WO2015057025A1 - 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조 방법 - Google Patents

이온전달 소재, 이를 포함하는 전해질막 및 이의 제조 방법 Download PDF

Info

Publication number
WO2015057025A1
WO2015057025A1 PCT/KR2014/009810 KR2014009810W WO2015057025A1 WO 2015057025 A1 WO2015057025 A1 WO 2015057025A1 KR 2014009810 W KR2014009810 W KR 2014009810W WO 2015057025 A1 WO2015057025 A1 WO 2015057025A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
electrolyte membrane
copolymer
unit
Prior art date
Application number
PCT/KR2014/009810
Other languages
English (en)
French (fr)
Inventor
최형삼
한중진
신정규
정승표
김영제
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480052867.XA priority Critical patent/CN105594048B/zh
Priority to US15/022,454 priority patent/US9923225B2/en
Priority to JP2016538872A priority patent/JP6293896B2/ja
Priority to EP14854331.7A priority patent/EP3059792B1/en
Publication of WO2015057025A1 publication Critical patent/WO2015057025A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to an ion transport material, an electrolyte membrane comprising the same, and a method of manufacturing the same.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the membrane electrode assembly (MEA) of a fuel cell is a portion in which an electrochemical reaction between hydrogen and oxygen occurs and is composed of a cathode, an anode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane.
  • a redox flow battery (redox flow battery) is an electrochemical storage device that stores the chemical energy of an active material directly as electrical energy by charging and discharging the active material contained in the electrolyte. to be.
  • the unit cell of the redox flow battery includes an electrode, an electrolyte, and an ion exchange membrane.
  • Fuel cells and redox flow cells are being researched and developed as next generation energy sources due to their high energy efficiency and eco-friendly features with low emissions.
  • ion-exchange membrane materials for fuel cells and redox flow batteries have the potential to: 1) prevent crossover of electrolytes, 2) strong chemical resistance, 3) strengthen mechanical properties, and 4) low swelling ratio. Must have characteristics. Accordingly, research on the electrolyte membrane having the above characteristics is continued.
  • the present application is to provide an ion transport material, an electrolyte membrane comprising the same and a method of manufacturing the same.
  • the present application is a unit of the formula (1); And a copolymer including at least one unit of a unit of Formula 2, a unit of Formula 3, and a unit of Formula 4 below, and an inorganic particle dispersed in a periphery of a sulfonic acid group of the copolymer. do.
  • Z is a trivalent aromatic ring group or a trivalent heterocyclic group
  • L is a direct bond or a divalent linking group
  • X 1 to X 3 are the same as or different from each other, and each independently a direct bond, oxygen (O), carbonyl group (-CO-), sulfone group (-SO 2- ), arylene group, heteroarylene group, or *- ZL-SO 3 H, * indicates the part connected to the main chain,
  • Y 1 to Y 22 are the same as or different from each other, and each independently hydrogen (H), fluorine (F), or a substituted or unsubstituted alkyl group,
  • Each of the units of Formulas 2 to 4 has at least one fluorine substituent.
  • an electrolyte membrane including the ion transport material is provided.
  • the present invention also provides a fuel cell including the electrolyte membrane.
  • a redox flow battery including the electrolyte membrane is provided.
  • the unit of Formula 1 and preparing a copolymer-containing solution A including at least one unit of the unit of Formula 2, the unit of Formula 3, and the unit of Formula 4; Preparing an inorganic particle precursor solution B; Mixing the solutions A and B; And it provides a method for producing an electrolyte membrane comprising the step of forming a membrane with the mixed solution.
  • the inorganic particles are dispersed in the polymer matrix, the mechanical properties are strong, and when used as an electrolyte membrane, swelling by the solvent is reduced.
  • the ion transport material according to the exemplary embodiment of the present application selectively disperses the inorganic particles in the periphery of the sulfonic acid group, and when used as an electrolyte membrane, excellent crossover prevention effect of the electrolyte material generated along the ion channel. Do.
  • the electrolyte membrane including the ion transport material according to an exemplary embodiment of the present application is excellent in ion conductivity.
  • the manufacturing method of the electrolyte membrane according to an exemplary embodiment of the present application is a simple manufacturing method by mixing the solution, the inorganic particles are evenly dispersed around the sulfonic acid group of the copolymer.
  • the polymer chain of the copolymer includes a sulfonic acid group, it is possible to form an electrolyte membrane in which inorganic particles are dispersed without additional pH adjustment.
  • FIG. 1 illustrates a form in which inorganic particles are dispersed around a sulfonic acid group in an ion transport material according to an exemplary embodiment of the present application.
  • An exemplary embodiment of the present application provides an ion transport material including a copolymer and inorganic particles dispersed around a sulfonic acid group of the copolymer.
  • the copolymer is a partially fluorine-based polymer containing a sulfonic acid group.
  • the partial fluorine-based polymer means that at least one monomer constituting the polymer has a fluorine group.
  • the partially fluorine-based polymer it may be a copolymer including a fluorine-based substituent in the hydrocarbon chain.
  • copolymer may be an alternating copolymer, a block copolymer, a random copolymer, or a graft copolymer.
  • the copolymer is a unit of Formula 1; And at least one unit of the unit of Formula 2, the unit of Formula 3, and the unit of Formula 4.
  • Y 1 to Y 22 may be the same as or different from each other, and each independently C 1 to C 10 alkyl group unsubstituted or substituted with hydrogen (H) or fluorine (F).
  • the substituted or unsubstituted C 1 to C 10 alkyl group may be chain or branched.
  • -(CQQ ') pQ ", Q, Q' and Q" are hydrogen (-H) or fluorine (-F), and p may be 1-10.
  • L is a direct bond, an alkylene group, an alkenylene group, an alkynylene group,-[(CRR ') rO (CR “R”') s] t-, or -CO-Ar-, wherein
  • R, R ', R "and R"' are the same as or different from each other, and are each independently hydrogen, an alkyl group or a halogen group,
  • R and s are 0 to 3
  • T 1 to 5
  • Ar is an arylene group or a heteroarylene group.
  • L is-(CH 2 ) m [(CF 2 ) 2 O (CF 2 ) 2 ] n-.
  • M and n are integers from 0 to 5.
  • S and r may be s + r ⁇ 1.
  • the alkylene group is an alkylene group having 1 to 20 carbon atoms
  • the alkenylene group is an alkenylene group having 2 to 20
  • the alkynylene group is an alkyylene group having 2 to 20, but is not limited thereto.
  • the trivalent aromatic ring group is a trivalent aryl group, the aryl may have 6 to 60 carbon atoms, specifically 6 to 40, more specifically 6 to 25 carbon atoms.
  • Specific examples of the aryl include phenyl, biphenyl, triphenyl, naphthyl, anthryl, chrysenyl, phenanthrenyl, perrylenyl, fluoranthenyl, triphenylenyl, penalenyl, pyrenyl, tetrasenyl, pentacenyl , Fluorenyl, indenyl, acenaphthylenyl, fluorenyl, and the like or a condensed ring thereof, but are not limited thereto.
  • the trivalent heterocyclic group may include S, O or N as a hetero atom, and may have 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 25 carbon atoms.
  • Specific examples of the heterocyclic group include pyridyl, pyrrolyl, pyrimidyl, pyridazinyl, furanyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isozozolyl, triazolyl , Furazanyl, oxdiazolyl, thiadiazolyl, dithiazolyl, tetrazolyl, pyranyl, thiopyranyl, diazinyl, oxazinyl, thiazinyl, dioxynyl, triazinyl, tetrazinyl, quinolyl, Isoquinolyl, quinazolinyl,
  • the arylene group may be a divalent aryl group, and the carbon number of the aryl may be 6 to 60, specifically 6 to 40, and more specifically 6 to 25.
  • Specific examples of the aryl include phenyl, biphenyl, triphenyl, naphthyl, anthryl, chrysenyl, phenanthrenyl, perrylenyl, fluoranthenyl, triphenylenyl, penalenyl, pyrenyl, tetrasenyl, pentacenyl , Fluorenyl, indenyl, acenaphthylenyl, fluorenyl, and the like or a condensed ring thereof, but are not limited thereto.
  • the heteroarylene group may be a divalent heteroaryl group, and the heteroaryl may include S, O, or N as a hetero atom, 2 to 60 carbon atoms, specifically 2 to 40 carbon atoms, and more specifically 3 to 25 carbon atoms.
  • heteroaryl examples include pyridyl, pyrrolyl, pyrimidyl, pyridazinyl, furanyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, Furazanyl, oxadiazolyl, thiadiazolyl, dithiazolyl, tetrazolyl, pyranyl, thiopyranyl, diazinyl, oxazinyl, thiazinyl, dioxynyl, triazinyl, tetrazinyl, quinolyl, iso Quinolyl, quinazolinyl, isoquinazolinyl, naphthyridyl, acridinyl, phenanthridinyl, imidazopyridinyl, diazanaphthalenyl, triazadenene
  • the "periphery of sulfonic acid group” refers to a portion where an ion transport channel is formed by a sulfonic acid group.
  • Hydrophobic and hydrophilic phase separation when measured using a scanning electron microscope (SEM), atomic force microscope (AFM), etc. in the form of a solution of the copolymer, solid or cast membrane Due to the separation property, it is possible to confirm the separation of the hydrophobic portion containing no sulfonic acid group and the hydrophilic portion containing sulfonic acid group in the copolymer. According to the above-described embodiments of the present application, it can be seen that the inorganic particle dispersion density of the hydrophilic portion including the sulfonic acid group is high, and the portion may be interpreted as “a peripheral portion of the sulfonic acid group”. Due to the phase separation and dispersion of the inorganic particles, mechanical properties may be enhanced, and ion conductivity may be improved and crossover may be suppressed.
