the maximum image height ih is 0.84, and downsizing is realized even though the configuration is six.
- FIG. 30 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 15. As shown in FIG. 30, it can be seen that each aberration is corrected satisfactorily.
- the ratio (TTL / 2ih) between the optical total length TTL and the maximum image height ih is 0.81, and downsizing is realized even though the configuration is six.
- FIG. 32 shows spherical aberration (mm), astigmatism (mm), and distortion (%) for the imaging lens of Numerical Example 16. As shown in FIG. 32, it can be seen that each aberration is corrected satisfactorily.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
(1)0.84<|r1/f|
ただし、fは撮像レンズ全系の焦点距離、r1は第1レンズの物体側の面の曲率半径である。
(2)1.0<f1/f
ただし、fは撮像レンズ全系の焦点距離、f1は第1レンズの焦点距離である。
(3)f1/f<-5.0
ただし、fは撮像レンズ全系の焦点距離、f1は第1レンズの焦点距離である。
(4)-0.40<(r3+r4)/(r3-r4)<0.90
ただし、r3は第2レンズの物体側の面の曲率半径、r4は第2レンズの像面側の面の曲率半径である。
(5)0.8<|f4/f|
ただし、fは撮像レンズ全系の焦点距離、f4は第4レンズの焦点距離である。
(6)50<νd1<80
(7)50<νd2<80
(8)20<νd3<30
ただし、νd1は第1レンズのd線に対するアッベ数、νd2は第2レンズのd線に対するアッベ数、νd3は第3レンズのd線に対するアッベ数である。
(9)20<νd4<30
(10)50<νd5<80
(11)50<νd6<80
ただし、νd4は第4レンズのd線に対するアッベ数、νd5は第5レンズのd線に対するアッベ数、νd6は第6レンズのd線に対するアッベ数である。
(9-1)50<νd4<60
(10-1)20<νd5<60
(11-1)20<νd6<60
(12)0.8<ih/f<1.1
ただし、fは撮像レンズ全系の焦点距離、ihは最大像高である。
(13)-1.7<f2/f3<-0.5
ただし、f2は第2レンズの焦点距離、f3は第3レンズの焦点距離である。
(14)-2.3<f5/f6<-0.6
ただし、f5は第5レンズの焦点距離、f6は第6レンズの焦点距離である。
(1)0.84<|r1/f|
(2)1.0<f1/f
(3)f1/f<-5.0
(4)-0.40<(r3+r4)/(r3-r4)<0.90
(5)0.8<|f4/f|
(6)50<νd1<80
(7)50<νd2<80
(8)20<νd3<30
(9)20<νd4<30
(9-1)50<νd4<60
(10)50<νd5<80
(10-1)20<νd5<60
(11)50<νd6<80
(11-1)20<νd6<60
(12)0.8<ih/f<1.1
(13)-1.7<f2/f3<-0.5
(14)-2.3<f5/f6<-0.6
ただし、
f:撮像レンズ全系の焦点距離
f1:第1レンズL1の焦点距離
f2:第2レンズL2の焦点距離
f3:第3レンズL3の焦点距離
f4:第4レンズL4の焦点距離
f5:第5レンズL5の焦点距離
f6:第6レンズL6の焦点距離
r1:第1レンズL1の物体側の面の曲率半径
r3:第2レンズL2の物体側の面の曲率半径
r4:第2レンズL2の像面側の面の曲率半径
νd1:第1レンズL1のd線に対するアッベ数
νd2:第2レンズL2のd線に対するアッベ数
νd3:第3レンズL3のd線に対するアッベ数
νd4:第4レンズL4のd線に対するアッベ数
νd5:第5レンズL5のd線に対するアッベ数
νd6:第6レンズL6のd線に対するアッベ数
ih :最大像高
(1a)0.84≦|r1/f|
(2a)1.2<f1/f
(3a)f1/f<-7.0
(4a)-0.40<(r3+r4)/(r3-r4)<0.85
(5a)1.0<|f4/f|
(6a)50<νd1<65
(7a)50<νd2<65
(8a)20<νd3<28
(9a)20<νd4<28
(9-1a)52<νd4<58
(10a)50<νd5<65
(10-1a)20<νd5<58
(11a)50<νd6<65
(11-1a)20<νd6<58
(12a)0.85<ih/f<1.1
(13a)-1.68<f2/f3<-0.5
(14a)-2.2<f5/f6<-0.70
ただし、各条件式の符号は前の段落での説明と同様である。
(1b)0.85≦|r1/f|
(2b)1.25≦f1/f
(3b)f1/f≦-7.8
(4b)-0.39≦(r3+r4)/(r3-r4)≦0.83
(5b)1.0≦|f4/f|
(6b)50<νd1<60
(7b)50<νd2<60
(8b)22<νd3<28
(9b)22<νd4<28
(9-1b)54<νd4<58
(10b)50<νd5<60
(10-1b)22<νd5<58
(11b)50<νd6<60
(11-1b)22<νd6<58
(12b)0.86≦ih/f≦1.0
(13b)-1.66≦f2/f3≦-0.52
(14b)-2.1≦f5/f6≦-0.7
ただし、各条件式の符号は前々段落での説明と同様である。
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
IR フィルタ
ih 最大像高
Claims (12)
