JP5640427B2 - Iii族窒化物半導体結晶の製造方法 - Google Patents

Iii族窒化物半導体結晶の製造方法 Download PDF

Info

Publication number
JP5640427B2
JP5640427B2 JP2010077175A JP2010077175A JP5640427B2 JP 5640427 B2 JP5640427 B2 JP 5640427B2 JP 2010077175 A JP2010077175 A JP 2010077175A JP 2010077175 A JP2010077175 A JP 2010077175A JP 5640427 B2 JP5640427 B2 JP 5640427B2
Authority
JP
Japan
Prior art keywords
crystal
gan
semiconductor crystal
gan semiconductor
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010077175A
Other languages
English (en)
Other versions
JP2011207677A (ja
Inventor
山崎 史郎
史郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2010077175A priority Critical patent/JP5640427B2/ja
Publication of JP2011207677A publication Critical patent/JP2011207677A/ja
Application granted granted Critical
Publication of JP5640427B2 publication Critical patent/JP5640427B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

本発明は、フラックス法によって種結晶上にIII 族窒化物半導体結晶を製造する方法に関するものであり、転位の少ないIII 族窒化物半導体結晶を得ることができる製造方法に関する。
GaNなどのIII 族窒化物半導体結晶の製造方法として、いわゆるNaフラックス法が知られている。これは、Na(ナトリウム)とGa(ガリウム)との混合融液を約800℃、数十気圧下で窒素とを反応させて、GaNを結晶成長させる方法である。
このNaフラックス法では、種結晶して、たとえば、サファイア基板上にHVPE法やMOCVD法などによってGaNを成長させたテンプレート基板や、GaN自立基板を用いる。
Naフラックス法において、III 族窒化物半導体結晶の成長速度を制御する方法として、特許文献1に記載の方法がある。特許文献1には、窒素の流量によって成長速度を制御し、成長速度を一定に保つことで均質なGaN結晶を製造する方法が記載されている。しかし、成長速度を故意に変化させてGaN結晶を成長させることは記載がない。
特開2009−263169
Naフラックス法によってGaN結晶を製造する場合において、種結晶としてテンプレート基板などの転位密度の高いものを用いると、転位密度を大きく低減することが難しく、結晶性を向上させることが困難であった。
そこで本発明の目的は、フラックス法によるIII 族窒化物半導体結晶の製造方法において、III 族窒化物半導体結晶の転位密度を低減することである。
第1の発明は、Gaとアルカリ金属とを少なくとも含む混合融液と、少なくとも窒素を含む気体とを反応させ、GaN種結晶にGaN半導体を結晶成長させるGaN半導体結晶の製造方法において、GaN種結晶のGaN半導体結晶を成長させる側の表面は、1×108 /cm2 以上の第1転位密度であり、GaN種結晶上に、混合融液全体に対するGaのモル比を18〜30%とし、成長速度を20μm/h以上、30μm以下として、結晶中に取り込まれた混合融液であるインクルージョンを有するGaN半導体結晶を成長させ、インクルージョンによって転位の伝搬を阻止し、GaN半導体結晶表面の転位密度を1×108 /cm2 以下であって第1転位密度の1/10以下に小さくする第1工程と、
第1工程の後、成長速度を1μm/h以上、7μm/h以下として、インクルージョンを有せずステップフロー成長によりGaN半導体結晶を成長させる第2工程と、を有することを特徴とするGaN半導体結晶の製造方法である。