  • the inorganic particles are dispersed in the sulfonic acid group portion of the copolymer.
  • the inorganic particles are dispersed only in the peripheral portion of the sulfonic acid group of the copolymer. Therefore, the concentration of the inorganic particles at the periphery of the sulfonic acid group is higher than the concentration of the inorganic particles at the other portion, or the inorganic particles exist only at the periphery of the sulfonic acid group.
  • the inorganic particles are selectively formed only at the periphery of the sulfonic acid group, even if they contain a small amount of inorganic particles, the inorganic particles may have an effect of suppressing crossover of the electrolyte material along the ion transport channel. That is, even when the inorganic particles of the same content as in the prior art can exhibit an excellent crossover suppression effect than conventional.
  • the weight of the inorganic particles dispersed in the portion containing the unit of the formula (1) in the copolymer and the inorganic particles dispersed in the portion containing at least one unit of the unit of the formula 2 to 4 The weight ratio of may be 70%: 30% to 100%: 0%, specifically 80%: 20% to 100%: 0% relative to the total weight of the inorganic particles.
  • the weight ratio of the inorganic particles dispersed in the hydrophilic portion including the sulfonic acid group in the copolymer and the inorganic particles dispersed in the hydrophobic portion of the fluorine-based is 70%: 30% to 100%: 0% relative to the total weight of the inorganic particles, specifically 80%: 20% to 100%: 0%.
  • the inorganic particles are dispersed in the ion transfer channel portion having an effect of suppressing crossover, it is possible to increase the mechanical strength of the entire material.
  • by increasing the content of the inorganic particles in the ion transfer channel portion that crossover occurs it can exhibit a high effect even with a small amount of inorganic particles.
  • the inorganic particle content of the sulfonic acid group around the copolymer may be 70 wt% to 100 wt%, specifically 80 wt% to 100 wt% of the total weight of the inorganic particles. At least 70 wt% of the inorganic particles may be dispersed in the periphery of the sulfonic acid group.
  • the content of the inorganic particles can also be confirmed through a two-dimensional photograph measured using the above-described electron scanning microscope, atomic square microscope.
  • the ion-transfer material may be formed as a film, and one surface of the film may be taken based on a two-dimensional cross section taken by equipment such as an atomic force microscope (AFM), an optical profiler, or a scanning electron microscope (SEM). You can check with
  • the inorganic particles may be present in the form of microparticles or agglomerated masses at the periphery of the sulfonic acid group.
  • the diameter of the inorganic particles is 5 to 200 nm, specifically 10 to 100 nm. If the diameter of the inorganic particles exceeds 200 nm, there is a problem that the mechanical properties of the electrolyte membrane including the ion transport material is lowered. In addition, when it is in the range of 10 to 100 nm, it is possible to enhance the mechanical properties of the electrolyte membrane, and at the same time, by dispersing an inorganic particle of a suitable size in the ion transport channel portion, exhibits the effect of suppressing crossover, the performance of ion transfer Can increase.
  • the diameter is a value representing the particle size, and may mean a length value of the longest line among the lines passing through the center of the particle, and a measuring method used in the art may be used. For example, it may be measured using an optical profiler, a scanning electron microscope (SEM), or the like.
  • the average particle diameter of the inorganic particles may be 5 to 200 nm, specifically 10 to 100 nm.
  • the particle diameter can be interpreted to be the same as the diameter
  • the average particle diameter of the inorganic particles means the average value of the particle diameter of the inorganic particles.
  • the average particle diameter may be measured using a method used in the art. For example, particles may be photographed using an optical profiler, a scanning electron microscope (SEM), or the like, and the particle size may be measured to obtain their average values.
  • the inorganic particle is silica.
  • the content of the inorganic particles is preferably 2 to 30 parts by weight based on 100 parts by weight of the ion-transfer material solids, and 5 to 12 parts by weight based on the copolymer solids. If the content of the inorganic particles is less than 2 parts by weight, the effect of preventing crossover of the electrolyte material generated along the ion channel is insufficient. If the content of the inorganic particles is more than 30 parts by weight, the mechanical properties of the electrolyte membrane including the ion transport material are reduced.
  • Chemical Formula 2 may be represented by the following Chemical Formula 2A.
  • Chemical Formula 3 may be represented by the following Chemical Formula 3A.
  • Chemical Formula 4 may be represented by the following Chemical Formula 4A.
  • the copolymer is a copolymer formed by including at least one unit of the unit represented by the following formula (5), (6), (7), (8), (9) and (10). .
  • a and b mean mole fraction with respect to the entire copolymer.
  • a + b ⁇ 1 0.1 ⁇ a ⁇ 0.9, and 0.1 ⁇ b ⁇ 0.9.
  • the copolymer is a copolymer including a unit represented by the following formula (5).
  • the copolymer is a copolymer including a unit represented by the following formula (6).
  • the copolymer is a copolymer including a unit represented by the following formula (7).
  • the copolymer is a copolymer including a unit represented by the following formula (8).
  • the copolymer is a copolymer including a unit represented by the following formula (9).
  • the copolymer is a copolymer including a unit represented by the following formula (10).
  • the copolymer is a homopolymer of any one of units represented by Formula 5, Formula 6, Formula 7, Formula 8, Formula 9 or Formula 10, or two or more Copolymer.
  • the copolymer may be an alternating copolymer, a block copolymer, a random copolymer or a graft copolymer, and is preferably a block copolymer.
  • the weight average molecular weight of the copolymer is 10,000 to 1,000,000, specifically 50,000 to 500,000, and more preferably 50,000 to 200,000. If the weight average molecular weight of the copolymer is less than 10,000, the mechanical properties of the electrolyte membrane including the ion transport material is lowered. If the weight average molecular weight of the copolymer is more than 1,000,000, the solubility of the copolymer is lowered, making it difficult to prepare the electrolyte membrane including the ion transport material.
  • the ion transport material according to the exemplary embodiment of the present application includes a copolymer having at least one monomer having a fluorine group, unlike a hydrocarbon-based polymer, phase separation between a hydrophobic portion containing a fluorine group and a hydrophilic portion containing a sulfonic acid is used. Due to the) property, there is an advantageous effect that the inorganic particles are selectively dispersed in the hydrophilic part. In addition, the positive phase separation of the hydrophobic portion including the fluorine group and the hydrophilic portion including the sulfonic acid and the inorganic particles improves the cation conductivity, and at the same time has an effect of preventing the crossover of the electrolyte material.
  • an exemplary embodiment of the present application provides an electrolyte membrane including the ion transport material.
  • the "electrolyte membrane” is a membrane capable of exchanging ions, such as a membrane, an ion exchange membrane, an ion transfer membrane, an ion conductive membrane, a separator, an ion exchange membrane, an ion transfer membrane, an ion conductive separator, an ion exchange electrolyte membrane, and an ion. It may be represented as a transfer electrolyte membrane or an ion conductive electrolyte membrane.
  • the thickness of the electrolyte membrane is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thickness of the electrolyte membrane is less than 5 ⁇ m, electric short and crossover of the electrolyte material may not be prevented, and when the thickness of the electrolyte membrane is more than 200 ⁇ m, excellent cation conductivity characteristics are difficult to express.
  • the electrolyte membrane according to the exemplary embodiment of the present application is a form in which inorganic particles are bonded to and dispersed in a sulfonic acid-containing partially fluorine-based polymer as defined above, and mechanical properties are enhanced compared to conventional electrolyte membranes, and swelling for a solvent ( Swelling can be reduced.
  • the electrolyte membrane according to an exemplary embodiment of the present application is excellent in the effect that the inorganic particles are selectively dispersed only in the peripheral portion of the sulfonic acid group of the copolymer, to prevent crossover (Cross Over).
  • the inorganic particles are formed only in the hydrophilic part of the copolymer, that is, around the sulfonic acid group, thereby selectively forming the inorganic particles only in the cation channel. Therefore, even if it contains a small amount of inorganic particles, there is an excellent effect in preventing the crossover of the electrolyte material along the ion channel compared to the conventional electrolyte membrane.
  • Crossover of the electrolyte material occurs through the hydrophilic portion containing the sulfonic acid group, and the inorganic particles dispersed in the hydrophilic portion serve to block the flow of the electrolyte material.
