WO2022042513A1 - 光学镜头及成像设备 - Google Patents

光学镜头及成像设备 Download PDF

Info

Publication number
WO2022042513A1
WO2022042513A1 PCT/CN2021/114185 CN2021114185W WO2022042513A1 WO 2022042513 A1 WO2022042513 A1 WO 2022042513A1 CN 2021114185 W CN2021114185 W CN 2021114185W WO 2022042513 A1 WO2022042513 A1 WO 2022042513A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
conditional formula
satisfies
Prior art date
Application number
PCT/CN2021/114185
Other languages
English (en)
French (fr)
Inventor
曾昊杰
于笑枝
刘绪明
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Publication of WO2022042513A1 publication Critical patent/WO2022042513A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the technical field of lens imaging, in particular to an optical lens and an imaging device.
  • ToF Time of Flight, in-flight ranging
  • IToF IToF technology
  • DToF technology directly measures flight time.
  • IToF technology DToF technology has higher precision, shorter ranging time, and anti-interference. The ability is strong, and the calibration is relatively simple.
  • the trend of ultra-high-definition and light, thin and short electronic products requires users to have high resolution and small size of the DToF lens configured on electronic products; on the other hand, because the most iconic function of DToF technology is to measure the depth of field, etc. Therefore, the DToF lens is required to have the characteristics of wide viewing angle, large aperture, and infrared imaging to meet the precise measurement of distance information.
  • existing optical lenses applied to smartphones cannot meet these requirements at the same time.
  • the purpose of the present invention is to provide an optical lens and an imaging device for solving the above problems.
  • the present invention provides an optical lens, which sequentially includes from the object side to the imaging surface: a first lens with positive refractive power, the object side of the first lens is convex, and the image side of the first lens is concave or convex. diaphragm; the second lens with positive refractive power, the object side of the second lens is concave, the image side of the second lens is convex; the third lens with negative refractive power, the object side of the third lens is convex, The image side surface of the third lens is concave at the near optical axis and has at least one inflection point; and a filter.
  • the first lens, the second lens, and the third lens are all plastic aspherical lenses; the optical lens satisfies the following conditional formula: 1.55 ⁇ f/EPD ⁇ 1.65; wherein, f represents the optical lens The focal length of the lens, EPD represents the entrance pupil diameter of the optical lens.
  • the present invention provides an imaging device, comprising an imaging element and the optical lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
  • the optical lens provided by the present invention has the characteristics of wide viewing angle, large aperture, and high infrared imaging quality through reasonable setting of the diaphragm and each lens, while satisfying the high-quality resolution capability. to meet the imaging requirements of imaging devices using DToF technology.
  • FIG. 1 is a schematic structural diagram of an optical lens in a first embodiment of the present invention
  • Fig. 2 is the field curvature curve diagram of the optical lens in the first embodiment of the present invention
  • FIG 3 is an optical distortion curve diagram of the optical lens in the first embodiment of the present invention.
  • Fig. 4 is the relative illuminance curve diagram of the optical lens in the first embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical lens in a second embodiment of the present invention.
  • FIG. 6 is a field curvature diagram of an optical lens in a second embodiment of the present invention.
  • FIG. 7 is an optical distortion curve diagram of an optical lens in a second embodiment of the present invention.
  • Fig. 8 is the relative illuminance curve diagram of the optical lens in the second embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical lens in a third embodiment of the present invention.
  • FIG. 10 is a field curvature diagram of an optical lens in a third embodiment of the present invention.
  • FIG 11 is an optical distortion curve diagram of the optical lens in the third embodiment of the present invention.
  • FIG. 12 is a relative illuminance curve diagram of an optical lens in a third embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an imaging device in a fourth embodiment of the present invention.
  • the invention provides an optical lens, which sequentially includes from the object side to the imaging surface: a first lens with positive refractive power; a diaphragm; a second lens with positive refractive power; a third lens with negative refractive power; piece.
  • the object side of the first lens is convex, and the image side is concave or convex; the object side of the second lens is concave and the image side is convex; the object side of the third lens is convex, and the image side of the third lens is at the near optical axis It is concave and has at least one inflection point; wherein, the first lens, the second lens and the third lens are all plastic aspherical lenses.
  • the diaphragm is arranged between the first lens and the second lens, so that the tolerance of the entire lens is better, which is beneficial to the improvement of product yield.
  • the optical lens satisfies the following conditional formula:
  • f represents the focal length of the optical lens
  • EPD represents the entrance pupil diameter of the optical lens. Satisfying the conditional formula (1) enables the optical lens to have a larger aperture, which can reasonably control the light transmission amount of the optical lens, which is beneficial to reduce the aberration of the optical lens and improve the resolution of the optical lens.
  • the optical lens satisfies the following conditional formula:
  • n1 represents the refractive index of the first lens
  • n2 represents the refractive index of the second lens
  • n3 represents the refractive index of the third lens
  • V1 represents the Abbe number of the first lens
  • V2 represents the Abbe number of the second lens.