III 族窒化物半導体は、一般式Alx Gay Inz N(x+y+z=1、0≦x、y、z≦1)で表される半導体であり、Al、Ga、Inの一部を他の第13族元素(第3B族元素)であるBやTlで置換したもの、Nの一部を他の第15族元素(第5B族元素)であるP、As、Sb、Biで置換したものをも含むものとする。より一般的には、Gaを少なくとも含むGaN、InGaN、AlGaN、AlGaInNを示す。
III 族金属は、Ga、Al、Inのうち少なくとも1つであり、特にGaのみを用いてGaN結晶を製造するのが望ましい。
アルカリ金属は、通常はNa(ナトリウム)を用いるが、K(カリウム)を用いてもよく、NaとKの混合物であってもよい。さらには、Li(リチウム)やアルカリ土類金属を混合してもよい。また、混合融液には、結晶成長させるIII 族窒化物半導体の伝導型、磁性などの物性の制御や、結晶成長の促進、雑晶の抑制、成長方向の制御、などの目的でドーパントを添加してもよい。たとえばC(炭素)を添加すると、雑晶の抑制や結晶成長促進の効果を得られる。また、n型ドーパントしてGe(ゲルマニウム)などを用いることができ、p型ドーパントとしてZn(亜鉛)などを用いることができる。
また、窒素を含む気体とは、窒素分子や、アンモニア等の窒素を構成元素として含む化合物の気体であり、それらの混合ガスでもよく、さらには希ガス等の不活性ガスを含んでいてもよい。
また、インクルージョンは、III 族窒化物半導体結晶の育成中に混合融液が取り込まれ、III 族窒化物半導体結晶中にその混合融液が残って包含されたものである。
成長速度の制御は、温度、圧力、混合融液全体に対するIII 族金属のモル比、などによって制御することができる。
第1工程においてGaN半導体結晶中にインクルージョンを発生させるには、成長速度を15μm/h以上とすればよい。ただし、成長速度は30μm/h以下とするのがよい。これよりも速いと、インクルージョンの発生が多発し、結晶性が悪化しすぎてしまう。より望ましいのは、20〜30μm/hである。また、種結晶表面にあらかじめエッチングなどによって凹凸を設けておくことで、インクルージョンを発生しやすくしてもよい。
第1工程において成長させるGaN半導体結晶の厚さは、0.5mm以上とすることが望ましい。0.5mm以上とすれば、転位密度を十分に低減することができ、第2工程でのGaN半導体結晶の成長において、ステップフロー成長を起こしやすくすることができる。よりステップフロー成長を起こしやすくするために、第1工程で成長させるGaN半導体結晶表面の転位密度は、1×108 /cm2 以下となるようにすることが望ましい。ただし、第1工程において成長させるGaN半導体結晶の厚さは2mm以下とすることが望ましい。これより厚くしても、第1工程による転位密度の低減効果が飽和してしまうためである。より望ましくは0.8〜1.5mmである。
第2工程におけるGaN半導体結晶の成長速度は、インクルージョンが発生しない成長速度であればよく、15μm/hより遅い速度であればよい。特に、7μm/h以下の成長速度とすることが望ましい。ステップフロー成長が発生しやすく、ステップフロー成長によって転位をGaN半導体結晶の主面に平行な方向に曲げることができ、転位密度を低減することができる。より望ましくは1〜7μm/hである。
種結晶は、GaN半導体自立基板であってもよいし、テンプレート基板であってもよい。テンプレート基板は、サファイア基板などの異種基板上にHVPE法やMOCVD法などによってGaN半導体層を形成した基板である。特に本発明は、種結晶としてテンプレート基板を用いる場合に適している。本発明を用いることでテンプレート基板を用いた場合であっても転位密度を大きく低減することができる。
第2の発明は、第1の発明において、第2工程は、混合融液全体に対するGaのモル比を13%以下とする、ことを特徴とするGaN半導体結晶の製造方法である。
第3の発明は、第1の発明または第2の発明において、第1工程は、GaN半導体結晶を0.5mm以上成長させる工程である、ことを特徴とするGaN半導体結晶の製造方法である。
第4の発明は、第3の発明において、第2工程は、GaN半導体結晶を0.4mm以上成長させる工程である、ことを特徴とするGaN半導体結晶の製造方法である。
第5の発明は、第1の発明から第4の発明において、種結晶は、異種基板上にGaN半導体層が形成されたテンプレート基板である、ことを特徴とするGaN半導体結晶の製造方法である。
第1の発明によれば、インクルージョンによって転位の伝搬を阻止することができるため、GaN半導体の転位密度を低減することができる。そして、その後にインクルージョンが発生しない成長速度でGaN半導体結晶を成長させることで、転位密度が低く、かつインクルージョンを有しないGaN半導体結晶を得ることができる。