  • inorganic particles are advantageously selectively dispersed in the hydrophilic portion.
  • sulfonic acids substituted with fluorine have a stronger acid condition than sulfonic acids substituted with aromatic compounds, and thus have more favorable conditions for dispersing hydrophilic inorganic particles.
  • an exemplary embodiment of the present application provides a fuel cell including the electrolyte membrane.
  • a fuel cell is an energy conversion device that converts chemical energy of a fuel directly into electrical energy.
  • a fuel cell is a power generation method that uses fuel gas and an oxidant and generates electric power by using electrons generated during the redox reaction.
  • the membrane electrode assembly (MEA) of the fuel cell includes a cathode, an anode, and an electrolyte membrane, that is, an ion conductive electrolyte membrane as an electrochemical reaction between hydrogen and oxygen.
  • the electrolyte membrane according to the present invention is used as an ion exchange membrane of a fuel cell, the aforementioned effects can be obtained.
  • an exemplary embodiment of the present application provides a redox flow battery including the electrolyte membrane.
  • the redox flow battery (redox flow battery) is an electrochemical storage device that stores the chemical energy of an active material directly as electrical energy. It is a system in which the active material contained in the electrolyte is oxidized, reduced, and charged and discharged. to be.
  • the redox flow battery uses a principle that charges and discharges are exchanged when electrons containing active materials having different oxidation states meet with an ion exchange membrane interposed therebetween.
  • a redox flow battery is composed of a tank containing electrolyte, a battery cell in which charging and discharging occurs, and a circulation pump for circulating the electrolyte between the tank and the battery cell. Exchange membrane.
  • the electrolyte membrane according to the present application is used as an ion exchange membrane of a redox flow battery, the aforementioned effects can be obtained.
  • another exemplary embodiment of the present application includes a unit of Formula 1; And preparing the copolymer-containing solution A including at least one unit of the unit of Formula 2, the unit of Formula 3, and the unit of Formula 4; Preparing an inorganic particle precursor solution B; Mixing the solutions A and B; And it provides a method for producing an electrolyte membrane comprising the step of forming a membrane with the mixed solution.
  • the process is simple by mixing the solution and forming the film.
  • the production method is simpler than the conventional process of forming a film and absorbing or dispersing the inorganic particles by forming a film and dispersing the inorganic particles, and has an effect of controlling the properties of the inorganic particles in the step of preparing the film. have.
  • the production method by using the inorganic particle precursor solution can reduce the aggregation of inorganic particles and increase the degree of dispersion, unlike the method of dispersing the inorganic particles themselves, there is an effect capable of controlling the size and content of the inorganic particles. . That is, by dispersing the precursor prior to the formation of the inorganic particles using the inorganic particle precursor solution, the inorganic particles can be dispersed evenly in a wide area, and the size and content of the inorganic particles can be adjusted to produce an electrolyte membrane. .
  • At least one of preparing the inorganic particle precursor solution B and mixing the solutions A and B may include adjusting the size or content of the inorganic particles.
  • the manufacturing method further includes applying a film on the substrate and heating after mixing the solutions A and B.
  • the heating means curing through heating, and the inorganic particle precursor forms inorganic particles by the heating.
  • the aggregation of the inorganic particles may be reduced and the inorganic particles may be uniformly dispersed around the sulfonic acid group.
  • the electrolyte membrane may be prepared by reacting with the inorganic particle precursor without additional pH control.
  • the inorganic particle precursor solution includes an inorganic particle precursor and a solvent.
  • the inorganic particle precursors refers to the material of the inorganic particles forming step to form the inorganic particles.
  • the inorganic particle precursor is specifically Tetraethyl orthosilicate (TEOS), Tetramethyl orthosilicate (TMOS), 3-glycidyloxypropyltrimethoxysilane (GOTMS), monophenyl triethoxysilane (MPh), polyethoxysilane (PEOS), 3-glycis Doxypropyltrimethoxy silane, vinyltriethoxy silane, 3-aminopropyltrimethoxy silane, 3-aminopropyltriethoxy silane, N-2-aminoethyl-3-aminopropyltrimethoxy silane, N- ( Beta-aminoethyl) gamma-aminopropyltrimethoxy silane, N- (beta-aminoethyl) gamma-aminopropylmethyldimethoxy silane, gamma-ureidopropyltrimethoxy silane, 3-
  • the inorganic particle precursor may be used alone or in combination of two or more thereof.
  • the inorganic particle is silica.
  • the characteristics of the size, content, etc. of the inorganic particles are as described above.
  • the solvent may include one or more selected from water and alcohols.
  • the solvent includes water and ethanol.
  • the ion transport material was used as the electrolyte membrane
  • the ion conductivity of the electrolyte membrane was 0.15 S / cm and the crossover of the electrolyte (VO 2+ ) material was about 1 ⁇ 10 ⁇ 7 cm 2 / min.
  • Example 2 The same procedure as in Example 1 was carried out except that the copolymer including the unit represented by the formula (6) was used instead of the copolymer including the unit represented by the formula (5).
  • the weight average molecular weight of the copolymer was 200,000
  • the inorganic particles dispersion ratio of the a part and b part of the formula (5) to the total weight of the inorganic particles was 80%: 20%
  • the inorganic particle size was 10 to 50 nm.
  • the ion transport material was used as the electrolyte membrane
  • the ion conductivity of the electrolyte membrane was 0.13 S / cm and the crossover of the electrolyte (VO 2+ ) material was about 1 ⁇ 10 ⁇ 7 cm 2 / min.
  • Example 2 The same procedure as in Example 1 was carried out except that the copolymer including the unit of the formula (7) was used instead of the copolymer including the unit of the formula (5).
  • the weight average molecular weight of the copolymer was 150,000
  • the inorganic particles dispersion ratio of the a and b portions of Formula 5 to the total weight of the inorganic particles was 80%: 20%
  • the inorganic particle size was 10 to 50 nm.
  • the ion transport material was used as the electrolyte membrane
  • the ion conductivity of the electrolyte membrane was 0.12 S / cm and the crossover of the electrolyte (VO 2+ ) material was about 1 ⁇ 10 ⁇ 7 cm 2 / min.
  • Example 2 The same procedure as in Example 1 was performed except that the copolymer including the unit of Formula 8 was used instead of the copolymer including the unit of Formula 5.
  • the weight average molecular weight of the copolymer was 200,000
  • the inorganic particles dispersion ratio of the a part and b part of the formula (5) to the total weight of the inorganic particles was 80%: 20%
  • the inorganic particle size was 10 to 50 nm.
  • the ion transport material was used as the electrolyte membrane
  • the ion conductivity of the electrolyte membrane was 0.12 S / cm and the crossover of the electrolyte (VO 2+ ) material was about 1 ⁇ 10 ⁇ 7 cm 2 / min.
  • Example 1 was carried out in the same manner as in Example 1 except that the copolymer including the unit of Formula 9 was used instead of the copolymer including the unit of Formula 5.
  • the weight average molecular weight of the copolymer was 200,000
  • the inorganic particles dispersion ratio of the a part and b part of the formula (5) relative to the total weight of the inorganic particles was 90%: 10%
  • the inorganic particle size was 10 to 50 nm.
  • the ion transport material was used as an electrolyte membrane
  • the ion conductivity of the electrolyte membrane was 0.16 S / cm and the crossover of the electrolyte (VO 2+ ) material was about 1 ⁇ 10 ⁇ 7 cm 2 / min.
  • Example 2 The same procedure as in Example 1 was performed except that the copolymer including the unit of Formula 10 was used instead of the copolymer including the unit of Formula 5.
  • the weight average molecular weight of the copolymer was 150,000
  • the inorganic particle dispersion ratio of the a and b portions of Formula 5 with respect to the total inorganic particle weight was 20%: 80%
  • the inorganic particle size was 10 to 50 nm.
  • the ion transport material was used as the electrolyte membrane
  • the ion conductivity of the electrolyte membrane was 0.13 S / cm and the crossover of the electrolyte (VO 2+ ) material was about 1 ⁇ 10 ⁇ 7 cm 2 / min.
  • a coating composition was prepared by stirring 150 g of a hydrocarbon copolymer solution having a concentration of 15 wt% based on solids, 10 g of tetraethoxy silane, and 2 g of distilled water. The composition was applied and cured on a tempered glass substrate to obtain an electrolyte membrane having a thickness of 50 ⁇ m.
  • the weight average molecular weight of the copolymer was 200,000, silica was dispersed throughout the copolymer, and the diameter of the dispersed silica was 10 to 50 nm.
  • the ion conductivity of the electrolyte membrane was 0.10 S / cm and the crossover of the electrolyte (VO 2+ ) material was about 4 ⁇ 10 ⁇ 7 cm 2 / min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 출원은 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 술폰산 함유 부분 불소계 고분자의 술폰산기 주변부에 무기입자가 분산되어 있는 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조방법을 제공한다.