  • the optical lens satisfies the following conditional formula:
  • TTL represents the total optical length of the optical lens
  • IH represents the maximum image height of the optical lens on the imaging plane
  • f represents the focal length of the optical lens. Satisfying the conditional formula (6), the focal length and the total optical length of the optical lens can be reasonably controlled, which is beneficial to shorten the total optical length of the optical lens.
  • the optical lens satisfies the following conditional formula:
  • FOV represents the maximum field angle of the optical lens
  • DM1 represents the effective diameter of the first lens
  • CT1 represents the central thickness of the first lens.
  • the optical lens satisfies the following conditional formula:
  • f3 represents the focal length of the third lens
  • f represents the focal length of the optical lens. Satisfying the conditional formula (9) can make the third lens have a larger negative refractive power, and can better shrink the light, which is beneficial to reduce the volume of the optical lens, and at the same time, is beneficial to the correction of field curvature and distortion.
  • the optical lens satisfies the following conditional formula:
  • f represents the focal length of the optical lens
  • f1 represents the focal length of the first lens
  • f2 represents the focal length of the second lens
  • f3 represents the focal length of the third lens.
  • the optical lens satisfies the following conditional formula:
  • ⁇ 6 represents the maximum inclination angle of the image side surface of the third lens
  • ⁇ C represents the maximum incident angle of the chief ray of the optical lens.
  • Satisfying the conditional formula (12) can reasonably control the incident angle of the chief ray of the optical lens, which is beneficial to improve the matching degree of the optical lens and the image sensor, and improve the resolution quality of the optical lens. At the same time, it can reduce the difficulty of aberration correction for a large field of view angle, which is beneficial to the improvement of the relative illuminance of the peripheral field of view.
  • the optical lens satisfies the following conditional formula:
  • R2 represents the curvature radius of the image side of the first lens
  • R5 represents the curvature radius of the object side of the third lens
  • DM1 represents the effective diameter of the first lens
  • DM3 represents the effective diameter of the third lens.
  • the optical lens satisfies the following conditional formula:
  • R1 represents the radius of curvature of the object side of the first lens
  • R2 represents the radius of curvature of the image side of the first lens
  • R3 represents the radius of curvature of the object side of the second lens
  • R4 represents the radius of curvature of the image side of the second lens
  • R5 represents the curvature radius of the object side surface of the third lens
  • R6 represents the curvature radius of the image side surface of the third lens.
  • the optical lens satisfies the following conditional formula:
  • CT2 represents the center thickness of the second lens
  • CT3 represents the center thickness of the third lens
  • DM2 represents the effective diameter of the second lens
  • DM3 represents the effective diameter of the third lens.
  • the optical lens satisfies the following conditional formula:
  • CT12 represents the separation distance between the first lens and the second lens on the optical axis
  • CT23 represents the separation distance between the second lens and the third lens on the optical axis
  • TTL represents the total optical length of the optical lens.
  • the present invention will be further described below with a plurality of embodiments.
  • the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
  • the following examples are only preferred embodiments of the present invention, but the embodiments of the present invention are not only limited by the following examples, and any other changes, substitutions, combinations or simplifications that do not deviate from the innovations of the present invention, All should be regarded as equivalent replacement modes, and all are included in the protection scope of the present invention.
  • the surface shape of the aspherical lens satisfies the following equation:
  • z is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis
  • c is the paraxial curvature radius of the surface
  • k is the quadratic surface coefficient
  • a 2i is the 2i-order a Spherical coefficient.
  • FIG. 1 is a schematic structural diagram of an optical lens 100 provided by a first embodiment of the present invention.
  • the optical lens 100 sequentially includes a first lens L1, a diaphragm ST, a second lens along the optical axis from the object side to the imaging plane Lens L2, third lens L3, and infrared filter G1.
  • the first lens L1 has positive refractive power, the object side S1 is convex, and the image side S2 is concave;
  • the second lens L2 has positive refractive power, the object side S3 is concave, and the image side S4 is convex;
  • the third lens L3 has negative refractive power, the object side S5 is convex, the image side S6 is concave at the near optical axis, and has at least one inflection point.
  • the first lens L1, the second lens L2 and the third lens L3 are all plastic aspherical lenses.
  • the infrared filter G1 can effectively filter out other light except infrared, and can make the optical lens have higher resolution in the infrared band.
  • each lens in the optical lens 100 provided in this embodiment is shown in Table 1.
  • the vertical distance from the inflection point on the image side S6 of the third lens of the optical lens 100 to the optical axis is 1.69 mm
  • the sagittal height of the inflection point relative to the center of the image side surface of the third lens is 0.26 mm.
  • Table 2 shows the surface shape coefficients of each aspherical surface of the optical lens 100 in this embodiment.
  • FIG. 2 , FIG. 3 and FIG. 4 Graphs of field curvature, distortion and relative illuminance of the optical lens 100 are shown in FIG. 2 , FIG. 3 and FIG. 4 , respectively.
  • Figure 2 shows the meridional field curvature and sagittal field curvature of different wavelengths.
  • Figure 3 shows the amount of distortion corresponding to different image heights on the imaging plane.
  • the ordinate is the angle of view
  • the abscissa is the amount of F-Tan ⁇ distortion.
  • the distortion in this embodiment is - Within 1%, and the distortion is all negative, it means that the distortion is well corrected.
  • Figure 4 shows the relative illuminance corresponding to different image heights on the imaging surface.
  • the ordinate in the figure is the relative illuminance value, and the abscissa is the field of view angle. It can be seen from Figure 4 that the relative illuminance of the lens at the maximum field of view When it reaches more than 50%, the relative illuminance of the peripheral field of view is also high, indicating that the relative illuminance of the optical lens 100 is well improved.
  • FIG. 5 is a schematic structural diagram of the optical lens 200 provided in this embodiment.
  • the optical lens 200 in this embodiment is roughly the same in structure as the optical lens 100 in the first embodiment, and the difference is: this embodiment
  • the materials of the first lens, the second lens and the third lens of the optical lens 200 in the example are all different from those of the optical lens 100, and the curvature radii of the lenses are different.
  • each lens in the optical lens 200 provided in this embodiment is shown in Table 3.
  • the vertical distance from the inflection point on the image side S6 of the third lens of the optical lens 200 to the optical axis is 2.04 mm
  • the sagittal height of the inflection point relative to the center of the image side of the third lens is 0.296 mm.
  • Table 4 shows the surface shape coefficients of each aspherical surface of the optical lens 200 in this embodiment.
  • FIG. 6 Graphs of field curvature, distortion and relative illuminance of the optical lens 200 are shown in FIG. 6 , FIG. 7 and FIG. 8 , respectively.
  • the meridional field curvature and the sagittal field curvature of different wavelengths are both within ⁇ 0.15 mm, indicating that the field curvature of the optical lens 200 is well corrected.
  • the distortion in this embodiment is within -1%, and the distortions are all negative values, indicating that the distortion is well corrected.
  • FIG. 8 that the relative illuminance of the lens at the maximum field of view reaches more than 50%, and the relative illuminance of the peripheral field of view is also higher, indicating that the relative illuminance of the optical lens 200 is well improved.
  • FIG. 9 is a schematic structural diagram of an optical lens 300 provided in this embodiment.
  • the optical lens 300 in this embodiment is roughly the same in structure as the optical lens 100 in the first embodiment, and the difference is: this embodiment
  • the image side S2 of the first lens of the optical lens 300 in the example is a convex surface, and the materials of the first lens L1, the second lens L2 and the third lens L3 are different from those of the optical lens 100, and the curvature radii of the lenses are different.
  • each lens in the optical lens 300 provided in this embodiment is shown in Table 5.
  • the vertical distance from the inflection point on the image side of the third lens of the optical lens 300 to the optical axis is 2.04 mm
  • the sagittal height of the inflection point relative to the center of the image side of the third lens is 0.368 mm.
  • Table 6 shows the surface shape coefficients of each aspherical surface of the optical lens 300 in this embodiment.
  • FIG. 10 Graphs of field curvature, distortion and relative illuminance of the optical lens 300 are shown in FIG. 10 , FIG. 11 and FIG. 12 , respectively.
  • Figure 10 the meridional field curvature and sagittal field curvature of different wavelengths are within ⁇ 0.15mm, indicating that the field curvature is well corrected.
  • FIG. 11 the distortion in this embodiment is within -1%, and the distortions are all negative values, indicating that the distortion is well corrected.
  • FIG. 12 the relative illuminance of the lens at the maximum field of view reaches more than 50%, and the relative illuminance of the peripheral field of view is also higher, indicating that the relative illuminance of the optical lens 300 is well improved.
  • Table 7 shows the optical characteristics corresponding to the above three embodiments, mainly including the focal length f, the aperture number F#, the optical total length TTL, the field of view angle FOV, and the values corresponding to each of the above conditional expressions.
  • Example 1 Example 2
  • Example 3 f(mm) 3.328 3.393 3.389 F# 1.6 1.6 1.6 TTL(mm) 4.975 4.983 4.975
  • the optical lens provided by the embodiment of the present invention has the following advantages:
  • the optical lens provided by the present invention adopts three plastic aspherical lenses with specific refractive power, the first lens and the second lens are made of plastic materials with low refractive index, which reduces the production cost, and adopts a specific surface shape and its Matching, while satisfying the large field of view, the structure is more compact and the volume is smaller, which better achieves the balance between the wide angle of view and the miniaturization of the lens.
  • the optical lens provided by the present invention has the advantages of wide viewing angle, large aperture (up to 1.6 aperture), total length, small distortion, and high infrared imaging quality while satisfying high-quality resolution capabilities, and not only can better satisfy DToF requirements
  • the requirements of the lens can also meet the needs of light, thin, short and miniaturized imaging devices and a high screen-to-body ratio.
  • the embodiment of the present application further provides an imaging device 400.
  • the imaging device 400 includes an imaging element 410 and an optical lens (eg, the optical lens 100) in any of the foregoing embodiments.
  • the imaging element 410 may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 400 may be a smart phone, a Pad, or any other portable electronic device in which the optical lens 100 is mounted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

本发明公开了一种光学镜头及成像设备,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜,光阑,第二透镜,第三透镜,滤光片;所述第一透镜具有正光焦度,其物侧面为凸面,其像侧面为凹面或凸面;所述第二透镜具有正光焦度,其物侧面为凹面,其像侧面为凸面;所述第三透镜具有负光焦度,其物侧面为凸面,其像侧面在近光轴处为凹面,且其像侧面至少有一个反曲点;其中,所述第一透镜、所述第二透镜、所述第三透镜均为塑胶非球面镜片。本发明提供的光学镜头具有广视角、大光圈,小畸变及高成像质量特点,更适用于DToF技术的设计需求。

Description

光学镜头及成像设备
交叉引用
本申请要求2020年08月26日递交的发明名称为:“光学镜头及成像设备”的申请号202010866914.1的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及透镜成像技术领域,特别是涉及一种光学镜头及成像设备。
背景技术
近年来,三维深度识别技术得到快速发展,与此同时,具备三维空间感知能力的ToF(Time of Flight,飞行测距)立体深感镜头,开启了深度信息的新未来,并在智能手机行业受到广泛关注和应用。ToF技术根据测距原理可分为DToF技术和IToF技术,DToF技术(direct Time-of-Flight)为直接测量飞行时间,DToF技术相对于IToF技术具备更高精度、测距时间更短、抗干扰能力强,标定也相对简单。
随着苹果公司推出采用DToF技术的接收端镜头的新款iPad Pro系列平板电脑,DToF镜头在人脸识别、立体成像、体感交互等设备中需求不断扩大。
一方面,用户对电子产品的超高清以及轻薄短小化趋势,要求配置在电子产品上的DToF镜头具有高解像力、小体积的特点;另一方面,由于DToF技术最标志性的功能是测量景深等数据信息,因此要求DToF镜头具有广视角、大光圈、红外成像等特性以满足距离信息的精准测量。然而,现有的应用于智能手机的光学镜头还无法同时满足这些要求。
发明内容
为此,本发明的目的在于提出一种光学镜头及成像设备,用于解决上述问题。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明提供了一种光学镜头,从物侧到成像面依次包括:具有正光焦度的第一透镜,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面或凸面;光阑;具有正光焦度的第二透镜,第二透镜的物侧面为凹面,第二透镜的像侧面为凸面;具有负光焦度的第三透镜,第三透镜的物侧面为凸面,第三透镜的像侧面在近光轴处为凹面且具有至少一个反曲点;以及滤光片。其中,所述第一透镜、所述第二透镜、所述第三透镜均为塑胶非球面镜片;所述光学镜头满足以下条件式:1.55<f/EPD<1.65;其中,f表示所述光学镜头的焦距,EPD表示所述光学镜头的入瞳直径。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头,通过光阑及各透镜合理设置,在满足高品质解像能力的同时,还具有广视角、大光圈、红外成像品质高等特点,能够更好的满足采用DToF技术的成像设备的成像需求。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的场曲曲线图;
图3为本发明第一实施例中的光学镜头的光学畸变曲线图;
图4为本发明第一实施例中的光学镜头的相对照度曲线图;
图5为本发明第二实施例中的光学镜头的结构示意图;
图6为本发明第二实施例中的光学镜头的场曲曲线图;
图7为本发明第二实施例中的光学镜头的光学畸变曲线图;
图8为本发明第二实施例中的光学镜头的相对照度曲线图;
图9为本发明第三实施例中的光学镜头的结构示意图;
图10为本发明第三实施例中的光学镜头的场曲曲线图;
图11为本发明第三实施例中的光学镜头的光学畸变曲线图;
图12为本发明第三实施例中的光学镜头的相对照度曲线图;
图13为本发明第四实施例中成像设备的结构示意图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供一种光学镜头,从物侧到成像面依次包括:具有正光焦度的第一透镜;光阑;具有正光焦度的第二透镜;具有负光焦度的第三透镜;滤光片。第一透镜的物侧面为凸面、像侧面为凹面或凸面;第二透镜的物侧面为凹面、像侧面为凸面;第三透镜的物侧面为凸面,第三透镜的像侧面在近光轴处为凹面且具有至少一个反曲点;其中,第一透镜、第二透镜、第三透镜均为塑胶非球面镜片。光阑设于第一透镜和第二透镜之间,使整个镜头的公差较好,有利于产品良率的提高。
在一些实施方式中,光学镜头满足以下条件式:
1.55<f/EPD<1.65;  (1)
其中,f表示光学镜头的焦距,EPD表示光学镜头的入瞳直径。满足条件式(1),使光学镜头具有较大光圈,能够合理控制光学镜头的通光量,有利于减小光学镜头的像差,提高光学镜头的解像力。
在一些实施方式中,光学镜头满足以下条件式:
1.0<n1<1.55;  (2)
1.0<n2<1.55;  (3)
1.0<n3<1.66;  (4)
0.9<V1/V2<1.1;  (5)
其中,n1表示第一透镜的折射率,n2表示第二透镜的折射率,n3表示第三透镜的折射率,V1表示第一透镜的阿贝数,V2表示第二透镜的阿贝数。满足条件式(2)至(5),通过三片塑胶材质透镜的合理搭配,使镜头满足高品质解像的同时,还有利于降低生产成本。
在一些实施方式中,光学镜头满足以下条件式:
3.3mm<(TTL/IH)×f<3.5mm;  (6)
其中,TTL表示光学镜头的光学总长,IH表示光学镜头在成像面上的最大像高,f表示光 学镜头的焦距。满足条件式(6),能够合理地控制光学镜头的焦距和光学总长,有利于缩短光学镜头的光学总长。
在一些实施方式中,光学镜头满足以下条件式:
0.21mm -1<tan 2(FOV/2)/DM1<0.23mm -1;  (7)
0.2<CT1/DM1<0.3;  (8)
其中,FOV表示光学镜头的最大视场角,DM1表示第一透镜的有效直径,CT1表示第一透镜的中心厚度。满足条件式(7)、(8)有利于保证增大物侧方的视场角的同时,实现光学镜头头部尺寸做小和大光圈,减小屏幕的开窗面积,有利于实现镜头的头部小型化,提高便携式电子产品的屏占比。
在一些实施方式中,光学镜头满足以下条件式:
-1.2<f3/f<-1.0;  (9)
其中,f3表示第三透镜的焦距,f表示光学镜头的焦距。满足条件式(9),能够使第三透镜具有较大的负光焦度,能够更好的收缩光线,有利于减小光学镜头的体积,同时,有利于场曲和畸变的矫正。
在一些实施方式中,光学镜头满足以下条件式:
0.9<(f1+f2+f3)/f<1.1;  (10)
-1.3<f1/f3<-1.1;  (11)
其中,f表示光学镜头的焦距,f1表示第一透镜的焦距,f2表示第二透镜的焦距,f3表示第三透镜的焦距。满足条件式(10)、(11),能够合理的分配各透镜的光焦度,有利于矫正球差和降低高级像差的矫正难度,使光学镜头具有高质量的解像力。
在一些实施方式中,光学镜头满足以下条件式:
0.7<|θ 6C|<2.3;  (12)
其中,θ 6表示第三透镜像侧面的最大面倾角,θ C表示光学镜头的最大主光线入射角度。满足条件式(12),能够合理控制光学镜头的主光线入射角,有利于提高光学镜头与影像传感器的匹配度,提高光学镜头的解像质量。同时,能够减小大视场角度的像差矫正难度,有利于周边视场相对照度的提升。
在一些实施方式中,光学镜头满足以下条件式:
3<R2/DM1<23;  (13)
5.2<R5/DM3<5.3;  (14)
其中,R2表示第一透镜的像侧面的曲率半径,R5表示第三透镜的物侧面的曲率半径,DM1表示第一透镜的有效直径,DM3表示第三透镜的有效直径。满足条件式(13)、(14),能够合理控制光线入射光学镜头的入射角,有利于降低光学畸变校正的难度。
在一些实施方式中,光学镜头满足以下条件式:
-1.5<(R1+R2)/(R1-R2)<-1;  (15)
3.3<(R3+R4)/(R3-R4)<3.9;  (16)
1.1<(R5+R6)/(R5-R6)<2.1;  (17)
其中,R1表示第一透镜的物侧面的曲率半径,R2表示第一透镜的像侧面的曲率半径,R3表示第二透镜的物侧面的曲率半径,R4表示第二透镜的像侧面的曲率半径,R5表示第三透镜的物侧面的曲率半径,R6表示第三透镜的像侧面的曲率半径。满足条件式(15)、(16)、(17),能够合理控制第一透镜、第二透镜及第三透镜的面型,减小光学镜头的敏感度,提高生产良率,同时,可有效控制光线的屈折力,减缓光线转折的走势,降低像差矫正难度,有利于提升光学镜头的相对照度和解像能力。
在一些实施方式中,光学镜头满足以下条件式:
0.3<CT2/DM2<0.4;  (18)
0.1<CT3/DM3<0.2;  (19)
其中,CT2表示第二透镜的中心厚度,CT3表示第三透镜的中心厚度,DM2表示第二透镜的有效直径,DM3表示第三透镜的有效直径。满足条件式(18)、(19),能够合理控制第二透镜、第三透镜的口径,有利于减小光学镜头的体积,同时,可降低第二透镜、第三透镜的成型难度,从而降低加工敏感度,提高量产率。
在一些实施方式中,光学镜头满足以下条件式:
0.19<(CT12+CT23)/TTL<0.25;  (20)
其中,CT12表示第一透镜和第二透镜在光轴上的间隔距离,CT23表示第二透镜和第三透镜在光轴上的间隔距离,TTL表示光学镜头的光学总长。满足条件式(20),能够合理地分配透镜的中心厚度和透镜之间的间隔距离,调节光线分布,有利于光学镜头解像的提升,同时,实现光学镜头结构的紧凑性以及小型化。
下面分多个实施例对本发明进行进一步的说明。在各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。下述实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受下述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
在本发明各个实施例中非球面镜头的表面形状均满足下列方程:
Figure PCTCN2021114185-appb-000001
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数,A 2i为第2i阶的非球面面型系数。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学镜头100的结构示意图,该光学镜头100沿光轴从物侧到成像面依次包括:第一透镜L1、光阑ST、第二透镜L2、第三透镜L3、以及红外滤光片G1。
第一透镜L1具有正光焦度,其物侧面S1为凸面、像侧面S2为凹面;
第二透镜L2具有正光焦度,其物侧面S3为凹面、像侧面S4为凸面;
第三透镜L3具有负光焦度,其物侧面S5为凸面、像侧面S6在近光轴处为凹面且至少有一个反曲点。
第一透镜L1、第二透镜L2和第三透镜L3均为塑胶非球面透镜。
红外滤光片G1可以有效的过滤掉红外以外的其它光线,能够使该光学镜头在红外波段具有更高的解像力。
本实施例提供的光学镜头100中各个镜片的相关参数如表1所示,在本实施例中,光学镜头100的第三透镜的像侧面S6上的反曲点至光轴的垂直距离为1.69mm,该反曲点相对第三透镜的像侧面中心的矢高为0.26mm。
表1
Figure PCTCN2021114185-appb-000002
本实施例中的光学镜头100的各非球面的面型系数如表2所示。
表2
Figure PCTCN2021114185-appb-000003
光学镜头100的场曲、畸变和相对照度的曲线图分别如图2、图3和图4所示。由图2可以看出,不同波长的子午场曲和弧矢场曲均在±0.1mm以内,说明场曲得到良好的校正。图3所示表示为成像面上不同像高所对应的畸变量,图中纵坐标为视场角,横坐标为F-Tanθ畸变量,由图3可以看出,本实施例的畸变在-1%以内,且畸变皆为负值,说明畸变得到良好地校 正。图4所示表示成像面上不同像高所对应的相对照度,图中纵坐标为相对照度值,横坐标为视场角,由图4可以看出,该镜头在最大视场处的相对照度达到50%以上,周边视场相对照度也较高,说明光学镜头100的相对照度得到良好的提升。
第二实施例
请参阅图5,所示为本实施例提供的光学镜头200的结构示意图,本实施例中的光学镜头200与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头200的第一透镜、第二透镜及第三透镜的材料均与光学镜头100的不同,以及各透镜的曲率半径不同。
本实施例提供的光学镜头200中各个镜片的相关参数如表3所示。在本实施例中,光学镜头200的第三透镜的像侧面S6上的反曲点至光轴的垂直距离为2.04mm,该反曲点相对第三透镜的像侧面中心的矢高为0.296mm。
表3
Figure PCTCN2021114185-appb-000004
本实施例中的光学镜头200的各非球面的面型系数如表4所示。
表4
Figure PCTCN2021114185-appb-000005
光学镜头200的场曲、畸变和相对照度的曲线图分别如图6、图7和图8所示。由图6可以看出,不同波长的子午场曲和弧矢场曲均在±0.15mm以内,说明光学镜头200的场曲得到良好的校正。由图7可以看出,本实施例的畸变在-1%以内,且畸变皆为负值,说明畸变得到良好地校正。由图8可以看出,镜头在最大视场处的相对照度达到50%以上,周边视场相对照度也较高,说明光学镜头200的相对照度得到良好的提升。
第三实施例
请参阅图9,所示为本实施例提供的光学镜头300的结构示意图,本实施例中的光学镜头300与第一实施例中的光学镜头100的结构大抵相同,不同之处在于:本实施例中的光学镜头300的第一透镜的像侧面S2为凸面,且第一透镜L1、第二透镜L2及第三透镜L3的材料均与光学镜头100的不同,以及各透镜的曲率半径不同。
本实施例提供的光学镜头300中各个镜片的相关参数如表5所示。在本实施例中,光学镜头300的第三透镜的像侧面的反曲点至光轴的垂直距离为2.04mm,该反曲点相对第三透镜的像侧面中心的矢高为0.368mm。
表5
Figure PCTCN2021114185-appb-000006
Figure PCTCN2021114185-appb-000007
本实施例中的光学镜头300的各非球面的面型系数如表6所示。
表6
Figure PCTCN2021114185-appb-000008
光学镜头300的场曲、畸变和相对照度的曲线图分别如图10、图11和图12所示。由图10可以看出,不同波长的子午场曲和弧矢场曲均在±0.15mm以内,说明场曲得到良好的校正。由图11可以看出,本实施例的畸变在-1%以内,且畸变皆为负值,说明畸变得到良好地校正。由图12可以看出,镜头在最大视场处的相对照度达到50%以上,周边视场相对照度也较高,说明光学镜头300的相对照度得到良好的提升。
表7是上述三个实施例对应的光学特性,主要包括焦距f、光圈数F#、光学总长TTL及视场角FOV,以及与上述每个条件式对应的数值。
表7
  实施例1 实施例2 实施例3
f(mm) 3.328 3.393 3.389
F# 1.6 1.6 1.6
TTL(mm) 4.975 4.983 4.975
FOV 72° 72° 72°
EPD(mm) 2.055 2.121 2.118
f/EPD 1.619 1.600 1.599
n1 1.544 1.535 1.516
n2 1.535 1.516 1.516
n3 1.516 1.651 1.635
V1/V2 1.005 0.978 1
(TTL/IH)×f 3.365 3.436 3.427
tan(FOV/2) 2/DM1 0.224 0.217 0.219
CT1/DM1 0.282 0.280 0.250
f3/f -1.006 -1.126 -1.075
(f1+f2+f3)/f 1.004 0.958 1.029
f1/f3 -1.214 -1.130 -1.214
6C| 2.218 0.754 1.512
R2/DM1 3.852 5.089 22.190
R5/DM3 5.296 5.269 5.267
(R1+R2)/(R1-R2) -1.495 -1.376 -1.084
(R3+R4)/(R3-R4) 3.676 3.891 3.361
(R5+R6)/(R5-R6) 1.164 1.965 2.050
CT2/DM2 0.392 0.381 0.356
CT3/DM3 0.187 0.186 0.142
(CT12+CT23)/TTL 0.199 0.195 0.213
综上所述,本发明实施例提供的光学镜头具有以下优点:
(1)本发明提供的光学镜头采用三片具有特定屈折力的塑胶非球面镜片,第一透镜和第二透镜均采用低折射率的塑胶材料,降低生产成本,并且采用特定的表面形状及其搭配,在满足大视场角的同时结构更紧凑,体积更小型化,较好的实现了广视角和镜头小型化的均衡。
(2)本发明提供的光学镜头满足高品质解像能力的同时,具有广视角、大光圈(光圈可达 1.6)、总长短、畸变小、红外成像品质高等优点,不但能够更好的满足DToF镜头的要求,还能满足成像设备的轻薄短小化以及高屏占比的需求。
第四实施例
本申请实施例还提供了一种成像设备400,请参阅图13所示,成像设备400包括成像元件410和上述任一实施例中的光学镜头(例如光学镜头100)。成像元件410可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备400可以是智能手机、Pad以及其它任意一种形态的装载了光学镜头100的便携式电子设备。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种光学镜头,其特征在于,沿光轴从物侧到成像面依次包括:第一透镜,光阑,第二透镜,第三透镜,滤光片;
    所述第一透镜具有正光焦度,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面或凸面;
    所述第二透镜具有正光焦度,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;所述第三透镜具有负光焦度,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面在近光轴处为凹面,且所述第三透镜的像侧面至少有一个反曲点;
    其中,所述第一透镜、所述第二透镜、所述第三透镜均为塑胶非球面镜片;
    所述光学镜头满足条件式:1.55<f/EPD<1.65;
    其中,f表示所述光学镜头的焦距,EPD表示所述光学镜头的入瞳直径。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    1.0<n1<1.55;
    1.0<n2<1.55;
    1.0<n3<1.66;
    0.9<V1/V2<1.1;
    其中,n1表示所述第一透镜的折射率,n2表示所述第二透镜的折射率,n3表示所述第三透镜的折射率,V1表示所述第一透镜的阿贝数,V2表示所述第二透镜的阿贝数。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    3.3mm<(TTL/IH)×f<3.5mm;
    其中,TTL表示所述光学镜头的光学总长,IH表示所述光学镜头在所述成像面上的最大像高,f表示所述光学镜头的焦距。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.21mm -1<tan 2(FOV/2)/DM1<0.23mm -1
    0.2<CT1/DM1<0.3;
    其中,FOV表示所述光学镜头的最大视场角,CT1表示所述第一透镜的中心厚度,DM1表示所述第一透镜的有效直径。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -1.2<f3/f<-1.0;
    其中,f3表示所述第三透镜的焦距,f表示所述光学镜头的焦距。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.9<(f1+f2+f3)/f<1.1;
    -1.3<f1/f3<-1.1;
    其中,f表示所述光学镜头的焦距,f1表示所述第一透镜的焦距,f2表示所述第二透镜的焦距,f3表示所述第三透镜的焦距。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.7<|θ 6C|<2.3;
    其中,θ 6表示所述第三透镜像侧面的最大面倾角,θ C表示所述光学镜头的最大主光线入射角度。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    3<R2/DM1<23;
    5.2<R5/DM3<5.3;
    其中,R2表示所述第一透镜的像侧面的曲率半径,R5表示所述第三透镜的物侧面的曲率半径,DM1表示所述第一透镜的有效直径,DM3表示所述第三透镜的有效直径。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    -1.5<(R1+R2)/(R1-R2)<-1;
    3.3<(R3+R4)/(R3-R4)<3.9;
    1.1<(R5+R6)/(R5-R6)<2.1;
    其中,R1表示所述第一透镜的物侧面的曲率半径,R2表示所述第一透镜的像侧面的曲率半径,R3表示所述第二透镜的物侧面的曲率半径,R4表示所述第二透镜的像侧面的曲率半径,R5表示所述第三透镜的物侧面的曲率半径,R6表示所述第三透镜的像侧面的曲率半径。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.3<CT2/DM2<0.4;
    0.1<CT3/DM3<0.2;
    其中,CT2表示所述第二透镜的中心厚度,CT3表示所述第三透镜的中心厚度,DM2表示所述第二透镜的有效直径,DM3表示所述第三透镜的有效直径。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:
    0.19<(CT12+CT23)/TTL<0.25;
    其中,CT12表示所述第一透镜和所述第二透镜在光轴上的间隔距离,CT23表示所述第二透镜和所述第三透镜在光轴上的间隔距离,TTL表示所述光学镜头的光学总长。
  12. 一种成像设备,其特征在于,包括如权利要求1-11任一项所述的光学镜头及成像元件,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
PCT/CN2021/114185 2020-08-26 2021-08-24 光学镜头及成像设备 WO2022042513A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010866914.1A CN111736319B (zh) 2020-08-26 2020-08-26 光学镜头及成像设备
CN202010866914.1 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022042513A1 true WO2022042513A1 (zh) 2022-03-03

Family

ID=72658854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114185 WO2022042513A1 (zh) 2020-08-26 2021-08-24 光学镜头及成像设备

Country Status (2)

Country Link
CN (1) CN111736319B (zh)
WO (1) WO2022042513A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381908A (zh) * 2022-12-29 2023-07-04 湖北华鑫光电有限公司 一种小型化3p广角镜头

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736319B (zh) * 2020-08-26 2020-11-17 江西联益光学有限公司 光学镜头及成像设备
CN112987252B (zh) * 2021-03-05 2023-11-07 江西晶超光学有限公司 光学系统、红外接收模组及电子设备
CN112666687B (zh) * 2021-03-17 2021-07-06 江西联益光学有限公司 光学镜头及成像设备
CN113296236B (zh) * 2021-05-12 2022-08-30 江西晶超光学有限公司 红外光学系统、红外接收模组及电子设备
CN114217427B (zh) * 2022-02-23 2022-07-15 江西联益光学有限公司 光学镜头
CN115166948B (zh) * 2022-07-28 2023-09-29 协益电子(苏州)有限公司 一种低成本玻塑混合监控镜头及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252312A (ja) * 2003-02-21 2004-09-09 Kyocera Corp 撮像レンズ
CN102122057A (zh) * 2010-01-07 2011-07-13 大立光电股份有限公司 摄像光学镜组
CN108020905A (zh) * 2016-11-03 2018-05-11 先进光电科技股份有限公司 光学成像系统
CN111061046A (zh) * 2019-10-29 2020-04-24 江西联创电子有限公司 红外光学成像镜头及成像设备
CN111736319A (zh) * 2020-08-26 2020-10-02 江西联益光学有限公司 光学镜头及成像设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264181A (ja) * 2006-03-28 2007-10-11 Fujinon Corp 撮像レンズ
TWI409497B (zh) * 2009-10-28 2013-09-21 Largan Precision Co Ltd 攝像光學鏡組
TWI467220B (zh) * 2012-09-10 2015-01-01 Largan Precision Co Ltd 成像系統鏡頭組
CN105137569B (zh) * 2015-09-02 2018-12-28 深圳市得润电子股份有限公司 一种取景镜头以及取景装置
CN106094178B (zh) * 2016-07-18 2019-03-22 瑞声科技(新加坡)有限公司 摄像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252312A (ja) * 2003-02-21 2004-09-09 Kyocera Corp 撮像レンズ
CN102122057A (zh) * 2010-01-07 2011-07-13 大立光电股份有限公司 摄像光学镜组
CN108020905A (zh) * 2016-11-03 2018-05-11 先进光电科技股份有限公司 光学成像系统
CN111061046A (zh) * 2019-10-29 2020-04-24 江西联创电子有限公司 红外光学成像镜头及成像设备
CN111736319A (zh) * 2020-08-26 2020-10-02 江西联益光学有限公司 光学镜头及成像设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381908A (zh) * 2022-12-29 2023-07-04 湖北华鑫光电有限公司 一种小型化3p广角镜头
CN116381908B (zh) * 2022-12-29 2024-05-07 湖北华鑫光电有限公司 一种小型化3p广角镜头

Also Published As

Publication number Publication date
CN111736319A (zh) 2020-10-02
CN111736319B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2022042513A1 (zh) 光学镜头及成像设备
CN111338060B (zh) 光学镜头及成像设备
TWI507725B (zh) 可攜式電子裝置與其光學成像鏡頭
WO2022143647A1 (zh) 光学镜头及成像设备
WO2022089327A1 (zh) 光学镜头及成像设备
WO2022222926A1 (zh) 光学镜头及成像设备
WO2022199465A1 (zh) 光学镜头及成像设备
CN111190270B (zh) 光学镜头及成像设备
CN108490582B (zh) 一种成像镜头及具有该成像镜头的图像采集设备
CN114114650B (zh) 光学镜头及成像设备
US10996435B2 (en) Optical imaging system
WO2021189431A1 (zh) 光学系统、镜头模组及电子设备
CN109270663B (zh) 一种光学成像镜头及应用该光学成像镜头的摄像装置
CN111929874B (zh) 光学镜头及成像设备
CN111290106B (zh) 光学镜头及成像设备
CN113433674B (zh) 光学镜头及成像设备
CN113376813B (zh) 光学镜头及成像设备
CN111221106A (zh) 光学系统、取像模组及电子设备
CN112433340A (zh) 光学系统、镜头模组和电子设备
CN111323891A (zh) 光学组件、取像模组及移动终端
CN113900236B (zh) 广角镜头及成像设备
CN210775999U (zh) 光学系统、镜头模组和电子设备
WO2021035758A1 (zh) 光学系统、镜头模组和电子设备
CN115079383B (zh) 光学镜头及成像设备
CN113325555B (zh) 光学镜头及成像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860348

Country of ref document: EP

Kind code of ref document: A1