また、第2の工程で成長速度を7μm/h以下とすれば、GaN半導体結晶がステップフロー成長しやすくなる。そのため、GaN半導体結晶の転位密度をさらに低減することができる。
また、GaN半導体結晶の成長速度は、混合融液全体に対するGaのモル比によって制御することができ、モル比を13%以下とすることで、混合融液の粘性が小さくなり、成長速度が7μm/h以下となるため、ステップフロー成長を起こすことができる。
また、第1の工程においてGaN半導体結晶を0.4mm以上の厚さに成長させれば、転位を十分に低減することができる。さらに、転位が十分に低減されたことでステップフロー成長が起こりやすくなるため、第2工程においてステップフロー成長による転位密度の低減の効果がより高まる。また、第1の工程で0.4mm以上成長させた後に第2工程で0.5mm以上成長させれば、転位をさらに低減することができる。
また、本発明のように、本発明は1×108 /cm2 以上の高い転位密度を有した種結晶を用いる場合に特に有効である。このような転位密度の高い種結晶を用いた場合は、種結晶上にIII 族窒化物半導体を2次元成長させにくく、転位を主面に平行な方向に曲げて伝搬を阻止することが難しいため、転位密度を低減することが難しかったが、本発明によれば、転位密度が高い種結晶を用いた場合にも、III 族窒化物半導体結晶の転位密度を効果的に低減することができる。
また、第5の発明のように、本発明は種結晶をテンプレート基板とする場合に有効である。テンプレート基板は転位密度が高く、成長速度を下げてもステップフロー成長が発生しにくいため、本発明を適用することで効果的に転位密度の低減を図ることができる。
実施例1のGaN結晶の製造に用いる製造放置1の構成を示した図。 実施例1のGaN結晶の製造工程を示した図。 実施例1のGaN結晶の製造工程を示した図。 インクルージョン103の発生機構を説明した図。
以下、本発明の具体的な実施例について図を参照に説明するが、本発明は実施例に限定されるものではない。
図1は、実施例1のGaN結晶の製造方法に用いる製造装置1の構成を示した図である。製造装置1は、圧力容器10と、反応容器11と、坩堝12と、加熱装置13と、供給管14、16と、排気管15、17と、によって構成されている。
圧力容器10は、円筒形のステンレス製であり、耐圧性を有している。また、圧力容器10には、供給管16、排気管17が接続されている。圧力容器10の内部には、反応容器11と加熱装置13が配置されている。反応容器11は耐熱性を有している。反応容器11内には、坩堝12が配置される。坩堝12は、たとえばW(タングステン)、Mo(モリブデン)、BN(窒化ホウ素)、アルミナ、YAG(イットリウムアルミニウムガーネット)などである。坩堝12には、GaとNaを含む混合融液21が保持され、混合融液21中には種結晶18が保持される。反応容器11には、供給管14、排気管15が接続されており、供給管14、排気管15に設けられた弁(図示しない)により反応容器11内の換気、窒素の供給、反応容器11内の圧力の制御、を行う。また、圧力容器10にも供給管16より窒素が供給され、供給管16、排気管17の弁(図示しない)で窒素の供給量、排気量を調整することで、圧力容器10内の圧力と反応容器11内の圧力とがほぼ同じになるよう制御する。また、加熱装置13により、反応容器11内の温度を制御する。
なお、反応容器11として耐圧性を有したものを使用すれば、必ずしも圧力容器10は必要ではない。また、坩堝12を回転あるいは揺動させて坩堝12中に保持される混合融液21を攪拌することができる装置を設け、GaN結晶の育成中に混合融液21を撹拌して混合融液21中のNa、Ga、窒素の濃度分布が均一となるようにするとよい。GaN結晶を均質に育成することができる。また、GaN結晶育成中のNaの蒸発を防止するために、坩堝12には蓋を設けてもよい。
次に、製造装置1を用いたGaN結晶の製造方法について説明する。
まず、種結晶18として、サファイア基板100上にHVPE法やMOCVD法によってGaN層101が形成されたテンプレート基板を用意する。GaN層101のGaN結晶を成長させる側の表面(サファイア基板100側とは反対側の表面)の転位密度は、1×109 〜1×1010/cm2 である。