Description

이온전달 소재, 이를 포함하는 전해질막 및 이의 제조 방법
본 출원은 2013년 10월 18일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0124904호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조방법에 관한 것이다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다. 연료전지의 막 전극 접합체(MEA)는 수소와 산소의 전기화학적 반응이 일어나는 부분으로서 캐소드와 애노드 그리고 전해질막, 즉 이온 전도성 전해질막으로 구성되어 있다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)란 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지의 단위셀은 전극, 전해질 및 이온교환막을 포함한다.
연료전지 및 레독스 플로우 전지는 높은 에너지 효율성과 오염물의 배출이 적은 친환경적인 특징으로 인하여 차세대 에너지원으로 연구 개발되고 있다. 연료전지 및 레독스 플로우 전지용 이온교환막 소재는 우수한 양성자 전도도 외에도 1) 전해질의 크로스오버(Cross Over) 방지, 2) 강한 내화학성, 3)기계적 물성 강화, 4) 낮은 스웰링 비(Swelling Ratio)의 특성을 가져야 한다. 이에 따라, 상기 특성을 가지는 전해질막에 대한 연구가 계속되고 있다.
본 출원은 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조방법을 제공하고자 한다.
상기 과제를 해결하기 위하여, 본 출원은 하기 화학식 1의 단위; 및 하기 화학식 2의 단위, 하기 화학식 3의 단위 및 하기 화학식 4의 단위 중 적어도 하나의 단위를 포함하는 공중합체, 및 상기 공중합체의 술폰산기 주변부에 분산된 무기입자를 포함하는 이온전달 소재를 제공한다.
[화학식 1]
Figure PCTKR2014009810-appb-I000001
[화학식 2]
Figure PCTKR2014009810-appb-I000002
[화학식 3]
Figure PCTKR2014009810-appb-I000003
[화학식 4]
Figure PCTKR2014009810-appb-I000004
상기 화학식 1에 있어서,
Z는 3가 방향족고리기 또는 3가 헤테로고리기이고,
L은 직접결합, 또는 2가 연결기이며,
X1 내지 X3는 서로 같거나 상이하고, 각각 독립적으로 직접 결합, 산소(O), 카보닐기(-CO-), 술폰기(-SO2-), 아릴렌기, 헤테로아릴렌기, 또는 *-Z-L-SO3H이며, *은 주쇄에 연결되는 부분을 표시하고,
상기 화학식 2 내지 4에 있어서,
Y1 내지 Y22는 서로 같거나 상이하고, 각각 독립적으로 수소(H), 불소(F), 또는 치환 또는 비치환된 알킬기이며,
상기 화학식 2 내지 4의 단위는 각각 적어도 하나의 불소 치환기를 가진다.
또한, 상기 이온전달 소재를 포함하는 전해질막을 제공한다.
또한, 상기 전해질막을 포함하는 연료전지를 제공한다.
또한, 상기 전해질막을 포함하는 레독스플로우 전지를 제공한다.
또한, 상기 화학식 1의 단위; 및 상기 화학식 2의 단위, 상기 화학식 3의 단위 및 상기 화학식 4의 단위 중 적어도 하나의 단위를 포함하는 공중합체 함유 용액 A를 준비하는 단계; 무기입자 전구체 용액 B를 준비하는 단계; 상기 용액 A 및 B를 혼합하는 단계; 및 상기 혼합액으로 막을 형성하는 단계를 포함하는 것을 특징으로 하는 전해질막의 제조방법을 제공한다.
본 출원의 일 실시상태에 따른 이온전달 소재는 무기입자가 고분자 매트릭스 내에 분산되어 있어 기계적 물성이 강하고, 전해질막으로 사용될 경우, 용매에 의한 스웰링(Swelling) 현상을 감소시킨다.
또한, 본 출원의 일 실시상태에 따른 이온전달 소재는 술폰산기 주변부에 선택적으로 무기입자를 분산시킴으로써, 전해질막으로 사용될 경우, 이온채널을 따라 생기는 전해질 물질의 크로스오버(Cross Over) 방지 효과가 우수하다.
또한, 본 출원의 일 실시상태에 따른 이온전달 소재를 포함하는 전해질막은 이온 전도도가 우수하다.
또한, 본 출원의 일 실시상태에 따른 전해질막의 제조방법은 용액의 혼합으로 제조방법이 단순하고, 상기 공중합체의 술폰산기 주변부에 상기 무기입자가 고르게 분산된다.
또한, 본 출원의 일 실시상태에 따른 전해질막의 제조방법은 상기 공중합체의 고분자 사슬이 술폰산기를 포함하고 있으므로, 별도의 pH 조절없이 무기입자가 분산된 전해질막의 형성이 가능하다.
도 1은 본 출원의 일 실시상태에 따른 이온전달 소재에서 술폰산기 주변 부에 무기입자가 분산되어 있는 형태를 도시한 것이다.
이하, 본 명세서에서 더욱 상세하게 설명한다.
본 출원의 일 실시상태는 공중합체, 및 상기 공중합체의 술폰산기 주변부에 분산된 무기입자를 포함하는 이온전달 소재를 제공한다.
상기 공중합체는 술폰산기를 포함하는 부분 불소계 고분자이다. 여기서, 부분 불소계 고분자란 고분자를 구성하는 적어도 하나의 단량체가 불소기를 갖는 것을 의미하는 것이다. 부분 불소계 고분자의 예로서, 탄화수소 사슬에 불소계 치환기를 포함하는 공중합체일 수 있다.
본 출원에서 “공중합체”는 교호 공중합체(alternating copolymer), 블록 공중합체(block copolymer), 랜덤 공중합체(random copolymer) 또는 그래프트 공중합체(graft copolymer)일 수 있다.
구체적으로, 상기 공중합체는 상기 화학식 1의 단위; 및 상기 화학식 2의 단위, 상기 화학식 3의 단위 및 상기 화학식 4의 단위 중 적어도 하나의 단위를 포함할 수 있다.
구체적으로, 상기 Y1 내지 Y22는 서로 같거나 상이하고, 각각 독립적으로 수소(H) 또는 불소(F)로 치환 또는 비치환된 C1 내지 C10의 알킬기일 수 있다.
상기 치환 또는 비치환된 C1 내지 C10의 알킬기는 사슬형 또는 가지형일 수 있다. 예를 들어, 사슬형인 경우 -(CQQ')pQ”이고, 상기 Q, Q' 및 Q”은 수소(-H) 또는 불소(-F)이며, 상기 p는 1 내지 10일 수 있다.
상기 화학식 2, 3 및 4의 단위는 불소계 화합물이므로, 각각 적어도 하나 이상의 불소 치환기를 가진다.
구체적으로, 상기 L은 직접결합, 알킬렌기, 알케닐렌기, 알키닐렌기, -[(CRR')rO(CR"R"')s]t-, 또는 -CO-Ar-이고, 여기서,
상기 R, R', R" 및 R"'은 서로 같거나 상이하고 각각 독립적으로 수소, 알킬기 또는 할로겐기이며,
상기 r 및 s는 0 내지 3이고,
상기 t는 1 내지 5이며,
상기 Ar은 아릴렌기 또는 헤테로아릴렌기이다.
본 출원의 일 실시상태에 따르면, 상기 L은 -(CH2)m[(CF2)2O(CF2)2]n-이다.
상기 m 및 n은 0 내지 5의 정수이다.
상기 s 및 r은 s+r≥1 일 수 있다.
상기 알킬렌기는 탄소수 1 내지 20의 알킬렌기이고, 상기 알케닐렌기는 2 내지 20의 알케닐렌기이고, 상기 알키닐렌기는 2 내지 20의 알키닐렌기이나, 이에만 한정되는 것은 아니다.
상기 3가 방향족고리기는 3가 아릴기로서, 아릴의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴의 구체적인 예로는 페닐, 바이페닐, 트리페닐, 나프틸, 안트릴, 크라이세닐, 페난트레닐, 페릴레닐, 플루오란테닐, 트리페닐레닐, 페날레닐, 파이레닐, 테트라세닐, 펜타세닐, 플루오레닐, 인데닐, 아세나프틸레닐, 플루오레닐 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
상기 3가 헤테로고리기는 헤테로원자로서 S, O 또는 N을 포함하고, 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로고리기의 구체적인 예로는 피리딜, 피롤릴, 피리미딜, 피리다지닐, 푸라닐, 티에닐, 이미다졸릴, 피라졸릴, 옥사졸릴, 이속사졸릴, 티아졸릴, 이소티아졸릴, 트리아졸릴, 푸라자닐, 옥사디아졸릴, 티아디아졸릴, 디티아졸릴, 테트라졸릴, 파이라닐, 티오파이라닐, 디아지닐, 옥사지닐, 티아지닐, 디옥시닐, 트리아지닐, 테트라지닐, 퀴놀릴, 이소퀴놀릴, 퀴나졸리닐, 이소퀴나졸리닐, 나프티리딜, 아크리디닐, 페난트리디닐, 이미다조피리디닐, 디아자나프탈레닐, 트리아자인덴, 인돌릴, 인돌리지닐, 벤조티아졸릴, 벤즈옥사졸릴, 벤조이미다졸릴, 벤조티오펜기, 벤조푸란기, 디벤조티오펜기, 디벤조푸란기, 카바졸릴, 벤조카바졸릴, 페나지닐 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
상기 아릴렌기는 2가 아릴기로서, 상기 아릴의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴의 구체적인 예로는 페닐, 바이페닐, 트리페닐, 나프틸, 안트릴, 크라이세닐, 페난트레닐, 페릴레닐, 플루오란테닐, 트리페닐레닐, 페날레닐, 파이레닐, 테트라세닐, 펜타세닐, 플루오레닐, 인데닐, 아세나프틸레닐, 플루오레닐 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
상기 헤테로아릴렌기는 2가 헤테로아릴기로서, 상기 헤테로아릴은 헤테로원자로서 S, O 또는 N을 포함하고, 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴의 구체적인 예로는 피리딜, 피롤릴, 피리미딜, 피리다지닐, 푸라닐, 티에닐, 이미다졸릴, 피라졸릴, 옥사졸릴, 이속사졸릴, 티아졸릴, 이소티아졸릴, 트리아졸릴, 푸라자닐, 옥사디아졸릴, 티아디아졸릴, 디티아졸릴, 테트라졸릴, 파이라닐, 티오파이라닐, 디아지닐, 옥사지닐, 티아지닐, 디옥시닐, 트리아지닐, 테트라지닐, 퀴놀릴, 이소퀴놀릴, 퀴나졸리닐, 이소퀴나졸리닐, 나프티리딜, 아크리디닐, 페난트리디닐, 이미다조피리디닐, 디아자나프탈레닐, 트리아자인덴, 인돌릴, 인돌리지닐, 벤조티아졸릴, 벤즈옥사졸릴, 벤조이미다졸릴, 벤조티오펜기, 벤조푸란기, 디벤조티오펜기, 디벤조푸란기, 카바졸릴, 벤조카바졸릴, 페나지닐 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
본 출원에서 "술폰산기 주변 부"는 술폰산기에 의해 이온전달 채널이 형성되는 부분을 의미한다.
상기 공중합체의 용액, 고형분 또는 캐스팅된 막의 형태로 주사전자현미경(SEM: Scanning Electron Microscope), 원자간력현미경(AFM:Atomic Force microscope) 등을 이용하여 측정하는 경우, 소수성 및 친수성의 상분리(Phase separation) 특성으로 인해, 상기 공중합체에서 술폰산기를 포함하고 있지 않은 소수성 부분과 술폰산기를 포함하는 친수성 부분의 분리를 확인할 수 있다. 전술한 본 출원의 실시상태들에 따르면, 상기 술폰산기를 포함하는 친수성 부분의 무기입자 분산 밀도가 높은 것을 확인할 수 있는데, 상기 부분이 "술폰산기 주변 부"로 해석될 수 있다. 이와 같은 상 분리(Phase Separation) 특성 및 무기입자의 분산으로 인해 기계적 물성이 강화되고, 이온 전도도가 개선되는 동시에 크로스오버(Cross Over)를 억제하는 효과를 가질 수 있다.