- 固体撮像素子用の撮像レンズであって、物体側から像面側に向かって順に、正または負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズと、正または負の屈折力を有する両面が非球面の第4レンズと、正の屈折力を有する第5レンズと、負の屈折力を有する両面が非球面の第6レンズとで構成され、以下の条件式(1)を満足することを特徴とする撮像レンズ。
(1)0.84<|r1/f|
ただし、
f :撮像レンズ全系の焦点距離
r1:第1レンズの物体側の面の曲率半径 - 前記第2レンズは両凸形状であり、以下の条件式(4)を満足することを特徴とする請求項1に記載の撮像レンズ。
(4)-0.40<(r3+r4)/(r3-r4)<0.90
ただし、
r3:第2レンズの物体側の面の曲率半径
r4:第2レンズの像面側の面の曲率半径 - 前記第3レンズは像面側に凹面を向けた形状で両面に非球面が形成され、前記第5レンズは像面側に凸面を向けた形状で両面に非球面が形成され、前記第6レンズの像面側の面は、像面側に凹面を向けた形状であるとともに光軸上以外の位置に変極点を有することを特徴とする請求項1又は2に記載の撮像レンズ。
- 以下の条件式(12)を満足することを特徴とする請求項1又は2に記載の撮像レンズ。
(12)0.8<ih/f<1.1
ただし、
ih:最大像高
f :撮像レンズ全系の焦点距離 - 前記第1レンズは正の屈折力を有し、以下の条件式(2)を満足することを特徴とする請求項1に記載の撮像レンズ。
(2)1.0<f1/f
ただし、
f :撮像レンズ全系の焦点距離
f1:第1レンズの焦点距離 - 前記第1レンズは負の屈折力を有し、以下の条件式(3)を満足することを特徴とする請求項1に記載の撮像レンズ。
(3)f1/f<-5.0
ただし、
f :撮像レンズ全系の焦点距離
f1:第1レンズの焦点距離 - 前記第4レンズは以下の条件式(5)を満足することを特徴とする請求項5又は6に記載の撮像レンズ。
(5)0.8<|f4/f|
ただし、
f :撮像レンズ全系の焦点距離
f4:第4レンズの焦点距離 - 以下の条件式(13)を満足することを特徴とする請求項1又は2に記載の撮像レンズ。
(13)-1.7<f2/f3<-0.5
ただし、
f2:第2レンズの焦点距離
f3:第3レンズの焦点距離 - 以下の条件式(14)を満足することを特徴とする請求項1又は8に記載の撮像レンズ。
(14)-2.3<f5/f6<-0.6
ただし、
f5:第5レンズの焦点距離
f6:第6レンズの焦点距離 - 前記第1レンズ、前記第2レンズ、前記第3レンズはそれぞれ、以下の条件式(6)から(8)を満足することを特徴とする請求項1又は2に記載の撮像レンズ。
(6)50<νd1<80
(7)50<νd2<80
(8)20<νd3<30
ただし、
νd1:第1レンズのd線に対するアッベ数
νd2:第2レンズのd線に対するアッベ数
νd3:第3レンズのd線に対するアッベ数 - 前記第4レンズ、前記第5レンズ、前記第6レンズはそれぞれ、以下の条件式(9)から(11)を満足することを特徴とする請求項10に記載の撮像レンズ。
(9)20<νd4<30
(10)50<νd5<80
(11)50<νd6<80
ただし、
νd4:第4レンズのd線に対するアッベ数
νd5:第5レンズのd線に対するアッベ数
νd6:第6レンズのd線に対するアッベ数 - 前記第4レンズは正の屈折力を有し、前記第5レンズは正の屈折力を有し、前記第6レンズは負の屈折力を有し、以下の条件式(9-1)から(11-1)を満足することを特徴とする請求項10に記載の撮像レンズ。
(9-1)50<νd4<60
(10-1)20<νd5<60
(11-1)20<νd6<60
ただし、
νd4:第4レンズのd線に対するアッベ数
νd5:第5レンズのd線に対するアッベ数
νd6:第6レンズのd線に対するアッベ数
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/030,766 US9804364B2 (en) | 2013-10-21 | 2014-10-14 | Image pickup lens |
CN201490001114.1U CN206074890U (zh) | 2013-10-21 | 2014-10-14 | 摄像镜头 |
JP2015543805A JP6358757B2 (ja) | 2013-10-21 | 2014-10-14 | 撮像レンズ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-218282 | 2013-10-21 | ||
JP2013218282 | 2013-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015060166A1 true WO2015060166A1 (ja) | 2015-04-30 |
Family
ID=52992766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/077359 WO2015060166A1 (ja) | 2013-10-21 | 2014-10-14 | 撮像レンズ |
Country Status (4)
Country | Link |
---|---|
US (1) | US9804364B2 (ja) |
JP (1) | JP6358757B2 (ja) |
CN (2) | CN206074890U (ja) |
WO (1) | WO2015060166A1 (ja) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160139367A1 (en) * | 2014-11-18 | 2016-05-19 | Samsung Electro-Mechanics Co., Ltd. | Lens module |
CN106405794A (zh) * | 2016-08-31 | 2017-02-15 | 浙江舜宇光学有限公司 | 光学成像系统 |
US20170045716A1 (en) * | 2015-08-12 | 2017-02-16 | Ability Opto-Electronics Technology Co.Ltd. | Optical Image Capturing System |
TWI579586B (zh) * | 2015-05-21 | 2017-04-21 | 先進光電科技股份有限公司 | 光學成像系統 |
KR20170050735A (ko) * | 2015-10-30 | 2017-05-11 | 삼성전자주식회사 | 촬상 광학계 |
TWI585485B (zh) * | 2015-05-19 | 2017-06-01 | 先進光電科技股份有限公司 | 光學成像系統 |
TWI585450B (zh) * | 2015-05-22 | 2017-06-01 | 先進光電科技股份有限公司 | 光學成像系統 |
TWI594038B (zh) * | 2015-08-18 | 2017-08-01 | 先進光電科技股份有限公司 | 光學成像系統 |
US9753259B2 (en) | 2015-09-03 | 2017-09-05 | Ability Opto-Electronics Technology Co., Ltd. | Optical image capturing system |
TWI603111B (zh) * | 2015-08-17 | 2017-10-21 | 先進光電科技股份有限公司 | 光學成像系統 |
US9823450B2 (en) | 2015-08-28 | 2017-11-21 | Ability Opto-Electronics Technology Co., Ltd. | Optical image capturing system |
CN108008519A (zh) * | 2016-11-02 | 2018-05-08 | 康达智株式会社 | 摄像镜头 |
CN108089299A (zh) * | 2017-12-18 | 2018-05-29 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
US10082646B2 (en) | 2016-11-22 | 2018-09-25 | Largan Precision Co., Ltd. | Photographing optical lens system, image capturing apparatus and electronic device |
CN108828751A (zh) * | 2015-09-23 | 2018-11-16 | 大立光电股份有限公司 | 影像撷取镜组及取像装置 |
US10156700B2 (en) | 2015-08-17 | 2018-12-18 | Ability Opto-Electronics Technology Co. Ltd. | Optical image capturing system |
CN109765677A (zh) * | 2015-10-19 | 2019-05-17 | 三星电机株式会社 | 光学成像系统 |
TWI663425B (zh) * | 2015-12-29 | 2019-06-21 | 揚明光學股份有限公司 | 光學鏡頭 |
US10670838B2 (en) | 2014-12-05 | 2020-06-02 | Largan Precision Co., Ltd. | Image capturing optical lens assembly, image capturing device and electronic device |
JP2020106815A (ja) * | 2018-12-27 | 2020-07-09 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
US10732383B2 (en) | 2016-02-05 | 2020-08-04 | Young Optics Inc. | Optical lens |
JPWO2020202965A1 (ja) * | 2019-03-29 | 2020-10-08 | ||
JP2021009295A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009294A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009300A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009287A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009297A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009301A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009299A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009298A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
US12055789B2 (en) | 2016-01-22 | 2024-08-06 | Largan Precision Co., Ltd. | Optical imaging lens assembly, image capturing unit and electronic device |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6425238B2 (ja) * | 2014-07-02 | 2018-11-21 | カンタツ株式会社 | 撮像レンズ |
CN104330875B (zh) * | 2014-07-07 | 2017-11-10 | 玉晶光电(厦门)有限公司 | 可携式电子装置与其光学成像镜头 |
KR101709836B1 (ko) * | 2014-11-17 | 2017-02-23 | 삼성전기주식회사 | 촬상 광학계 |
KR101719877B1 (ko) * | 2014-12-05 | 2017-03-24 | 삼성전기주식회사 | 렌즈 모듈 |
KR102009431B1 (ko) | 2014-12-05 | 2019-10-21 | 삼성전기주식회사 | 촬상 광학계 |
KR101709838B1 (ko) * | 2014-12-08 | 2017-02-23 | 삼성전기주식회사 | 렌즈 모듈 |
JP2016138952A (ja) * | 2015-01-27 | 2016-08-04 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
CN105988192B (zh) * | 2015-05-08 | 2018-09-18 | 浙江舜宇光学有限公司 | 广角成像镜头 |
TWI565966B (zh) | 2015-07-24 | 2017-01-11 | 大立光電股份有限公司 | 光學攝像鏡組、取像裝置及電子裝置 |
KR102117514B1 (ko) | 2015-11-26 | 2020-06-01 | 삼성전기주식회사 | 촬상 광학계 |
TWI625543B (zh) * | 2015-12-03 | 2018-06-01 | 先進光電科技股份有限公司 | 光學成像系統 |
KR101901698B1 (ko) * | 2016-05-11 | 2018-09-27 | 삼성전기 주식회사 | 촬상 광학계 |
CN113189744B (zh) * | 2016-11-15 | 2023-05-16 | 宁波舜宇车载光学技术有限公司 | 光学镜头 |
CN108614344B (zh) * | 2016-12-12 | 2023-08-11 | 广西师范大学 | 一种车载广角镜头 |
KR101914042B1 (ko) * | 2016-12-21 | 2018-11-02 | 주식회사 코렌 | 광각 렌즈 및 이를 포함한 촬상 장치 |
JP2019035828A (ja) * | 2017-08-12 | 2019-03-07 | ナンチャン オー−フィルム オプティカル−エレクトロニック テック カンパニー リミテッド | 撮像光学系 |
CN107843974A (zh) * | 2017-11-29 | 2018-03-27 | 中国科学院西安光学精密机械研究所 | 一种环境适应性强的光学系统 |
US10641990B2 (en) * | 2017-12-18 | 2020-05-05 | AAC Technologies Pte. Ltd. | Camera optical lens |
CN107861247B (zh) * | 2017-12-22 | 2020-08-25 | 联想(北京)有限公司 | 光学部件及增强现实设备 |
US10539761B2 (en) * | 2017-12-29 | 2020-01-21 | AAC Technologies Pte. Ltd. | Camera optical lens |
JP6425361B1 (ja) * | 2017-12-29 | 2018-11-21 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | 撮像光学レンズ |
US10558016B2 (en) * | 2017-12-29 | 2020-02-11 | AAC Technologies Pte. Ltd. | Camera optical lens |
CN108459395B (zh) * | 2018-03-30 | 2020-06-05 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN111045188B (zh) * | 2018-10-11 | 2022-02-11 | 江西晶超光学有限公司 | 光学透镜组、取像模组和电子装置 |
CN109613680B (zh) * | 2018-12-31 | 2020-11-27 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
TW202027031A (zh) * | 2019-01-07 | 2020-07-16 | 先進光電科技股份有限公司 | 行動載具輔助系統 |
CN110286472B (zh) * | 2019-06-30 | 2021-09-21 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN110426819B (zh) * | 2019-08-12 | 2024-05-28 | 浙江舜宇光学有限公司 | 光学成像镜头 |
US11953756B2 (en) | 2019-08-15 | 2024-04-09 | Jiangxi Ofilm Optical Co., Ltd. | Optical system, image capturing module and electronic device |
JP2021086075A (ja) * | 2019-11-29 | 2021-06-03 | コニカミノルタ株式会社 | 撮像光学系、撮像装置及び携帯端末 |
CN111123475B (zh) * | 2019-12-30 | 2022-03-15 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111175933B (zh) * | 2019-12-30 | 2022-03-15 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111025598B (zh) * | 2019-12-31 | 2024-07-19 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
US20210231926A1 (en) * | 2020-01-28 | 2021-07-29 | Immervision, Inc. | High resolution miniature wide-angle lens |
CN111190267B (zh) * | 2020-02-21 | 2024-07-19 | 厦门力鼎光电股份有限公司 | 一种广角光学成像镜头 |
CN111308651B (zh) * | 2020-02-24 | 2022-03-01 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
US12085782B2 (en) | 2020-03-16 | 2024-09-10 | Jiangxi Jingchao Optical Co., Ltd. | Optical system, camera module, and electronic device |
US12092801B2 (en) | 2020-03-16 | 2024-09-17 | Jiangxi Jingchao Optical Co., Ltd. | Optical system, imaging module and electronic device |
JP7409955B2 (ja) * | 2020-04-28 | 2024-01-09 | 東京晨美光学電子株式会社 | 撮像レンズ |
TWI721888B (zh) * | 2020-05-20 | 2021-03-11 | 大立光電股份有限公司 | 成像用光學鏡片組、取像裝置及電子裝置 |
CN111399193A (zh) * | 2020-05-25 | 2020-07-10 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111968049B (zh) * | 2020-08-06 | 2022-11-11 | 中国科学院光电技术研究所 | 一种基于侧窗引导滤波的光场图像热像素点去除方法 |
CN111781716B (zh) * | 2020-08-12 | 2024-08-16 | 厦门力鼎光电股份有限公司 | 一种玻塑混合鱼眼镜头 |
CN117111275B (zh) * | 2023-10-25 | 2023-12-22 | 成都量芯集成科技有限公司 | 一种光学系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04141614A (ja) * | 1990-10-02 | 1992-05-15 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH112762A (ja) * | 1997-06-13 | 1999-01-06 | Minolta Co Ltd | ズームレンズ |
JP2006308611A (ja) * | 2005-04-26 | 2006-11-09 | Sanyo Electric Co Ltd | レンズ装置およびそれを備えたカメラモジュール |
JP2010072622A (ja) * | 2008-08-21 | 2010-04-02 | Fujinon Corp | 撮像レンズおよび撮像装置 |
WO2011118554A1 (ja) * | 2010-03-26 | 2011-09-29 | コニカミノルタオプト株式会社 | 撮像レンズ,撮像光学装置及びデジタル機器 |
CN202904111U (zh) * | 2012-08-08 | 2013-04-24 | 大立光电股份有限公司 | 光学摄影镜片系统 |
JP2014044250A (ja) * | 2012-08-24 | 2014-03-13 | Sony Corp | 撮像レンズおよび撮像装置 |
JP2014059561A (ja) * | 2012-09-14 | 2014-04-03 | Samsung Electro-Mechanics Co Ltd | 撮像レンズ |
JP2014202766A (ja) * | 2013-04-01 | 2014-10-27 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08262325A (ja) * | 1995-03-20 | 1996-10-11 | Minolta Co Ltd | ズームレンズ |
JP3387338B2 (ja) * | 1996-12-24 | 2003-03-17 | 三菱電機株式会社 | 接眼光学系、及び接眼映像表示装置 |
US7440195B2 (en) * | 2003-03-31 | 2008-10-21 | Konica Minolta Camera, Inc. | Zoom lens system and imaging device having the same |
JP5095443B2 (ja) * | 2008-02-28 | 2012-12-12 | 富士フイルム株式会社 | 画像読取レンズ及び画像読取装置 |
JP5576717B2 (ja) | 2010-04-12 | 2014-08-20 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
JP5659846B2 (ja) * | 2011-02-18 | 2015-01-28 | 株式会社リコー | 結像レンズおよびカメラおよび携帯情報端末装置 |
TWI432823B (zh) * | 2011-06-10 | 2014-04-01 | Largan Precision Co Ltd | 影像拾取透鏡組 |
JP5963039B2 (ja) * | 2012-03-16 | 2016-08-03 | 株式会社リコー | 結像レンズ、カメラおよび携帯情報端末装置 |
WO2014013676A1 (ja) | 2012-07-18 | 2014-01-23 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
CN204422844U (zh) | 2012-07-18 | 2015-06-24 | 富士胶片株式会社 | 摄像镜头以及具备摄像镜头的摄像装置 |
JP5718528B2 (ja) * | 2012-07-23 | 2015-05-13 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
TWI438521B (zh) * | 2012-10-02 | 2014-05-21 | Largan Precision Co Ltd | 影像系統鏡頭組 |
JP2015022145A (ja) | 2013-07-19 | 2015-02-02 | 富士フイルム株式会社 | 撮像レンズおよび撮像レンズを備えた撮像装置 |
TWI463169B (zh) * | 2013-07-25 | 2014-12-01 | Largan Precision Co Ltd | 影像系統鏡片組及取像裝置 |
TWI470266B (zh) * | 2013-08-23 | 2015-01-21 | Largan Precision Co Ltd | 光學結像鏡片組及取像裝置 |
US9551857B2 (en) * | 2013-09-25 | 2017-01-24 | Google Inc. | Wide angle lens assembly |
TWI519810B (zh) | 2013-10-03 | 2016-02-01 | 光燿科技股份有限公司 | 廣視角光學鏡頭 |
-
2014
- 2014-10-14 CN CN201490001114.1U patent/CN206074890U/zh not_active Expired - Lifetime
- 2014-10-14 US US15/030,766 patent/US9804364B2/en active Active
- 2014-10-14 WO PCT/JP2014/077359 patent/WO2015060166A1/ja active Application Filing
- 2014-10-14 CN CN201720239952.8U patent/CN208297805U/zh not_active Expired - Lifetime
- 2014-10-14 JP JP2015543805A patent/JP6358757B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04141614A (ja) * | 1990-10-02 | 1992-05-15 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH112762A (ja) * | 1997-06-13 | 1999-01-06 | Minolta Co Ltd | ズームレンズ |
JP2006308611A (ja) * | 2005-04-26 | 2006-11-09 | Sanyo Electric Co Ltd | レンズ装置およびそれを備えたカメラモジュール |
JP2010072622A (ja) * | 2008-08-21 | 2010-04-02 | Fujinon Corp | 撮像レンズおよび撮像装置 |
WO2011118554A1 (ja) * | 2010-03-26 | 2011-09-29 | コニカミノルタオプト株式会社 | 撮像レンズ,撮像光学装置及びデジタル機器 |
CN202904111U (zh) * | 2012-08-08 | 2013-04-24 | 大立光电股份有限公司 | 光学摄影镜片系统 |
JP2014044250A (ja) * | 2012-08-24 | 2014-03-13 | Sony Corp | 撮像レンズおよび撮像装置 |
JP2014059561A (ja) * | 2012-09-14 | 2014-04-03 | Samsung Electro-Mechanics Co Ltd | 撮像レンズ |
JP2014202766A (ja) * | 2013-04-01 | 2014-10-27 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11042010B2 (en) | 2014-11-18 | 2021-06-22 | Samsung Electro-Mechanics Co., Ltd. | Lens module |
US10451841B2 (en) * | 2014-11-18 | 2019-10-22 | Samsung Electro-Mechanics Co., Ltd. | Lens module |
US11960063B2 (en) | 2014-11-18 | 2024-04-16 | Samsung Electro-Mechanics Co., Ltd. | Lens module |
US20160139367A1 (en) * | 2014-11-18 | 2016-05-19 | Samsung Electro-Mechanics Co., Ltd. | Lens module |
US10670838B2 (en) | 2014-12-05 | 2020-06-02 | Largan Precision Co., Ltd. | Image capturing optical lens assembly, image capturing device and electronic device |
US11256070B2 (en) | 2014-12-05 | 2022-02-22 | Largan Precision Co., Ltd. | Image capturing optical lens assembly, image capturing device and electronic device |
TWI585485B (zh) * | 2015-05-19 | 2017-06-01 | 先進光電科技股份有限公司 | 光學成像系統 |
TWI579586B (zh) * | 2015-05-21 | 2017-04-21 | 先進光電科技股份有限公司 | 光學成像系統 |
TWI585450B (zh) * | 2015-05-22 | 2017-06-01 | 先進光電科技股份有限公司 | 光學成像系統 |
US20170045716A1 (en) * | 2015-08-12 | 2017-02-16 | Ability Opto-Electronics Technology Co.Ltd. | Optical Image Capturing System |
US10156700B2 (en) | 2015-08-17 | 2018-12-18 | Ability Opto-Electronics Technology Co. Ltd. | Optical image capturing system |
TWI603111B (zh) * | 2015-08-17 | 2017-10-21 | 先進光電科技股份有限公司 | 光學成像系統 |
US10324271B2 (en) | 2015-08-17 | 2019-06-18 | Ability Opto-Electronics Technology Co. Ltd. | Optical image capturing system |
TWI594038B (zh) * | 2015-08-18 | 2017-08-01 | 先進光電科技股份有限公司 | 光學成像系統 |
US9829679B2 (en) | 2015-08-18 | 2017-11-28 | Ability Opto-Electronics Technology Co., Ltd. | Optical image capturing system |
US9823450B2 (en) | 2015-08-28 | 2017-11-21 | Ability Opto-Electronics Technology Co., Ltd. | Optical image capturing system |
US9753259B2 (en) | 2015-09-03 | 2017-09-05 | Ability Opto-Electronics Technology Co., Ltd. | Optical image capturing system |
CN108828751B (zh) * | 2015-09-23 | 2021-06-01 | 大立光电股份有限公司 | 影像撷取镜组及取像装置 |
CN108828751A (zh) * | 2015-09-23 | 2018-11-16 | 大立光电股份有限公司 | 影像撷取镜组及取像装置 |
CN108983397A (zh) * | 2015-09-23 | 2018-12-11 | 大立光电股份有限公司 | 影像撷取镜组及取像装置 |
CN108983397B (zh) * | 2015-09-23 | 2020-11-27 | 大立光电股份有限公司 | 影像撷取镜组及取像装置 |
CN109765677B (zh) * | 2015-10-19 | 2021-04-23 | 三星电机株式会社 | 光学成像系统 |
CN109765677A (zh) * | 2015-10-19 | 2019-05-17 | 三星电机株式会社 | 光学成像系统 |
US11550126B2 (en) | 2015-10-19 | 2023-01-10 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system |
US12055692B2 (en) | 2015-10-19 | 2024-08-06 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system |
CN106873126A (zh) * | 2015-10-30 | 2017-06-20 | 三星电子株式会社 | 图像捕捉光学系统 |
KR102467261B1 (ko) * | 2015-10-30 | 2022-11-16 | 삼성전자주식회사 | 촬상 광학계 |
KR20170050735A (ko) * | 2015-10-30 | 2017-05-11 | 삼성전자주식회사 | 촬상 광학계 |
TWI663425B (zh) * | 2015-12-29 | 2019-06-21 | 揚明光學股份有限公司 | 光學鏡頭 |
US12055789B2 (en) | 2016-01-22 | 2024-08-06 | Largan Precision Co., Ltd. | Optical imaging lens assembly, image capturing unit and electronic device |
US10732383B2 (en) | 2016-02-05 | 2020-08-04 | Young Optics Inc. | Optical lens |
CN106405794A (zh) * | 2016-08-31 | 2017-02-15 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN108008519A (zh) * | 2016-11-02 | 2018-05-08 | 康达智株式会社 | 摄像镜头 |
CN108008519B (zh) * | 2016-11-02 | 2021-04-23 | 康达智株式会社 | 摄像镜头 |
US10656386B2 (en) | 2016-11-22 | 2020-05-19 | Largan Precision Co., Ltd. | Photographing optical lens system, image capturing apparatus and electronic device |
US10082646B2 (en) | 2016-11-22 | 2018-09-25 | Largan Precision Co., Ltd. | Photographing optical lens system, image capturing apparatus and electronic device |
CN108089299A (zh) * | 2017-12-18 | 2018-05-29 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN108089299B (zh) * | 2017-12-18 | 2020-04-17 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
JP2020106815A (ja) * | 2018-12-27 | 2020-07-09 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
WO2020202965A1 (ja) * | 2019-03-29 | 2020-10-08 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
JP7552586B2 (ja) | 2019-03-29 | 2024-09-18 | ソニーグループ株式会社 | 撮像装置 |
JPWO2020202965A1 (ja) * | 2019-03-29 | 2020-10-08 | ||
JP2021009298A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009295A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009294A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009300A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009287A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009297A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009299A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2021009301A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー テクノロジーズ ピーティーイー リミテッド | 撮像光学レンズ |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015060166A1 (ja) | 2017-03-09 |
JP6358757B2 (ja) | 2018-07-18 |
US9804364B2 (en) | 2017-10-31 |
US20160282588A1 (en) | 2016-09-29 |
CN206074890U (zh) | 2017-04-05 |
CN208297805U (zh) | 2018-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6358757B2 (ja) | 撮像レンズ | |
JP6257081B2 (ja) | 撮像レンズ | |
US11933947B2 (en) | Imaging lens system, image capturing unit and electronic device | |
US10895718B2 (en) | Optical photographing lens assembly, image capturing unit and electronic device | |
JP6144973B2 (ja) | 撮像レンズ | |
US11112580B2 (en) | Photographing lens assembly comprising eight lenses of +−++−−+−, +−−++−+−, +−−+−−+−, +−−−+−+− or +−−+−++− refractive powers, image capturing unit and electronic device | |
US11314050B2 (en) | Photographing optical system, image capturing unit and electronic device | |
US10845576B2 (en) | Photographing optical lens system, imaging apparatus and electronic device | |
US11194128B2 (en) | Photographing optical lens assembly, image capturing apparatus and electronic device | |
JP6167348B2 (ja) | 撮像レンズ | |
CN114779443B (zh) | 摄像镜头 | |
JP6376561B2 (ja) | 撮像レンズ | |
JP6133068B2 (ja) | 撮像レンズ | |
JP6351171B2 (ja) | 7枚の光学素子構成の撮像レンズ | |
US9235029B2 (en) | Imaging lens and imaging apparatus including the imaging lens | |
US10908391B2 (en) | Imaging optical lens assembly, image capturing unit and electronic device | |
US9599791B2 (en) | Imaging lens and imaging device provided with the same | |
JP6332851B2 (ja) | 撮像レンズ | |
JP2016200776A (ja) | 撮像レンズ | |
US20200150391A1 (en) | Imaging optical system, image capturing unit and electronic device | |
TW201314251A (zh) | 攝像鏡頭 | |
JP2014134741A (ja) | 撮像レンズ | |
JP2016011985A (ja) | 撮像レンズ | |
US11092785B2 (en) | Optical imaging lens assembly comprising five lenses of +−−+−, +−0+−, +−++−, +−+−−, or +−−−− refractive powers, image capturing unit and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14856204 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15030766 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015543805 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14856204 Country of ref document: EP Kind code of ref document: A1 |