次に、この種結晶18を、坩堝12の底面に配置し、Na、Ga、Cを坩堝12内に配置し、その坩堝12を反応容器11の中に入れて封をし、さらにその反応容器11を圧力容器10内に配置して封をした。NaやGaは、固体の状態で坩堝12内に配置してもよいし、液体のNa、Gaをそれぞれ坩堝12内に入れたり、液体のNa、Gaを混合してから坩堝12内に入れてもよい。Na、Ga、Cを合わせた全体に対するGaのモル比は22%とした。Cは雑晶の発生を抑制し、結晶成長を促進するために添加した。次に、加熱装置13により加熱して坩堝12内にGaとNaの混合融液21を生じさせ、混合融液21の温度を870℃とした。また、供給管14、排気管15により反応容器11内に窒素を供給して、反応容器11内の圧力を4.2MPaとした。また、圧力容器10内にも供給管16、排気管17より窒素を供給して、圧力容器10内の圧力が反応容器11内の圧力と同程度となるようにした。種結晶18は、GaとNaの混合融液21中に保持される。この温度、圧力を60時間維持し、種結晶18のGaN層101上に厚さ1.2mmのGaN結晶102を成長させた。GaN結晶102の成長速度は20μm/hである。
ここで、混合融液21全体に対するGaのモル比を22%として、GaN結晶102の成長速度を20μm/hに制御しているため、GaN結晶102の成長中、2次元核成長部の会合部やオーバーグロース部に混合融液21の一部が残る。その後GaN結晶102がさらに成長することで、残された混合融液21が結晶中に取り込まれ、GaN結晶102中にインクルージョン103が発生する(図4参照)。また、GaN結晶102中には、種結晶18のGaN層101から多数の転位104が伝搬する。しかし、その転位104の一部は、インクルージョン103によってその伝搬が阻止されて終端する(図2、図4参照)。その結果、GaN結晶102の転位密度は、その成長とともに減少していく。そして、厚さ1.2mmまで成長したGaN結晶102では、その表面の転位密度は1×108 /cm2 以下に低減されており、GaN層101表面の転位密度よりも1桁から2桁のオーダー低い転位密度となっている。
上記のGaN結晶102を成長させる工程では、混合融液21全体に対するGaのモル比を22%とすることによってGaN結晶102の成長速度を20μm/hに制御しているが、GaN結晶102の成長速度は15μm/h以上とすればよく、GaN結晶102中にインクルージョン103を発生させることができる。GaN結晶102の成長速度を15μm/h以上とするには、混合融液21全体に対するGaのモル比を18%以上とすればよい。ただし、GaN結晶102の成長速度は30μm/h以下とするのがよい。これよりも成長速度が速いと、インクルージョン103が多数発生して結晶性を悪化させてしまい望ましくない。より望ましいGaN結晶102の成長速度は、20〜30μm/hである。GaN結晶102の成長速度がこの範囲となるためには、混合融液21全体に対するGaのモル比を18〜30%とすればよい。
次に、加熱、加圧を停止して常温、常圧に戻し、GaN結晶102の結晶成長を終了させた後、坩堝12から種結晶18を取り出し、エタノールなどによってNaを除去した。また、坩堝12内の残留物も除去した。
次に、再び種結晶18、Na、Ga、Cを坩堝12内に配置し、その坩堝12を反応容器11に入れて密封し、さらにその反応容器11を圧力容器10内に配置した。Na、Ga、C全体に対するGaのモル比は7%とした。そして、GaN結晶102の育成時と同様の温度、圧力として100時間維持し、GaN結晶102上に厚さ0.6mmのGaN結晶105を成長させた。GaN結晶105の成長速度は6μm/hである。
ここで、混合融液21全体に対するGaのモル比を7%としており、混合融液21中のGa量が少ないため、混合融液21の粘性が小さく、横方向に成長しやすい条件となっていて、ステップフロー成長が起こりやすくなっている。ステップフロー成長とは、結晶表面のテラスからの結晶成長が少なく、ステップから横方向(結晶表面に水平な方向)に結晶が成長する結晶成長モードである。また、混合融液21中のGa量が少ないためにGaNの成長速度が6μm/hと遅くなっており、これもGaN結晶105がステップフロー成長しやすい条件となっている。さらに、前工程により成長させたGaN結晶102表面の転位密度を1×108 /cm2 以下としていることも、ステップフロー成長を発生させやすくする要因となっている。その結果、GaN結晶102上に成長するGaN結晶105は、ステップフロー成長が支配的な成長となる。このステップフロー成長によって、GaN結晶102から伝搬する転位104の大部分はGaN結晶105中において横方向(GaN結晶105の主面に水平な方向)に曲げられ、GaN結晶105の主面に垂直な方向への転位104の伝搬は阻害される(図3参照)。その結果、GaN結晶102上に育成されたGaN結晶105の表面は、GaN結晶102よりも転位密度が減少している。