본 출원의 일 실시상태에 따르면, 상기 공중합체의 술폰산기 부분에 무기입자가 분산된다.
본 출원의 일 실시상태에 따르면, 상기 공중합체의 술폰산기의 주변부에만 무기입자가 분산된다. 따라서, 술폰산기의 주변부의 무기입자 농도가 다른 부분의 무기입자 농도보다 높거나, 술폰산기의 주변부에만 무기입자가 존재한다. 무기입자가 술폰산기 주변부에만 선택적으로 형성되는 경우, 소량의 무기입자를 함유하더라도 이온전달 채널을 따라 생기는 전해질 물질의 크로스오버를 억제하는 효과를 가질 수 있다. 즉, 종래와 동일한 함량의 무기입자를 함유하는 경우에도 종래보다 우수한 크로스오버 억제 효과를 나타낼 수 있다.
본 출원의 일 실시상태에 따르면, 상기 공중합체 내에서 화학식 1의 단위를 포함하는 부분에 분산된 무기입자의 중량 및 화학식 2 내지 4의 단위 중 적어도 하나의 단위를 포함하는 부분에 분산된 무기입자의 중량비는 무기입자 전체 중량 대비 70%:30% 내지 100%:0%, 구체적으로 80%:20% 내지 100%:0%일 수 있다. 즉, 공중합체 내에서 술폰산기를 포함하는 친수성 부분에 분산된 무기입자 중량 및 불소계의 소수성 부분에 분산된 무기입자의 중량비는 무기입자 전체 중량 대비 70%:30% 내지 100%:0%, 구체적으로 80%:20% 내지 100%:0%일 수 있다. 상기 범위 내에 있을 때, 이온전달 채널 부분에 무기입자가 분산되어 크로스오버를 억제하는 효과를 가지면서, 소재 전체의 기계적 강도를 높일 수 있다. 뿐만 아니라, 크로스오버가 일어나는 이온전달 채널 부분에서의 무기입자 함량을 높여, 소량의 무기입자로도 높은 효과를 나타낼 수 있다.
본 출원의 일 실시상태에 따르면, 상기 공중합체 내에서 술폰산기 주변 부의 무기입자 함량은 무기입자 전체 중량의 70 wt% 내지 100 wt%, 구체적로 80 wt% 내지 100 wt%일 수 있다. 무기입자의 70 wt% 이상이 술폰산기 주변부에 분산되어 있을 수 있다.
상기 무기입자의 함량은 전술한 전자주사현미경, 원자각련현미경 등을 이용하여 측정한 2차원 사진을 통해서도 확인할 수 있다.
예컨대, 상기 이온전달 소재를 막으로 형성하고, 막의 일 면을 원자간력현미경(AFM), 옵티컬 프로파일러(Optical Profiler), 주사전자현미경(SEM) 등의 장비로 촬영한 2차원의 단면을 기준으로 확인할 수 있다.
상기 무기입자는 술폰산기의 주변부에 미세입자의 형태 또는 뭉쳐진 덩어리의 형태로 존재할 수 있다.
본 출원의 일 실시상태에 따르면, 상기 무기입자의 직경은 5 내지 200 nm, 구체적으로 10 내지 100 nm이다. 상기 무기입자의 직경이 200 nm초과이면 이온전달 소재를 포함하는 전해질막의 기계적 물성이 저하되는 문제점이 있다. 또한, 10 내지 100 nm의 범위 내에 있을 때, 전해질막의 기계적 물성을 강화시킬 수 있고, 동시에 이온전달 채널 부분에 적당한 크기의 무기입자가 분산됨으로써, 크로스오버를 억제하는 효과를 나타내고, 이온 전달의 성능을 높일 수 있다.
본 명세서에서, 상기 직경은 입자 크기를 나타내는 값으로서, 입자의 중심을 지나는 선 중에서 가장 긴 선의 길이 값을 의미할 수 있고, 당업계에서 사용하는 측정방법을 사용할 수 있다. 예컨대, 옵티컬 프로파일러(optical profiler), 주사전자현미경(SEM) 등을 이용하여 측정할 수 있다.
본 출원의 일 실시상태에 따르면, 상기 무기입자의 평균 입경을 5 내지 200 nm, 구체적으로 10 내지 100 nm일 수 있다. 상기 범위 내에 있을 때, 전해질막의 기계적 물성을 강화시킬 수 있고, 동시에 이온전달 채널 부분에 적당한 크기의 무기입자가 분산됨으로써, 크로스오버를 억제하는 효과를 나타내고, 이온 전달의 성능을 높일 수 있다. 여기서, 입경은 상기 직경과 동일하게 해석될 수 있고, 상기 무기입자의 평균 입경은 무기입자들의 입경의 평균값을 의미한다. 상기 평균 입경의 측정은 당업계에서 사용하는 측정방법을 사용할 수 있다. 예컨대, 옵티컬 프로파일러(optical profiler), 주사전자현미경(SEM) 등을 이용하여 입자를 촬영하고, 입경을 측정하여, 이들의 평균값을 얻을 수 있다.
본 출원의 일 실시상태에 따르면, 상기 무기입자는 실리카이다.
본 출원의 일 실시상태에 따르면, 상기 무기입자의 함량은 이온전달 소재 고형분 100 중량부 대비 2 내지 30 중량부이고, 공중합체 고형분 대비 5 내지 12 중량부인 것이 바람직하다. 무기입자의 함량이 2 중량부 미만이면 이온채널을 따라 생기는 전해질 물질의 크로스오버(Cross Over) 방지 효과가 미비하고, 30 중량부 초과이면 이온전달 소재를 포함하는 전해질막의 기계적 물성이 저하된다.
본 출원의 일 실시상태에 따르면, 상기 화학식 2는 하기 화학식 2A로 나타낼 수 있다.
[화학식 2A]
Figure PCTKR2014009810-appb-I000005
본 출원의 일 실시상태에 따르면, 상기 화학식 3는 하기 화학식 3A로 나타낼 수 있다.
[화학식 3A]
Figure PCTKR2014009810-appb-I000006
본 출원의 일 실시상태에 따르면, 상기 화학식 4는 하기 화학식 4A로 나타낼 수 있다.
[화학식 4A]
Figure PCTKR2014009810-appb-I000007
또한, 본 출원의 일 실시상태에 따르면, 상기 공중합체는 하기 화학식 5, 화학식 6, 화학식 7, 화학식 8, 화학식 9 및 화학식 10으로 표시되는 단위 중 적어도 어느 하나의 단위를 포함하여 형성된 공중합체이다.
[화학식 5]
Figure PCTKR2014009810-appb-I000008
[화학식 6]
Figure PCTKR2014009810-appb-I000009
[화학식 7]
Figure PCTKR2014009810-appb-I000010
[화학식 8]
Figure PCTKR2014009810-appb-I000011
[화학식 9]
Figure PCTKR2014009810-appb-I000012
[화학식 10]
Figure PCTKR2014009810-appb-I000013
상기 화학식 5 내지 10에서, a 및 b는 전체 공중합체에 대한 몰분율을 의미한다. 여기서, a+b≤1이고, 0.1≤a≤0.9 이며, 0.1≤b≤0.9 일 수 있다.
본 출원의 일 실시상태에 따르면, 상기 공중합체는 하기 화학식 5로 표시되는 단위를 포함하는 공중합체이다.
본 출원의 일 실시상태에 따르면, 상기 공중합체는 하기 화학식 6으로 표시되는 단위를 포함하는 공중합체이다.
본 출원의 일 실시상태에 따르면, 상기 공중합체는 하기 화학식 7로 표시되는 단위를 포함하는 공중합체이다.
본 출원의 일 실시상태에 따르면, 상기 공중합체는 하기 화학식 8로 표시되는 단위를 포함하는 공중합체이다.
본 출원의 일 실시상태에 따르면, 상기 공중합체는 하기 화학식 9로 표시되는 단위를 포함하는 공중합체이다.
본 출원의 일 실시상태에 따르면, 상기 공중합체는 하기 화학식 10으로 표시되는 단위를 포함하는 공중합체이다.
또한, 본 출원의 일 실시상태에 따르면, 상기 공중합체는 상기 화학식 5, 화학식 6, 화학식 7, 화학식 8, 화학식 9 또는 화학식 10으로 표시되는 단위 중 어느 하나의 단일중합(homopolymer)이거나, 둘 이상의 공중합체(copolymer)이다. 여기서, 공중합체일 경우, 교호 공중합체(alternating copolymer), 블록 공중합체(block copolymer), 랜덤 공중합체(random copolymer) 또는 그래프트 공중합체(graft copolymer)일 수 있고, 블록 공중합체인 것이 바람직하다.
본 출원의 일 실시상태에 따르면, 상기 공중합체의 중량평균분자량은 10,000 내지 1,000,000이고, 구체적으로 50,000 내지 500,000인 것이 바람직하며, 50,000 내지 200,000인 것이 더욱 바람직하다. 상기 공중합체의 중량평균분자량이 10,000 미만이면 이온전달 소재를 포함하는 전해질막의 기계적 물성이 저하되고, 1,000,000 초과이면 공중합체의 용해도가 저하되어 이온전달 소재를 포함하는 전해질막 제작이 어렵다.
본 출원의 일 실시상태에 따른 이온전달 소재는 적어도 하나의 단량체가 불소기를 갖는 공중합체를 포함하므로 탄화수소계 고분자와 달리, 불소기가 포함된 소수성 부분과 술폰산이 함유된 친수성 부분 간의 상 분리(Phase separation) 특성으로 인해, 무기 입자가 친수성 부분에 선택적으로 분산되는 유리한 효과가 있다. 또한 불소기를 포함하는 소수성 부분과 술폰산 및 무기 입자를 포함하는 친수성 부분의 확연한 상 분리(Phase Separation)로 인해 양이온 전도도가 개선되며, 동시에 전해질 물질의 크로스오버(Cross Over) 방지 효과가 있다.
또한, 본 출원의 일 실시상태는 상기 이온전달 소재를 포함하는 전해질막을 제공한다.
본 명세서에서 “전해질막”은 이온을 교환할 수 있는 막으로서, 막, 이온교환막, 이온전달막, 이온 전도성 막, 분리막, 이온교환 분리막, 이온전달 분리막, 이온 전도성 분리막, 이온 교환 전해질막, 이온전달 전해질막 또는 이온 전도성 전해질막 등으로 나타낼 수 있다.
본 출원의 일 실시상태에 따르면, 상기 전해질막의 두께는 5 내지 200 ㎛ 인 것이 바람직하고, 10 내지 100 ㎛인 것이 더욱 바람직하다. 전해질막의 두께가 5 ㎛ 미만이면 전기적 쇼트(Electric Short) 및 전해질 물질의 크로스오버(Cross Over)를 막지 못하고, 200 ㎛ 초과이면 우수한 양이온 전도도 특성 발현이 어렵다.
또한, 본 출원의 일 실시상태에 따른 전해질막은 앞에서 정의한 바와 같이 술폰산 함유 부분 불소계 고분자에 무기입자가 결합되어 분산되어 있는 형태로서, 종래의 전해질막 대비 기계적 물성이 강화되고, 용매에 대한 스웰링(Swelling) 현상을 감소시킬 수 있다.
또한, 본 출원의 일 실시상태에 따른 전해질막은 무기입자가 공중합체의 술폰산기 주변부에만 선택적으로 분산되어, 크로스오버(Cross Over)를 방지하는 효과가 우수하다. 구체적으로, 공중합체의 친수성 부분, 즉 술폰산기 주변부에만 무기입자가 형성되도록 유도하여 양이온 채널에만 선택적으로 무기입자가 형성된다. 따라서, 소량의 무기입자를 함유하더라도, 종래의 전해질막 대비 이온채널을 따라 생기는 전해질 물질의 크로스오버를 방지하는데 탁월한 효과가 있다.
전해질 물질의 크로스오버(Cross Over)는 술폰산기를 함유하는 친수성 부분을 통해서 일어나며, 이러한 친수성 부분에 분산되어 있는 무기 입자는 전해질 물질의 흐름을 방해하는 역할을 한다.
