WO2022082734A1 - 光学镜头、摄像头模组及电子装置 - Google Patents

光学镜头、摄像头模组及电子装置 Download PDF

Info

Publication number
WO2022082734A1
WO2022082734A1 PCT/CN2020/123260 CN2020123260W WO2022082734A1 WO 2022082734 A1 WO2022082734 A1 WO 2022082734A1 CN 2020123260 W CN2020123260 W CN 2020123260W WO 2022082734 A1 WO2022082734 A1 WO 2022082734A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
focal length
object side
Prior art date
Application number
PCT/CN2020/123260
Other languages
English (en)
French (fr)
Inventor
邹金华
李明
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to US17/605,985 priority Critical patent/US20220308323A1/en
Priority to PCT/CN2020/123260 priority patent/WO2022082734A1/zh
Publication of WO2022082734A1 publication Critical patent/WO2022082734A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1465Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being negative
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the invention relates to optical imaging technology, in particular to an optical lens, a camera module and an electronic device.
  • the optical lens in the related technology includes multiple lenses.
  • the setting of multiple lenses can better reduce the aberration and chromatic aberration, thereby improving the imaging quality and making the molding effect. Better, improve user experience.
  • the existing optical lens takes pictures and images, the distortion is relatively serious, which will affect the quality of the imaging, which is not conducive to the use of the user, and reduces the user's experience.
  • embodiments of the present invention provide an optical lens, a camera module, and an electronic device.
  • the optical lens includes a first lens with negative refractive power and a second lens with negative refractive power in order from the object side to the image side, and the object side of the second lens is near the optical axis It is a convex surface, the image side of the second lens is concave near the optical axis and has a third lens with positive refractive power, and the object side of the third lens is convex near the optical axis and has a fourth lens with negative refractive power.
  • the image sides are all aspherical, and at least one of the object side of the sixth lens and the image side of the sixth lens is provided with at least one inflection point, a seventh lens with negative refractive power, the optical
  • the lens satisfies the following relationship: -5 ⁇ f2/f1 ⁇ 15, the maximum optical distortion is ⁇ 10%, where f1 is the focal length of the first lens, and f2 is the focal length of the second lens.
  • the ratio of the focal length of the second lens to the focal length of the first lens of the optical lens according to the embodiment of the present invention is between -5 and 15. In this way, the focal power of the lens can be reasonably allocated and the shape of the lens can be configured, which is conducive to expanding the field of view of the system. , improve the quality of imaging, reduce the occurrence of distortion, which is beneficial to users.
  • the optical lens satisfies the following relationship:
  • tan(HFOV) is the tangent value of half of the maximum field of view of the optical lens
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical lens on the optical axis
  • ImgH is the The maximum imaging circle radius of the optical lens.
  • the optical lens can achieve a larger field of view, and the size of the optical lens can be reduced, which is beneficial to the imaging of the optical lens, makes the imaging of the optical lens more comprehensive, and is conducive to the miniaturization of the optical lens. production.
  • the optical lens satisfies the following relationship:
  • f is the effective focal length of the optical lens
  • f5 is the focal length of the fifth lens
  • the power of the fifth lens can be reasonably allocated to correct the aberration of the optical lens, reduce the generation of distortion, and improve the imaging quality of the optical lens.
  • the optical lens satisfies the following relationship:
  • f1 is the focal length of the first lens
  • f4 is the focal length of the sixth lens
  • f is the effective focal length of the optical lens
  • the focal length of the fourth lens can be reasonably allocated, thereby expanding the field of view of the optical lens, improving the imaging quality, and effectively correcting distortion and aberration, which is beneficial to users.
  • the optical lens satisfies the following relationship:
  • CT3 is the thickness of the third lens on the optical axis
  • T12 is the air space between the first lens and the second lens on the optical axis
  • T23 is the second lens and the third lens Air spacing on the optical axis.
  • the optical lens satisfies the following relationship:
  • f12 is the combined focal length of the first lens and the second lens
  • f456 is the combined focal length of the fourth lens, the fifth lens and the sixth lens.
  • the combined focal length of the first lens and the second lens, as well as the size and direction of the combined focal length of the fourth lens, the fifth lens, and the sixth lens can be reasonably allocated, so as to adjust the focal length of the optical lens.
  • System spherical aberration so as to achieve the balance of the system spherical aberration of the optical lens, thereby improving the molding quality of the optical lens.
  • the optical lens satisfies the following relationship:
  • R12 is the radius of curvature of the object-side surface of the sixth lens at the optical axis
  • R13 is the radius of curvature of the image-side surface of the sixth lens at the optical axis.
  • the curvature radius of the sixth lens can be adjusted to ensure the processing feasibility of the sixth lens, which is beneficial to the production of the sixth lens, and can effectively correct spherical aberration and astigmatism, thereby improving the The imaging quality of the optical lens.
  • the optical lens satisfies the following relationship:
  • R8 is the radius of curvature of the object-side surface of the fourth lens at the optical axis
  • R9 is the radius of curvature of the image-side surface of the fourth lens at the optical axis.
  • the optical deflection angles borne by the remaining lenses can be effectively distributed, and the distortion aberration can be changed. , so as to improve the molding quality of the optical lens.
  • the camera module of the embodiment of the present invention includes the optical lens and the photosensitive element of any of the above-mentioned embodiments, and the photosensitive element is arranged on the image side of the optical lens.
  • the ratio of the focal length of the second lens to the focal length of the first lens of the camera module according to the embodiment of the present invention is between -5 and 15. In this way, the focal power of the lens and the shape of the lens can be reasonably allocated, which is conducive to expanding the field of view of the system. Angle, improve the quality of imaging, reduce the occurrence of distortion, which is beneficial to users.
  • the electronic device includes a casing and the above-mentioned camera module, and the camera module is mounted on the casing.
  • the ratio of the focal length of the second lens to the focal length of the first lens of the electronic device according to the embodiment of the present invention is between -5 and 15. In this way, the focal power of the lens and the shape of the lens can be reasonably allocated, which is conducive to expanding the field of view of the system. , improve the quality of imaging, reduce the occurrence of distortion, which is beneficial to users.
  • FIG. 1 is a schematic structural diagram of an optical lens according to Embodiment 1 of the present invention.
  • 2A is a spherical aberration curve (mm) of the first embodiment of the present invention.
  • FIG. 2C is a distortion curve diagram (%) of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical lens according to Embodiment 2 of the present invention.
  • 4A is a spherical aberration curve (mm) of the second embodiment of the present invention.
  • 4B is an astigmatism curve diagram (mm) of Embodiment 2 of the present invention.
  • 4C is a distortion curve (%) of the second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical lens according to Embodiment 3 of the present invention.
  • Embodiment 6A is a spherical aberration curve (mm) of Embodiment 3 of the present invention.
  • 6B is an astigmatism curve diagram (mm) of Embodiment 3 of the present invention.
  • 6C is a distortion curve (%) of Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical lens according to Embodiment 4 of the present invention.
  • Embodiment 8A is a spherical aberration curve (mm) of Embodiment 4 of the present invention.
  • 8B is an astigmatism curve diagram (mm) of Embodiment 4 of the present invention.
  • FIG. 8C is a distortion curve (%) of Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical lens according to Embodiment 5 of the present invention.
  • Embodiment 10A is a spherical aberration curve (mm) of Embodiment 5 of the present invention.
  • 10B is an astigmatism curve diagram (mm) of Embodiment 5 of the present invention.
  • FIG. 11 is a schematic structural diagram of a camera module according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present invention, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • the real-time optical lens 10 of the present invention includes a first lens L1 with negative refractive power, a second lens L2 with refractive power, and a third lens L3 with positive refractive power from the object side to the image side , a fourth lens L4 with negative power, a fifth lens L5 with power, a sixth lens L6 with positive power, and a seventh lens L7 with negative power.
  • the first lens L1 has an object side surface S1 and an image side surface S2.
  • the second lens L2 has an object side S3 and an image side S4, the object side S3 of the second lens L2 is convex near the optical axis, and the image side S4 of the second lens L2 is concave near the optical axis.
  • the third lens L3 has an object side surface S5 and an image side surface S6, and the object side surface S5 of the third lens L3 is a convex surface near the optical axis.
  • the fourth lens L4 has an object side surface S7 and an image side surface S8.
  • the fifth lens L5 has an object side surface S9 and an image side surface S10.
  • the sixth lens L6 has an object side S11 and an image side S12, the image side S12 of the sixth lens L6 is a convex surface near the optical axis, the object side S11 of the sixth lens L6 and the image side S12 of the sixth lens L6 are both aspherical, At least one of the object side S11 of the sixth lens L6 and the image side S12 of the sixth lens L6 is provided with at least one inflection point, that is to say, the object side S11 of the sixth lens L6 is provided with an inflection point, and the The image side S12 of the six lenses L6 is not provided with an inflection point; or, the object side S11 of the sixth lens L6 is not provided with an inflection point, and the image side S12 of the sixth lens L6 is provided with an inflection point; The object side S11 of the lens L6 is provided with an inflection point, and the image side S12 of the sixth lens L6 is provided with an inflection point; The image side S12 is not provided with an in
  • the inflection point is the inflection point, which mathematically refers to the point that changes the upward or downward direction of the curve.
  • the inflection point is the point where the tangent line crosses the curve (ie, the concave-convex boundary point of the curve).
  • the optical lens 10 further includes an aperture stop STO.
  • the aperture stop STO can be arranged on the surface of any lens, or before the first lens L1, or between any two lenses, or between the seventh lens L7 and the photosensitive element 20.
  • the light emitted or reflected by the object OBJ enters the optical lens 10 from the object side direction, and passes through the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, The fifth lens L5, the sixth lens L6, and the seventh lens L7 finally converge on the imaging surface S17.
  • optical lens 10 satisfies the following relationship:
  • f1 is the focal length of the first lens L1
  • f2 is the focal length of the second lens L2.
  • f2/f1 can be any value in the interval (-5, 15), for example, the value is -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10.5, 11, 12, 13, 13.5, 14, 14.5, etc.
  • the maximum optical distortion is less than or equal to 10%, so that the distortion of the optical lens 10 can be reduced, the imaging quality of the optical lens 10 can be improved, and the user experience can be improved.
  • the ratio of the focal length of the second lens L2 to the focal length of the first lens L1 of the optical lens 10 according to the embodiment of the present invention is between -5 and 15, so that the focal power of the lens and the shape of the lens can be reasonably allocated, which is conducive to expanding the system
  • the field of view can improve the quality of imaging and reduce the occurrence of distortion, which is beneficial to users.
  • the optical lens 10 satisfies the following relationship:
  • tan(HFOV) is the tangent value of half of the maximum angle of view of the optical lens 10
  • TTL is the distance on the optical axis from the object side S1 of the first lens L1 to the imaging surface S17 of the optical lens 10
  • ImgH is the 10 optical lens The maximum imaging circle radius.
  • tan(HFOV)*TTL/ImgH can be any value in the interval (2.5, 3.5), 2.83, 2.86, 2.91, 2.94, 2.95, 2.99, 3, 3.02, 3.1, 3.18, 3.28, 3.4, 3.44, 3.48, 3.49, etc.