上記のGaN結晶105を成長させる工程では、混合融液21全体に対するGaのモル比を7%とすることによってGaN結晶100の成長速度を6μm/hとしているが、GaN結晶100のステップフロー成長が発生しやすくし、転位密度を低減するためには、GaN結晶105の成長速度を7μm/h以下とすればよく、このとき、混合融液21全体に対するGaのモル比は13%以下とすればよい。より望ましいGaN結晶105の成長速度は1〜7μm/hである。GaN結晶105の成長速度がこの範囲となるためには、混合融液21全体に対するGaのモル比を4〜13%とすればよい。また、上記工程では、GaN結晶105を厚さ0.6mm成長させているが、GaN結晶105の転位密度を十分に低減するためには0.4mm以上の厚さに成長させればよい。より望ましくは0.5〜1.5mmである。また、GaN結晶105がステップフロー成長しやすくなるよう、GaN結晶102の厚さを0.5mm以上とするのが望ましい。GaN結晶102表面の転位密度がより低減し、GaN結晶102上に形成するGaN結晶105の成長モードを、よりステップフロー成長が支配的な成長モードとすることができる。より望ましいGaN結晶102の厚さは0.8〜1.5mmである。
なお、GaN結晶105を成長させた後、GaN結晶105上に、7μm/hより速く15μm/h以下の範囲の成長速度でさらにGaN結晶を成長させてもよい。成長速度がこの範囲であれば、インクルージョン103が発生せず、転位密度を増加させてしまうこともないので、より短時間で良質のGaN結晶を育成することができる。
次に、加熱、加圧を停止して常温、常圧に戻し、GaN結晶105の結晶成長を終了させ、種結晶18および種結晶18上に成長したGaN結晶102、105を取り出し、付着したNaをエタノールなどによって除去する。そして、得られた結晶から種結晶18、およびインクルージョン103を含むGaN結晶102を研磨などによって除去した。これにより、インクルージョン103を含まず、かつ転位密度の低い良好な結晶性を有するGaN結晶105を得ることができた。
この得られたGaN結晶105を種結晶として、再びNaフラックス法によってGaN結晶105上にGaN結晶を成長させてもよい。さらに良質なGaN結晶を得ることができる。
以上に述べた実施例1のGaN結晶の製造方法によれば、転位密度の多いテンプレート基板を用いた場合であっても、転位密度がテンプレート基板のGaN層よりも大きく低減されたGaN結晶を製造することができる。
実施例1と同様に、サファイア基板100上にGaN層101が形成されたテンプレート基板を用い、製造装置1を用いてGaN層101上にGaN結晶を成長させた。混合融液中全体に対するGaのモル比、成長温度、成長圧力は、実施例1のGaN結晶102の成長時と同様であり、それぞれ22%、870℃、4.2MPaとした。成長速度は20μm/hであり、40時間成長させて0.8mmのGaN結晶を育成した。このとき、GaN結晶にはインクルージョンが発生し、実施例1のGaN結晶102と同様に転位密度が低減される。その後、成長温度は保持したまま圧力を2.3MPaに下げて、成長速度を7μm/hとし、これを60時間維持して厚さ約0.4mmのGaN結晶をさらに成長させた。成長速度を7μm/hとしているため、ステップフロー成長が支配的な成長となり、転位がGaN結晶主面に平行な方向に曲げられるため、転位密度をさらに低減することができる。
以上に述べた実施例2のGaN結晶の製造方法もまた、実施例1のGaN結晶の製造方法と同様に、転位密度の多いテンプレート基板を用いた場合であっても、転位密度がテンプレート基板のGaN層よりも大きく低減されたGaN結晶を製造することができる。
なお、実施例1では、混合融液全体に対するGaのモル比を変えることでGaNの成長速度を制御し、実施例2では圧力の制御によって成長速度を制御しているが、温度、圧力、混合融液全体に対するGaのモル比、のいずれか2以上を制御することでGaNの成長速度を制御してもよい。また、不純物を添加することで成長速度を制御してもよい。
また、実施例1、2では、種結晶としてテンプレート基板を用いたが、GaN自立基板を用いてもよい。
また、実施例1、2は、GaN結晶の製造方法であったが、本発明はGaN以外のIII 族窒化物半導体、たとえばAlGaN、InGaN、AlGaInNなどの製造にも適用可能である。
本発明により製造されるIII 族窒化物半導体結晶は、III 族窒化物半導体からなる電子デバイスの成長基板などに利用することができる。
10:圧力容器
11:反応容器
12:坩堝
13:加熱装置
14、16:供給管
15、17:排気管
18:種結晶
100:サファイア基板
101:GaN層
102、105:GaN結晶
103:インクルージョン
104:転位