또한 불소기를 함유한 소수성 부분과 술폰산기를 함유한 친수성 부분의 상 분리(Phase separation)로 인해 무기입자가 친수성 부분에 선택적으로 분산되는 유리한 조건을 갖는다.
또한 불소계로 치환되어 있는 술폰산의 경우 방향족 화합물에 치환되어 있는 술폰산에 비해 강한 산 조건을 형성하여 친수성을 띠는 무기입자의 분산에 더 유리한 조건을 갖는다.
또한, 본 출원의 일 실시상태는 상기 전해질막을 포함하는 연료전지를 제공한다.
연료전지는 연료의 화학적 에너지를 직접 전기적 에너지로 변환시키는 에너지 변환 장치이다. 즉 연료전지는 연료가스와 산화제를 사용하고, 이들의 산화환원 반응 중에 발생하는 전자를 이용하여 전력을 생산하는 발전 방식이다.
연료전지의 막 전극 접합체(MEA)는 수소와 산소의 전기화학적 반응이 일어나는 부분으로서 캐소드와 애노드, 그리고 전해질막, 즉 이온 전도성 전해질막을 포함한다.
본 발명에 따른 전해질막을 연료전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
또한, 본 출원의 일 실시상태는 상기 전해질막을 포함하는 레독스 플로우 전지를 제공한다.
레독스 플로우 전지(산화-환원 흐름 전지, Redox Flow Battery)는 전해액에 포함되어 있는 활성물질이 산화·환원되어 충전·방전되는 시스템으로 활성물질의 화학적 에너지를 직접 전기에너지로 저장시키는 전기화학적 축전 장치이다. 레독스 플로우 전지는 산화상태가 다른 활성물질을 포함하는 전해액이 이온교환막을 사이에 두고 만날 때 전자를 주고받아 충전과 방전이 되는 원리를 이용한다. 일반적으로 레독스 플로우 전지는 전해액이 담겨있는 탱크와 충전과 방전이 일어나는 전지 셀, 그리고 전해액을 탱크와 전지 셀 사이에 순환시키기 위한 순환펌프로 구성되고, 전지 셀의 단위셀은 전극, 전해질 및 이온교환막을 포함한다.
본 출원에 따른 전해질막을 레독스 플로우 전지의 이온교환막으로 사용하였을 때 전술한 효과를 나타낼 수 있다.
또한, 본 출원의 또 하나의 실시상태에는 상기 화학식 1의 단위; 및 상기 화학식 2의 단위, 상기 화학식 3의 단위 및 상기 화학식 4의 단위 중 적어도 하나의 단위를 포함하는 상기 공중합체 함유 용액 A를 준비하는 단계; 무기입자 전구체 용액 B를 준비하는 단계; 상기 용액 A 및 B를 혼합하는 단계; 및 상기 혼합액으로 막을 형성하는 단계를 포함하는 것을 특징으로 하는 전해질막의 제조방법을 제공한다.
본 출원에 따른 제조방법은 용액의 혼합 및 막의 형성으로 공정이 간단한 효과가 있다.
또한, 상기 제조방법은 막을 형성하는 동시에 무기입자를 분산시킴으로써, 막을 형성하고 무기입자를 흡수 또는 분산시키는 종래의 공정에 비해 간단하고, 막을 제조하는 단계에서 무기입자의 특성을 제어할 수 있는 효과가 있다.
또한, 상기 제조방법은 무기입자 전구체 용액을 이용함으로써, 무기입자의 뭉침현상을 줄이고 분산도를 높일 수 있으며, 무기입자 자체를 분산시키는 방법과 달리, 무기입자의 사이즈 및 함량 조절이 가능한 효과가 있다. 즉, 무기입자 전구체 용액을 이용하여, 무기입자의 형성 전에 전구체를 분산시킴으로써, 무기입자를 넓은 영역에 고르게 분산시킬 수 있고, 무기입자의 크기 및 함량을 조절하여 전해질막을 제조할 수 있는 효과가 있다.
또한, 상기의 효과를 별도의 추가 공정 없이, 막 제조 공정 조건으로 얻을 수 있다는 장점이 있다.
본 출원의 일 실시상태에 따르면, 무기입자 전구체 용액 B를 준비하는 단계 및 상기 용액 A 및 B를 혼합하는 단계 중 적어도 하나의 단계는 무기입자의 크기 또는 함량을 조절하는 단계를 포함할 수 있다.
본 출원의 일 실시상태에 따르면, 상기 제조방법은 상기 용액 A 및 B를 혼합한 후에 기재상에 막을 도포하는 단계 및 히팅하는 단계를 더 포함한다.
상기 히팅은 가열을 통한 경화를 의미하고, 상기 히팅하는 단계에 의해 무기입자 전구체가 무기입자를 형성한다. 이 경우, 실리카 전구체를 분산시킨 이후에, 경화과정에서 무기입자 전구체가 무기입자로 형성되기 때문에 무기입자의 뭉침현상을 줄이고 술폰산기 주변에 무기입자가 균일하게 분산될 수 있다.
본 출원의 부분 불소계 고분자는 고분자 사슬에 술폰산기를 함유하고 있기 때문에 별도의 pH 조절 없이 무기입자 전구체와 반응하여 전해질막을 제조할 수 있다.
본 출원의 일 실시상태에 따르면, 상기 무기입자 전구체 용액은 무기입자 전구체 및 용매를 포함한다.
본 명세서에서, 무기입자 전구체(Precursor of Inorganic Particles)는 무기입자를 형성하는 무기입자 형성 전 단계의 물질을 의미한다.
본 출원의 일 실시상태에 따르면, 상기 무기입자 전구체는 구체적으로 TEOS(Tetraethyl orthosilicate), TMOS(Tetramethyl orthosilicate), GOTMS(3-glycidyloxypropyltrimethoxysilane), MPh(monophenyl triethoxysilane), PEOS(polyethoxysilane), 3-글리시독시프로필트리메톡시 실란, 비닐트리에톡시 실란, 3-아미노프로필트리메톡시 실란, 3-아미노프로필트리에톡시 실란, N-2-아미노에틸-3-아미노프로필트리메톡시 실란, N-(베타-아미노에틸)감마-아미노프로필트리메톡시 실란, N-(베타-아미노에틸)감마-아미노프로필메틸디메톡시 실란, 감마-우레이도프로필트리메톡시 실란, 3-머캡토프로필트리메톡시 실란 및 3-이소시아나토프로필트리메톡시 실란 중에서 선택되는 적어도 하나일 수 있다.
상기 무기입자 전구체는 어느 하나를 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다.
본 출원의 일 실시상태에 따르면, 상기 무기입자는 실리카이다.
본 출원의 일 실시상태에 따르면, 상기 무기입자의 크기, 함량 등의 특성은 전술한 바와 같다.
본 출원의 일 실시상태에 따르면, 상기 용매는 물, 알코올류 중에 선택되는 1종 이상을 포함할 수 있다. 예를 들어, 상기 용매는 물 및 에탄올을 포함한다.
이하에서, 실시예를 통하여 본 출원을 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 출원을 예시하기 위한 것이며, 이에 의하여 본 출원의 범위가 한정되는 것은 아니다.
<실시예 1>
상기 화학식 5의 단위를 포함하는 공중합체(a:b=1:1)의 고형분 농도 15 wt%인 불소계 공중합체 용액 150 g, 테트라 에톡시 실란 10 g, 증류수 2 g을 교반하여 도료 조성물을 제조하였다. 상기 조성물을 강화 유리 기판위에 도포 및 경화하여 50 ㎛ 두께의 이온전달소재를 얻었다. 상기 공중합체의 중량평균분자량은 200,000이었고, 전체 무기입자 중량에 대한 상기 화학식 5의 a부분과 b부분의 무기입자 분산 비율은 90wt%:10wt%이었으며, 무기입자 크기는 10 내지 50 nm이었다. 상기 이온전달소재를 전해질막으로 사용했을 때, 전해질막의 이온전도도는 0.15 S/cm 이고 전해질 (VO2+) 물질의 크로스오버는 약 1 x 10-7 cm2/min 였다.
<실시예 2>
화학식 5의 단위를 포함하는 공중합체 대신 상기 화학식 6의 단위를 포함하는 공중합체를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다. 상기 공중합체의 중량평균분자량은 200,000이었고, 전체 무기입자 중량에 대한 상기 화학식 5의 a부분과 b부분의 무기입자 분산 비율은 80%:20%이었으며, 무기입자 크기는 10 내지 50 nm이었다. 상기 이온전달소재를 전해질막으로 사용했을 때, 전해질막의 이온전도도는 0.13 S/cm 이고 전해질 (VO2+) 물질의 크로스오버는 약 1 x 10-7 cm2/min 였다.
<실시예 3>
화학식 5의 단위를 포함하는 공중합체 대신 상기 화학식 7의 단위를 포함하는 공중합체를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다. 상기 공중합체의 중량평균분자량은 150,000이었고, 전체 무기입자 중량에 대한 상기 화학식 5의 a부분과 b부분의 무기입자 분산 비율은 80%:20%이었으며, 무기입자 크기는 10 내지 50 nm이었다. 상기 이온전달소재를 전해질막으로 사용했을 때, 전해질막의 이온전도도는 0.12 S/cm 이고 전해질 (VO2+) 물질의 크로스오버는 약 1 x 10-7 cm2/min 였다.
<실시예 4>
화학식 5의 단위를 포함하는 공중합체 대신 상기 화학식 8의 단위를 포함하는 공중합체를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다. 상기 공중합체의 중량평균분자량은 200,000이었고, 전체 무기입자 중량에 대한 상기 화학식 5의 a부분과 b부분의 무기입자 분산 비율은 80%:20%이었으며, 무기입자 크기는 10 내지 50 nm이었다. 상기 이온전달소재를 전해질막으로 사용했을 때, 전해질막의 이온전도도는 0.12 S/cm 이고 전해질 (VO2+) 물질의 크로스오버는 약 1 x 10-7 cm2/min 였다.
<실시예 5>
화학식 5의 단위를 포함하는 공중합체 대신 상기 화학식 9의 단위를 포함하는 공중합체를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다. 상기 공중합체의 중량평균분자량은 200,000이었고, 전체 무기입자 중량에 대한 상기 화학식 5의 a부분과 b부분의 무기입자 분산 비율은 90%:10%이었으며, 무기입자 크기는 10 내지 50 nm이었다. 상기 이온전달소재를 전해질막으로 사용했을 때, 전해질막의 이온전도도는 0.16 S/cm 이고 전해질 (VO2+) 물질의 크로스오버는 약 1 x 10-7 cm2/min 였다.
<실시예 6>
화학식 5의 단위를 포함하는 공중합체 대신 상기 화학식 10의 단위를 포함하는 공중합체를 사용한 것을 제외하고는 실시예 1과 동일하게 수행하였다. 상기 공중합체의 중량평균분자량은 150,000이었고, 전체 무기입자 중량에 대한 상기 화학식 5의 a부분과 b부분의 무기입자 분산 비율은 20%:80%이었으며, 무기입자 크기는 10 내지 50 nm이었다. 상기 이온전달소재를 전해질막으로 사용했을 때, 전해질막의 이온전도도는 0.13 S/cm 이고 전해질 (VO2+) 물질의 크로스오버는 약 1 x 10-7 cm2/min 였다.
<비교예>
고형분 대비 농도 15 wt%의 탄화수소계 공중합체 용액 150 g, 테트라 에톡시 실란 10 g, 증류수 2 g을 교반하여 도료 조성물을 제조하였다. 상기 조성물을 강화 유리 기판위에 도포 및 경화하여 50 ㎛ 두께의 전해질막을 얻었다. 상기 공중합체의 중량평균분자량은 200,000이었고, 상기 공중합체 전체에 실리카가 분산되었으며, 분산된 실리카의 직경은 10 내지 50 nm였다. 전해질막의 이온전도도는 0.10 S/cm 이고 전해질 (VO2+) 물질의 크로스오버는 약 4 x 10-7 cm2/min 였다.

