WO2015058559A1 - 一种生长氮化物体单晶材料的装置及方法 - Google Patents

一种生长氮化物体单晶材料的装置及方法 Download PDF

Info

Publication number
WO2015058559A1
WO2015058559A1 PCT/CN2014/081877 CN2014081877W WO2015058559A1 WO 2015058559 A1 WO2015058559 A1 WO 2015058559A1 CN 2014081877 W CN2014081877 W CN 2014081877W WO 2015058559 A1 WO2015058559 A1 WO 2015058559A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
chamber
growth
raw material
growth area
Prior art date
Application number
PCT/CN2014/081877
Other languages
English (en)
French (fr)
Inventor
刘南柳
梁智文
陈蛟
张国义
Original Assignee
北京大学东莞光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学东莞光电研究院 filed Critical 北京大学东莞光电研究院
Priority to US14/647,835 priority Critical patent/US9611564B2/en
Priority to JP2015543313A priority patent/JP6027690B2/ja
Publication of WO2015058559A1 publication Critical patent/WO2015058559A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • C30B7/105Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes using ammonia as solvent, i.e. ammonothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth

Definitions

  • the present invention relates to the field of semiconductor optoelectronic materials, and more particularly to a novel apparatus and method for liquid phase epitaxial growth of a nitriding object single crystal material. Background technique
  • GaN is a third-generation semiconductor material. Due to its wide bandgap, high withstand voltage and high thermal conductivity, it has broad market prospects in the field of high-power GaN-based optoelectronic devices such as high-power LED/LD and high-frequency high-speed microwave detection. The industry is widely concerned.
  • the GaN material decomposes into metal gallium and nitrogen at a temperature of 877 ° C under normal pressure, it can be melted only at high temperature and high pressure (2220 ° C, 6 GPa).
  • the bottom pulling method also known as the Czochralski method or the CZ method
  • the bottom pulling method is difficult to grow GaN substrate materials.
  • the absence of GaN substrate materials forces current GaN-based devices to be fabricated using heteroepitaxial techniques.
  • the lattice and thermal stress mismatch between the epitaxial material and the heterogeneous substrate leads to high dislocation density of the epitaxial layer, which affects the performance of the device. Therefore, the development of homoepitaxial technology using high-quality GaN self-supporting substrate materials is the key to achieving high-power LED/LD, high-frequency, high-efficiency microwave power GaN-based devices.
  • HVPE hydride vapor phase epitaxy
  • HPNS high temperature and high pressure
  • Na Flux sodium flow
  • ammothermal growth HVPE has a fast growth rate and can grow in large size, but the prepared single crystal material has problems of high dislocation density ( ⁇ 10 6 cm - 2 ) and residual stress.
  • the crystals prepared by HPNS are of good quality ( ⁇ 10 2 cm - 2 ), but the growth conditions are harsh (1700 °C, 2 GPa).
  • the crystal quality of ammonia synthesis is also good ( ⁇ 10 3 cm - 2 ), but the crystal growth rate is relatively slow, and the requirements for laboratory equipment are relatively high, which is not conducive to industrial production.
  • the Na Flux growth conditions are moderate (700 ⁇ 1000 °C, 4-5 MPa), and the crystal quality is good ( ⁇ 10 4 cm- 2 ), which is the best way to prepare GaN bulk single crystal materials.
  • Na Flux has made some progress in growing GaN materials, and obtained GaN bulk single crystal materials with diameters greater than 2 inches and thicknesses greater than 2 cm.
  • the conventional reactor apparatus has only one chamber, and the raw material and the seed crystal are generally mixed together, and then the temperature is directly raised to grow the single crystal material.
  • the raw material solution inevitably contacts the surface of the seed crystal to form polycrystalline GaN and other intermediate products when the single crystal growth condition is not reached, thereby affecting the crystal quality of the material.
  • the gas-liquid interface produces GaN polycrystals, resulting in slower crystal growth rate.
  • the low utilization rate of raw materials is also an insurmountable disadvantage of the conventional single-chamber reactor structure. Summary of the invention
  • the invention provides a novel reaction kettle device and a method for growing a single crystal material of a nitrided object, which combines the reaction conditions and kinetic principles of Na Flux grown GaN, and realizes the priority of crystal nuclei on the surface of the seed crystal during the process of growing nitride. Growth, inhibiting the formation of polycrystalline nitride at the gas-liquid interface, increasing the growth rate of the single crystal material of the nitrided object, improving the crystal quality, and effectively overcoming the shortcomings of the conventional single chamber reactor.
  • the reactor designed by the invention comprises a crystal pre-growth chamber and a crystal growth chamber, wherein the crystal pre-grow chamber has the characteristics and functions of raw material conditions, and the crystal growth chamber has growth kinetic conditions. Control features and functions are provided with a conduction control device at the junction between the crystal pre-growth chamber and the crystal growth chamber.
  • the chambers may be directly connected to each other or indirectly through an insulated pipe or a transition zone chamber. Therefore, the communication between the crystal pre-growth zone chamber and the crystal growth zone chamber may refer to a portion where the two chambers directly communicate with each other.
  • the invention relates to a device for growing a single crystal material of a nitrided object, the device is a reaction vessel capable of withstanding high temperature and high pressure, and the core structure of the reactor comprises a crystal pre-growth chamber (11) and a mutually connected crystal.
  • a crystal growth chamber (12) a heating device (21) is disposed outside the outer surface and the bottom surface of the crystal pre-growth chamber (11), and a heating device is disposed outside the outer surface and the bottom surface of the crystal growth chamber (12) (22), a conduction control device (33) for controlling communication or breaking is provided between the crystal pre-growth chamber (11) and the crystal growth chamber (12), and the crystal pre-growth chamber (11) is disposed above
  • a conduction control device (31) is provided above the crystal generation chamber (12), and the conduction control device (31) and the conduction control device (32) are transported through the nitrogen-containing reactant gas.
  • the transport pipe (4) is connected to the gas storage tank (5).
  • one side of the conduction control device (33) is provided with a mesh filter (61), which can be used to prevent undissolved raw materials or reduce crystals. Impurities enter the crystal growth zone chamber (12).
  • a seed stencil (7) is placed in the crystal growth chamber (12);
  • the seed stencil may be a single sapphire substrate a silicon carbide substrate, a silicon substrate, or a composite substrate or a nitride self-supporting substrate on which a nitride film is deposited on any of the above substrates; the surface of the substrate is a polar c-plane or a non-polar crystal face Or semi-polar crystal faces.
  • the reactor is provided with a crystal pre-growth chamber (14) and a crystal growth chamber (15) communicating with each other, At least one transition zone chamber is connected between the crystal pre-growth zone chamber (14) and the crystal growth zone chamber (15), and the outer surface and the bottom surface of the crystal pre-growth zone chamber (14)
  • a heating device (24) is disposed outside, and a heating device (25) is disposed outside the outer side surface and the bottom surface of the crystal growth chamber (15), and heating devices (23) are respectively disposed outside the outer side surface and the bottom surface of each transition chamber.
  • the transition zone chamber is provided with a conduction control device (34) and a conduction control device (35) for controlling communication or disconnection, respectively, in communication with the crystal pre-growth zone chamber (14) and the crystal growth zone chamber (15).
  • the crystal pre-growth chamber (14), the crystal growth chamber (15), and the transition chamber are respectively provided with a conduction control device (37), a conduction control device (38), and a conduction control device (36).
  • the conduction control device (37), the conduction control device (38), and the conduction control device (36) are connected to the gas storage tank (51) through the nitrogen-containing reactant gas transport conduit (41).
  • one side of the conduction control device (34) and the conduction control device (35) for controlling communication or disconnection with the transition zone chamber are provided.
  • the crystal pre-growth chamber (11) and the crystal pre-grow chamber (14) are used for pressure heating dissolution of the raw material, and the crystal growth chamber (12) and the crystal growth chamber (15) are used.
  • the growth of a single crystal material in a nitrided object is used.
  • the invention also provides a method for growing a single crystal material of a nitrided object, comprising the steps of:
  • the raw material including metal gallium (Ga) or a metal A1 or a metal In, and a mixture of an alkali metal, an alkaline earth metal, and a nitrogen-containing reactant gas, the nitrogen-containing reactant gas comprising nitrogen or ammonia, or a mixture of nitrogen and ammonia;
  • the raw material solution (8) in a stable supersaturated state enters the crystal growth zone chamber (12) to start crystal growth.
  • a mesh filter for reducing the content of impurities in the crystal is provided between the crystal pre-groove chamber (11) and the crystal growth chamber (12).
  • the device (61) is for preventing undissolved raw materials or impurities from entering the crystal growth chamber (12).
  • the pressure difference between the crystal pre-growth chamber (11) and the crystal growth chamber (12) is regulated, thereby
  • the liquid level difference ⁇ of the two chambers is adjusted to adjust the height difference ⁇ 1 between the surface of the seed crystal and the liquid surface, and the distance ⁇ between the surface of the melt liquid phase of the growth chamber and the upper surface of the seed crystal is controlled to reach the growth condition of the germanium atom.
  • the pressure difference between the crystal pre-growth chamber (11) and the crystal growth chamber (12) is adjusted, and the crystal growth raw material solution (8) is returned to the crystal pre-reduction Growth zone chamber (11), the raw material solution (8) after reflow is lower than the upper surface of the bulk single crystal material, cut Contact of the surface of the single crystal material of the nitrided object with the raw material solution (8).
  • Another preferred solution for the method of growing a single crystal material of a nitrided object includes the following steps:
  • the raw material comprising metal gallium (Ga), or metal Al, or metal In, and a mixture of alkali metal, alkaline earth metal, and nitrogen-containing reactant gas
  • the nitrogen-containing reactant gas includes nitrogen or ammonia, or a mixture of nitrogen and ammonia;
  • the flow of the raw material solution (81) in a stable supersaturated state is: by regulating the crystal pre-growth zone
  • the pressure difference between the chamber (14) and the adjacent transition chamber causes the raw material (81) in the supersaturated state to be cut from the crystal pre-growth chamber (14) into the adjacent transition chamber and then cut off the crystal pre-
  • the growth zone chamber (14) is in communication with an adjacent transition zone chamber, wherein the liquid level in the crystal pre-growth zone chamber (14) is lower than the liquid level height of the adjacent transition zone chamber;
  • the pressure difference between the adjacent two transition zone chambers can be adjusted, so that the raw material solution (81) in the stable supersaturated state enters the next transition zone chamber and then cuts two adjacent The transition zone chamber is connected; the raw material solution (81) in a stable supersaturated state passes through the crystal growth zone when entering the transition zone chamber adjacent to the crystal growth zone
  • the flow of the raw material solution (81) in a stable supersaturated state is: a raw material solution that regulates the pressure difference between the crystal growth zone chamber (15) and the adjacent transition zone chamber, and causes crystal growth. (81) Refluxing to the adjacent transition zone chamber, the liquid material solution (81) after reflow is lower than the upper surface of the bulk single crystal material, and the surface of the single crystal material of the nitrided object is cut off from contact with the growth solution.
  • the crystal pre-growth zone chamber (14) is disposed between the adjacent transition zone chamber to prevent undissolved Raw material or reduce crystal
  • the impurity enters the mesh filter of the transition chamber (62); the crystal growth chamber (15) and the adjacent transition chamber are provided with a material for preventing undissolved raw materials or reducing impurities in the crystal from entering the crystal a mesh filter (63) of the growth zone chamber (15); a depth network between the adjacent two transition zone chambers for preventing undissolved raw materials or reducing impurities in the crystals from entering the next transition zone chamber Filter.
  • the crystal growth mode may be spontaneous nucleation or a seed crystal template induced growth.
  • each of the above-described conduction control devices preferably employs a valve.
  • the innovative design of the present invention has two or more control chambers which combine the dynamics of Na Flux growth nitride and can pass valves, flow meters, A pressure controller or the like is used to flexibly control the growth conditions of the chamber. Since the nitride single crystal in Na Flux must be grown under the condition that the N concentration of the raw material solution is supersaturated, the formation of polycrystalline nitride can be suppressed.
  • the conventional reactor apparatus is a single chamber, when the growth conditions have not reached a stable supersaturation state in the temperature rising stage, the raw material may start to grow due to contact with the seed crystal to obtain a polycrystalline nitride or a heterogeneous nitride.
  • the reactor apparatus structure designed by the present invention overcomes the shortcomings of the conventional chamber of the conventional reactor apparatus in conditional control. Since the crystal pre-growth chamber is designed in the present invention, the raw material is controlled in the crystal pre-growth chamber during the pre-growth heating process, and the crystal pre-grow chamber and the crystal growth chamber are isolated from each other.
  • the valve When the raw material has reached the conditions required for growth in the crystal pre-growth chamber, the valve is opened, the crystal pre-growth chamber and the crystal growth chamber are in communication with each other, and the raw material solution enters the crystal growth chamber and contacts with the seed crystal to initiate growth. .
  • the temperature and pressure of the chamber in the crystal growth zone are controlled by independent heat sources and gas paths.
  • the present invention skillfully utilizes the pressure difference between the two chambers to control the height difference ⁇ 1 of the melt level of the crystal growth chamber to the upper surface of the seed crystal, so that the diffusion free range of the germanium atom in the melt is effective.
  • the internal energy reaches the surface of the seed crystal, thereby achieving preferential nucleation on the surface of the seed crystal and inhibiting its spontaneous nucleation at the gas-liquid interface.
  • the inhibition of spontaneous nucleation of the seed at the gas-liquid interface enables the nitrogen gas to enter the solution and timely replenish the consumption of strontium in the process of growing nitride, effectively maintaining the supersaturation solubility of cerium in the solution, and the process of growing the nitride is always in the process of ⁇ .
  • Saturated solubility conditions can inhibit the growth of polycrystalline nitrides, increase the rate of crystal growth and the utilization of raw materials.
  • the structure of the reactor device designed by the invention can overcome the products such as polycrystalline nitride which are generated due to low temperature during the temperature reduction process of the nitride growth.
  • the conventional reactor apparatus is directly cooled after the growth, and since the remaining melt raw material is also in contact with the grown single crystal nitride, the temperature reduction process may cause undesirable nitride growth, such as polycrystalline nitride, rough surface, and the like.
  • the reactor apparatus designed by the present invention comprises two or more chambers, and the pressure difference can be flexibly utilized to control the height of each liquid level in the chamber. When the growth is completed, the pressure in the crystal growth zone chamber is increased to be higher than the crystal pre-growth chamber, so that the growth residual melt solution flows back into the pre-growth zone.
  • Figure 1 is a schematic cross-sectional view showing the structure of a novel reactor of the present invention
  • FIG. 2 is a schematic cross-sectional view showing the raw material for pre-crystal growth in the crystal pre-growth chamber of the present invention
  • FIG. 3 is a schematic view showing the control of the liquid level difference of the raw material solution during the crystal growth process of the present invention
  • Figure 4 is a schematic view showing the difference in level of the remaining raw material solution after completion of crystal growth of the present invention.
  • Figure 5 is a schematic cross-sectional view showing another novel reactor structure of the present invention.
  • Figure 6 is a schematic cross-sectional view showing the heat-dissolving of the raw material in the crystal pre-growth chamber before crystal growth in another novel reactor structure according to the present invention
  • Figure 7 is a schematic view showing the raw material solution in the transition chamber of another novel reactor structure of the present invention.
  • Figure 8 is a schematic view showing the control of the liquid level difference of the raw material solution in the crystal growth process of another novel reactor structure according to the present invention.
  • Figure 9 is a schematic view showing the return of the remaining raw material solution to the transition zone chamber after completion of crystal growth in another novel reactor structure according to the present invention.
  • Figure 10 is a schematic view showing the pre-growth zone of the remaining raw material solution flowing back to the transition chamber after completion of crystal growth in another novel reactor structure of the present invention.
  • the crystal pre-growth chamber of the first embodiment 12: the crystal growth chamber of the first embodiment, 13: the transition chamber, 14: the crystal pre-grow chamber of the second embodiment, 15: Example 2
  • the crystal growth zone chamber 21: the heating device of the crystal pre-growth chamber of the first embodiment
  • 25 the heating device of the crystal growth zone chamber of the second embodiment
  • the structure of a reactor for a novel single crystal material for growing a nitrided object of the present invention is shown in FIG.
  • the core part consists of two chambers, a pre-growth chamber and a growth chamber; secondly, it consists of a nitrogen gas storage tank, a valve, a pressure controller, a flow meter, a gas transport line and a heating device.
  • the heating device may be, but not limited to, electrical resistance, radio frequency heating.
  • the pre-growth chamber and the growth chamber may be directly connected, or may be connected to each other by an insulated pipe or a transition chamber (in the second embodiment, the transition chamber is taken as an example).
  • the pre-growth chamber is a control and auxiliary region for the conditions required for the reaction, and the growth chamber is a region for growing a single crystal material of the nitrided object.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a device for growing a single crystal material of a nitrided object the device being a reactor capable of withstanding high temperature and high pressure
  • the core structure of the reactor comprises a crystal pre-growth chamber 11 and a crystal growth chamber 12 which are connected to each other.
  • the temperature of the crystal pre-growth chamber 11 is heated by the heating device 21, and raw materials such as nitrogen-containing reactants and auxiliary pressure are controlled by the conduction control device 31.
  • the temperature of the crystal growth chamber chamber 12 is heated by the heat source of the heating device 22, and raw materials such as nitrogen-containing reactants and auxiliary pressure are controlled by the conduction control device 32.
  • the gas storage tank 5 is a gas tank for storing nitrogen-containing reactants, providing pressure control and N raw materials for the growth process.
  • a heating device 21 is disposed outside the outer side surface and the bottom surface of the crystal pre-growing chamber 11, and a heating device 22, a crystal pre-growth chamber 11 and a crystal growth chamber are disposed outside the outer surface and the bottom surface of the crystal growth chamber 12.
  • 12 is provided with a conduction control device 33 for controlling communication or breaking.
  • the crystal pre-growth chamber 11 is connected to the nitrogen-containing reactant gas transporting pipe 4 and the gas storage tank 5 through the provision of the conduction control device 31.
  • a conduction control device 32 is provided, which is sequentially connected to the nitrogen-containing reactant gas transport pipe 4 and the gas storage tank 5.
  • one side of the conduction control means 33 is provided with a mesh filter for preventing undissolved raw materials or reducing impurities in the crystal from entering the crystal growth chamber chamber 12. 61.
  • Figure 2 Figure 3 and Figure 4 illustrate the control principle of the growth of gallium nitride single crystal material using the designed reactor apparatus. Method.
  • a raw material such as metal gallium or a catalyst is placed in the crystal pre-growth chamber of the reactor, and the conduction control device 33 is turned off.
  • the temperature of the pre-growth zone of the crystal is controlled by controlling the heat source of the heating device 21, and the pressure of the pre-growth zone and the supplemental N raw material are controlled by turning on the valve of the control device 31.
  • the crystal growth mode may be spontaneous nucleation or seed stencil induced growth.
  • seed crystal stencil 7 is used for growth growth, the GaN seed crystal template 7 is placed in the crystal growth zone chamber, and the heating device 22 heat source is controlled. And conducting control device 32 to control the growth conditions of the crystal growth zone chamber.
  • the conduction control device 33 is turned off, and the crystal pre-growth chamber 11 and the crystal growth chamber 12 are isolated from each other, as shown in Fig. 2.
  • the pressure difference between the crystal pre-growth chamber 11 and the crystal growth chamber 12 is adjusted, and the conduction control device 33 is turned on to allow the raw material solution 8 to enter the crystal.
  • the mesh filter 61 prevents undissolved raw materials and impurities from entering the growth zone and reduces the amount of impurities in the crystal.
  • the distance ⁇ corresponds to the free-range diffusion range of the growth conditions of the atom, so that N/Ga preferentially nucleates on the surface of the seed crystal.
  • the surface polycrystal spontaneous nucleation is effectively suppressed, the N atom is effectively diffused into the melt near the seed crystal, and the consumption of N is supplemented, and the supersaturation concentration of the N atom near the upper surface of the seed crystal is always maintained.
  • the raw material solution that has just started to contact the surface of the seed crystal has reached supersaturation conditions, so the seed crystal begins to grow in a supersaturated condition, overcoming the conditions of warming of the conventional reactor apparatus. Unstable and unsaturated state.
  • the range of ⁇ is controlled, it can effectively replenish the enthalpy of the melt on the surface of the seed crystal due to the reaction, and always maintain the supersaturation state of the enthalpy in the solution. This can effectively inhibit the formation of polycrystalline gallium nitride on the surface of the seed crystal, and at the same time help to improve the utilization of gallium and the growth rate of the crystal.
  • the pressure is adjusted by the conduction control device 31 and the conduction control device 32, and the pressure difference between the crystal pre-growth chamber 11 and the crystal growth chamber 12 is reversely controlled, so that the pressure in the crystal pre-growth region is lower than the reaction.
  • the pressure of the region, the reaction residual raw material solution 8 flows back to the crystal pre-growth chamber, so that the liquid surface is lower than the upper surface of the single crystal material of the grown nitrided object, and the contact between the surface of the growing nitride and the raw material solution required for the reaction is cut off, such as Figure 4 shows.
  • This can overcome the formation of polycrystalline or multi-phase nitrides caused by a decrease in the temperature during the cooling process, thereby improving the quality of the product.
  • the present invention designs another novel reactor structure and method for growing a nitride single crystal material, as shown in FIG.
  • the structure of the core of the reactor includes a crystal pre-growth chamber 14, a crystal growth region chamber 15, and a transition chamber chamber 13 in three parts.
  • the crystal pre-growth chamber 14 and the crystal growth chamber 15 are interconnected by the transition chamber 13, and the transition chamber 13 may be a plurality of sequentially connected transition chambers, wherein the conduction control device 34 and the guide
  • the control unit 35 controls the separation and communication between the transition zone chamber 13 and the crystal pre-growth chamber 11, the transition chamber 13 and the crystal growth chamber chamber 15, respectively.
  • the crystal pre-growth chamber is the initial control region for the reaction, and the crystal growth chamber is the crystal growth chamber of the nitride single crystal material.
  • the temperature of the crystal pre-growth chamber 14 is heated by the heat source of the heating device 24, and the nitrogen raw material and the auxiliary pressure are controlled by the conduction control unit 37.
  • the transition zone chamber 13 is heated by the heating device 23 heat source, and the N raw material and the auxiliary pressure are controlled by the conduction control device 36.
  • the crystal growth zone chamber 15 is heated by a heating device 25 heat source, and its nitrogen raw material and auxiliary pressure are controlled by the conduction control unit 38.
  • the conduction control devices 36, 37, 38 are respectively connected to the gas delivery conduit 41, the gas storage tank 51, which is a gas tank for storing the nitrogen-containing reactant, and provides pressure control and N raw materials for the growth process.
  • the control method for the structure of the reactor structure of the novel growth nitriding single crystal material is designed.
  • the pre-growth region of the reactor structure is realized by rapidly realizing the supersaturation condition of the N atom in the melt by using high temperature and high pressure conditions, and reducing The time required for N to reach a supersaturated state in the melt before growth.
  • the conditions of the transition zone chamber 13 and the crystal growth zone chamber 15 are set according to the conditions required for growth.
  • the pressure control level difference ⁇ and growth are limited to the transition chamber 13 and the crystal growth chamber 15, and the supersaturation condition of the crystal pre-grow chamber 14 is not affected by the conditions of the crystal growth chamber. Therefore, the setting of the supersaturation condition of the crystal pre-growth chamber can be made more flexible.
  • the conditions of the raw material solution 81 of the crystal pre-growth chamber 14 are set according to actual requirements.
  • the conduction control device 34 is turned on to control the pressure of the transition chamber 13, and the raw material solution 81 enters the transition chamber and then closes the conduction control device. 34, as shown in Figure 7.
  • the mesh filter 62 prevents undissolved raw materials and impurities from entering the transition zone chamber 13.
  • a conduction control device should be provided between the two transition zone chambers and a deep mesh which again prevents undissolved raw materials or reduces impurities in the crystals from entering the next transition zone chamber.
  • the filter controls the pressure between the chambers of the two transition zones, and the raw material solution 81 passes through the respective transition zone chambers in turn (the structure of the plurality of transition zone chambers can be easily known, and is not illustrated in the drawings).
  • the conduction control means 35 is opened, and as shown in Fig. 8, the transition zone chamber 13 communicates with the crystal growth zone chamber 15.
  • the mesh filter 63 again prevents undissolved raw materials and impurities from entering the growth zone, and is effective in reducing impurities in the crystal.
  • the pressure and temperature of the transition zone chamber 13 and the crystal growth zone chamber 15 are controlled, and the pressure difference between the transition zone chamber 13 and the crystal growth zone chamber 15 is used to control ⁇ and ⁇ 1 to grow the gallium nitride bulk single crystal. Material.
  • the pressure difference between the transition zone chamber 13 and the crystal growth zone chamber 15 is reversely regulated, so that the pressure of the crystal growth zone chamber 15 is stronger than that of the transition zone chamber 13, as shown in Fig. 9, which will grow the remaining raw materials.
  • the solution is pressed back into the transition chamber 15, or the conduction control device 34 is turned on, and the remaining raw material solution is returned to the transition chamber 13 and the crystal pre-grow chamber 14, as shown in FIG.
  • the liquid level of the solution can cut off the contact between the surface of the crystal and the liquid, and overcome the growth of polycrystalline or multi-phase nitride caused by the decrease of the solubility of N in the process of cooling, thereby improving the crystal quality.
  • each of the conduction control devices preferably employs a valve.
  • the crystal growth mode is induced by the seed stencil, the crystal growth zone chamber 12 and the crystal growth zone chamber 15 are respectively placed with a seed stencil 7 and a seed stencil 71;
  • the seed stencil may be a single a sapphire substrate, a silicon carbide substrate, a silicon substrate, or a composite substrate or a GaN self-supporting substrate on which a GaN thin film is deposited on any of the above substrates;
  • the surface of the substrate is a polar c-plane or a non-polar Crystal face or semi-polar crystal face.
  • the substrates mentioned may be placed horizontally, vertically, or otherwise.
  • the mesh filter has a mesh size of 10 1000 mesh and can be made of stainless steel, platinum or other alloys resistant to high temperature and high pressure corrosion.
  • the raw materials include metal gallium (Ga), a nitrogen-containing reactant gas, and a mixture of an alkali metal and an alkaline earth metal.
  • the same method of fabrication can be obtained by replacing the metal gallium (Ga) with metal A1 or metal In, which includes nitrogen or ammonia, or a mixture of nitrogen and ammonia.
  • the supersaturation reaction condition of the whole process of the growth of the single crystal material of the nitrided object can be effectively controlled by controlling the concentration of the saturated solution in the independently controlled pre-growth chamber. Improve the quality of crystal growth;
  • the pressure difference between the pre-growth chamber and the growth chamber is reversely adjusted, and the solution is reversely flowed into the pre-growth chamber or the transition chamber, thereby suppressing the polycrystalline or multi-phase caused by the temperature drop. Nitride formation.
  • the invention discloses a method for preparing an autoclave structure device for preparing a liquid phase epitaxy of nitride by improving Na Flux, which is effective Breaking through the shortcomings of traditional single-chamber reactors, the conditions are flexible and have important and extensive applications in the future industry.
  • the above-mentioned embodiments are merely illustrative of several embodiments of the present invention, and the description thereof is more specific and detailed, but is not to be construed as limiting the scope of the invention. It should be noted that a number of alternatives, variations, and modifications of the invention may be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention should be determined by the appended claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

一种快速制备低位错密度氮化物单晶体材料的液相外延装置与方法,包括预生长区(11)和生长区(12)的反应釜,反应釜的预生长区(11)具有原材料条件控制特征和功能,生长区(12)具有生长动力学条件控制特征和功能,预生长区(11)和生长区(12)由过渡腔室或者保温管道相连接。在氮化物单晶体材料的生长过程中,原材料先在预生长区加热加压溶解,当熔融体中N的溶解浓度达到过饱和时与籽晶接触,从而有效抑制在N浓度未达到生长阈值时籽晶表面发生的多晶生长,提高氮化物单晶体材料的质量。同时,通过调控熔体在籽晶上表面的液面高度差,使熔体中的N/Ga在籽晶表面优先成核生长,从而抑制气液界面的多晶形成,提高晶体生长速度与原材料的利用率。

Description

一种生长氮化物体单晶材料的装置及方法
技术领域
本发明涉及半导体光电子材料领域, 特别涉及一种新型的氮化物体单晶材料液相外延生 长的装置与方法。 背景技术
GaN是第三代半导体材料,由于其宽带隙、高耐压、高热导等特点,在制备高功率 LED/LD 以及高频高速微波探测等高端 GaN基光电子器件领域具有广阔的市场前景, 已引起业界的广 泛关注。
由于 GaN材料在常压下温度达到 877°C时会分解成金属镓和氮气,只有在高温高压下才能 实现熔融 (2220°C, 6GPa), 传统的制备硅、 砷化镓等半导体单晶衬底的提拉法 (又称直拉 法、 Czochralski 法或 CZ 法)很难生长 GaN衬底材料。 GaN衬底材料的缺失, 迫使目前 GaN 基器件采用异质外延技术制备。 外延材料与异质衬底间的晶格与热应力失配导致外延层位错 密度高, 影响器件的性能。 因此, 采用高质量的 GaN 自支撑衬底材料发展同质外延技术是实 现高功率 LED/LD、 高频高效微波功率 GaN基器件的关键。
目前, 制备 GaN 体单晶材料的方法主要有氢化物气相外延技术 (HVPE)、 高温高压法 (HPNS)、 钠流法 (Na Flux) 和氨热法 (Ammothermal growth) 等。 HVPE 生长速率快、 能 大尺寸生长, 但制备的单晶材料存在位错密度较高(~106cm—2)和残余应力等问题。 HPNS 制 备的晶体质量好 (~102cm—2), 但生长条件苛刻 (1700 °C, 2 GPa)。 氨热法合成的晶体质量也 不错 (~103cm—2), 但晶体生长速率比较慢, 对实验室设备要求比较高, 不利于产业化生产。 而 Na Flux生长条件适中 (700~1000 °C, 4-5 MPa), 晶体质量较好 (~104 cm—2), 是目前制备 GaN体单晶材料的最佳途径。 目前, Na Flux 生长 GaN材料已取得了一定的进展, 得到了直 径大于 2 英寸、 厚度大于 2 cm 的 GaN体单晶材料。 但是, 传统的反应釜装置只有一个腔室, 一般把原材料和籽晶混合在一起, 然后直接升温进行单晶材料生长。 这样, 在升温加压及生 长完成后降温过程中, 原材料溶液不可避免地在未达到单晶生长条件时与晶籽表面接触形成 多晶 GaN及其他中间产物, 影响材料的晶体质量。 同时, 气液界面产生 GaN 多晶而导致晶 体生长速度较慢原材料的利用率低也是传统单腔室反应釜结构不可克服的缺点。 发明内容
本发明提供了一种新型反应釜装置及生长氮化物体单晶材料的方法,其结合了 Na Flux 生 长 GaN 的反应条件及动力学原理, 实现生长氮化物过程中晶核在晶种表面的优先生长, 抑制 气液界面多晶氮化物的形成, 提高氮化物体单晶材料的生长速度, 改善晶体质量, 有效地克 服了传统单腔室反应釜的缺点。
本发明设计的反应釜包括相互连通的晶体预生长区腔室和晶体生长区腔室, 反应釜的晶 体预生长区腔室具有原材料条件控制特征和功能, 晶体生长区腔室具有生长动力学条件控制 特征和功能, 晶体预生长区腔室和晶体生长区腔室之间的连通处设有导通控制装置。 上述腔 室之间可以直接连通或通过保温管道或过渡区腔室间接连通, 因此, 晶体预生长区腔室和晶 体生长区腔室之间的连通处既可以指两腔室直接相通的部分, 也可以指连通晶体预生长区腔 室和晶体生长区腔室的保温管道, 连通过渡区腔室和晶体预生长区腔室的部分, 连通过渡区 腔室和晶体生长区腔室的部分以及每两个过渡区腔室之间的连通部分。
具体地, 采用以下技术方案:
本发明设计的一种生长氮化物体单晶材料的装置, 该装置为能承受高温高压的反应釜, 所述的反应釜核心结构包括设有相互连通的晶体预生长区腔室( 11 )和晶体生长区腔室( 12), 晶体预生长区腔室 (11 )外侧面及底面的外部设有加热装置 (21 ), 晶体生长区腔室 (12)外 侧面及底面的外部设有加热装置 (22), 晶体预生长区腔室 (11 ) 与晶体生长区腔室 (12)之 间设有控制连通或分断的导通控制装置 (33 ), 晶体预生长区腔室(11 )上方设有导通控制装 置 (31 ), 晶体生区腔室 (12) 上方设有导通控制装置 (32), 导通控制装置 (31 ) 和导通控 制装置 (32) 通过含氮反应物气体输运管道 (4) 与气体储存罐 (5 ) 相连。
作为对上述生长氮化物体单晶材料的装置的进一步描述, 所述导通控制装置 (33 ) 的一 侧设有网状过滤器(61 ), 可用来阻止未溶解的原材料或减少晶体中的杂质进入晶体生长区腔 室 (12)。
作为对上述生长氮化物体单晶材料的装置的进一步描述, 所述的晶体生长区腔室 (12) 中放置有晶种模版 (7 ); 所述晶种模版, 可以是单一的蓝宝石衬底、 碳化硅衬底、 硅衬底, 或是由上述任一衬底上沉积氮化物薄膜的复合衬底或者氮化物自支撑衬底; 上述衬底表面是 极性 c 面或非极性晶面或半极性晶面。
作为对上述生长氮化物体单晶材料的装置的另一种方案, 所述的反应釜设有相互连通的 晶体预生长区腔室 (14)和晶体生长区腔室 (15 ), 所述的晶体预生长区腔室 (14)和晶体生 长区腔室 (15 ) 之间连通有至少一个过渡区腔室, 晶体预生长区腔室 (14) 外侧面及底面的 外部设有加热装置 (24), 晶体生长区腔室 (15 ) 外侧面及底面的外部设有加热装置 (25 ), 各过渡区腔室外侧面及底面的外部各自设有加热装置(23 ), 过渡区腔室在与晶体预生长区腔 室 (14)、 晶体生长区腔室 (15 )连通处分别设有控制连通或分断的导通控制装置 (34)及导 通控制装置 (35 ), 晶体预生长区腔室 (14)、 晶体生长区腔室 (15 )、 过渡区腔室上方分别设 有导通控制装置 (37)、 导通控制装置 (38)、 导通控制装置 (36), 导通控制装置 (37)、 导 通控制装置(38)、导通控制装置(36)通过含氮反应物气体输运管道(41 )与气体储存罐(51 ) 相连。
作为对上述生长氮化物体单晶材料的过渡区腔室的更进一步改进, 控制与过渡区腔室连 通或分断的导通控制装置 (34)、 导通控制装置 (35 ) 的一侧各设有一个网状过滤器(62)及 网状过滤器(63 ); 每两个过渡区腔室之间设有阻止未溶解的原材料或减少晶体中的杂质进入 下一个过渡区腔室的网状过滤器。
所述晶体预生长区腔室 (11 )、 晶体预生长区腔室 (14) 用于原材料的加压加热溶解, 所 述晶体生长区腔室 (12)、 晶体生长区腔室 (15 ) 用于氮化物体单晶材料的生长。
本发明还提供了一种生长氮化物体单晶材料的方法, 包括如下步骤:
A. 设置晶体预生长区腔室 (11 )、 晶体生长区腔室 (12) 和位于前述两个腔室之间的导 通控制装置 (33 ), 所述晶体生长区腔室 (12) 放置有籽晶, 所述导通控制装置 (33 ) 关闭;
B. 在晶体预生长区腔室(11 )导入原材料, 当原材料溶解达到生长所需的稳定过饱和状 态条件时, 打开导通控制装置 (33 ), 所述的原材料包括金属镓 (Ga) 或金属 A1 或金属 In, 以及碱金属、 碱土金属的混合物, 以及含氮反应物气体, 所述的含氮反应物气体包括氮气或 氨气, 或氮气与氨气的混合物;
C. 处于稳定过饱和状态的原材料溶液(8)进入到晶体生长区腔室(12)开始晶体生长。 作为对上述生长氮化物体单晶材料的方法作出的一种优选方案, 晶体预生长区腔室 (11 ) 与晶体生长区腔室(12) 间设有减少晶体中的杂质含量的网状过滤器(61 ), 用以阻止未溶解 的原材料或杂质进入到晶体生长区腔室 (12)。
作为对上述生长氮化物体单晶材料的方法的进一步描述, 在晶体生长过程中, 调控通入 晶体预生长区腔室 (11 ) 与晶体生长区腔室 (12) 之间的压强差, 从而实现调控两腔室的液 面高度差 ΔΗ, 以调节籽晶表面到液面的高度差 Δ1, 控制生长区腔室的熔体液相表面离晶种上 表面的距离 Δΐ 达到 Ν原子所在生长条件的自由程扩散范围内; 晶体生长完成后, 调控晶体 预生长区腔室 (11 ) 与晶体生长区腔室 (12) 之间的压强差, 使晶体生长的原材料溶液 (8) 回流至晶体预生长区腔室 (11 ), 回流后的原材料溶液 (8) 液面低于体单晶材料上表面, 切 断氮化物体单晶材料表面与原材料溶液 (8) 的接触。
作为对生长氮化物体单晶材料的方法作出的另一种优选方案, 包括如下步骤:
A. 设置晶体预生长区腔室 (14)、 晶体生长区腔室 (15 )、 连通晶体预生长区腔室 (11 ) 与晶体生长区腔室 (12) 的至少一个过渡区腔室、 导通控制装置 (34)、 导通控制装置 (35 ), 所述晶体生长区腔室 (12) 放置有籽晶, 所述导通控制装置 (34) 及导通控制装置 (35 ) 关 闭;
B. 在晶体预生长区腔室(14)导入原材料, 当原材料溶解达到生长所需的过饱和状态条 件时, 打开晶体预生长区腔室(14)与相邻的过渡区腔室之间的导通控制装置(34), 原材料 溶液进入过渡区腔室, 所述的原材料包括金属镓 (Ga), 或金属 Al, 或金属 In, 以及碱金属、 碱土金属的混合物, 以及含氮反应物气体, 所述的含氮反应物气体包括氮气或氨气, 或氮气 与氨气的混合物;
C. 打开晶体生长区腔室 (12) 与相邻的过渡区腔室之间的导通控制装置 (35 ), 处于稳 定过饱和状态的原材料溶液 (81 ) 进入到晶体生长区腔室 (12) 开始晶体生长。
作为对上述生长氮化物体单晶材料包括至少一个过渡区腔室的方法的进一步描述, 晶体 生长过程中, 处于稳定过饱和状态的原材料溶液 (81 ) 的流动过程为: 通过调控晶体预生长 区腔室 (14) 与相邻的过渡区腔室的压强差, 使处于过饱和状态的原材料 (81 ) 由调控晶体 预生长区腔室 (14) 进入相邻的过渡区腔室后截断晶体预生长区腔室 (14) 与相邻的过渡区 腔室的连通, 所述晶体预生长区腔室 (14) 内液面高度低于相邻的过渡区腔室的液面高度; 当过渡区腔室为两个及以上时, 可以通过调控相邻的两个过渡区腔室的压强差, 使处于稳定 过饱和状态的原材料溶液(81 )进入下一个过渡区腔室后截断两个相邻的过渡区腔室的连通; 处于稳定过饱和状态的原材料溶液 (81 ) 进入到与晶体生长区腔室 (15 ) 相邻的过渡区 腔室时, 通过调控晶体生长区腔室 (15 ) 与相邻的过渡区腔室之间的压强差, 调控两腔室的 液面高度差 ΔΗ, 以调节籽晶表面距离液面的高度差 Δ1, 控制晶体生长区腔室的原材料溶液 ( 81 ) 液相表面距离籽晶上表面的 Δΐ 达到 Ν原子所在生长条件的自由程扩散范围内;
晶体生长完成后, 处于稳定过饱和状态的原材料溶液 (81 ) 的流动过程为: 调控晶体生 长区腔室 (15 ) 与相邻的过渡区腔室之间的压强差, 使晶体生长的原材料溶液 (81 ) 回流至 相邻的过渡区腔室, 回流后的原材料溶液 (81 ) 液面低于体单晶材料上表面, 切断氮化物体 单晶材料表面与生长溶液的接触。
作为对上述生长氮化物体单晶材料包括至少一个过渡区腔室方法中作出的一种优选方 案, 晶体预生长区腔室 (14) 与相邻的过渡区腔室之间设有阻止未溶解的原材料或减少晶体 中的杂质进入过渡区腔室的网状过滤器(62); 晶体生长区腔室(15 )与相邻的过渡区腔室之 间设有阻止未溶解的原材料或减少晶体中的杂质进入晶体生长区腔室 (15 ) 的网状过滤器 (63 );相邻的两个过渡区腔室之间设有阻止未溶解的原材料或减少晶体中的杂质进入下一个 过渡区腔室的深度网状过滤器。
上述生长氮化物体单晶材料的方法中, 晶体生长方式可以是自发成核, 也可以是晶种模 版诱导生长。
其中, 上述的各个导通控制装置优选地采用阀门。
相对于传统的氮化物体单晶材料的反应釜装置, 本发明设计结构的创新点在于具有两个 及以上控制腔室, 其结合 Na Flux生长氮化物动力学原理, 能通过阀门、 流量计、 压力控制器 等来灵活控制腔室的生长条件。 由于 Na Flux中氮化物单晶必须在原材料溶液中 N浓度过饱和 条件下生长才能抑制多晶氮化物的形成。 传统的反应釜装置由于是单腔室, 在升温阶段生长 条件还没有达到稳定过饱和状态时, 原材料可能会因与籽晶接触而开始生长, 得到多晶氮化 物或多相氮化物。 而本发明设计的反应釜装置结构克服了传统的反应釜装置单腔室在条件控 制上的缺点。 由于本发明设计了晶体预生长区腔室, 在生长前期升温过程中, 原材料在晶体 预生长区腔室进行条件控制, 此时晶体预生长区腔室与晶体生长区腔室相互隔绝。 当原材料 在晶体预生长区腔室已经达到生长所需的条件时, 打开阀门, 晶体预生长区腔室与晶体生长 区腔室相互连通, 原材料溶液进入晶体生长区腔室与晶种接触启动生长。 晶体生长区腔室的 温度和压强由独立的热源和气路控制。 同时, 本发明巧妙地利用两个腔室的压强差来控制晶 体生长区腔室的熔体液面到籽晶上表面的高度差 Δ1,使 Ν原子在熔体中的扩散自由程有效范 围之内能达到晶种表面, 从而实现在晶种表面的优先成核, 抑制其在气液界面的自发成核。 气液界面晶种自发成核的抑制, 使氮气能进入到溶液中及时补充 Ν在生长氮化物过程中的消 耗, 有效保持溶体中 Ν 的过饱和溶解度, 实现生长氮化物过程始终处于 Ν 的过饱和溶解度条 件,能有抑制多晶氮化物的生长, 提高晶体生长速度与原材料的利用率。
本发明所设计反应釜装置结构能够克服在氮化物生长完毕降温过程中的因温度低产生的 多晶氮化物等产物。 传统的反应釜装置生长完毕后直接降温, 由于剩余熔体原材料还与生长 的单晶氮化物相互接触, 温度降低过程中会引起不良的氮化物生长, 例如多晶氮化物, 表面 粗糙等情况。 本发明所设计的反应釜装置包括两个及以上腔室, 可以灵活利用压强差来控制 腔室中的各液面高度。 当生长完毕后, 提高晶体生长区腔室的压强使其高于晶体预生长区腔 室,以致生长残余熔体溶液倒流进入预生长区。这样可以有效隔离晶体生长区腔室中的氮化物 与熔体原材料, 因此在降温过程中阻断了材料的生长, 有效地控制了在降温中生长的不良氮 化物, 提高了氮化物体单晶材料的质量。 附图说明
图 1 所示为本发明的一种新型反应釜结构的截面示意图;
图 2 所示为本发明的晶体生长前原材料在晶体预生长腔室加热溶解的截面示意图; 图 3 所示为本发明的晶体生长过程中原材料溶液液面高度差控制示意图;
图 4 所示为本发明的晶体生长完成后剩余原材料溶液液面高度差示意图;
图 5 所示为本发明的另一种新型反应釜结构的截面示意图;
图 6 所示为本发明的在另一种新型反应釜结构中的晶体生长前原材料在晶体预生长腔室 加热溶解的截面示意图;
图 7 所示为本发明的在另一种新型反应釜结构中的原材料溶液在过渡区腔室中的示意 图;
图 8 所示为本发明的在另一种新型反应釜结构中的晶体生长过程中原材料溶液液面高度 差控制示意图;
图 9 所示为本发明的在另一种新型反应釜结构中的晶体生长完成后剩余原材料溶液回流 到过渡区腔室示意图;
图 10 所示为本发明的在另一种新型反应釜结构中的晶体生长完成后剩余原材料溶液回 流到过渡区腔室预生长区示意图。
附图标记说明:
11: 实施例一的晶体预生长区腔室, 12: 实施例一的晶体生长区腔室, 13 : 过渡区腔室, 14: 实施例二的晶体预生长区腔室, 15 : 实施例二的晶体生长区腔室, 21 : 实施例一的晶体 预生长区腔室的加热装置, 22: 实施例一的晶体生长区腔室的加热装置, 23 : 过渡区腔室的 加热装置, 24: 实施例二的晶体预生长区腔室的加热装置, 25 : 实施例二的晶体生长区腔室 的加热装置, 31 : 实施例一的预生长区腔室原材料进入通道处的导通控制装置, 32: 实施例 一的生长区腔室含氮反应物进入通道处的导通控制装置, 33 : 连接晶体预生长区腔室与晶体 生长腔室的导通控制装置, 34: 连接晶体预生长区腔室与过渡区腔室的阀门, 35 : 连接过渡 区腔室与晶体生长区腔室的阀门, 36: 含氮反应物进入过渡区腔室处的导通控制装置, 37: 实施例二的含氮反应物进入晶体预生长区腔室处的导通控制装置, 38: 实施例二的含氮反应 物进入晶体生长区腔室处的导通控制装置, 4: 实施例一的含氮反应物气体输运管道, 5 : 实 施例一的气体存储罐, 41 : 实施例二的含氮反应物气体输运管道, 51 : 实施例二的气体存储 罐, 61 : 晶体预生长区腔室与晶体生长区腔室间的网状过滤器, 62: 晶体预生长区腔室与过 渡区腔室间的网状过滤器, 63 : 过渡区腔室与晶体生长区腔室间的网状过滤器, 7: 实施例一 的晶种模版, 71 : 实施例二的晶种模版, 8: 实施例一的溶解后的原材料溶液, 81 : 实施例二 的溶解后的原材料溶液。 具体实施方式
为能进一步了解本发明的特征、 技术手段以及所达到的具体目的、 功能, 解析本发明的 优点与精神, 藉由以下实施例对本发明做进一步的阐述。
本发明的一种新型生长氮化物体单晶材料的反应釜装置结构如图 1所示。 其核心部分包括 两个腔室, 预生长区腔室和生长区腔室; 其次, 包括氮气储气罐、 阀门、 压力控制器、 流量 计、 气体输运管道和加热装置组成。 所述加热装置, 可以是但不限于电阻、 射频方式加热。 预生长区腔室和生长区腔室可以直接连通, 或者利用保温管道或者过渡区腔室相互连通 (实 施例二中以过渡区腔室为例说明)。预生长区腔室是反应所需条件的控制和辅助区域, 生长区 腔室是生长氮化物体单晶材料的区域。
结合图 1~10, 详细给出以下两个实施例。
实施例一:
一种生长氮化物体单晶材料的装置, 该装置为能承受高温高压的反应釜, 所述的反应釜 核心结构包括设有相互连通的晶体预生长区腔室 11 和晶体生长区腔室 12,晶体预生长区腔室 11 的温度由加热装置 21 加热, 其含氮反应物等原材料及辅助压强由导通控制装置 31 控制。 晶体生长区腔室 12 的温度由加热装置 22 的热源加热, 其含氮反应物等原材料及辅助压强由 导通控制装置 32 控制。气体存储罐 5 为储存含氮反应物的气罐, 为生长过程中提供压力控制 和 N原材料。
晶体预生长区腔室 11 外侧面及底面的外部设有加热装置 21, 晶体生长区腔室 12外侧面及 底面的外部设有加热装置 22, 晶体预生长区腔室 11 与晶体生长区腔室 12 之间设有控制连通 或分断的导通控制装置 33, 晶体预生长区腔室 11 上方通过设置导通控制装置 31, 依次与含氮 反应物气体输运管道 4、 气体储存罐 5 相连, 晶体生长区腔室 12 上方通过设置导通控制装置 32, 依次与含氮反应物气体输运管道 4、 气体储存罐 5 相连。
作为对上述生长氮化物体单晶材料的装置的进一步描述, 所述导通控制装置 33的一侧设 有阻止未溶解的原材料或减少晶体中的杂质进入晶体生长区腔室 12 的网状过滤器 61。
图 2 、 图 3 和图 4 说明了利用所设计的反应釜装置生长氮化镓体单晶材料的控制原理与 方法。
首先, 把金属镓、 催化剂等原材料放进反应釜装置的晶体预生长区腔室, 此时导通控制 装置 33 关闭。通过控制加热装置 21 热源控制晶体预生长区的温度, 通过导通控制装置 31 阀 门来控制预生长区的压强和补充 N原材料。 晶体生长方式可以是自发成核, 也可以是晶种模 版诱导生长, 在采用晶种模版 7 诱导生长时, 氮化镓的晶种模版 7 放在晶体生长区腔室, 通 过控制加热装置 22 热源和导通控制装置 32 来控制晶体生长区腔室的生长条件。 晶体预生长 区腔室 11 的原材料溶液中 N浓度达到过饱和条件前, 导通控制装置 33 关闭, 晶体预生长区 腔室 11 与晶体生长区腔室 12 相互隔绝, 如图 2 所示。
晶体预生长区腔室 11 中的原材料溶液 8 达到过饱和状态时, 调节晶体预生长区腔室 11 与晶体生长区腔室 12 的压强差, 打开导通控制装置 33, 使原材料溶液 8 进入晶体生长区腔室 12, 如图 3 所示。 网状过滤器 61 能阻止未溶解的原材料与杂质进入生长区, 减少晶体中的杂 质含量。调节导通控制装置 31 与导通控制装置 32, 通过调控两腔室的压强差控制两腔室液面 高度差 ΔΗ, 以间接控制晶体生长区腔室的原材料溶液液相表面与籽晶上表面的距离 Δΐ 符合 Ν 原子所在生长条件的自由程扩散范围内, 使 N/Ga在晶种表面优先成核生长。 同时, 由于 表面多晶自发成核得到有效抑制, 便于 N原子有效扩散到籽晶附近的熔体内, 以及时补充 N 的消耗, 始终保持籽晶上表面附近的 N原子的过饱和浓度。 由于原材料在晶体预生长区就已 经达到过饱和状态, 则刚开始接触籽晶表面的原材料溶液已经达到过饱和条件, 所以籽晶开 始生长就处于过饱和条件, 克服了传统反应釜装置升温的条件不稳定和不饱和状态。 其次, 由于控制好 Δΐ 的范围, 能有效补充籽晶表面熔体因反应消耗的 Ν,始终能保持 Ν在溶液中的 过饱和状态。 这样能有效抑制籽晶表面的多晶氮化镓的生成, 同时有利于提高镓的利用率与 晶体生长速度。
当生长完毕后, 通过导通控制装置 31 和导通控制装置 32 调节压强, 反向控制晶体预生 长区腔室 11 和晶体生长区腔室 12 的压强差, 使晶体预生长区压强低于反应区域的压强, 反 应剩余原材料溶液 8倒流回到晶体预生长区腔室, 使其液面低于生长氮化物体单晶材料上表 面, 切断生长氮化物表面与反应所需要原材料溶液的接触, 如图 4 所示。 这样可以克服在降 温过程中, 随着温度的降低 Ν 的溶解度降低而引起的多晶或者多相氮化物的形成, 从而提高 产物的质量。 这种设计突破了传统反应釜在没有饱和的条件就在籽晶表面开始生长会引起多 晶氮化镓合成的困难, 其次, 精确控制籽晶上表面的液相高度, 能有效抑制气液界面多晶的 产生, 并及时补充 Ν在生长过程中消耗的量, 再次, 可以克服因降温阶段而引起的多晶多相 的不良产物产生, 有利于实现高质量氮化物的规模生长。 实施例二:
为了实现预生长条件、 生长条件控制灵活和高效, 本发明设计了另一种新型生长氮化物 体单晶材料的反应釜装置结构及方法, 如图 5 所示。 反应釜核心的结构包括晶体预生长腔室 14、 晶体生长区域腔室 15 和过渡区腔室 13 三部分。 晶体预生长区腔室 14 与晶体生长区腔室 15 之间由过渡区腔室 13 相互连通, 过渡区腔室 13 可以为多个依次连通的过渡区腔室, 其中 导通控制装置 34 和导通控制装置 35 分别控制过渡区腔室 13 与晶体预生长区腔室 11、过渡区 腔室 13 与晶体生长区腔室 15 的分隔与连通。 晶体预生长区腔室是反应所需条件的初步控制 区域, 晶体生长区腔室是氮化物单晶材料的晶体生长区腔室。 晶体预生长区腔室 14温度由加 热装置 24 热源加热, 其氮气原材料及辅助压强由导通控制装置 37 控制。过渡区腔室 13 温度 由加热装置 23 热源加热, N原材料及辅助压强由导通控制装置 36控制。 晶体生长区腔室 15 温度由加热装置 25 热源加热, 其氮气原材料及辅助压强由导通控制装置 38 控制。 导通控制 装置 36、 37、 38 分别与气体输运管道 41、 气体存储罐 51 连接, 气体存储罐 51 为储存含氮反 应物的气罐, 为生长过程中提供压力控制和 N原材料。
设计的新型生长氮化物体单晶材料的反应釜装置结构的控制方法, 反应釜装置结构的预 生长区的作用体现在利用高温高压条件快速实现 N原子等在熔体中的过饱和条件, 减少生长 前 N在熔体中达到过饱和状态所需的时间。 过渡区腔室 13 与晶体生长区腔室 15的条件按生 长时所需的条件进行设定。 将压强控制液面高度差 Δΐ 和生长限制在过渡区腔室 13 与晶体生 长区腔室 15,晶体预生长区腔室 14 的过饱和条件设定不受晶体生长区腔室的条件影响。因此, 晶体预生长区腔室的过饱和条件的设定能更加灵活。原材料加入晶体预生长区腔室 14 后, 如 图 6 所示, 根据实际要求对晶体预生长区腔室 14 原材料溶液 81 的条件进行设定。 晶体预生 长区腔室 14 的原材料溶液 81 熔体达到过饱和条件后, 打开导通控制装置 34, 控制好过渡区 腔室 13 的压强, 原材料溶液 81 进入过渡区腔室后关闭导通控制装置 34, 如图 7 所示。 网状 过滤器 62 阻止未溶解的原材料与杂质进入过渡区腔室 13。若有设置多个过渡区腔室的, 两过 渡区腔室之间也应设有导通控制装置以及再度阻止未溶解的原材料或减少晶体中的杂质进入 下一个过渡区腔室的深度网状过滤器, 控制好两过渡区腔室之间的压强, 原材料溶液 81 依次 通过各个过渡区腔室(多个过渡区腔室的结构可容易得知, 图中不再进行示意)。 当原材料溶 液 81 进入与晶体生长区腔室 15 相邻的过渡区腔室 13时, 打开导通控制装置 35, 如图 8 所示, 过渡区腔室 13 与晶体生长区腔室 15 连通。网状过滤器 63 再次阻止未溶解的原材料与杂质进 入生长区, 能有效减少晶体中的杂质。 控制好过渡区腔室 13 和晶体生长区腔室 15 的压强和 温度, 利用过渡区腔室 13 与晶体生长区腔室 15的压强差控制 ΔΗ及 Δ1, 生长氮化镓体单晶材 料。 生长完成后, 反向调控过渡区腔室 13 与晶体生长区腔室 15 的压强差, 使晶体生长区腔 室 15 的压强大于过渡区腔室 13, 如图 9 所示, 这样将生长剩余原材料溶液压回到过渡区腔室 15 中, 或者再打开导通控制装置 34, 使生长剩余原材料溶液流回到过渡区腔室 13 及晶体预 生长区腔室 14 中, 如图 10 所示, 原材料溶液液面降低可切断晶体表面与液体的接触, 克服 在降温过程中, 随着温度的降低 N 的溶解度降低而引起的多晶或者多相氮化物的生长, 提高 晶体质量。
上述两个实施例中, 各个导通控制装置优选地采用阀门。 晶体生长方式采用晶种模版诱 导生长时, 所述的晶体生长区腔室 12、 晶体生长区腔室 15 中分别放置有晶种模版 7和晶种模 版 71 ; 所述晶种模版, 可以是单一的蓝宝石衬底、 碳化硅衬底、 硅衬底, 或是由上述任一衬 底上沉积 GaN 薄膜的复合衬底或者 GaN 自支撑衬底; 上述衬底表面是极性 c 面或非极性晶 面或半极性晶面。 提及的衬底可以是水平放置, 也可以是垂直放置, 或以其他方式放置。 而 网状过滤器的网孔尺寸为 10 1000 目, 其材质可以是但不限于不锈钢、 铂金或其他耐高温高 压腐蚀的合金材料。 所述的原材料包括金属镓 (Ga)、 含氮反应物气体, 以及碱金属、 碱土 金属的混合物。 所述的金属镓 (Ga) 可替换为金属 A1 或金属 In仍可获得同样的制作方法, 所述的含氮反应物气体包括氮气或氨气, 或氮气与氨气的混合物。
上述两个实施例只是本发明的举例, 但依照本发明原理, 这还可以衍生出其它各种方案, 包括将这几种方案结合的各种方案。 其中只要涉及采用多个反应釜腔室, 通过分隔反应原材 料预加热与晶体生长过程, 调控反应溶液中 N 的过饱和条件提高晶体生长的质量, 采用压差 调控反应溶液的液面到晶种表面的距离以抑制气液界面多晶自发成核提高晶体生长速度的技 术方案都包含在本发明范围。
本发明有以下几个方面的优点:
1、采用预生长区域和生长区域等多腔室装置, 通过独立控制的预生长区腔室的饱和溶液 浓度的控制, 能有效地调控氮化物体单晶材料生长全过程的过饱和反应条件, 提高晶体生长 质量;
2、 利用连通器原理调控两腔室的压差控制籽晶上表面到熔体液面高度差, 使 N/Ga在晶 种表面优先成核生长, 抑制气液界面的多晶自发成核, 有效补充 N在反应过程中的消耗, 保 持生长条件的稳定性, 提高晶体生长速度与原材料的利用率, 降低生产成本;
3、 生长完成后, 反向调节预生长区腔室和生长区腔室的压差, 实现溶液倒流进入预生长 区腔室或者过渡区腔室, 抑制了因为降温而引起的多晶或多相氮化物生成。
本发明公开了一种通过改进 Na Flux制备氮化物液相外延的高压釜结构装置的方法, 有效 突破了传统单腔室反应釜的缺点, 条件控制灵活, 在未来的工业中有着重要和广泛的应用。 以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但并不能因 此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域的普通技术人员来说, 在 不脱离本发明构思的前提下所做出的若干替换、 变化和修改的技术方案, 均属于本发明的保 护范围。 因此, 本发明专利的保护范围应以所附权利要求为准。

Claims

权 利 要 求 书
1、 一种生长氮化物体单晶材料的装置, 该装置为能承受高温高压的反应釜, 其特征在于, 所述的反应釜包括相互连通的晶体预生长区腔室和晶体生长区腔室, 上述两腔室之间的 连通处设有导通控制装置;
所述的晶体预生长区腔室的外侧面及底面的外部和所述的晶体生长区腔室的外侧面及底 面的外部分别设有加热装置;
所述的晶体预生长区腔室和晶体生长区腔室上方分别设有导通控制装置, 所述的晶体预 生长区腔室和晶体生长区腔室上方的导通控制装置通过气体输运管道与气体储存罐相连。
2、 根据权利要求 1所述的一种生长氮化物体单晶材料的装置, 其特征在于, 所述的晶体预 生长区腔室和晶体生长区腔室之间直接连通或通过保温管道或通过过渡区腔室相互连通。
3、 根据权利要求 2所述的一种生长氮化物体单晶材料的装置, 其特征在于, 所述的过渡区 腔室外侧面及底面的外部设有加热装置, 所述的过渡区腔室上方设有导通控制装置, 所述的 过渡区腔室上方的导通控制装置通过气体输运管道与气体储存罐相连。
4、 根据权利要求 1所述的一种生长氮化物体单晶材料的装置, 其特征在于, 所述的晶体预 生长区腔室与晶体生长区腔室之间连通处的导通控制装置的一侧设有网状过滤器。
5、 根据权利要求 1所述的一种生长氮化物体单晶材料的装置, 其特征在于, 所述的晶体生 长区腔室中放置有晶种模版; 所述晶种模版, 是单一的蓝宝石衬底、 碳化硅衬底、 硅衬底, 或是由上述任一衬底上沉积氮化物薄膜的复合衬底或者氮化物自支撑衬底; 上述衬底表面是 极性 c面或非极性晶面或半极性晶面。
6、 一种生长氮化物体单晶材料的方法, 其特征在于, 包括如下步骤:
A. 设置晶体预生长区腔室、 晶体生长区腔室和位于前述两个腔室之间的导通控制装置, 所述的晶体生长区腔室放置有籽晶, 位于前述两个腔室之间的导通控制装置关闭;
B. 在晶体预生长区腔室导入原材料,当原材料溶解达到生长所需的稳定过饱和状态条件 时, 打开晶体预生长区腔室和晶体生长区腔室之间的导通控制装置;
C. 处于稳定过饱和状态的原材料溶液进入到晶体生长区腔室开始晶体生长。
7、 根据权利要求 6所述的生长氮化物体单晶材料的方法, 其特征在于, 处于稳定过饱和状 态的原材料溶液的流动过程为: 在晶体生长过程中, 调控通入晶体预生长区腔室与晶体生长 区腔室之间的压强差, 从而实现调控两腔室的液面高度差, 以调节籽晶表面到液面的高度差 Ah, 控制晶体生长区腔室的熔体液相表面离晶种上表面的距离 Δΐ达到 N原子所在生长条件 的自由程扩散范围内; 晶体生长完成后, 调控晶体预生长区腔室与晶体生长区腔室之间的压 强差, 使晶体生长的原材料溶液回流至晶体预生长区腔室, 回流后的原材料溶液液面低于体 单晶材料上表面, 切断氮化物体单晶材料表面与原材料溶液的接触。
8、 一种生长氮化物体单晶材料的方法, 其特征在于, 包括如下步骤:
A. 设置晶体预生长区腔室、 晶体生长区腔室、 连通晶体预生长区腔室与晶体生长区腔室 的至少一个过渡区腔室以及位于前述各腔室之间连通处的导通控制装置, 所述晶体生长区腔 室放置有籽晶, 位于前述各腔室之间连通处的导通控制装置关闭;
B. 在晶体预生长区腔室导入原材料, 当原材料溶解达到生长所需的过饱和状态条件时, 打开晶体预生长区腔室与相邻的过渡区腔室之间的导通控制装置, 原材料溶液进入过渡区腔 室;
C. 打开晶体生长区腔室与相邻的过渡区腔室之间的导通控制装置,处于稳定过饱和状态 的原材料溶液进入到晶体生长区腔室开始晶体生长。
9、 根据权利要求 8所述的生长氮化物体单晶材料的方法, 其特征在于, 晶体生长过程中, 处于稳定过饱和状态的原材料溶液的流动过程为:
通过调控晶体预生长区腔室与相邻的过渡区腔室的压强差, 使处于过饱和状态的原材料 溶液由调控晶体预生长区腔室进入相邻的过渡区腔室后, 截断晶体预生长区腔室与相邻的过 渡区腔室的连通, 所述晶体预生长区腔室内液面高度低于相邻的过渡区腔室的液面高度; 处于稳定过饱和状态的原材料溶液进入到与晶体生长区腔室相邻的过渡区腔室时, 通过 调控晶体生长区腔室与相邻的过渡区腔室之间的压强差, 调控两腔室的液面高度差 ΔΗ, 以调 节籽晶表面距离液面的高度差 Δ1, 控制生长区腔室的原材料溶液液相表面距离籽晶上表面的 Ah达到 N原子所在生长条件的自由程扩散范围内;
晶体生长完成后, 处于稳定过饱和状态的原材料溶液的流动过程为: 调控晶体生长区腔 室与相邻的过渡区腔室之间的压强差, 使晶体生长的原材料溶液回流至相邻的过渡区腔室, 回流后的原材料溶液液面低于体单晶材料上表面, 切断氮化物体单晶材料表面与生长溶液的 接触。
10、 根据权利要求 9所述的生长氮化物体单晶材料的方法,其特征在于,连通所述的晶体预 生长区腔室与晶体生长区腔室的过渡区腔室为两个及以上时, 通过调控相邻的两个过渡区腔 室的压强差, 使处于稳定过饱和状态的原材料溶液进入下一个过渡区腔室后截断两个相邻的 过渡区腔室的连通。
PCT/CN2014/081877 2013-10-22 2014-07-09 一种生长氮化物体单晶材料的装置及方法 WO2015058559A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/647,835 US9611564B2 (en) 2013-10-22 2014-07-09 Method for growing a bulk single crystal nitride material
JP2015543313A JP6027690B2 (ja) 2013-10-22 2014-07-09 窒化物単結晶体を成長させる装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310498099.8 2013-10-22
CN201310498099.8A CN103526282A (zh) 2013-10-22 2013-10-22 一种生长氮化物单晶体材料的装置及方法

Publications (1)

Publication Number Publication Date
WO2015058559A1 true WO2015058559A1 (zh) 2015-04-30

Family

ID=49928612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081877 WO2015058559A1 (zh) 2013-10-22 2014-07-09 一种生长氮化物体单晶材料的装置及方法

Country Status (4)

Country Link
US (1) US9611564B2 (zh)
JP (1) JP6027690B2 (zh)
CN (1) CN103526282A (zh)
WO (1) WO2015058559A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526282A (zh) * 2013-10-22 2014-01-22 北京大学东莞光电研究院 一种生长氮化物单晶体材料的装置及方法
CN104878451B (zh) * 2015-06-16 2017-07-28 北京大学东莞光电研究院 一种氮化物单晶生长装置
CN104894644B (zh) * 2015-06-29 2017-04-26 北京大学东莞光电研究院 一种氮化物晶体的生长装置及方法
CN105113004B (zh) * 2015-09-01 2018-03-09 北京大学东莞光电研究院 一种三族氮化物晶体生长装置
CN105420814B (zh) * 2015-11-26 2017-10-27 北京大学东莞光电研究院 一种晶体生长反应釜
CN107687022A (zh) * 2016-08-04 2018-02-13 中国科学院苏州纳米技术与纳米仿生研究所 助熔剂法生长GaN单晶体系中促进籽晶液相外延的方法
JP2018043891A (ja) * 2016-09-12 2018-03-22 デクセリアルズ株式会社 窒化ガリウム積層体の製造方法
CN106367804B (zh) * 2016-10-28 2019-01-15 北京大学东莞光电研究院 一种压强调控晶体生长反应釜
CN106757359B (zh) * 2016-12-06 2020-10-27 北京大学东莞光电研究院 一种用于晶体生长的调节反应釜及其控制方法
CN108796611A (zh) * 2018-07-06 2018-11-13 孟静 氮化镓单晶生长方法
US20200024767A1 (en) * 2018-07-19 2020-01-23 GM Global Technology Operations LLC Systems and methods for binary single-crystal growth
CN111434810A (zh) * 2019-01-14 2020-07-21 中国科学院苏州纳米技术与纳米仿生研究所 助熔剂法连续生长氮化物体单晶用补充机构、系统及方法
CN110616462B (zh) * 2019-10-11 2021-03-19 北京大学东莞光电研究院 一种GaN单晶衬底的制备方法
CN115074820B (zh) * 2022-06-17 2023-07-18 哈尔滨工业大学 一种单晶rig厚膜的双坩埚液相外延制备方法
CN115637496B (zh) * 2022-09-21 2023-10-27 聚勒微电子科技(太仓)有限公司 一种双重容器材料生长装置及材料生长方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937790A2 (en) * 1998-01-26 1999-08-25 Sumitomo Electric Industries, Ltd. Method of making GaN single crystal and apparatus for making GaN single crystal
CN2397130Y (zh) * 1999-10-10 2000-09-20 中国科学院力学研究所 液相外延水平生长晶体薄膜用的容器
JP2007238344A (ja) * 2006-03-06 2007-09-20 Ngk Insulators Ltd 易酸化性または易吸湿性物質の加熱処理方法
CN101338451A (zh) * 2007-07-06 2009-01-07 嘉兴学院 一种采用液相外延法制备膜的方法
CN101405438A (zh) * 2006-03-23 2009-04-08 日本碍子株式会社 氮化物单晶的制造装置
CN101760775A (zh) * 2009-04-17 2010-06-30 南安市三晶阳光电力有限公司 一种连续液相外延法制备薄膜的方法和装置
CN102803583A (zh) * 2009-06-11 2012-11-28 日本碍子株式会社 Iii族金属氮化物单晶的培养方法以及用于该方法的反应容器
CN202610387U (zh) * 2011-12-13 2012-12-19 嘉兴学院 一种厚度可控的液相外延薄膜制备装置
CN103290477A (zh) * 2013-06-21 2013-09-11 中国科学院上海技术物理研究所 一种制备InAsSb薄膜的液相外延装置和方法
CN103526282A (zh) * 2013-10-22 2014-01-22 北京大学东莞光电研究院 一种生长氮化物单晶体材料的装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3486937A (en) * 1967-03-24 1969-12-30 Perkin Elmer Corp Method of growing a single crystal film of a ferrimagnetic material
US4066481A (en) * 1974-11-11 1978-01-03 Rockwell International Corporation Metalorganic chemical vapor deposition of IVA-IVA compounds and composite
FI117980B (fi) * 2000-04-14 2007-05-15 Asm Int Menetelmä ohutkalvon kasvattamiseksi alustalle
JP4053336B2 (ja) * 2002-04-08 2008-02-27 株式会社リコー Iii族窒化物結晶製造方法およびiii族窒化物結晶製造装置
WO2009044651A1 (ja) * 2007-10-05 2009-04-09 Mitsubishi Chemical Corporation 液化アンモニアの充填方法、窒化物結晶の製造方法、および、窒化物結晶成長用反応容器
JP2009114035A (ja) * 2007-11-08 2009-05-28 Toyoda Gosei Co Ltd Iii族窒化物半導体製造装置および製造方法
JP5003642B2 (ja) * 2008-09-30 2012-08-15 豊田合成株式会社 Iii族窒化物半導体結晶の製造装置
JP5464004B2 (ja) * 2010-03-29 2014-04-09 豊田合成株式会社 Iii族窒化物半導体結晶の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937790A2 (en) * 1998-01-26 1999-08-25 Sumitomo Electric Industries, Ltd. Method of making GaN single crystal and apparatus for making GaN single crystal
CN2397130Y (zh) * 1999-10-10 2000-09-20 中国科学院力学研究所 液相外延水平生长晶体薄膜用的容器
JP2007238344A (ja) * 2006-03-06 2007-09-20 Ngk Insulators Ltd 易酸化性または易吸湿性物質の加熱処理方法
CN101405438A (zh) * 2006-03-23 2009-04-08 日本碍子株式会社 氮化物单晶的制造装置
CN101338451A (zh) * 2007-07-06 2009-01-07 嘉兴学院 一种采用液相外延法制备膜的方法
CN101760775A (zh) * 2009-04-17 2010-06-30 南安市三晶阳光电力有限公司 一种连续液相外延法制备薄膜的方法和装置
CN102803583A (zh) * 2009-06-11 2012-11-28 日本碍子株式会社 Iii族金属氮化物单晶的培养方法以及用于该方法的反应容器
CN202610387U (zh) * 2011-12-13 2012-12-19 嘉兴学院 一种厚度可控的液相外延薄膜制备装置
CN103290477A (zh) * 2013-06-21 2013-09-11 中国科学院上海技术物理研究所 一种制备InAsSb薄膜的液相外延装置和方法
CN103526282A (zh) * 2013-10-22 2014-01-22 北京大学东莞光电研究院 一种生长氮化物单晶体材料的装置及方法

Also Published As

Publication number Publication date
JP2016504254A (ja) 2016-02-12
JP6027690B2 (ja) 2016-11-16
CN103526282A (zh) 2014-01-22
US20150292108A1 (en) 2015-10-15
US9611564B2 (en) 2017-04-04

Similar Documents

Publication Publication Date Title
WO2015058559A1 (zh) 一种生长氮化物体单晶材料的装置及方法
TWI277666B (en) Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
US9441311B2 (en) Growth reactor for gallium-nitride crystals using ammonia and hydrogen chloride
JP4647525B2 (ja) Iii族窒化物結晶の製造方法
US8852341B2 (en) Methods for producing GaN nutrient for ammonothermal growth
US20100111808A1 (en) Group-iii nitride monocrystal with improved crystal quality grown on an etched-back seed crystal and method of producing the same
JP2000044400A (ja) 窒化ガリウム単結晶基板及びその製造方法
JP5464004B2 (ja) Iii族窒化物半導体結晶の製造方法
JP4278330B2 (ja) Iii族窒化物結晶製造方法およびiii族窒化物結晶製造装置
Pan et al. Progress of Na-flux method for large-size GaN single crystal growth
JP4014411B2 (ja) Iii族窒化物の結晶製造方法
JP5640427B2 (ja) Iii族窒化物半導体結晶の製造方法
JP2003286098A (ja) Iii族窒化物結晶成長方法およびiii族窒化物結晶成長装置
CN102127808B (zh) 独立的金属源系统向半导体生长设备提供金属源气体的方法
CN100415946C (zh) 外延衬底及其制造方法
JP5167752B2 (ja) 液化アンモニアの充填方法および窒化物結晶の製造方法
JP2004277224A (ja) Iii族窒化物の結晶成長方法
CN112575378A (zh) 一种在hpve生长中实现一次或多次空洞掩埋插入层的方法
JP4867884B2 (ja) 液化アンモニアの充填方法、および、窒化物結晶の製造方法
Slomski et al. Growth technology for GaN and AlN bulk substrates and templates
Pan et al. Promotion of GaN crystal growth with pre-stirring using the Na-flux method
Grabiańska et al. Challenges and prospects of ammonothermal GaN crystal growth and substrate fabrication
KR100949008B1 (ko) 염화수소 가스의 유량 조절을 이용한 저온에서의 질화갈륨나노 구조체 제조방법
CN111434810A (zh) 助熔剂法连续生长氮化物体单晶用补充机构、系统及方法
CN113604872A (zh) 高倍率外延生长GaN的氧化物气相外延法装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015543313

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14647835

Country of ref document: US

NENP Non-entry into the national phase
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855999

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14855999

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSSOF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 28--06-2016

122 Ep: pct application non-entry in european phase

Ref document number: 14855999

Country of ref document: EP

Kind code of ref document: A1