  • the optical lens 10 can achieve a larger angle of view, and the size of the optical lens 10 can be reduced, which is beneficial to the imaging of the optical lens 10, so that the imaging of the optical lens 10 is more comprehensive, and is conducive to Miniaturized production of the optical lens 10 .
  • the optical lens 10 satisfies the following relationship:
  • f is the effective focal length of the optical lens 10
  • f5 is the focal length of the fifth lens L5.
  • f5/f can be any value in the interval (-15, 20), for example, the value is -14.5, -14, -13.5, -13, -12.5, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 17.8, 18, 19, 19.5, 19.8, etc.
  • the refractive power of the fifth lens L5 can be reasonably allocated to correct the aberration of the optical lens 10 , reduce the occurrence of distortion, and improve the imaging quality of the optical lens 10 .
  • the optical lens 10 satisfies the following relationship:
  • f1 is the focal length of the first lens L1
  • f4 is the focal length of the sixth lens L6
  • f is the effective focal length of the optical lens 10 .
  • f1+f4 can be any value in the interval (-5, -3), for example, the value is -4.9, -4.8, -4.7, -4.5, -4.3, -4, -3.8, -3.7 , -3.65, -3.62, -3.6, -3.58, -3.55, -3.52, -3.48, -3.45, -3.41, -3.38, -3.35, -3.32, -3.3, -3.28, -3.24, -3.21, - 3.18, -3.16, -3.13, -3.11, -3.08, -3.05, -3.01, etc.
  • the focal length of the fourth lens L4 can be reasonably allocated, thereby expanding the field of view of the optical lens 10, improving the quality of imaging, and effectively correcting distortion and aberration, which is beneficial for users to use .
  • the optical lens 10 satisfies the following relationship:
  • CT3 is the thickness of the third lens L3 on the optical axis
  • T12 is the air interval between the first lens L1 and the second lens L2 on the optical axis
  • T23 is the thickness of the second lens L2 and the third lens L3 on the optical axis Air spacer.
  • CT3/(T12+T23) can be any value in the interval (1,1.8), for example, the value is 1.05, 1.06, 1.08, 1.09, 1.1, 1.12, 1.15, 1.17, 1.19, 1.21, 1.23 , 1.25, 1.29, 1.32, 1.35, 1.38, 1.39, 1.45, 1.46, 1.49, 1.52, 1.53, 1.58, 1.62, 1.64, 1.69, 1.75, 1.78, etc.
  • the optical lens 10 satisfies the following relationship:
  • f12 is the combined focal length of the first lens L1 and the second lens L2
  • f456 is the combined focal length of the fourth lens L4, the fifth lens L5 and the sixth lens L6.
  • f12/f456 can be any value in the interval (-4, -1.5), for example, the value is -3.98, -3.95, -3.92, -3.9, -3.85, -3.8, -3.76, -3.7 , -3.61, -3.59, -3.52, -3.48, -3.4, -3.38, -3.3, -3.2, -3.1, -3, -2.8, -2.6, -2.3, -2.1, -1.95, -1.85, - 1.78, -1.65, -1.55, -1.45, etc.
  • the combined focal length of the first lens L1 and the second lens L2, as well as the size and direction of the combined focal length of the fourth lens L4, the fifth lens L5, and the sixth lens L6 can be reasonably allocated.
  • the balance of the system spherical aberration of the optical lens 10 can be achieved, thereby improving the molding quality of the optical lens 10 .
  • the optical lens 10 satisfies the following relationship:
  • R12 is the curvature radius of the object-side surface of the sixth lens L6 at the optical axis
  • R13 is the curvature radius of the image-side surface of the sixth lens L6 at the optical axis.
  • R12/R13 can be any value in the interval (-6, -2.5), for example, the value is -5.9, -5.8, -5.7, -5.6, -5.5, -5.4, -5.2, -5.1 , -5, -4.9, -4.7, -4.6, -4.5, -4.2, -4.1, -3.8, -3.7, -3.5, -3.4, -3, -2.9, -2.8, -2.7, -2.6, - 2.55 etc.
  • the curvature radius of the sixth lens L6 can be adjusted to ensure the processing feasibility of the sixth lens L6, which is beneficial to the production of the sixth lens L6, and can effectively correct spherical aberration and astigmatism , thereby improving the imaging quality of the optical lens 10 .
  • the optical lens 10 satisfies the following relationship:
  • R8 is the radius of curvature of the object-side surface of the fourth lens L4 at the optical axis
  • R9 is the radius of curvature of the image-side surface of the fourth lens L4 at the optical axis.
  • (R8+R9)/(R8-R9) can be any value in the (0,2) interval, for example, the value can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.05, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.82, 1.85, 1.89, 1.92, 1.95, 1.98, etc.
  • the optical deflection angles borne by the remaining lenses can be effectively allocated, and the distortion can be changed. aberration, thereby improving the molding quality of the optical lens 10 .
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 , and the seventh lens L7 are all made of plastic.
  • the optical lens 10 can effectively eliminate aberrations and meet the requirements of high pixels, and can achieve ultra-thinning and lower cost.
  • the infrared filter L8 is made of glass.
  • the infrared filter L8 can also be made of other materials. It can be set according to the actual situation. This is not limited.
  • At least one surface of at least one lens of the optical lens 10 is aspherical.
  • the object side S1 and the image side S2 of the first lens L1 are aspherical
  • the object side S3 and the image side S4 of the second lens L2 are aspherical
  • the object side S5 and the image side S4 of the third lens L3 are aspherical.
  • the image side S6 is aspherical, the object side S7 and the image side S8 of the fourth lens L4 are aspherical, the object side S9 and the image side S10 of the fifth lens L5 are aspherical, and the sixth lens L6
  • the object side S11 and the image side are aspherical S12 is aspherical, the object side S13 and the image side S14 of the seventh lens L7 are aspherical, and the object side S15 and the image side S16 of the infrared filter are spherical.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, and the seventh lens L7 are all aspherical mirrors, and the infrared filter L8 for the sphere.
  • the shape of the aspheric surface is determined by the following formula:
  • Z is the longitudinal distance between any point on the aspheric surface and the vertex of the surface
  • r is the distance from any point on the aspheric surface to the optical axis
  • c is the vertex curvature (the reciprocal of the radius of curvature)
  • k is the conic constant
  • Ai is the i-th order of the aspheric surface Correction factor.
  • the optical lens 10 can effectively reduce the total length of the optical lens 10 by adjusting the curvature radius and aspheric coefficient of each lens surface, and can effectively correct the aberrations of the optical lens 10 and improve the imaging quality.
  • the first lens L1 has negative refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has negative refractive power
  • the fifth lens L5 has negative refractive power
  • the sixth lens L6 has positive refractive power
  • the seventh lens L7 has negative refractive power.
  • the object side surface S1 is a concave surface near the optical axis
  • the object side surface S1 is a convex surface near the circumference
  • the image side surface S2 is a concave surface.
  • the object side S3 is convex
  • the image side S4 is concave.
  • the object side S5 is convex
  • the image side S6 is convex.
  • the object side S7 is concave
  • the image side S8 is concave near the optical axis
  • the image side S8 is convex near the circumference.
  • the object side S9 is convex
  • the image side S10 is concave.
  • the object side surface S11 is convex near the optical axis, the object side S11 is concave near the circumference, and the image side S12 is convex.
  • the object side S13 is convex near the optical axis, the object side S13 is concave near the circumference, the image side S14 is concave near the optical axis, and the image side S14 is convex near the circumference.
  • at least one of the object side surface S11 and the image side surface S12 includes at least one inflection point. In this way, the angle at which the light in the off-axis field of view is incident on the photosensitive element 20 can be effectively suppressed, thereby correcting the aberration of the off-axis field of view.
  • the optical lens 10 satisfies the conditions in the following table:
  • f is the effective focal length of the optical lens 10
  • FNO is the aperture number of the optical lens 10
  • HFOV is half of the maximum field angle of the optical lens 10
  • TTL is the total optical length of the optical lens 10, that is, the object side of the first lens
  • the unit of Y radius (radius of curvature), thickness, and focal length is mm.
  • the reference wavelength for focal length, refractive index and Abbe number is all 587.6 nm.
  • 2A to 2C are respectively a spherical aberration curve graph, an astigmatism curve graph and a distortion graph in the first embodiment.
  • the abscissa of the spherical aberration curve represents the focus shift, and the ordinate represents the normalized field of view.
  • the wavelengths given in Figure 2A are 656.2725nm, 587.5618nm, and 486.1327nm, the focus shifts of different fields of view are all 0 Within ⁇ 0.01mm, it means that the spherical aberration of the optical lens 10 in this embodiment is small and the image quality is good.
  • the abscissa of the astigmatism curve represents the focus shift, and the ordinate represents the image height, in mm.
  • the astigmatism curve given in Figure 2B represents the focus shift of the sagittal image plane and the meridional image plane when the wavelength is 587.5618 nm. All are within ⁇ 0.1mm, indicating that the optical lens 10 in this embodiment has less astigmatism and better imaging quality.
  • the abscissa of the distortion curve represents the distortion rate, and the ordinate represents the image height, and the unit is mm.
  • the distortion curve given in FIG. 2C represents that the distortion at the wavelength of 587.5618 nm is within ⁇ 3.4%, indicating that the optical lens 10 in this embodiment The distortion is better corrected and the image quality is better.
  • the first lens L1 has negative refractive power
  • the second lens L2 has positive refractive power
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has negative refractive power
  • the third lens L4 has negative refractive power
  • the fifth lens L5 has negative refractive power
  • the sixth lens L6 has positive refractive power
  • the seventh lens L7 has negative refractive power.
  • the object side surface S1 is a concave surface near the optical axis
  • the object side surface S1 is a convex surface near the circumference
  • the image side surface S2 is a concave surface.
  • the object side S3 is convex
  • the image side S4 is concave.
  • the object side S5 is convex
  • the image side S6 is convex.
  • the object side S7 is concave
  • the image side S8 is concave near the optical axis
  • the image side S8 is convex near the circumference.
  • the object side S9 is convex
  • the image side S10 is concave.
  • the object side surface S11 is convex near the optical axis, the object side S11 is concave near the circumference, and the image side S12 is convex.
  • the object side S13 is convex near the optical axis, the object side S13 is concave near the circumference, the image side S14 is concave near the optical axis, and the image side S14 is convex near the circumference.
  • at least one of the object side surface S11 and the image side surface S12 includes at least one inflection point. In this way, the angle at which the light in the off-axis field of view is incident on the photosensitive element 20 can be effectively suppressed, thereby correcting the aberration of the off-axis field of view.
  • the optical lens 10 satisfies the conditions in the following table:
  • f is the effective focal length of the optical lens 10;
  • FNO is the aperture number of the optical lens 10;
  • HFOV is half of the maximum angle of view of the optical lens 10;
  • TTL is the total optical length of the optical lens 10, that is, the object side of the first lens The distance on the optical axis to the imaging plane of the optical lens.
  • the unit of Y radius (radius of curvature), thickness, and focal length is mm.
  • the reference wavelength for focal length, refractive index and Abbe number is all 587.6 nm.
  • 4A to 4B are respectively a spherical aberration graph, an astigmatism graph and a distortion graph in the second embodiment.
  • the abscissa of the spherical aberration curve represents the focus shift, and the ordinate represents the normalized field of view.
  • the wavelengths given in Figure 4A are 656.2725nm, 587.5618nm, and 486.1327nm, the focus shifts of different fields of view are all within ⁇ Within 0.01 mm, it means that the spherical aberration of the optical lens 10 in this embodiment is small and the imaging quality is good.
  • the abscissa of the astigmatism graph represents the focus shift, and the ordinate represents the image height, and the unit is mm.
  • the astigmatism curve given in FIG. 4B indicates that when the wavelength is 587.5618 nm, the focal shifts of the sagittal image plane and the meridional image plane are both within ⁇ 0.5mm, which indicates that the optical lens 10 in this embodiment has small astigmatism and imaging. Good quality.
  • the abscissa of the distortion graph represents the distortion rate, and the ordinate represents the image height, and the unit is mm.
  • the distortion curve given in FIG. 4C indicates that the distortion at a wavelength of 587.5618 nm is within ⁇ 3.4%, indicating that the distortion of the optical lens 10 in this embodiment has been well corrected and the image quality is good.
  • the first lens L1 has negative refractive power
  • the second lens L2 has positive refractive power
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has negative refractive power
  • the third lens L4 has negative refractive power
  • the fifth lens L5 has negative refractive power
  • the sixth lens L6 has positive refractive power
  • the seventh lens L7 has negative refractive power.
  • the object side S1 is convex, and the image side S2 is concave.
  • the object side S3 is convex, and the image side S4 is concave.
  • the object side S5 is convex, and the image side S6 is convex.
  • the object side surface S7 is convex near the optical axis, the object side S7 is concave near the circumference, and the image side S8 is concave.
  • the object side S9 is convex, the image side S10 is concave near the optical axis, and the image side S10 is convex near the circumference.
  • the object side surface S11 is convex near the optical axis, the object side S11 is concave near the circumference, and the image side S12 is convex.
  • the object side S13 is convex near the optical axis
  • the object side S13 is concave near the circumference
  • the image side S14 is concave near the optical axis
  • the image side S14 is convex near the circumference.
  • at least one of the object side surface S11 and the image side surface S12 includes at least one inflection point. In this way, the angle at which the light in the off-axis field of view is incident on the photosensitive element 20 can be effectively suppressed, thereby correcting the aberration of the off-axis field of view.
  • the optical lens 10 satisfies the conditions in the following table:
  • f is the effective focal length of the optical lens 10;
  • FNO is the aperture number of the optical lens 10;
  • HFOV is half of the maximum angle of view of the optical lens 10;
  • TTL is the total optical length of the optical lens 10, that is, the object side of the first lens The distance on the optical axis to the imaging plane of the optical lens.
  • the unit of Y radius (radius of curvature), thickness, and focal length is mm.
  • the reference wavelength for focal length, refractive index and Abbe number is all 587.6 nm.
  • 6A to 6C are respectively a spherical aberration graph, an astigmatism graph and a distortion graph in the third embodiment.
  • the abscissa of the spherical aberration curve represents the focus shift, and the ordinate represents the normalized field of view.
  • the wavelengths given in Figure 6A are 656.2725nm, 587.5618nm, and 486.1327nm, the focus shifts of different fields of view are all within ⁇ Within 0.02mm, it means that the spherical aberration of the optical lens 10 in this embodiment is small and the imaging quality is good.
  • the abscissa of the astigmatism graph represents the focus shift, and the ordinate represents the image height, and the unit is mm.
  • the astigmatism curve given in FIG. 6B shows that when the wavelength is 587.5618 nm, the focus shifts of the sagittal image plane and the meridional image plane are both within ⁇ 0.05mm, which shows that the optical lens 10 in this embodiment has small astigmatism and imaging. Good quality.
  • the abscissa of the distortion graph represents the distortion rate, and the ordinate represents the image height, and the unit is mm.
  • the distortion curve given in FIG. 6C indicates that the distortion at a wavelength of 587.5618 nm is within ⁇ 3.4%, indicating that the distortion of the optical lens 10 in this embodiment has been better corrected and the image quality is better.
  • the first lens L1 has negative refractive power
  • the second lens L2 has positive refractive power
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has negative refractive power
  • the third lens L4 has negative refractive power.
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has positive refractive power
  • the seventh lens L7 has negative refractive power.
  • the object side S1 is convex, and the image side S2 is concave.
  • the object side S3 is convex, and the image side S4 is concave.
  • the object side S5 is convex, and the image side S6 is convex.
  • the object side surface S7 is convex near the optical axis, the object side S7 is concave near the circumference, and the image side S8 is concave.
  • the object side S9 is convex, the image side S10 is concave near the optical axis, and the image side S10 is convex near the circumference.
  • the object side surface S11 is convex near the optical axis, the object side S11 is concave near the circumference, and the image side S12 is convex.
  • the object side S13 is convex near the optical axis
  • the object side S13 is concave near the circumference
  • the image side S14 is concave near the optical axis
  • the image side S14 is convex near the circumference.
  • at least one of the object side surface S11 and the image side surface S12 includes at least one inflection point. In this way, the angle at which the light in the off-axis field of view is incident on the photosensitive element 20 can be effectively suppressed, thereby correcting the aberration of the off-axis field of view.
  • the optical lens 10 satisfies the conditions in the following table:
  • f is the effective focal length of the optical lens 10;
  • FNO is the aperture number of the optical lens 10;
  • HFOV is half of the maximum angle of view of the optical lens 10;
  • TTL is the total optical length of the optical lens 10, that is, the object side of the first lens The distance on the optical axis to the imaging plane of the optical lens.
  • the unit of Y radius (radius of curvature), thickness, and focal length is mm.
  • the reference wavelength for focal length, refractive index and Abbe number is all 587.6 nm.
  • Table 8 lists the conic coefficient K and the even-order correction coefficient Ai of each aspherical surface (S1-S14) of the optical lens 10, which are obtained from the above-mentioned aspherical surface formula.
  • 8A to 8C are respectively a spherical aberration graph, an astigmatism graph and a distortion graph in the fourth embodiment.
  • the abscissa of the spherical aberration curve represents the focus shift, and the ordinate represents the normalized field of view.
  • the wavelengths given in Figure 8A are 656.2725nm, 587.5618nm, and 486.1327nm, the focus shifts of different fields of view are all within ⁇ Within 0.02mm, it means that the spherical aberration of the optical lens 10 in this embodiment is small and the imaging quality is good.
  • the abscissa of the astigmatism graph represents the focus shift, and the ordinate represents the image height, and the unit is mm.
  • the astigmatism curve given in FIG. 8B shows that when the wavelength is 587.5618 nm, the focus shifts of the sagittal image plane and the meridional image plane are both within ⁇ 0.1 mm, which shows that the optical lens 10 in this embodiment has a small astigmatism, and the imaging Good quality.
  • the abscissa of the distortion graph represents the distortion rate, and the ordinate represents the image height, and the unit is mm.
  • the distortion curve given in FIG. 8C indicates that the distortion when the wavelength is 587.5618 nm is within ⁇ 3.4%, which indicates that the distortion of the optical lens 10 in this embodiment has been better corrected and the image quality is better.
  • the first lens L1 has negative refractive power
  • the second lens L2 has positive refractive power
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has negative refractive power
  • the third lens L4 has negative refractive power.
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has positive refractive power
  • the seventh lens L7 has negative refractive power.
  • the object side S1 is convex, and the image side S2 is concave.
  • the object side S3 is convex, and the image side S4 is concave.
  • the object side S5 is convex, and the image side S6 is convex.
  • the object side S7 is concave, and the image side S8 is concave.
  • the object side S9 is convex, the image side S10 is concave near the optical axis, and the image side S10 is convex near the circumference.
  • the object side surface S11 is convex near the optical axis, the object side S11 is concave near the circumference, and the image side S12 is convex.
  • the object side S13 is convex near the optical axis
  • the object side S13 is concave near the circumference
  • the image side S14 is concave near the optical axis
  • the image side S14 is convex near the circumference.
  • at least one of the object side surface S11 and the image side surface S12 includes at least one inflection point. In this way, the angle at which the light in the off-axis field of view is incident on the photosensitive element 20 can be effectively suppressed, thereby correcting the aberration of the off-axis field of view.
  • the optical lens 10 satisfies the conditions in the following table:
  • f is the effective focal length of the optical lens 10;
  • FNO is the aperture number of the optical lens 10;
  • HFOV is half of the maximum field angle of the optical lens 10;
  • TTL is the total optical length of the optical lens 10, that is, the object side of the first lens The distance on the optical axis to the imaging plane of the optical lens.
  • the unit of Y radius (radius of curvature), thickness, and focal length is mm.
  • the reference wavelength for focal length, refractive index and Abbe number is all 587.6 nm.
  • the above Table 10 lists the conic coefficient K and the even-order correction coefficient Ai of each aspherical surface (S1-S14) of the optical lens 10, which are obtained from the above-mentioned aspherical surface formula.
  • 10A to 10C are respectively a spherical aberration graph, an astigmatism graph and a distortion graph in the fifth embodiment.
  • the abscissa of the spherical aberration curve represents the focus shift, and the ordinate represents the normalized field of view.
  • the wavelengths given in Figure 10A are 656.2725nm, 587.5618nm, and 486.1327nm, the focus shifts of different fields of view are all within ⁇ Within 0.02mm, it means that the spherical aberration of the optical lens 10 in this embodiment is small and the imaging quality is good.
  • the abscissa of the astigmatism graph represents the focus shift, and the ordinate represents the image height, and the unit is mm.
  • the astigmatism curve given in FIG. 10B indicates that when the wavelength is 587.5618 nm, the focus shifts of the sagittal image plane and the meridional image plane are both within ⁇ 0.1 mm, which indicates that the optical lens 10 in this embodiment has a small astigmatism, and the imaging Good quality.
  • the abscissa of the distortion graph represents the distortion rate, and the ordinate represents the image height, and the unit is mm.
  • the distortion curve given in FIG. 10C indicates that the distortion at a wavelength of 587.5618 nm is within ⁇ 3.1%, indicating that the distortion of the optical lens 10 in this embodiment is well corrected and the image quality is good.
  • CT3, T12, and T23 in the first embodiment to the fifth embodiment are as follows in Table 15.
  • the camera module 100 includes an optical lens 10 and a photosensitive element 20 .
  • the photosensitive element 20 is provided on the image side of the optical lens 10 .
  • the photosensitive element 20 can be a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) photosensitive element 20 or a charge-coupled device (CCD, Charge-coupled Device) photosensitive element 20 .
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the ratio of the focal length of the second lens L2 to the focal length of the first lens L1 of the camera module 100 according to the embodiment of the present invention is between -5 and 15, so that the focal power of the lens and the shape of the lens can be reasonably allocated, which is conducive to expanding the The system field of view can improve the quality of imaging and reduce the occurrence of distortion, which is beneficial to users.
  • the electronic device 1000 includes a casing 200 and a camera module 100 .
  • the camera module 100 is mounted on the casing 200 .
  • the ratio of the focal length of the second lens L2 to the focal length of the first lens L1 of the electronic device 1000 according to the embodiment of the present invention is between -5 and 15. In this way, the focal power of the lens and the shape of the lens can be reasonably allocated, which is conducive to expanding the system.
  • the field of view can improve the quality of imaging and reduce the occurrence of distortion, which is beneficial to users.
  • the electronic device 1000 of the embodiment of the present invention includes, but is not limited to, a smart phone (as shown in FIG. 12 ), a mobile phone, a personal digital assistant (Personal Digital Assistant, PDA), a game console, a personal computer (PC), a camera , smart watches, tablet computers and other information terminal devices or home appliances with camera functions.
  • a smart phone as shown in FIG. 12
  • a mobile phone a personal digital assistant (Personal Digital Assistant, PDA), a game console, a personal computer (PC), a camera , smart watches, tablet computers and other information terminal devices or home appliances with camera functions.
  • PDA Personal Digital Assistant
  • PC personal computer
  • camera smart watches, tablet computers and other information terminal devices or home appliances with camera functions.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features delimited with “first”, “second” may expressly or implicitly include at least one of said features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(10),其从物侧至像侧依次包括具有负光焦度的第一透镜(L1)、具有负光焦度的第二透镜(L2)、具有正光焦度的第三透镜(L3)、具有负光焦度的第四透镜(L4)、具有负光焦度的第五透镜(L5)、具有正光焦度的第六透镜(L6)和具有负光焦度的第七透镜(L7)。光学镜头(10)满足下列关系式:-5<f2/f1<15,最大光学畸变≤10%,其中,f1为第一透镜(L1)的焦距,f2为第二透镜(L2)的焦距。该光学镜头(10)有利于扩大系统视场角,提升成像品质。

Description

光学镜头、摄像头模组及电子装置 技术领域
本发明涉及光学成像技术,特别涉及一种光学镜头、摄像头模组及电子装置。
背景技术
随着科技技术的高速发展,摄影取像技术也在不断发展,相关技术中的光学镜头包括多枚透镜,多枚透镜的设置能够更好地降低相差以及色差,从而提高成像品质,使得成型效果较好,提升用户的体验。然而,现有的光学镜头拍照成像时,畸变情况较为严重,如此会影响成像的品质,不利于用户使用,降低了用户的体验。
发明内容
有鉴于此,本发明实施方式提供一种光学镜头、摄像头模组及电子装置。
本发明实施方式的光学镜头,光学镜头从物侧至像侧依次包括具有负光焦度的第一透镜、具有负光焦度的第二透镜,所述第二透镜的物侧面于光轴附近为凸面,所述第二透镜的像侧面于光轴附近为凹面、具有正光焦度的第三透镜,所述第三透镜的物侧面于光轴附近为凸面、具有负光焦度的第四透镜、具有负光焦度的第五透镜、具有正光焦度的第六透镜,所述第六透镜的像侧面于光轴附近为凸面,所述第六透镜的物侧面与所述第六透镜的像侧面皆为非球面,所述第六透镜的物侧面与所述第六透镜的像侧面中至少一个面设置有至少一个反曲点、具有负光焦度的第七透镜,所述光学镜头满足下列关系式:-5<f2/f1<15,最大光学畸变≤10%,其中,f1为第一透镜的焦距,f2为第二透镜的焦距。
本发明实施方式的光学镜头的第二透镜的焦距与第一透镜的焦距的比值位于-5~15之间,如此可合理分配透镜光焦度以及配置镜片的形状,有利于扩大系统视场角,提升成像的品质,降低畸变情况的发生,有利于用户使用。
在某些实施方式中,所述光学镜头满足以下关系式:
2.5<tan(HFOV)*TTL/ImgH<3.5;
其中,tan(HFOV)为所述光学镜头的最大视场角的一半的正切值,TTL为所述第一透镜物侧面到所述光学镜头的成像面于光轴上的距离,ImgH为所述光学镜头的最大成像圆半径。
在满足上述关系式的情况下,能够使得光学镜头实现较大的视场角,并且能够降低光学镜头的尺寸,有利于光学镜头的成像,使得光学镜头成像更加全面,并且有利于光学镜头的小型化生产。
在某些实施方式中,所述光学镜头满足以下关系式:
-15<f5/f<20;
其中,f为所述光学镜头的有效焦距,f5为所述第五透镜的焦距。
在满足上述关系式的情况下,第五透镜的光焦度能够得到合理的分配,以配合修正光学镜头的像差,减小畸变情况的产生,提高光学镜头的成像品质。
在某些实施方式中,所述光学镜头满足以下关系式:
-5<(f1+f4)/f<-3;
其中,f1为所述第一透镜的焦距,f4为所述第六透镜的焦距,f为所述光学镜头的有效焦距。
在满足上述关系式的情况下,第四透镜的焦距能够得到合理的分配,从而扩大光学镜头的视场角,提升成像的品质,并且能够有效的矫正畸变像差,有利于用户的使用。
在某些实施方式中,所述光学镜头满足以下关系式:
1.0<CT3/(T12+T23)<1.8;
其中,CT3为所述第三透镜在光轴上的厚度,T12为所述第一透镜与所述第二透镜在光轴上的空气间隔,T23为所述第二透镜与所述第三透镜在光轴上的空气间隔。
在满足上述关系式的情况下,使得第一透镜、第二透镜和第三透镜在组装时存在有足够的空间,避免相邻两个透镜之间发生碰撞的情况,保证了光学镜头的正常使用,并且,有利于光学镜头的轻薄化,也同时可以避免出现因为数值过小导致组装较为困难的情况,增加光学系统的敏感度。
在某些实施方式中,所述光学镜头满足以下关系式:
-4<f12/f456<-1.5;
其中,f12为所述第一透镜和所述第二透镜的组合焦距,f456为所述第四透镜、所述第五透镜和所述第六透镜的组合焦距。
在满足上述关系式的情况下,第一透镜和第二透镜的组合焦距,以及第四透镜、第五透镜、第六透镜的组合焦距的大小和方向能够得到合理的分配,以调节光学镜头的系统球差,从而实现光学镜头的系统球差的平衡,进而提升光学镜头的成型品质。
在某些实施方式中,所述光学镜头满足以下关系式:
-6.0<R12/R13<-2.5;
其中,R12为所述第六透镜的物侧表面于光轴处的曲率半径,R13为所述第六透镜的像侧表面于光轴处的曲率半径。
在满足上述关系式的情况下,可通过调节第六透镜的曲率半径,从而保证第六透镜的加工可行性,有利于第六透镜的生产,并且能够有效的修正球差和像散,进而提升光学镜头的成像品质。
在某些实施方式中,所述光学镜头满足以下关系式:
0<(R8+R9)/(R8-R9)<2.0;
其中,R8为所述第四透镜的物侧表面于光轴处的曲率半径,R9为所述第四透镜的像侧表面于光轴处的曲率半径。
在满足上述关系式的情况下,通过调节第四透镜的物侧面与第四透镜的像侧面之间的关系,能够有效的分配其余的透镜所承担的光学偏折角度,并且能够改变畸变像差,从而提升光学镜头的成型品质。
本发明实施方式的摄像头模组,包括上述任一实施方式的光学镜头及感光元件,感光元件设置在光学镜头的像侧。
本发明实施方式的摄像头模组的第二透镜的焦距与第一透镜的焦距的比值位于-5~15之间,如此可合理分配透镜光焦度以及配置镜片的形状,有利于扩大系统视场角,提升成像的品质,降低畸变情况的发生,有利于用户使用。
本发明实施方式的电子装置,包括壳体及上述所述的摄像头模组,所述摄像头模组安装在所述壳体。
本发明实施方式的电子装置的第二透镜的焦距与第一透镜的焦距的比值位于-5~15之间,如此可合理分配透镜光焦度以及配置镜片的形状,有利于扩大系统视场角,提升成像的品质,降低畸变情况的发生,有利于用户使用。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施例一的光学镜头的结构示意图;
图2A是本发明实施例一的球差曲线图(mm);
图2B是本发明实施例一的像散曲线图(mm);
图2C是本发明实施例一的畸变曲线图(%);
图3是本发明实施例二的光学镜头的结构示意图;
图4A是本发明实施例二的球差曲线图(mm);
图4B是本发明实施例二的像散曲线图(mm);
图4C是本发明实施例二的畸变曲线图(%);
图5是本发明实施例三的光学镜头的结构示意图;
图6A是本发明实施例三的球差曲线图(mm);
图6B是本发明实施例三的像散曲线图(mm);
图6C是本发明实施例三的畸变曲线图(%);
图7是本发明实施例四的光学镜头的结构示意图;
图8A是本发明实施例四的球差曲线图(mm);
图8B是本发明实施例四的像散曲线图(mm);
图8C是本发明实施例四的畸变曲线图(%);
图9是本发明实施例五的光学镜头的结构示意图;
图10A是本发明实施例五的球差曲线图(mm);
图10B是本发明实施例五的像散曲线图(mm);
图10C是本发明实施例五的畸变曲线图(%);
图11是本发明实施方式的摄像头模组的结构示意图;
图12是本发明实施方式的电子装置的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含 义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实时方式的光学镜头10从物侧至像侧包括具有负光焦度的第一透镜L1、具有光焦度的第二透镜L2、具有正光焦度的第三透镜L3、具有负光焦度的第四透镜L4、具有光焦度的第五透镜L5、具有正光焦度的第六透镜L6和具有负光焦度的第七透镜L7。
第一透镜L1具有物侧面S1及像侧面S2。第二透镜L2具有物侧面S3及像侧面S4,第二透镜L2的物侧面S3于光轴附近为凸面,第二透镜L2的像侧面S4于光轴附近为凹面。第三透镜L3具有物侧面S5及像侧面S6,第三透镜L3的物侧面S5于光轴附近为凸面。第四透镜L4具有物侧面S7及像侧面S8。第五透镜L5具有物侧面S9及像侧面S10。第六透镜L6具有物侧面S11及像侧面S12,第六透镜L6的像侧面S12于光轴附近为凸面,第六透镜L6的物侧面S11与第六透镜L6的像侧面S12皆为非球面,第六透镜L6的物侧面S11与第六透镜L6的像侧面S12中至少一个面设置有至少一个反曲点,也即是说,第六透镜L6的物侧面S11设置有一个反曲点,第六透镜L6的像侧面S12未设置有反曲点;或者,第六透镜L6的物侧面S11未设置有反曲点,第六透镜L6的像侧面S12设置有一个反曲点;或者,第六透镜L6的物侧面S11设置有一个反曲点,第六透镜L6的像侧面S12设置有一个反曲点;或者,第六透镜L6的物侧面S11设置有多个反曲点,第六透镜L6的像侧面S12未设置有反曲点;或者,第六透镜L6的物侧面S11未设置有反曲点,第六透镜L6的像侧面S12设置有多个反曲点;或者,第六透镜L6的物侧面S11设置有多个反曲点,第六透镜L6的像侧面S12设置有多个反曲点;或者,第六透镜L6的物侧面S11设置有一个反曲点,第六透镜L6的像侧面S12设置有多个反曲点;或者,第六透镜L6的物侧面S11设置有多个反曲点,第六透镜L6的像侧面S12设置有一个反曲点。第七透镜L7具有物侧面S13及像侧面S14。
其中,反曲点又成拐点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。
在某些实施方式中,光学镜头10还包括孔径光阑STO。孔径光阑STO可以设置在任意一枚透镜的表面上,或设置在第一透镜L1之前,或设置在任意两枚透镜之间,或 设置在第七透镜L7与感光元件20之间。
当光学镜头10用于成像时,被摄物体OBJ发出或者反射的光线从物侧方向进入光学镜头10,并穿过第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、及第七透镜L7,最终汇聚到成像面S17上。
进一步地,光学镜头10满足以下关系式:
-5<f2/f1<15,最大光学畸变≤10%;
其中,f1为第一透镜L1的焦距,f2为第二透镜L2的焦距。
也即是说,f2/f1可以为(-5,15)区间的任意值,例如该取值为-4.5、-4、-3.5、-3、-2.5、-2、-1.5、-1、-0.5、0、0.5、1、2、3、4、5、6、7、8、9、10、10.5、11、12、13、13.5、14、14.5等。
最大光学畸变小于等于10%,如此能够减小光学镜头10的畸变情况,提高光学镜头10的成像品质,提升用户的体验。
本发明实施方式的光学镜头10的第二透镜L2的焦距与第一透镜L1的焦距的比值位于-5~15之间,如此可合理分配透镜光焦度以及配置镜片的形状,有利于扩大系统视场角,提升成像的品质,降低畸变情况的发生,有利于用户使用。
在某些实施方式中,光学镜头10满足以下关系式:
2.5<tan(HFOV)*TTL/ImgH<3.5;
其中,tan(HFOV)为光学镜头10的最大视场角的一半的正切值,TTL为第一透镜L1物侧面S1到光学镜头10的成像面S17于光轴上的距离,ImgH为10光学镜头的最大成像圆半径。
也即是说,tan(HFOV)*TTL/ImgH可以为(2.5,3.5)区间的任意值,例如该取值为2.55、2.56、2.6、2.62、2.65、2.68、2.7、2.75、2.79、2.8、2.83、2.86、2.91、2.94、2.95、2.99、3、3.02、3.1、3.18、3.28、3.4、3.44、3.48、3.49等。
在满足上述关系式的情况下,能够使得光学镜头10实现较大的视场角,并且能够降低光学镜头10的尺寸,有利于光学镜头10的成像,使得光学镜头10成像更加全面,并且有利于光学镜头10的小型化生产。
在某些实施方式中,光学镜头10满足以下关系式:
-15<f5/f<20;
其中,f为光学镜头10的有效焦距,f5为第五透镜L5的焦距。
也即是说,f5/f可以为(-15,20)区间的任意值,例如该取值为-14.5、-14、-13.5、-13、-12.5、-12、-11、-10、-9、-8、-7、-6、-5、-4、-3、-2、-1、0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、17.8、18、19、19.5、19.8等。
在满足上述关系式的情况下,第五透镜L5的光焦度能够得到合理的分配,以配合修正光学镜头10的像差,减小畸变情况的产生,提高光学镜头10的成像品质。
在某些实施方式中,光学镜头10满足以下关系式:
-5<(f1+f4)/f<-3;
其中,f1为第一透镜L1的焦距,f4为第六透镜L6的焦距,f为光学镜头10的有效焦距。
也即是说,f1+f4可以为(-5,-3)区间的任意值,例如该取值为-4.9、-4.8、-4.7、-4.5、-4.3、-4、-3.8、-3.7、-3.65、-3.62、-3.6、-3.58、-3.55、-3.52、-3.48、-3.45、-3.41、-3.38、-3.35、-3.32、-3.3、-3.28、-3.24、-3.21、-3.18、-3.16、-3.13、-3.11、-3.08、-3.05、-3.01等。
在满足上述关系式的情况下,第四透镜L4的焦距能够得到合理的分配,从而扩大光学镜头10的视场角,提升成像的品质,并且能够有效的矫正畸变像差,有利于用户的使用。
在某些实施方式中,光学镜头10满足以下关系式:
1.0<CT3/(T12+T23)<1.8;
其中,CT3为第三透镜L3在光轴上的厚度,T12为第一透镜L1与第二透镜L2在光轴上的空气间隔,T23为第二透镜L2与第三透镜L3在光轴上的空气间隔。
也即是说,CT3/(T12+T23)可以为(1,1.8)区间的任意值,例如该取值为1.05、1.06、1.08、1.09、1.1、1.12、1.15、1.17、1.19、1.21、1.23、1.25、1.29、1.32、1.35、1.38、1.39、1.45、1.46、1.49、1.52、1.53、1.58、1.62、1.64、1.69、1.75、1.78等。
在满足上述关系式的情况下,使得第一透镜L1、第二透镜L2和第三透镜L3在组装时存在有足够的空间,避免相邻两个透镜之间发生碰撞的情况,保证了光学镜头10的正常使用,并且,有利于光学镜头10的轻薄化,也同时可以避免出现因为数值过小导致组装较为困难的情况,增加光学系统的敏感度。
在某些实施方式中,光学镜头10满足以下关系式:
-4<f12/f456<-1.5;
其中,f12为第一透镜L1和第二透镜L2的组合焦距,f456为第四透镜L4、第五透镜L5和第六透镜L6的组合焦距。
也即是说,f12/f456可以为(-4,-1.5)区间的任意值,例如该取值为-3.98、-3.95、-3.92、-3.9、-3.85、-3.8、-3.76、-3.7、-3.61、-3.59、-3.52、-3.48、-3.4、-3.38、-3.3、-3.2、-3.1、-3、-2.8、-2.6、-2.3、-2.1、-1.95、-1.85、-1.78、-1.65、-1.55、 -1.45等。
在满足上述关系式的情况下,第一透镜L1和第二透镜L2的组合焦距,以及第四透镜L4、第五透镜L5、第六透镜L6的组合焦距的大小和方向能够得到合理的分配,以调节光学镜头10的系统球差,从而实现光学镜头10的系统球差的平衡,进而提升光学镜头10的成型品质。
在某些实施方式中,光学镜头10满足以下关系式:
-6.0<R12/R13<-2.5;
其中,R12为第六透镜L6的物侧表面于光轴处的曲率半径,R13为第六透镜L6的像侧表面于光轴处的曲率半径。
也即是说,R12/R13可以为(-6,-2.5)区间的任意值,例如该取值为-5.9、-5.8、-5.7、-5.6、-5.5、-5.4、-5.2、-5.1、-5、-4.9、-4.7、-4.6、-4.5、-4.2、-4.1、-3.8、-3.7、-3.5、-3.4、-3、-2.9、-2.8、-2.7、-2.6、-2.55等。
在满足上述关系式的情况下,可通过调节第六透镜L6的曲率半径,从而保证第六透镜L6的加工可行性,有利于第六透镜L6的生产,并且能够有效的修正球差和像散,进而提升光学镜头10的成像品质。
在某些实施方式中,光学镜头10满足以下关系式:
0<(R8+R9)/(R8-R9)<2.0;
其中,R8为第四透镜L4的物侧表面于光轴处的曲率半径,R9为第四透镜L4的像侧表面于光轴处的曲率半径。
也即是说,(R8+R9)/(R8-R9)可以为(0,2)区间的任意值,例如该取值可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.05、1.1、1.15、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.82、1.85、1.89、1.92、1.95、1.98等。
在满足上述关系式的情况下,通过调节第四透镜L4的物侧面与第四透镜L4的像侧面之间的关系,能够有效的分配其余的透镜所承担的光学偏折角度,并且能够改变畸变像差,从而提升光学镜头10的成型品质。
在某些实施方式中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、及第七透镜L7的材质均为塑料。
由于第一透镜L1至第七透镜L7均采用塑料透镜,光学镜头10在有效消除像差、满足高像素需求的同时,可以实现超薄化,且成本较低。
在本发明实施方式中,红外滤光片L8采用玻璃制成。当然,在其他实施方式中,红外滤光片L8也可以采用其他材质制成。具体可以根据实际情况来设置。在此不做限定。
在某些实施方式中,光学镜头10中至少有一个透镜的至少一个表面为非球面。例如,在本发明实施方式中,第一透镜L1的物侧面S1和像侧面S2为非球面、第二透镜L2的物侧面S3和像侧面S4为非球面、第三透镜L3的物侧面S5和像侧面S6为非球面、第四透镜L4的物侧面S7和像侧面S8为非球面、第五透镜L5的物侧面S9和像侧面S10为非球面、第六透镜L6的物侧面S11和像侧面S12为非球面、第七透镜L7的物侧面S13和像侧面S14为非球面,红外滤光片的物侧面S15和像侧面S16为球面。
也即是说,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、及第七透镜L7均为非球面镜,红外滤光片L8为球面。非球面的面型由以下公式决定:
Figure PCTCN2020123260-appb-000001
其中,Z是非球面上任一点与表面顶点的纵向距离,r是非球面上任一点到光轴的距离,c是顶点曲率(曲率半径的倒数),k是圆锥常数,Ai是非球面第i-th阶的修正系数。
如此,光学镜头10可以通过调节各透镜表面的曲率半径和非球面系数,有效减小光学镜头10的总长度,并可以有效地校正光学镜头10像差,提高成像质量。
实施例一:
请参阅图1,在实施例一中,第一透镜L1具有负光焦度,第二透镜L2具有负光焦度,第三透镜L3具有正光焦度,第四透镜L4具有负光焦度,第五透镜L5具有负光焦度,第六透镜L6具有正光焦度,第七透镜L7具有负光焦度。
物侧面S1于光轴附近为凹面,物侧面S1于圆周附近为凸面,像侧面S2为凹面。物侧面S3为凸面,像侧面S4为凹面。物侧面S5为凸面,像侧面S6为凸面。物侧面S7为凹面,像侧面S8于光轴附近为凹面,像侧面S8于圆周附近为凸面。物侧面S9为凸面,像侧面S10为凹面。物侧面S11于光轴附近为凸面,物侧面S11于圆周附近为凹面,像侧面S12为凸面。物侧面S13于光轴附近为凸面,物侧面S13于圆周附近为凹面,像侧面S14于光轴附近为凹面,像侧面S14于圆周附近为凸面。进一步地,物侧面S11和像侧面S12中的至少一个包括至少一个反曲点。如此,可有效地压制离轴视场的光线入射于感光元件20上的角度,从而修正离轴视场的像差。
请参阅图2A至图2C,光学镜头10满足下面表格的条件:
表1
Figure PCTCN2020123260-appb-000002
Figure PCTCN2020123260-appb-000003
表1中,f为光学镜头10的有效焦距;FNO为光学镜头10的光圈数;HFOV为光学镜头10的最大视场角的一半;TTL为光学镜头10的光学总长,即第一透镜物侧面到光学镜头的成像面于光轴上的距离。其中Y半径(曲率半径)、厚度、焦距的单位为mm。焦距、折射率和阿贝数的参考波长均为587.6nm。
表2
Figure PCTCN2020123260-appb-000004
Figure PCTCN2020123260-appb-000005
以上表2列出了光学镜头10各个非球面(S1-S14)的圆锥系数K和偶次阶修正系数Ai,由上述非球面的面型公式得出。
图2A至图2C分别为实施例一中球差曲线图、像散曲线图和畸变曲线图。
球差曲线图的横坐标表示焦点偏移、纵坐标表示归一化视场,图2A中给出的波长分别在656.2725nm、587.5618nm、486.1327nm时,不同视场的焦点偏移均在0~0.01mm以内,说明本实施例中光学镜头10的球差较小、成像质量较好。
像散曲线图的横坐标表示焦点偏移、纵坐标表示像高,单位是mm,图2B中给出的像散曲线表示波长在587.5618nm时,弧矢像面和子午像面的焦点偏移均在±0.1mm以内,说明本实施例中光学镜头10的像散较小、成像质量较好。
畸变曲线图的横坐标表示畸变率、纵坐标表示像高,单位是mm,图2C中给出的畸变曲线表示波长在587.5618nm时的畸变在±3.4%以内,说明本实施例中光学镜头10的畸变得到了较好的矫正、成像质量较好。
实施例二
请参阅图3,在实施例二中,第一透镜L1具有负光焦度,第二透镜L2具有正光焦度,第三透镜L3具有正光焦度,第四透镜L4具有负光焦度,第五透镜L5具有负光焦度,第六透镜L6具有正光焦度,第七透镜L7具有负光焦度。
物侧面S1于光轴附近为凹面,物侧面S1于圆周附近为凸面,像侧面S2为凹面。物侧面S3为凸面,像侧面S4为凹面。物侧面S5为凸面,像侧面S6为凸面。物侧面S7为凹面,像侧面S8于光轴附近为凹面,像侧面S8于圆周附近为凸面。物侧面S9为凸面,像侧面S10为凹面。物侧面S11于光轴附近为凸面,物侧面S11于圆周附近为凹面,像侧面S12为凸面。物侧面S13于光轴附近为凸面,物侧面S13于圆周附近为凹面,像侧面S14于光轴附近为凹面,像侧面S14于圆周附近为凸面。进一步地,物侧面S11和像侧面S12中的至少一个包括至少一个反曲点。如此,可有效地压制离轴视场的光线入射于感光元件20上的角度,从而修正离轴视场的像差。
请参阅图4A至图4C,光学镜头10满足下面表格的条件:
表3
Figure PCTCN2020123260-appb-000006
表3中,f为光学镜头10的有效焦距;FNO为光学镜头10的光圈数;HFOV为光学镜头10的最大视场角的一半;TTL为光学镜头10的光学总长,即第一透镜物侧面到光学镜头的成像面于光轴上的距离。其中Y半径(曲率半径)、厚度、焦距的单位为mm。焦距、折射率和阿贝数的参考波长均为587.6nm。
表4
Figure PCTCN2020123260-appb-000007
Figure PCTCN2020123260-appb-000008
以上表4列出了光学镜头10各个非球面(S1-S14)的圆锥系数K和偶次阶修正系数Ai,由上述非球面的面型公式得出。
图4A至图4B分别为实施例二中球差曲线图、像散曲线图和畸变曲线图。
球差曲线图的横坐标表示焦点偏移、纵坐标表示归一化视场,图4A中给出的波长分别在656.2725nm、587.5618nm、486.1327nm时,不同视场的焦点偏移均在±0.01mm以内,说明本实施例中光学镜头10的球差较小、成像质量较好。
像散曲线图的横坐标表示焦点偏移、纵坐标表示像高,单位是mm。图4B中给出的像散曲线表示波长在587.5618nm时,弧矢像面和子午像面的焦点偏移均在±0.5mm以内,说明本实施例中光学镜头10的像散较小、成像质量较好。
畸变曲线图的横坐标表示畸变率、纵坐标表示像高,单位是mm。图4C中给出的畸变曲线表示波长在587.5618nm时的畸变在±3.4%以内,说明本实施例中光学镜头10的畸变得到了较好的矫正、成像质量较好。
实施例三
请参阅图5,在实施例三中,第一透镜L1具有负光焦度,第二透镜L2具有正光焦度,第三透镜L3具有正光焦度,第四透镜L4具有负光焦度,第五透镜L5具有负光焦度,第六透镜L6具有正光焦度,第七透镜L7具有负光焦度。
物侧面S1为凸面,像侧面S2为凹面。物侧面S3为凸面,像侧面S4为凹面。物侧面S5为凸面,像侧面S6为凸面。物侧面S7于光轴附近为凸面,物侧面S7于圆周附近为凹面,像侧面S8为凹面。物侧面S9为凸面,像侧面S10于光轴附近为凹面,像侧面S10于圆周附近为凸面。物侧面S11于光轴附近为凸面,物侧面S11于圆周附近为凹面,像侧面S12为凸面。物侧面S13于光轴附近为凸面,物侧面S13于圆周附近为凹面,像侧面S14于光轴附近为凹面,像侧面S14于圆周附近为凸面。进一步地,物侧面S11和 像侧面S12中的至少一个包括至少一个反曲点。如此,可有效地压制离轴视场的光线入射于感光元件20上的角度,从而修正离轴视场的像差。
请参阅图6A至图6C,光学镜头10满足下面表格的条件:
表5
Figure PCTCN2020123260-appb-000009
表5中,f为光学镜头10的有效焦距;FNO为光学镜头10的光圈数;HFOV为光学镜头10的最大视场角的一半;TTL为光学镜头10的光学总长,即第一透镜物侧面到光学镜头的成像面于光轴上的距离。其中Y半径(曲率半径)、厚度、焦距的单位为mm。焦距、折射率和阿贝数的参考波长均为587.6nm。
表6
Figure PCTCN2020123260-appb-000010
Figure PCTCN2020123260-appb-000011
以上表6列出了光学镜头10各个非球面(S1-S14)的圆锥系数K和偶次阶修正系数Ai,由上述非球面的面型公式得出。
图6A至图6C分别为实施例三中球差曲线图、像散曲线图和畸变曲线图。
球差曲线图的横坐标表示焦点偏移、纵坐标表示归一化视场,图6A中给出的波长分别在656.2725nm、587.5618nm、486.1327nm时,不同视场的焦点偏移均在±0.02mm以内,说明本实施例中光学镜头10的球差较小、成像质量较好。
像散曲线图的横坐标表示焦点偏移、纵坐标表示像高,单位是mm。图6B中给出的像散曲线表示波长在587.5618nm时,弧矢像面和子午像面的焦点偏移均在±0.05mm以内,说明本实施例中光学镜头10的像散较小、成像质量较好。
畸变曲线图的横坐标表示畸变率、纵坐标表示像高,单位是mm。图6C中给出的畸变曲线表示波长在587.5618nm时的畸变在±3.4%以内,说明本实施例中光学镜头10的畸变得到了较好的矫正、成像质量较好。
实施例四
请参阅图7,在实施例四中,第一透镜L1具有负光焦度,第二透镜L2具有正光焦度,第三透镜L3具有正光焦度,第四透镜L4具有负光焦度,第五透镜L5具有正光焦度,第六透镜L6具有正光焦度,第七透镜L7具有负光焦度。
物侧面S1为凸面,像侧面S2为凹面。物侧面S3为凸面,像侧面S4为凹面。物侧面S5为凸面,像侧面S6为凸面。物侧面S7于光轴附近为凸面,物侧面S7于圆周附近为凹面,像侧面S8为凹面。物侧面S9为凸面,像侧面S10于光轴附近为凹面,像侧面S10于圆周附近为凸面。物侧面S11于光轴附近为凸面,物侧面S11于圆周附近为凹面,像侧面S12为凸面。物侧面S13于光轴附近为凸面,物侧面S13于圆周附近为凹面,像 侧面S14于光轴附近为凹面,像侧面S14于圆周附近为凸面。进一步地,物侧面S11和像侧面S12中的至少一个包括至少一个反曲点。如此,可有效地压制离轴视场的光线入射于感光元件20上的角度,从而修正离轴视场的像差。
请参阅图8A至图8C,光学镜头10满足下面表格的条件:
表7
Figure PCTCN2020123260-appb-000012
表7中,f为光学镜头10的有效焦距;FNO为光学镜头10的光圈数;HFOV为光学镜头10的最大视场角的一半;TTL为光学镜头10的光学总长,即第一透镜物侧面到光学镜头的成像面于光轴上的距离。其中Y半径(曲率半径)、厚度、焦距的单位为mm。焦距、折射率和阿贝数的参考波长均为587.6nm。
表8
Figure PCTCN2020123260-appb-000013
Figure PCTCN2020123260-appb-000014
以上表8列出了光学镜头10各个非球面(S1-S14)的圆锥系数K和偶次阶修正系数Ai,由上述非球面的面型公式得出。
图8A至图8C分别为实施例四中球差曲线图、像散曲线图和畸变曲线图。
球差曲线图的横坐标表示焦点偏移、纵坐标表示归一化视场,图8A中给出的波长分别在656.2725nm、587.5618nm、486.1327nm时,不同视场的焦点偏移均在±0.02mm以内,说明本实施例中光学镜头10的球差较小、成像质量较好。
像散曲线图的横坐标表示焦点偏移、纵坐标表示像高,单位是mm。图8B中给出的像散曲线表示波长在587.5618nm时,弧矢像面和子午像面的焦点偏移均在±0.1mm以内,说明本实施例中光学镜头10的像散较小、成像质量较好。
畸变曲线图的横坐标表示畸变率、纵坐标表示像高,单位是mm。图8C中给出的畸变曲线表示波长在587.5618nm时的畸变在±3.4%以内,说明本实施例中光学镜头10的畸变得到了较好的矫正、成像质量较好。
实施例五
请参阅图9,在实施例五中,第一透镜L1具有负光焦度,第二透镜L2具有正光焦度,第三透镜L3具有正光焦度,第四透镜L4具有负光焦度,第五透镜L5具有正光焦度,第六透镜L6具有正光焦度,第七透镜L7具有负光焦度。
物侧面S1为凸面,像侧面S2为凹面。物侧面S3为凸面,像侧面S4为凹面。物侧面S5为凸面,像侧面S6为凸面。物侧面S7为凹面,像侧面S8为凹面。物侧面S9为凸面,像侧面S10于光轴附近为凹面,像侧面S10于圆周附近为凸面。物侧面S11于光 轴附近为凸面,物侧面S11于圆周附近为凹面,像侧面S12为凸面。物侧面S13于光轴附近为凸面,物侧面S13于圆周附近为凹面,像侧面S14于光轴附近为凹面,像侧面S14于圆周附近为凸面。进一步地,物侧面S11和像侧面S12中的至少一个包括至少一个反曲点。如此,可有效地压制离轴视场的光线入射于感光元件20上的角度,从而修正离轴视场的像差。
请参阅图10A至图10C,光学镜头10满足下面表格的条件:
表9
Figure PCTCN2020123260-appb-000015
表9中,f为光学镜头10的有效焦距;FNO为光学镜头10的光圈数;HFOV为光学镜头10的最大视场角的一半;TTL为光学镜头10的光学总长,即第一透镜物侧面到光学镜头的成像面于光轴上的距离。其中Y半径(曲率半径)、厚度、焦距的单位为mm。焦距、折射率和阿贝数的参考波长均为587.6nm。
表10
Figure PCTCN2020123260-appb-000016
Figure PCTCN2020123260-appb-000017
以上表10列出了光学镜头10各个非球面(S1-S14)的圆锥系数K和偶次阶修正系数Ai,由上述非球面的面型公式得出。
图10A至图10C分别为实施例五中球差曲线图、像散曲线图和畸变曲线图。
球差曲线图的横坐标表示焦点偏移、纵坐标表示归一化视场,图10A中给出的波长分别在656.2725nm、587.5618nm、486.1327nm时,不同视场的焦点偏移均在±0.02mm以内,说明本实施例中光学镜头10的球差较小、成像质量较好。
像散曲线图的横坐标表示焦点偏移、纵坐标表示像高,单位是mm。图10B中给出的像散曲线表示波长在587.5618nm时,弧矢像面和子午像面的焦点偏移均在±0.1mm以内,说明本实施例中光学镜头10的像散较小、成像质量较好。
畸变曲线图的横坐标表示畸变率、纵坐标表示像高,单位是mm。图10C中给出的畸变曲线表示波长在587.5618nm时的畸变在±3.1%以内,说明本实施例中光学镜头10的畸变得到了较好的矫正、成像质量较好。
对于以上关系式-5<f2/f1<15,f2、f1在第一实施例至第五实施例的取值如下表11。
表11
- f2/f1 f2/f1的值
第一实施例 -60.77/(-5.54) 10.969
第二实施例 11.78/(-4.66) -2.528
第三实施例 14.29/(-4.36) -3.278
第四实施例 10.56/(-3.8) -2.779
第五实施例 9.19/(-3.64) -2.525
对于以上关系式2.5<tan(HFOV)*TTL/ImgH<3.5,HFOV、TTL、ImgH在第一实施例至第五实施例的取值如下表12。
表12
- tan(HFOV)*TTL/ImgH tan(HFOV)*TTL/ImgH的值
第一实施例 tan(56.3)*6.831/3.4 3.013
第二实施例 tan(60)*6.569/3.4 3.346
第三实施例 tan(56)*6.616/3.4 2.885
第四实施例 tan(57)*6.5/3.4 2.944
第五实施例 tan(55)*6.555/3.1 3.02
对于以上关系式-15<f5/f<20,f5、f在第一实施例至第五实施例的取值如下表13。
表13
- f5/f f5/f的值
第一实施例 -30.02/2.39 -12.561
第二实施例 -27.3/2.11 -12.938
第三实施例 -19.25/2.37 -8.122
第四实施例 41.69/2.3 18.126
第五实施例 28.65/2.15 13.325
对于以上关系式-3<(f1+f4)/f<-5,f1、f4、f在第一实施例至第五实施例的取值如下表14。
表14
- (f1+f4)/f f5/f的值
第一实施例 (-5.54-4.69)/2.39 -4.280
第二实施例 (-4.66-4.36)/2.11 -4.275
第三实施例 (-4.36-5.27)/2.37 -4.063
第四实施例 (-3.8-5.52)/2.3 -4.052
第五实施例 (-3.64-4.16)/2.15 -3.630
对于以上关系式1.0<CT3/(T12+T23)<1.8,CT3、T12、T23在第一实施例至第五实施例的取值如下表15。
表15
  CT3/(T12+T23) CT3/(T12+T23)的值
第一实施例 0.956/(0.245+0.358) 1.58
第二实施例 1.02/(0.655+0.146) 1.27
第三实施例 0.92/(0.292+0.332) 1.47
第四实施例 0.904/(0.255+0.303) 1.62
第五实施例 0.9/(0.421+0.312) 1.23
对于以上关系式-4<f12/f456<-1.5,f12、f456在第一实施例至第五实施例的取值如下表16。
表16
- f12/f456 f12/f456的值
第一实施例 -4.83/2.34 -2.064
第二实施例 -8.02/2.21 -3.62
第三实施例 -5.92/2.24 -2.64
第四实施例 -5.63/2.22 -2.54
第五实施例 -5.92/2.29 -2.59
对于以上关系式-6.0<R12/R13<-2.5,R12、R13在第一实施例至第五实施例的取值如下表17。
表17
- R12/R13 R12/R13的值
第一实施例 5.022/-1.378 -3.64
第二实施例 6.253/-1.274 -4.91
第三实施例 4.352/-1.365 -3.19
第四实施例 5.583/-1.431 -3.9
第五实施例 8.532/-1.532 -5.57
对于以上关系式0<(R8+R9)/(R8-R9)<2.0,R8、R9在第一实施例至第五实施例的取值如下表18。
表18
- (R8+R9)/(R8-R9) (R8+R9)/(R8-R9)的值
第一实施例 (-24.436+3.567)/(-24.436-3.567) 0.75
第二实施例 (-12.492+3.3768)/(-12.492-3.3768) 0.57
第三实施例 (160.979+3.382)/(160.979-3.382) 1.04
第四实施例 (34.555+3.287)/((34.555-3.287)) 1.21
第五实施例 (-10.493+3.723)/(-10.493-3.723) 0.48
请参阅图11,本发明实施方式的摄像头模组100包括光学镜头10及感光元件20。感光元件20设置在光学镜头10的像侧。
感光元件20可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)感光元件20或者电荷耦合元件(CCD,Charge-coupled Device)感光元件20。
本发明实施方式的摄像头模组100的第二透镜L2的焦距与第一透镜L1的焦距的比值位于-5~15之间,如此可合理分配透镜光焦度以及配置镜片的形状,有利于扩大系统视场角, 提升成像的品质,降低畸变情况的发生,有利于用户使用。
请参阅图12,本发明实施方式的电子装置1000包括壳体200及摄像头模组100。摄像头模组100安装在壳体200。
本发明实施方式的电子装置1000的第二透镜L2的焦距与第一透镜L1的焦距的比值位于-5~15之间,如此可合理分配透镜光焦度以及配置镜片的形状,有利于扩大系统视场角,提升成像的品质,降低畸变情况的发生,有利于用户使用。
本发明实施方式的电子装置1000包括但不限于为智能电话(如图12所示)、移动电话、个人数字助理(Personal Digital Assistant,PDA)、游戏机、个人计算机(personal computer,PC)、相机、智能手表、平板电脑等信息终端设备或具有拍照功能的家电产品等。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种光学镜头,其特征在于,所述光学镜头从物侧至像侧依次包括:
    具有负光焦度的第一透镜;
    具有负光焦度的第二透镜,所述第二透镜的物侧面于光轴附近为凸面,所述第二透镜的像侧面于光轴附近为凹面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面于光轴附近为凸面;
    具有负光焦度的第四透镜;
    具有负光焦度的第五透镜;
    具有正光焦度的第六透镜,所述第六透镜的像侧面于光轴附近为凸面,所述第六透镜的物侧面与所述第六透镜的像侧面皆为非球面,所述第六透镜的物侧面与所述第六透镜的像侧面中至少一个面设置有至少一个反曲点;
    具有负光焦度的第七透镜;
    所述光学镜头满足下列关系式:
    -5<f2/f1<15,最大光学畸变≤10%;
    其中,f1为第一透镜的焦距,f2为第二透镜的焦距。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    2.5<tan(HFOV)*TTL/ImgH<3.5;
    其中,tan(HFOV)为所述光学镜头的最大视场角的一半的正切值,TTL为所述第一透镜物侧面到所述光学镜头的成像面于光轴上的距离,ImgH为所述光学镜头的最大成像圆半径。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    -15<f5/f<20;
    其中,f为所述光学镜头的有效焦距,f5为所述第五透镜的焦距。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    -5<(f1+f4)/f<-3;
    其中,f1为所述第一透镜的焦距,f4为所述第六透镜的焦距,f为所述光学镜头的有效焦距。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    1.0<CT3/(T12+T23)<1.8;
    其中,CT3为所述第三透镜在光轴上的厚度,T12为所述第一透镜与所述第二透镜在光轴上的空气间隔,T23为所述第二透镜与所述第三透镜在光轴上的空气间隔。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    -4<f12/f456<-1.5;
    其中,f12为所述第一透镜和所述第二透镜的组合焦距,f456为所述第四透镜、所述第五透镜和所述第六透镜的组合焦距。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    -6.0<R12/R13<-2.5;
    其中,R12为所述第六透镜的物侧表面于光轴处的曲率半径,R13为所述第六透镜的像侧表面于光轴处的曲率半径。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    0<(R8+R9)/(R8-R9)<2.0;
    其中,R8为所述第四透镜的物侧表面于光轴处的曲率半径,R9为所述第四透镜的像侧表面于光轴处的曲率半径。
  9. 一种摄像头模组,其特征在于,所述摄像头模组包括:
    权利要求1-8任一项所述的光学镜头;及
    感光元件,所述感光元件设置在所述光学镜头的像侧。
  10. 一种电子装置,其特征在于,包括:
    壳体;及
    权利要求9所述的摄像头模组,所述摄像头模组安装在所述壳体。
PCT/CN2020/123260 2020-10-23 2020-10-23 光学镜头、摄像头模组及电子装置 WO2022082734A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/605,985 US20220308323A1 (en) 2020-10-23 2020-10-23 Optical lens, camera module, and electronic device
PCT/CN2020/123260 WO2022082734A1 (zh) 2020-10-23 2020-10-23 光学镜头、摄像头模组及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/123260 WO2022082734A1 (zh) 2020-10-23 2020-10-23 光学镜头、摄像头模组及电子装置

Publications (1)

Publication Number Publication Date
WO2022082734A1 true WO2022082734A1 (zh) 2022-04-28

Family

ID=81291507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123260 WO2022082734A1 (zh) 2020-10-23 2020-10-23 光学镜头、摄像头模组及电子装置

Country Status (2)

Country Link
US (1) US20220308323A1 (zh)
WO (1) WO2022082734A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128781A (zh) * 2022-08-30 2022-09-30 江西联创电子有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201626036A (zh) * 2015-01-09 2016-07-16 中強光電股份有限公司 定焦鏡頭
CN106291882A (zh) * 2016-09-06 2017-01-04 浙江舜宇光学有限公司 摄像镜头
CN106896476A (zh) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 光学成像镜头
CN109270662A (zh) * 2018-11-27 2019-01-25 浙江舜宇光学有限公司 光学成像镜头
US20190049698A1 (en) * 2017-08-14 2019-02-14 Ability Enterprise Co., Ltd Optical lens
CN111722379A (zh) * 2019-03-20 2020-09-29 大立光电股份有限公司 光学成像透镜组、取像装置及电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036395A (ko) * 2018-09-28 2020-04-07 삼성전기주식회사 촬상 광학계
CN111505811B (zh) * 2020-07-02 2020-10-16 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201626036A (zh) * 2015-01-09 2016-07-16 中強光電股份有限公司 定焦鏡頭
CN106291882A (zh) * 2016-09-06 2017-01-04 浙江舜宇光学有限公司 摄像镜头
CN106896476A (zh) * 2016-12-30 2017-06-27 玉晶光电(厦门)有限公司 光学成像镜头
US20190049698A1 (en) * 2017-08-14 2019-02-14 Ability Enterprise Co., Ltd Optical lens
CN109270662A (zh) * 2018-11-27 2019-01-25 浙江舜宇光学有限公司 光学成像镜头
CN111722379A (zh) * 2019-03-20 2020-09-29 大立光电股份有限公司 光学成像透镜组、取像装置及电子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128781A (zh) * 2022-08-30 2022-09-30 江西联创电子有限公司 光学镜头
CN115128781B (zh) * 2022-08-30 2023-01-20 江西联创电子有限公司 光学镜头

Also Published As

Publication number Publication date
US20220308323A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CN111045188B (zh) 光学透镜组、取像模组和电子装置
CN109581627B (zh) 摄像光学镜头
CN112230370A (zh) 光学镜头、摄像头模组及电子装置
WO2022042513A1 (zh) 光学镜头及成像设备
WO2021217664A1 (zh) 光学成像系统、取像模组和电子装置
CN110398822B (zh) 摄像光学镜头
CN109613681B (zh) 摄像光学镜头
CN113138458A (zh) 光学系统、取像模组及电子设备
CN110531491B (zh) 摄像光学镜头
CN114706197A (zh) 光学镜头、摄像模组及电子设备
CN114326026A (zh) 光学镜头、摄像模组及电子设备
WO2022110066A1 (zh) 光学成像系统、取像模组及电子装置
CN212543902U (zh) 一种光学镜头、摄像模组及电子设备
CN212111955U (zh) 光学系统、镜头模组和电子设备
WO2022082734A1 (zh) 光学镜头、摄像头模组及电子装置
CN110346908B (zh) 摄像光学镜头
CN213399034U (zh) 光学镜头、摄像头模组及电子装置
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN114326052B (zh) 光学系统、取像模组及电子设备
CN113433652B (zh) 光学系统、镜头模组和电子设备
TWI793570B (zh) 光學成像系統、取像模組及電子裝置
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
WO2022126533A1 (zh) 光学镜头、摄像头模组、电子装置和车辆
CN214845997U (zh) 光学系统、摄像模组及电子设备
TWI442128B (zh) 薄型化攝影透鏡組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958316

Country of ref document: EP

Kind code of ref document: A1