Claims (20)

  1. 하기 화학식 1의 단위; 및 하기 화학식 2의 단위, 하기 화학식 3의 단위 및 하기 화학식 4의 단위 중 적어도 하나의 단위를 포함하는 공중합체, 및 상기 공중합체의 술폰산기 주변부에 분산된 무기입자를 포함하는 이온전달 소재:
    [화학식 1]
    Figure PCTKR2014009810-appb-I000014
    [화학식 2]
    Figure PCTKR2014009810-appb-I000015
    [화학식 3]
    Figure PCTKR2014009810-appb-I000016
    [화학식 4]
    Figure PCTKR2014009810-appb-I000017
    상기 화학식 1에 있어서,
    Z는 3가 방향족고리기 또는 3가 헤테로고리기이고,
    L은 직접결합, 또는 2가 연결기이며,
    X1 내지 X3는 서로 같거나 상이하고, 각각 독립적으로 직접 결합, 산소(O), 카보닐기(-CO-), 술폰기(-SO2-), 아릴렌기, 헤테로아릴렌기, 또는 *-Z-L-SO3H이며, *은 주쇄에 연결되는 부분을 표시하고,
    상기 화학식 2 내지 4에 있어서,
    Y1 내지 Y22는 서로 같거나 상이하고, 각각 독립적으로 수소(H), 불소(F), 또는 치환 또는 비치환된 알킬기이며,
    상기 화학식 2 내지 4의 단위는 각각 적어도 하나의 불소 치환기를 가진다.
  2. 청구항 1에 있어서, 상기 공중합체 내에서 화학식 1의 단위를 포함하는 부분에 분산된 무기입자의 중량 및 화학식 2 내지 4의 단위 중 적어도 하나의 단위를 포함하는 부분에 분산된 무기입자의 중량비는 무기입자 전체 중량 대비 70%:30% 내지 100%:0%인 것인 이온전달소재.
  3. 청구항 1에 있어서, 상기 L은 직접결합, 알킬렌기, 알케닐렌기, 알키닐렌기, -[(CRR')rO(CR"R"')s]t-, 또는 -CO-Ar-이고, R, R', R" 및 R"'은 서로 같거나 상이하고 각각 독립적으로 수소, 알킬기 또는 할로겐기이고, r 및 s는 0 내지 3이며, t는 1 내지 5이고, Ar은 아릴렌기 또는 헤테로아릴렌기인 것을 특징으로 하는 이온전달 소재.
  4. 청구항 1에 있어서, 상기 L은 -(CH2)m[(CF2)2O(CF2)2)n]-이고, 상기 m 및 n은 0 내지 5의 정수인 것을 특징으로 하는 이온전달 소재.
  5. 청구항 1에 있어서, 상기 치환 또는 비치환된 알킬기는 탄소수 1 내지 10의 알킬기로서, -(CQQ')pQ”이고, 상기 Q, Q' 및 Q”은 수소(-H) 또는 불소(-F)이며, 상기 p는 1 내지 10인 것을 특징으로 하는 이온전달 소재.
  6. 청구항 1에 있어서, 상기 무기입자는 실리카인 것을 특징으로 하는 이온전달 소재.
  7. 청구항 1에 있어서, 상기 무기입자의 함량은 이온전달 소재 고형분 100중량부 대비 2 내지 30 중량부인 것을 특징으로 하는 이온전달 소재.
  8. 청구항 1에 있어서, 상기 무기입자의 직경은 5 내지 200 nm인 것을 특징으로 하는 이온전달 소재.
  9. 청구항 1에 있어서, 상기 공중합체의 중량평균분자량은 10,000 내지 1,000,000 인 것을 특징으로 하는 이온전달 소재.
  10. 청구항 1 내지 9 중 어느 한 항의 이온전달 소재를 포함하는 전해질막.
  11. 청구항 10에 있어서, 상기 전해질막의 두께는 5 ~ 200 ㎛인 것을 특징으로 하는 전해질막.
  12. 청구항 10의 전해질막을 포함하는 연료전지.
  13. 청구항 10의 전해질막을 포함하는 레독스 플로우 전지.
  14. 하기 화학식 1의 단위; 및 하기 화학식 2의 단위, 하기 화학식 3의 단위 및 하기 화학식 4의 단위 중 적어도 하나의 단위를 포함하는 공중합체 함유 용액 A를 준비하는 단계;
    무기입자 전구체 용액 B를 준비하는 단계;
    상기 용액 A 및 B를 혼합하는 단계; 및
    상기 혼합액으로 막을 형성하는 단계를 포함하는 것을 특징으로 하는 전해질막의 제조방법:
    [화학식 1]
    Figure PCTKR2014009810-appb-I000018
    [화학식 2]
    Figure PCTKR2014009810-appb-I000019
    [화학식 3]
    Figure PCTKR2014009810-appb-I000020
    [화학식 4]
    Figure PCTKR2014009810-appb-I000021
    상기 화학식 1에 있어서,
    Z는 3가 방향족고리기 또는 3가 헤테로고리기이고,
    L은 직접결합, 또는 2가 연결기이며,
    X1 내지 X3는 서로 같거나 상이하고, 각각 독립적으로 직접 결합, 산소(O), 카보닐기(-CO-), 술폰기(-SO2-), 아릴렌기, 헤테로아릴렌기, 또는 *-Z-L-SO3H이며, *은 주쇄에 연결되는 부분을 표시하고,
    상기 화학식 2 내지 4에 있어서,
    Y1 내지 Y22는 서로 같거나 상이하고, 각각 독립적으로 수소(H), 불소(F), 또는 불소로 치환 또는 비치환된 알킬기이며,
    상기 화학식 2 내지 4의 단위는 각각 적어도 하나의 불소 치환기를 가진다.
  15. 청구항 14에 있어서, 상기 L은 직접결합, 알킬렌기, 알케닐렌기, 알키닐렌기, -[(CRR')rO(CR"R"')s]t-, 또는 -CO-Ar-이고, R, R', R" 및 R"'은 서로 같거나 상이하고 각각 독립적으로 수소, 알킬기 또는 할로겐기이고, r 및 s는 0 내지 3이며, t는 1 내지 5이고, Ar은 아릴렌기 또는 헤테로아릴렌기인 것을 특징으로 하는 전해질막의 제조방법.
  16. 청구항 14에 있어서, 상기 L은 -(CH2)m[(CF2)2O(CF2)2]n-이고, 상기 m 및 n은 0 내지 5의 정수인 것을 특징으로 하는 전해질막의 제조방법.
  17. 청구항 14에 있어서, 상기 치환 또는 비치환된 알킬기는 탄소수 1 내지 10의 알킬기로서, -(CQQ')pQ"이고, 상기 Q, Q' 및 Q"은 수소(-H) 또는 불소(-F)이며, 상기 p는 1 내지 10인 것을 특징으로 하는 전해질막의 제조방법.
  18. 청구항 14에 있어서, 상기 무기입자 전구체는 TEOS(Tetraethyl orthosilicate), TMOS(Tetramethyl orthosilicate), GOTMS(3-glycidyloxypropyltrimethoxysilane), MPh(monophenyl triethoxysilane), PEOS(polyethoxysilane), 3-글리시독시프로필트리메톡시 실란, 비닐트리에톡시 실란, 3-아미노프로필트리메톡시 실란, 3-아미노프로필트리에톡시 실란, N-2-아미노에틸-3-아미노프로필트리메톡시 실란, N-(베타-아미노에틸)감마-아미노프로필트리메톡시 실란, N-(베타-아미노에틸)감마-아미노프로필메틸디메톡시 실란, 감마-우레이도프로필트리메톡시 실란, 3-머캡토프로필트리메톡시 실란 및 3-이소시아나토프로필트리메톡시 실란 중에서 선택되는 적어도 하나인 것을 특징으로 하는 전해질막의 제조방법.
  19. 청구항 14에 있어서, 상기 혼합액으로 막을 형성하는 단계는 기재상에 막을 도포하는 단계 및 히팅하는 단계를 포함하는 것을 특징으로 하는 전해질막의 제조방법.
  20. 청구항 14에 있어서, 상기 무기입자 전구체 용액은 무기입자 전구체 및 용매를 포함하는 것을 특징으로 하는 전해질막의 제조방법.
PCT/KR2014/009810 2013-10-18 2014-10-17 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조 방법 WO2015057025A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480052867.XA CN105594048B (zh) 2013-10-18 2014-10-17 离子传输材料、包含该离子传输材料的电解质膜及其制备方法
US15/022,454 US9923225B2 (en) 2013-10-18 2014-10-17 Ion transport material, electrolyte membrane comprising same, and method for producing same
JP2016538872A JP6293896B2 (ja) 2013-10-18 2014-10-17 イオン伝達素材、これを含む電解質膜およびその製造方法
EP14854331.7A EP3059792B1 (en) 2013-10-18 2014-10-17 Ion transport material, electrolyte membrane comprising same, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130124904 2013-10-18
KR10-2013-0124904 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015057025A1 true WO2015057025A1 (ko) 2015-04-23