Claims (6)

  1. Gaとアルカリ金属とを少なくとも含む混合融液と、少なくとも窒素を含む気体とを反応させ、GaN種結晶にGaN半導体を結晶成長させるGaN半導体結晶の製造方法において、
    前記GaN種結晶のGaN半導体結晶を成長させる側の表面は、1×108 /cm2 以上の第1転位密度であり、
    前記GaN種結晶上に、前記混合融液全体に対するGaのモル比を18〜30%とし、成長速度を20μm/h以上、30μm以下として、結晶中に取り込まれた前記混合融液であるインクルージョンを有するGaN半導体結晶を成長させ、前記インクルージョンによって転位の伝搬を阻止し、前記GaN半導体結晶表面の転位密度を1×108 /cm2 以下であって前記第1転位密度の1/10以下に小さくする第1工程と、
    前記第1工程の後、成長速度を1μm/h以上、7μm/h以下として、インクルージョンを有せずステップフロー成長によりGaN半導体結晶を成長させる第2工程と、
    を有することを特徴とするGaN半導体結晶の製造方法。
  2. 記第2工程は、前記混合融液全体に対するGaのモル比を13%以下とする
    ことを特徴とする請求項1に記載のGaN半導体結晶の製造方法。
  3. 前記第1工程は、GaN半導体結晶を0.5mm以上成長させる工程である、ことを特徴とする請求項1または請求項2に記載のGaN半導体結晶の製造方法。
  4. 前記第2工程は、GaN半導体結晶を0.4mm以上成長させる工程である、ことを特徴とする請求項3に記載のGaN半導体結晶の製造方法。
  5. 前記種結晶は、異種基板上にGaN半導体層が形成されたテンプレート基板である、ことを特徴とする請求項1ないし請求項4のいずれか1項に記載のGaN半導体結晶の製造方法。
  6. 請求項1ないし請求項5のいずれか1項に記載のGaN半導体結晶の製造方法によって製造したGaN半導体結晶を種結晶として、Gaとアルカリ金属とを少なくとも含む混合融液と、少なくとも窒素を含む気体とを反応させ、前記種結晶上に再度、GaN半導体結晶を成長させる、ことを特徴とするGaN半導体結晶の製造方法。
JP2010077175A 2010-03-30 2010-03-30 Iii族窒化物半導体結晶の製造方法 Active JP5640427B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077175A JP5640427B2 (ja) 2010-03-30 2010-03-30 Iii族窒化物半導体結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077175A JP5640427B2 (ja) 2010-03-30 2010-03-30 Iii族窒化物半導体結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2011207677A JP2011207677A (ja) 2011-10-20
JP5640427B2 true JP5640427B2 (ja) 2014-12-17

Family

ID=44939165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077175A Active JP5640427B2 (ja) 2010-03-30 2010-03-30 Iii族窒化物半導体結晶の製造方法

Country Status (1)

Country Link
JP (1) JP5640427B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012003278B4 (de) 2011-08-10 2018-08-23 Ngk Insulators, Ltd. Filme von Nitriden von Gruppe-13-Elementen und geschichteter Körper, der dieselben beinhaltet
WO2013021804A1 (ja) 2011-08-10 2013-02-14 日本碍子株式会社 13族元素窒化物膜の剥離方法
JP6143148B2 (ja) * 2012-02-26 2017-06-07 国立大学法人大阪大学 Iii族窒化物結晶の製造方法および半導体装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768975B2 (ja) * 2003-08-29 2011-09-07 パナソニック株式会社 GaN結晶およびGaN結晶基板の製造方法

Also Published As

Publication number Publication date
JP2011207677A (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
US8507364B2 (en) N-type group III nitride-based compound semiconductor and production method therefor
US20090155580A1 (en) Production Methods of Semiconductor Crystal and Semiconductor Substrate
JP2007254161A (ja) Iii族窒化物結晶の製造方法およびiii族窒化物結晶の製造装置
US9028611B2 (en) Method for producing group III nitride semiconductor
JP5464004B2 (ja) Iii族窒化物半導体結晶の製造方法
JP2006509707A (ja) ガリウム含有窒化物のバルク単結晶を得るための改良されたプロセス
JP2020132464A (ja) Iii族窒化物結晶の製造方法
US8361222B2 (en) Method for producing group III nitride-based compound semiconductor
JP5640427B2 (ja) Iii族窒化物半導体結晶の製造方法
US7459023B2 (en) Method for producing semiconductor crystal
CN107230737A (zh) Iii族氮化物基板以及iii族氮化物结晶的制造方法
JP5123423B2 (ja) Iii族窒化物系化合物半導体の製造方法
CN100532658C (zh) 半导体晶体的生产方法
JP5464007B2 (ja) Iii族窒化物半導体結晶の製造方法
US20120104557A1 (en) Method for manufacturing a group III nitride crystal, method for manufacturing a group III nitride template, group III nitride crystal and group III nitride template
CN110219047B (zh) Iii族氮化物结晶的制造方法
CN107794567B (zh) 用于制造iii族氮化物半导体的方法
JP2017036178A (ja) 13族窒化物単結晶の製造方法、および13族窒化物単結晶の製造装置
JP7125246B2 (ja) Iii族窒化物半導体の製造方法
CN1723302A (zh) 模板型衬底及其制造方法
JP2010037155A (ja) Iii族窒化物系化合物半導体結晶の製造方法
WO2024009683A1 (ja) Iii族窒化物結晶の製造方法
Imanishi et al. Growth of a High Quality GaN Wafer from Point Seeds by the Na-Flux Method
JP5754391B2 (ja) Iii族窒化物半導体結晶の製造方法
JP6720888B2 (ja) Iii族窒化物半導体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent or registration of utility model

Ref document number: 5640427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150