Family

ID=52828393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009810 WO2015057025A1 (ko) 2013-10-18 2014-10-17 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US9923225B2 (ko)
EP (1) EP3059792B1 (ko)
JP (1) JP6293896B2 (ko)
KR (1) KR101713380B1 (ko)
CN (1) CN105594048B (ko)
WO (1) WO2015057025A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3024079B1 (en) * 2013-10-18 2018-02-21 LG Chem, Ltd. Ion transport material, electrolyte membrane comprising same, and method for producing same
CN114824471A (zh) * 2022-03-24 2022-07-29 合肥国轩高科动力能源有限公司 一种兼顾高低温性能的磷酸铁锂锂离子电池的电解液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819332B1 (ko) * 2006-11-22 2008-04-03 광주과학기술원 말단에 가교구조를 형성하는 술폰화된 폴리(아릴렌 에테르)공중합체, 이의 제조방법 및 이를 이용한 고분자 전해질막
KR20100006809A (ko) * 2008-07-10 2010-01-22 한양대학교 산학협력단 불소계 또는 부분불소계 분산제를 포함하는 불소계 고분자전해질막 및 이를 포함하는 연료전지
KR20110063175A (ko) * 2009-12-04 2011-06-10 현대자동차주식회사 술폰산기를 갖는 폴리(아릴렌에테르) 공중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막
JP2013177522A (ja) * 2012-02-29 2013-09-09 Toray Ind Inc 高分子電解質成形体、およびそれを用いた高分子電解質膜、膜電極複合体ならびに固体高分子型燃料電池。
JP2013221086A (ja) * 2012-04-17 2013-10-28 Sumitomo Chemical Co Ltd ポリアリーレン及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446662B1 (ko) 2002-03-22 2004-09-04 주식회사 엘지화학 연료 전지용 복합 폴리머 전해질 막 및 그의 제조방법
US7488549B2 (en) 2003-05-03 2009-02-10 Korea Chungang Educational Foundation Proton conducting polymer, polymer membrane comprising the same, method of manufacturing the polymer membrane, and fuel cell using the polymer membrane
KR101022557B1 (ko) * 2007-10-11 2011-03-16 광주과학기술원 유무기 복합막 및 이의 제조방법
KR100978609B1 (ko) * 2007-11-27 2010-08-27 한양대학교 산학협력단 불소가스를 이용한 직접불소화법에 의해 표면처리된수소이온전도성 고분자막, 이를 포함하는 막-전극 어셈블리및 연료전지
KR101366079B1 (ko) * 2007-12-31 2014-02-20 삼성전자주식회사 고체상 프로톤 전도체 및 이를 이용한 연료전지
JP2010168545A (ja) 2008-12-25 2010-08-05 Sumitomo Chemical Co Ltd α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法
KR101059566B1 (ko) * 2008-12-26 2011-08-26 삼성전자주식회사 연료전지용 고체상 프로톤 전도체 및 이를 이용한 연료전지
KR20100087061A (ko) * 2010-06-21 2010-08-03 한양대학교 산학협력단 불소계 또는 부분불소계 분산제를 포함하는 불소계 고분자 전해질막 및 이를 포함하는 연료전지
CN103765650A (zh) 2011-08-22 2014-04-30 东洋纺株式会社 钒系氧化还原电池用离子交换膜、复合体以及钒系氧化还原电池
KR20130050825A (ko) * 2011-11-08 2013-05-16 한양대학교 산학협력단 유무기 복합막 및 이를 포함하는 연료전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819332B1 (ko) * 2006-11-22 2008-04-03 광주과학기술원 말단에 가교구조를 형성하는 술폰화된 폴리(아릴렌 에테르)공중합체, 이의 제조방법 및 이를 이용한 고분자 전해질막
KR20100006809A (ko) * 2008-07-10 2010-01-22 한양대학교 산학협력단 불소계 또는 부분불소계 분산제를 포함하는 불소계 고분자전해질막 및 이를 포함하는 연료전지
KR20110063175A (ko) * 2009-12-04 2011-06-10 현대자동차주식회사 술폰산기를 갖는 폴리(아릴렌에테르) 공중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막
JP2013177522A (ja) * 2012-02-29 2013-09-09 Toray Ind Inc 高分子電解質成形体、およびそれを用いた高分子電解質膜、膜電極複合体ならびに固体高分子型燃料電池。
JP2013221086A (ja) * 2012-04-17 2013-10-28 Sumitomo Chemical Co Ltd ポリアリーレン及びその製造方法

Also Published As

Publication number Publication date
CN105594048A (zh) 2016-05-18
EP3059792A4 (en) 2017-03-15
CN105594048B (zh) 2018-05-22
US20160226091A1 (en) 2016-08-04
US9923225B2 (en) 2018-03-20
KR101713380B1 (ko) 2017-03-07
JP2016534519A (ja) 2016-11-04
EP3059792B1 (en) 2018-03-14
EP3059792A1 (en) 2016-08-24
JP6293896B2 (ja) 2018-03-14
KR20150045390A (ko) 2015-04-28

Similar Documents

Publication Publication Date Title
WO2015057026A1 (ko) 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조 방법
WO2016108645A1 (ko) 실리콘계 음극 활물질 및 이의 제조 방법
WO2015010524A1 (zh) 锂离子电池负极活性材料的制备方法
WO2014185730A1 (ko) 중공형 실리콘계 입자, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
WO2015010527A1 (zh) 电池隔膜及其制备方法
WO2016129745A1 (ko) 가역적인 산-염기 상호작용을 통해 물리적으로 가교된 실리콘 음극용 고분자 바인더
JP4958712B2 (ja) 高分子電解質膜とその製造方法、及び該高分子電解質膜を含む燃料電池
WO2018004259A2 (ko) 이온전도성 막의 제조 방법
WO2015057025A1 (ko) 이온전달 소재, 이를 포함하는 전해질막 및 이의 제조 방법
WO2022108132A1 (ko) 비탄소 나노입자/고분자 복합나노입자, 이를 포함하는 리튬이차전지용 음극 및 상기 비탄소 나노입자/고분자 복합나노입자의 제조방법
WO2004049469A2 (en) Membrane for fuel cell, and fuel cell incorporating that membrane
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
WO2017159889A1 (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
WO2023033561A1 (ko) 레독스 전지용 양쪽성 이온 교환 분리막, 이의 제조 방법 및 이를 포함하는 레독스 전지
WO2023191430A1 (ko) 시아노에틸기 함유 중합체의 제조방법
WO2022131665A1 (ko) 신규 폴리플루오렌계 가교 공중합체 및 그 제조방법, 이를 이용한 알칼리 연료전지용 음이온교환막
WO2020067614A1 (ko) 유/무기고분자전해질 복합막 및 그 제조방법
WO2015064908A1 (ko) 연료전지용 고분자 전해질막, 이의 제조방법 및 이를 포함하는 연료전지
WO2018131820A1 (ko) 완전 생분해성 슈퍼커패시티 및 그 제조방법
WO2013100652A1 (ko) 활물질이 충진된 필름 형태의 음극 전극 및 그의 제조방법
WO2021112287A1 (ko) 가교된 고분자를 포함하는 겔 전해질 및 그 제조방법
WO2014168273A1 (ko) 다층 실리콘화합물이 코팅된 탄소 복합체, 이의 제조방법 및 이를 이용한 연료전지용 전극촉매
WO2017191950A1 (ko) 고분자 전해질막의 제조방법, 이를 이용하여 제조된 고분자 전해질막, 상기 고분자 전해질막을 포함하는 막전극 접합체 및 상기 막전극 접합체를 포함하는 연료전지
WO2024096396A1 (ko) 프로파길기가 그라프트된 폴리(아릴 피페리디늄) 공중합체 이오노머, 가교된 음이온교환막 및 그 제조방법
CN114497897B (zh) 一种锂离子电池隔膜浆料及其制备方法、锂离子电池隔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854331

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014854331

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854331

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016538872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15022454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE