WO2017159889A1 - 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법 - Google Patents

프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법 Download PDF

Info

Publication number
WO2017159889A1
WO2017159889A1 PCT/KR2016/002572 KR2016002572W WO2017159889A1 WO 2017159889 A1 WO2017159889 A1 WO 2017159889A1 KR 2016002572 W KR2016002572 W KR 2016002572W WO 2017159889 A1 WO2017159889 A1 WO 2017159889A1
Authority
WO
WIPO (PCT)
Prior art keywords
proton
poss
polyhedral oligomeric
nanocomposite membrane
oligomeric silsesquioxane
Prior art date
Application number
PCT/KR2016/002572
Other languages
English (en)
French (fr)
Inventor
이희우
김상우
윤태웅
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Priority to US15/742,010 priority Critical patent/US10374244B2/en
Priority to PCT/KR2016/002572 priority patent/WO2017159889A1/ko
Priority to JP2018501968A priority patent/JP6698148B2/ja
Publication of WO2017159889A1 publication Critical patent/WO2017159889A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/30Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen phosphorus-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/385Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polyhedral oligomeric silsesquioxane (POSS) having a proton donor and a polyhedral oligomeric silsesquioxane (POSS) having a proton acceptor to a fluorine-based proton conductive polymer membrane.
  • the present invention relates to a proton conductive nanocomposite membrane and a method of manufacturing the same.
  • a fuel cell which has recently been in the spotlight, is a power generation system that directly converts energy generated by reacting fuel and an oxidant into electric energy directly.
  • a polymer film that can be used at high temperature has been made in various ways.
  • the fuel cell is largely a solid oxide fuel cell operating at 700 ° C. or higher, a molten carbonate electrolyte fuel cell operating at 500 to 700 ° C., a phosphate electrolyte fuel cell operating at around 200 ° C., and operating at room temperature to about 100 ° C. or lower. It is divided into alkaline electrolyte fuel cell and polymer electrolyte fuel cell.
  • the direct methanol fuel cell of the fuel cell can be miniaturized because there is no need to reform methanol.
  • the polymer electrolyte fuel cell is also a clean energy source, but has high power density and energy conversion efficiency, can operate at room temperature, and can be miniaturized and sealed, so that it can be used in pollution-free cars, household power generation systems, mobile communication equipment, medical devices, military equipment, space It is widely used in the field of business equipment and the research is being concentrated more.
  • the Proton Exchange Membrane Fuel Cell which uses hydrogen ion exchange membranes, is a power generation system that generates direct-current electricity from the electrochemical reaction of hydrogen and oxygen, and has protons of 100 ⁇ m in thickness between the anode and cathode. It has a structure in which a conductive polymer film is interposed. Therefore, when hydrogen is supplied as a reactive gas, an oxidation reaction occurs at the anode to convert hydrogen molecules into hydrogen ions and electrons. At this time, the converted hydrogen ions are transferred to the cathode through the proton conductive polymer membrane, and the oxygen molecules receive electrons at the cathode. A reduction reaction occurs in which oxygen ions are converted, at which time the generated oxygen ions react with the delivered hydrogen ions from the anode and are converted into water molecules.
  • PEMFC Proton Exchange Membrane Fuel Cell
  • the proton-conducting polymer membrane for the fuel cell is electrically insulated, but acts as a medium for transferring hydrogen ions from the anode to the cathode during operation of the cell, and simultaneously serves to separate fuel gas or liquid from oxidant gas.
  • the chemical stability must be excellent and the requirements must be met such as thermal stability at operating temperature, manufacturability as a thin film to reduce resistance, and low expansion effect when containing liquid.
  • Nafion A representative material widely used as an electrolyte membrane used in a conventional representative polymer electrolyte fuel cell is Nafion developed by DuPont.
  • Nafion has a disadvantage in that the proton conductivity is good (0.1 S / cm) but the tensile strength is low as 20 MPa and the water swelling is 40%.
  • Nafion, the most commonly used fluorine-based polymer currently forms a price range of 100 $ / cm2, whereas the typical hydrocarbon-based polymer is 6-10 $ / cm2. If Nafion is replaced with hydrocarbon-based polymer, the total PEMFC MEA price is 10%. You can save more.
  • the hydrocarbon-based polymer has a phase separation between the hydrophobic main chain and the hydrophilic side chain lower than that of the fluorine-based polymer compared to IEC, which is higher than that of Nafion.
  • the ion cluster has a diameter of 4 to 5 nm, which is approximately 50% smaller than that of Nafion. Due to the ion cluster formed 50% smaller than Nafion, the ion conductivity of the hydrocarbon-based polymer electrolyte membrane is 0.05 S / cm, and it is only about half of Nafion with 0.1 S / cm ion conductivity.
  • sulfonated polyetheretherketone a typical hydrocarbon-based polymer, has a low stiffness of less than 20% through an aromatic backbone with high stiffness. There is this.
  • Korean Patent No. 804195 proposes a hydrogen ion conductive polymer electrolyte membrane in which a sulfonation group is introduced to inorganic nanoparticles such as silicon oxide and aluminum oxide, and then composited with a polymer electrolyte.
  • a composite membrane has a problem that the inorganic particles of the micro size or tens to hundreds of nano-sizes interfere with the proton movement in the ion channel, thereby decreasing the proton conductivity.
  • due to the size and agglomeration of the inorganic particles also has a problem that the mechanical strength during the composite film manufacturing falls.
  • the present invention discloses an electrolyte in which a silsesquioxane having a sulfonic acid group is mixed with a fluorine-based proton conductive polymer such as Nafion in the 'proton conductive polymer nanocomposite membrane using a silsesquioxane having a sulfonic acid group'
  • the membrane is disclosed.
  • the patent discloses a nano-silicone-based silsesquioxane attached with a sulfonic acid group to Nafion to increase the mechanical strength and conductivity of the nanocomposite membrane, but has problems such as high price, reduced conductivity when used for a long time, and a sharp drop in performance at 80 degrees or higher. Still exists.
  • new nanocomposite membrane electrolytes with higher ionic conductivity are still needed to replace expensive Nafion.
  • the present invention provides a proton conductive polymer nanocomposite membrane that provides excellent proton conductivity at a low temperature of '80 degrees or less, and does not deteriorate mechanical strength due to water swelling and prevents gas permeability.
  • Polyhedral oligomeric silsesquioxanes (POSS) with proton donors and polyhedral oligomeric silsesquioxanes (POSS) with proton acceptors were introduced into the fluorine-based proton conductive polymer substrate. It relates to a proton conductive nanocomposite membrane.
  • It relates to a method for producing a proton conductive nanocomposite membrane comprising casting the mixed solution and removing the solvent.
  • the invention in another aspect, relates to a membrane electrode assembly for a fuel cell comprising a proton conductive nanocomposite membrane.
  • a POSS having a proton donor and a POSS having a proton acceptor are added together so that the generated protons (cations) are easily hopped in an ion channel, thereby increasing ion conductivity.
  • the POSS used in the present invention is very small in size, it hardly interferes with the proton movement in the ion channel in the polymer membrane, thereby achieving excellent proton conductivity.
  • the proton conductive nanocomposite membrane of the present invention may be used as a polymer electrolyte membrane or a separator of a direct methanol fuel cell as well as a polymer electrolyte fuel cell.
  • Figure 1 shows the measured ion conductivity of the conductive nanocomposite membrane prepared in Example 1.
  • Example 2 is a measure of the tensile strength of the nanocomposite membrane obtained in Example 1 and Comparative Example 1.
  • Figure 3 compares the performance of the cell prepared using the nanocomposite membrane prepared in Example 1 and Comparative Example 1.
  • the present invention relates to a proton conductive polymer nano composite membrane for a fuel cell.
  • the proton conductive nanocomposite membrane of the present invention is a polyhedral oligomeric silsesquioxane (POSS) having a proton donor and a polyhedral oligomeric silsesquioxane (POSS) having a proton acceptor. It is formed by introducing into a fluorine-based proton conductive polymer substrate.
  • the polymer membrane of the present invention uses a fluorine crab proton conductive polymer.
  • the fluorine-based proton conductive polymer substrate may be a fluorine-based polymer having a sulfonic acid group at an end group.
  • the fluorine-based proton conductive polymer substrate may be Nafion, Hyflon, Flemion, Dow, Aquivion, Gore or ACiplex. .
  • polyhedral oligomeric silsesquioxanes are used as fillers of the fluorine-based proton polymer membrane, and more specifically, the present invention has a proton donor.
  • Polyhedral oligomeric silsesquioxanes (POSS) and polyhedral oligomeric silsesquioxanes (POSS) with proton acceptors are used together.
  • the polyhedral oligomeric silsesquioxane (POSS) having the proton donor may be represented by the following formula (1).
  • R is a proton donor
  • R is R 1 R 2
  • R 1 is (CH 2) n (where n is an integer from 1 to 6) or phenylene,
  • R 2 is acetic acid, nitric acid, phosphoric acid, sulfonic acid, perchloric acid, hydrochloric acid, salts of carbonic acid or compounds containing them.
  • the polyhedral oligomeric silsesquioxane (POSS) having the proton donor may preferably be a sulfonated octaphenyl polyhedral oligomeric silsesquioxane represented by the following formula (2).
  • At least one of R is SO3H.
  • R can be functionalized up to 16.
  • the polyhedral oligomeric silsesquioxane (POSS) having the proton acceptor may be represented by the following formula (3).
  • A is a compound containing nitrogen, oxygen, phosphorous sulfur, fluorine, and chlorine atoms having unshared electron pairs.
  • A is -A1A2, wherein A1 is (CH2) n (where n is an integer from 1 to 6) or phenylene, and A2 is NH2, NO3-, NH3, PH3, NH2-, Cl-, O2 -, S2-, F-, salts thereof or compounds containing them,
  • the polyhedral oligomeric silsesquioxane (POSS) having the proton acceptor may be represented by the following formula (4).
  • At least one of A is NH 2.
  • A may be functionalized with up to 16 R's.
  • Polyhedral oligomeric silsesquioxanes having a proton donor (hereinafter referred to as POSS-SA) and polyhedral oligomeric silsesquioxanes having a proton acceptor (hereinafter referred to as POSS-) Represented by N) may have a particle size of 1 to 5 nm, preferably 1 to 3 nm, more preferably 1 to 2 nm.
  • the POSS is small in size and does not interfere with the movement of ions in the ion channel of the aromatic hydrocarbon polymer membrane having a sulfone group, thereby solving the problem of lowering ion conductivity, which is the biggest problem of the composite membrane.
  • the polyhedral oligomeric silsesquioxane has a small particle size and has a very compact chemical structure in which a phenyl group and a sulfonic acid group (or an amine group) are bonded to a stable silica cage structure so that it is very easy to disperse.
  • the present invention since it has a proton acceptor acting as a Bronsted base such as an amine group, it forms a strong hydrogen bond with an excess of protons introduced in the nanochannel, and through this, the ionic conductivity by the Grotthuss mechanism by hopping of protons. Is improved.
  • the nanocomposite membrane of the present invention is complexed by controlling POSS-N to less than 5 wt%, preferably less than 1 wt%, and thus does not interfere with proton migration or degrade overall ion exchange capacity in the channel.
  • the proton acceptor may have an additional proton source generated by the proton donor to have a grotus mechanism through a hydrogen bond.
  • the hopping mechanism is a mechanism in which protons are hopped and conducted through a hydrogen bonding network, which can act as strong Bronsted bases (amine groups) in a range that does not degrade ion exchange capacity.
  • the introduction of the acceptor increases the hydrogen bond mediator, reducing the Brönsted acid-base hopping distance, thus enabling the Grotthuss mechanism to become more active and dramatically increasing proton conductivity.
  • the nanocomposite membrane of the present invention even if the weight range of the polyhedral oligomeric silsesquioxane (POSS) is increased up to 20 wt%, there is little aggregation in the channel, and the ion conductivity can be significantly increased, and mechanical strength (tensile ratio) is increased. And intensity) can be increased simultaneously.
  • the tensile strength increases without loss of ductility according to the addition of the polyhedral oligomeric silsesquioxane (POSS)
  • a thinner thin film of 30 microns or less can be manufactured. That is, the nanocomposite membrane of the present invention can be manufactured into an ultra thin film.
  • the polyhedral oligomeric silsesquioxane (POSS) can increase the mechanical strength of the nanocomposite membrane, thereby suppressing the swelling phenomenon of the membrane due to moisture.
  • the nanocomposite membrane to which the polyhedral oligomeric silsesquioxane (POSS) is added may maintain high ion conductivity at 80 degrees or less.
  • the polyhedral oligomeric silsesquioxane (POSS) may be included in an amount of 1 to 20% by weight, preferably 1 to 10% by weight, and more preferably 1 to 2% by weight, based on the total weight of the proton conductive nanocomposite membrane. .
  • the polyhedral oligomeric silsesquioxane (POSS) having the proton donor and the polyhedral oligomeric silsesquioxane (POSS) having the proton acceptor are in a weight ratio of 1: 0.05 ⁇ . 1, preferably 1; 0.05 to 0.3, more preferably 1: 0.1 may be contained in 0.25.
  • the polyhedral oligomeric silsesquioxane (POSS) having the proton acceptor may be included in an amount of 5 wt% or less, preferably 1 wt% or less, compared to the nanocomposite membrane.
  • the polyhedral oligomeric silsesquioxane (POSS) having the proton donor is 1 to 10% by weight, preferably 1 to 5% by weight, more preferably 1 to 2% by weight, based on the nanocomposite membrane. It may be contained.
  • the polymer membrane is a Nafion polymer membrane
  • 80% / 100 when the polyhedral oligomeric silsesquioxane having 3% sulfonic acid group and 0.1% by weight of the polyhedral oligomeric silsesquioxane having an amine group are contained. It has a conductivity of 0.18 S / cm superior to the currently commercialized Nafion membrane (0.12 S / cm) at% RH conditions.
  • a Nafion membrane is used, but the mechanical strength is strong because the POSS-SA and the POSS-N form a molecular composite inside the polymer membrane.
  • the conductivity and mechanical strength of the proton conductive composite membrane can be simultaneously increased.
  • the present invention relates to a method for producing a proton conductive nanocomposite membrane.
  • the method comprises the use of a polyhedral oligomeric silsesquioxane (POSS) having a proton donor and a polyhedral oligomeric silsesquioxane (POSS) having a proton acceptor. Mixing with and casting the mixed solution and removing the solvent.
  • POSS polyhedral oligomeric silsesquioxane
  • the fluorine-based proton conductive polymer, polyhedral oligomeric silsesquioxane (POSS) having a proton donor and polyhedral oligomeric silsesquioxane (POSS) having a proton acceptor are described above. See one.
  • the method comprises proton conducting the polyhedral oligomeric silsesquioxane (POSS) with the proton donor and the polyhedral oligomeric silsesquioxane (POSS) with the proton acceptor 1 to 20% by weight, preferably 1 to 10% by weight, and more preferably 1 to 5% by weight, based on the total weight of the nanocomposite membrane.
  • PES polyhedral oligomeric silsesquioxane
  • PES polyhedral oligomeric silsesquioxane
  • the method comprises a polyhedral oligomeric silsesquioxane (POSS) having the proton donor and a polyhedral oligomeric silsesquioxane (POSS) having the proton acceptor in a weight ratio of 1 : 0.05 to 1, preferably 1; 0.05-0.3, More preferably, it can be added as 1: 0.1-0.25.
  • PES polyhedral oligomeric silsesquioxane
  • PES polyhedral oligomeric silsesquioxane
  • the present invention relates to a fuel cell membrane electrode assembly including a fuel electrode, an oxygen electrode, and the proton conductive nanocomposite membrane positioned between the fuel electrode and the oxygen electrode.
  • a fuel cell membrane electrode assembly including a fuel electrode, an oxygen electrode, and the proton conductive nanocomposite membrane positioned between the fuel electrode and the oxygen electrode.
  • the proton-conducting nanocomposite membrane functions as a medium for delivering protons and electrons generated from a fuel electrode to an oxygen electrode and a separator for separating hydrogen and oxygen.
  • the proton conductive nanocomposite membrane may use the nanocomposite membrane of the present invention described above.
  • the present invention relates to a fuel cell having the membrane-electrode assembly.
  • the fuel cell according to one embodiment can be manufactured by a known method using the membrane-electrode assembly obtained as described above. That is, a fuel cell stack can be manufactured by forming a unit cell with both sides of the above-mentioned membrane-electrode assembly interposed with graphite and arranging a plurality of the unit cells.
  • ONP ONP obtained above was mixed and ground with 0.06 g of 10 wt% Pd / C. 20 ml of THF and 20 ml of triethylamine were added. A small amount of formic acid is added to the mixture and reacted for 5 hours. By reaction, it was separated into two layers, the upper transparent layer was discarded and the lower black layer was collected, and then 50 ml of THF and 50 ml of water were mixed. The mixed solution was column chromatographed with celite to give Octa nitrophenyl POSS (ONPS). Subsequently, 50 ml of ethyl acetate was added to the filterate, and 100 ml of pure water was poured and shaken.
  • ONPS Octa nitrophenyl POSS
  • the EA layer (upper layer) was removed to obtain brown crystals (composite) by filtering, and then mixed in 500 ml of hexane to prepare Octa aminophenyl POSS (OAPS).
  • OAPS Octa aminophenyl POSS
  • Nafion 0.588g POSS-SA content was fixed at 2wt%, POSS-N content was adjusted to 0 ⁇ 1wt% compared to Nafion, Nafion / POSS-SA / POSS-N nanocomposite membrane was prepared.
  • POSS-SA and POSS-N prepared above were mixed in four Nafion vials and stirred for one day.
  • Proton conductive polymer membranes were prepared using only Nafion without using POSS-SA and POSS-N.
  • the Bekktech 4 probe conductivity cell was connected to AC impedance, and the ion conductivity was measured at 80 ° C / 100% RH. The measured ion conductivity is shown in FIG. 1.
  • Example 1 After drying the membranes of Example 1 and Comparative Example 1, using a universal testing machine (UTM) at room temperature, the mechanical strength of the nanocomposite membrane was measured according to the standard experimental method of ASTM d882. After measuring the tensile strength of the nanocomposite membrane obtained in Example 1 and Comparative Example 1 is shown in FIG.
  • the membrane-electrode assembly was coated by hot-press coating a commercial catalyst electrode layer on both surfaces of the nanocomposite membrane prepared in Example 1 (using 2 wt% of POSSS-SA and 0.3 wt% of POSS-N) and Comparative Example 1 Membrane-electrode assembly (MEA) was prepared, respectively.
  • the electrode used was a single-sided ELAT® electrode available from E-TEK Inc., using a platinum-rubidium black catalyst for the cathode and a platinum black catalyst for the anode.
  • the conditions used for the hot-press were fixed by applying a pressure of about 60 kgf / cm 2 at 140 ° C. for 5 minutes. Silicon-coated glass fiber gaskets were placed above and below the membrane-electrode assembly and press-sealed with a current collector plate made of carbon material to assemble the unit cell.
  • 1.6A / cm 2 at 0.6V may be 1.6 times higher than the cell performance of 1.0A / cm 2 of Comparative Example 1. This is due to the easy hopping through enhanced hydrogen bonding through the cationic donor-receiver, which greatly increases the ionic conductivity.
  • the proton conductive nanocomposite membrane of the present invention may be used as a polymer electrolyte membrane or a separator of a direct methanol fuel cell as well as a polymer electrolyte fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 불소계 양성자 전도성 고분자막에 도입된 양성자 전도성 나노 복합막 및 이의 제조방법에 관한 것이다. 본 발명의 나노복합막에는 양성자 주게를 갖는 POSS와 양성자 받게를 갖는 POSS가 함께 첨가되어 있어 발생된 양성자(양이온)가 이온채널 내에서 수소결합을 통해 쉽게 호핑(hopping)되어 이온 전도도가 증가된다. 또한, 본 발명에 사용된 POSS는 그 크기가 매우 작아 고분자막 내 이온 채널에서 양성자의 이동을 거의 방해하지 않으므로 우수한 양성자 전도도를 구현할 수 있다. 또한, 본 발명에 의한 양성자 전도성 나노 복합막은 고분자막의 술폰화도를 높였음에도 불구하고 우수한 기계적 강도를 보여준다.

Description

프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
본 발명은 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 불소계 양성자 전도성 고분자막에 도입된 양성자 전도성 나노 복합막 및 이의 제조방법에 관한 것이다.
최근 각광받고 있는 연료전지는 연료와 산화제를 전기화학적으로 반응시켜 발생되는 에너지를 직접 전기에너지로 변환시키는 발전시스템으로서, 환경문제, 에너지원의 고갈, 연료전지 자동차의 실용화가 가속화되면서 그 효율을 증가시키기 위하여 고온에서 사용 가능한 고분자막의 개발도 다양하게 이루어지고 있다.
연료전지는 크게 700℃ 이상에서 작동하는 고체산화물 연료전지, 500 내지 700℃에서 작동하는 용융탄산염 전해질형 연료전지, 200℃ 근방에서 작동하는 인산전해질형 연료전지, 상온 내지 약 100℃ 이하에서 작동하는 알칼리 전해질형 연료전지 및 고분자 전해질형 연료전지 등으로 구분된다. 또한, 연료전지 중 직접 메탄올 연료전지(Direct Methanol Fuel Cell)는 메탄올을 개질할 필요가 없어 소형화가 가능하다.
이 중에서도 고분자 전해질형 연료전지는 청정 에너지원이기도 하지만 출력밀도 및 에너지 전환효율이 높고 상온에서 작동가능하며 소형화 및 밀폐화가 가능하므로 무공해 자동차, 가정용 발전시스템, 이동통신장비, 의료기기, 군사용 장비, 우주사업용 장비 등의 분야에 폭넓게 사용 가능하여 그 연구가 더욱 집중되고 있다.
특히 수소 이온 교환막을 사용하는 고분자 연료전지(Proton Exchange Membrane Fuel Cell: PEMFC)는 수소와 산소의 전기화학적 반응으로부터 직류의 전기를 생산하는 전력 생성 시스템으로서 애노드와 캐소드 사이에 두께가 100 ㎛ 이내의 양성자 전도성 고분자막이 개재되어 있는 구조를 갖고 있다. 따라서 반응기체인 수소가 공급되면서 애노드에서는 산화반응이 일어나 수소 분자가 수소 이온과 전자로 전환되며, 이 때 전환된 수소 이온은 상기 양성자 전도성 고분자막을 거쳐 캐소드로 전달되면, 캐소드에서는 산소 분자가 전자를 받아 산소 이온으로 전환되는 환원반응이 일어나며, 이 때 생성된 산소이온은 애노드로부터의 전달된 수소 이온과 반응하여 물 분자로 전환된다.
이러한 과정에서 연료전지용 양성자 전도성 고분자막은 전기적으로는 절연체이나, 전지 작동 중에 애노드로부터 캐소드로 수소 이온을 전달하는 매개체로 작용하며 연료 기체 또는 액체와 산화제 기체를 분리하는 역할을 동시에 수행하므로 기계적 성질 및 전기화학적 안정성이 우수해야 하고, 작동 온도에서의 열적안정성, 저항을 줄이기 위한 얇은 막으로서의 제조 가능성 및 액체 함유시 팽창 효과가 적을 것 등의 요건을 충족해야 한다.
종래의 대표적인 고분자 전해질 연료전지에 사용되는 전해질 막으로서 널리 사용되고 있는 대표적인 물질은 듀폰사에서 개발한 Nafion이 있다. 그러나 Nafion의 경우 양성자 전도성이 좋은 대신 (0.1 S/cm) 인장강도가 20 MPa로 낮고 water swelling이 40%로 기계적 강도가 취약하다는 단점이 있다. 현재 가장 많이 상용화 되어 쓰이는 불소계 고분자인 Nafion은 100 $/cm2의 가격 대를 형성하고 있는 반면 대표적인 탄화수소계 고분자는 6~10 $/cm2이므로 Nafion을 탄화수소계 고분자로 대체한다면 전체 PEMFC MEA 가격을 10% 이상 절감할 수 있다. 하지만 탄화수소계 고분자는 Nafion에 비해 높은 IEC에 비해 소수성 주쇄과 친수성 측쇄 사이의 상분리 정도가 불소계 고분자보다 낮으므로 ion cluster의 지름이 4~5 nm로 Nafion에 비해 대략 50% 작게 형성된다. Nafion에 비해 50% 작게 형성된 ion cluster로 인해 탄화수소계 고분자전해질 막의 이온전도도는 0.05 S/cm 수준이고, 0.1 S/cm의 이온전도도를 지닌 Nafion의 절반 정도에 불과하므로 Nafion 이상의 이온전도도 달성을 위해 탄화수소계 고분자의 술폰화도를 높이는 연구가 있다. 하지만 대표적인 탄화수소계 고분자인 sulfonated polyetheretherketone (sPEEK)의 경우 stiffness가 높은 방향족 주쇄를 통해 20% 미만의 낮은 water swelling을 갖지만 술폰화도를 75% 이상으로 높이게 되면 water swelling이 급격히 증가하여 물에 풀어져 용해되는 단점이 있다.
한국등록특허 제804195호에서는 실리콘 산화물, 알루미늄 산화물 등 무기 나노입자에 술폰화기를 도입하여 이를 다시 고분자 전해질과 복합화한 수소 이온 전도성 고분자 전해질막이 제안되어 있다. 하지만, 이러한 복합막은 마이크로 크기 또는 수십 ~ 수백 나노 크기의 무기 입자가 이온 채널 내에서 양성자의 이동을 방해하여 양성자 전도도가 떨어진다는 문제점을 가지고 있다. 또한 무기 입자의 크기와 뭉침 현상으로 인하여 복합막 제조시 기계적 강도가 떨어진다는 문제도 함께 가지고 있다.
본 발명자의 공개특허인 10-2013-118075호 ‘술폰산기를 가지는 실세스퀴옥산을 이용한 양성자 전도성 고분자 나노복합막’에는 나피온 등의 불소계 양성자 전도성 폴리머에 술폰산기를 가진 실세스퀴옥산이 혼합된 전해질 막이 개시되어있다. 상기 공개특허에는 술폰산기가 부착된 수나노 사이즈의 실세스퀴옥산을 나피온과 복합화하여 나노복합막의 기계적 강도 및 전도성을 높였으나 높은 가격, 장시간 사용시 전도도 감소, 80도 이상에서 성능의 급감 등 문제가 여전히 존재한다. 또한, 여전히 고가의 나피온을 대체하기 위해 더 높은 이온전도도를 가진 새로운 나노복합막 전해질이 요구된다.
본 발명은 ‘80 도 이하의 저온’(low temperature)에서 우수한 양성자 전도도를 제공하며 water swelling으로 인한 기계적 강도 저하가 없고 기체투과도를 방지하는 양성자 전도성 고분자 나노복합막을 제공하는 것이다.
본 발명의 하나의 양상은
프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 불소계 양성자 전도성 폴리머 기재에 도입된 양성자 전도성 나노 복합막에 관계한다.
다른 양상에서 본 발명은
프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)을 불소계 양성자 전도성 폴리머 용액에 혼합하는 단계 ; 및
상기 혼합용액을 캐스팅하고 용매를 제거하는 단계를 포함하는 양성자 전도성 나노 복합막 제조방법에 관계한다.
또 다른 양상에서, 본 발명은 양성자 전도성 나노 복합막을 포함하는 연료전지용 막전극 접합체에 관계한다.
본 발명의 나노복합막에는 양성자 주게를 갖는 POSS와 양성자 받게를 갖는 POSS가 함께 첨가되어 있어 발생된 양성자(양이온)가 이온채널 내에서 쉽게 호핑(hopping)되어 이온 전도도가 증가된다.
또한, 본 발명에 사용된 POSS는 그 크기가 매우 작아 고분자막 내 이온 채널에서 양성자의 이동을 거의 방해하지 않으므로 우수한 양성자 전도도를 구현할 수 있다.
본 발명의 양성자 전도성 나노복합막은 고분자 전해질 연료전지뿐만 아니라 직접 메탄올 연료전지(Direct Methanol Fuel Cell)의 고분자 전해질막이나 분리막으로 사용될 수 있다.
도 1은 실시예 1에서 제조된 전도성 나노 복합막의 이온전도도를 측정하여 나타낸 것이다.
도 2는 실시예 1과 비교예 1에서 수득한 나노복합막에 대한 인장강도를 측정한 것이다.
도 3은 실시예 1과 비교예 1에서 제조된 나노복합막을 활용하여 제조된 셀의 성능을 비교한 것이다.
이하 본 발명에 대해 상술한다.
본 발명은 연료전지용 양성자 전도성 고분자 나노 복합막에 관한 것이다.
본 발명의 양성자 전도성 나노복합막은 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 불소계 양성자 전도성 폴리머 기재에 도입되어 형성된다.
본 발명의 고분자막은 불소게 양성자 전도성 폴리머를 사용한다.
상기 불소계 양성자 전도성 폴리머 기재는 말단기에 술폰산기를 가진 불소계 폴리머일 수 있다.
상기 불소계 양성자 전도성 폴리머 기재는 나피온 (Nafion), 하이프론 (Hyflon), 플레미온(Flemion), 다우 (Dow), 아퀴비온 (Aquivion), 고어 (Gore) 또는 에이씨아이플렉스(Aciplex)일 수 있다.
본 발명에서는 불소계 양성자 고분자막의 필러로서 두 가지 종류의 폴리헤드럴 올리고메릭 실세스퀴옥산(polyhedral oligomeric silsesquioxane (POSS)을 사용한다. 좀 더 구체적으로는, 본 발명에서는 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)을 함께 사용한다.
상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)는 하기 화학식 1로 표시될 수 있다.
Figure PCTKR2016002572-appb-C000001
상기 화학식 1에서, R이 프로톤 주게(proton donor)이다.
상기 R은 R1R2이고,
R1은 (CH2)n(이때, n은 1 내지 6의 정수) 또는 페닐렌이고,
R2는 아세트산, 질산, 인산, 술폰산, 과염소산, 염산, 탄산 이들의 염 또는 이들을 포함하는 화합물이다.
상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 바람직하게는 하기 화학식 2로 표시되는 술폰화된 옥타페닐 폴리헤드럴 올리고메릭 실세스퀴옥산일 수 있다.
Figure PCTKR2016002572-appb-C000002
상기 식에서 R 중 적어도 하나는 SO3H이다.
상기 식에서 R은 16개까지 관능화될 수 있다.
상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 하기 화학식 3으로 표시될 수 있다.
Figure PCTKR2016002572-appb-C000003
상기 화학식 1에서, 상기 A는 비공유 전자쌍을 갖는 질소, 산소, 인 황, 불소, 염소 원자를 함유하는 화합물이다.
또는 상기 A는 -A1A2이고, 여기서, A1은 (CH2)n(이때, n은 1 내지 6의 정수) 또는 페닐렌이고, A2는 NH2, NO3-, NH3, PH3, NH2-, Cl-, O2-, S2-, F-, 이들의 염 또는 이들을 포함하는 화합물이고,
상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 하기 화학식 4로 표시될 수 있다.
Figure PCTKR2016002572-appb-C000004
상기 식에서 A 중 적어도 하나는 NH2이다.
상기 식에서 A는 R은 16개까지 관능화될 수 있다.
상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(이하, POSS-SA으로 표현)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(이하, POSS-N으로 표현)은 그 입자 사이즈가 1~5nm, 바람직하게는 1~3nm, 더욱 바람직하게는 1~2nm일 수 있다. 상기 POSS는 사이즈가 작아 술폰기를 갖는 방향족 탄화수소 고분자막의 이온 채널에서 이온의 이동을 방해하지 않아 복합막의 가장 큰 문제인 이온 전도도 저하 문제를 해결할 수 있다.
상기 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)는 입자 사이즈가 작고, 안정적인 실리카 케이지 구조에 페닐기와 술폰산기(또는 아민기)가 결합한 매우 컴팩트한 화학구조식을 가지고 있어 분산에 매우 용이하다.
본 발명에서는 아민기와 같은 브뢴스테드 염기로 작용하는 양성자 받게를 보유하고 있으므로 나노 채널 내 추가적으로 도입된 과량의 양성자와 강력한 수소결합을 형성하고 이를 통해 양성자의 호핑(hopping)에 의한 Grotthuss 메카니즘으로 이온 전도도가 향상된다.
본 발명의 나노복합막은 POSS-N이 5 wt% 미만, 바람직하게는 1wt%미만으로 조절되어 복합화되므로 채널 내에서 양성자의 이동을 방해하거나 전체 이온교환능을 떨어뜨리는 작용은 없다. 또한, 상기 양성자 받게는 양성자 주게에 의해 생성된 추가적인 양성자 소스가 수소결합을 매개로 한 그로투스 메카니즘(Grotthuss mechanism)을 가질 수 있다.
좀 더 구체적으로는, 호핑 메키니즘(또는 Grotthuss mechanism)은 수소결합 네트워크를 통해 양성자가 호핑되어 전도되는 메카니즘인데 이온 교환능을 떨어뜨리지 않는 범위에서 강한 브뢴스테드 염기(아민기)로 작용할 수 있는 양이온 받게를 도입하면 수소결합 매개체가 증가하여 브뢴스테드 산-염기 간 호핑 거리가 줄어들므로 Grotthuss 메카니즘이 더욱 활성화되어 양성자 전도도가 획기적으로 상승될 수 있다.
본 발명의 나노 복합막은 상기 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)의 중량 범위를 최대 20 wt%까지 늘려도 채널 내에 뭉침현상이 적고, 이온전도도를 현저히 증가시킬 수 있으며, 기계적 강도(인장율과 강도)가 동시에 증가될 수 있다. 본 발명의 나노 복합막은 상기 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)의 첨가에 따라 연성의 손실없이 인장 강도가 증가하므로 30 마이크론 이하의 더 얇은 박막을 제조할 수 있다. 즉, 본 발명의 나노 복합막은 초박막으로 제조될 수 있다.
상기 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)는 나노 복합막의 기계적 강도를 증가시킬 수 있어 수분에 의한 막의 swelling 현상을 억제할 수 있다. 또한, 상기 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 첨가된 나노복합막은 80도 이하에서 높은 이온전도능력을 유지할 수 있다.
상기 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 상기 양성자 전도성 나노 복합막 전체 중량 대비 1~20중량%, 바람직하게는 1~10중량%, 더욱 바람직하게는 1~2 중량% 포함될 수 있다.
상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 중량비로 1 : 0.05~1, 바람직하게는 1 ; 0.05~0.3, 더욱 바람직하게는 1 : 0.1·~ 0.25로 함유될 수 있다.
상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)은 나노 복합막 대비 5wt% 이하, 바람직하게는 1wt% 이하로 포함될 수 있다.
상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 나노 복합막 대비 1 ~ 10중량%, 바람직하게는 1~5중량%, 더욱 바람직하게는 1~2중량% 함유될 수 있다.
상기 고분자막이 나피온 고분자막인 경우, 술폰산기를 가지는 폴리헤드럴 올리고메릭 실세스퀴옥산이 3중량%, 아민기를 가지는 폴리헤드럴 올리고메릭 실세스퀴옥산이 0.1중량% 함유되는 경우, 80℃/100% RH 조건에서 현재 상용화된 나피온 막 (0.12 S/cm)보다 우수한 0.18 S/cm의 전도도를 가진다.
본 발명에서는 나피온 막을 사용하지만, 상기 POSS-SA와 POSS-N이 고분자막 내부에서 분자 수준의 복합체(molecular composite)를 형성함으로써 기계적 강도가 강하다.
즉, 본 발명에서는 양성자 전도성 복합막의 전도도와 기계적 강도를 동시에 높일 수 있다.
다른 양상에서 본 발명은 양성자 전도성 나노 복합막 제조방법에 관계한다.
상기 방법은 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)을 불소계 양성자 전도성 폴리머 용액에 혼합하는 단계 및 상기 혼합용액을 캐스팅하고 용매를 제거하는 단계를 포함한다.
상기 불소계 양성자 전도성 폴리머, 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS) 및 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)은 앞에서 상술한 내용을 참고할 수 있다.
상기 방법은 상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)을 상기 양성자 전도성 나노 복합막 전체 중량 대비 1~20중량%, 바람직하게는 1~10중량%, 더욱 바람직하게는 1~5중량% 포함할 수 있다.
상기 방법은 상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)을 중량비로 1 : 0.05~1, 바람직하게는 1 ; 0.05~0.3, 더욱 바람직하게는 1 : 0.1·~0.25로 첨가할 수 있다.
다른 양상에서 본 발명은 연료극, 산소극 및 상기 연료극과 산소극 사이에 위치하는 상기 양성자 전도성 나노 복합막을 포함하는 연료전지용 막전극 접합체에 관계한다. 상기 연료극과 산소극 등에 대해서는 공지된 내용을 참고할 수 있다. 상기 양성자 전도성 나노 복합막은 연료극에서 생성된 양성자와 전자를 산소극으로 전달하는 매개체의 역할과 수소와 산소를 분리하는 분리막의 기능을 한다.
상기 양성자 전도성 나노 복합막은 앞에서 상술한 본 발명의 나노복합막을 사용할 수 있다.
본 발명은 상기 막-전극 접합체를 구비하는 연료전지에 관계한다.
일구현예에 따른 연료전지는 상술한 바와 같이 하여 얻은 막-전극 접합체를 이용하여 공지의 방법에 의해 제조할 수 있다. 즉, 상술한 막-전극 접합체의 양측을 그래파이트로 개재하여 단위 셀을 구성하고, 이 단위 셀을 복수 나열함으로써 연료전지 스택을 제조할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다.
실시예 1
1. 술폰산기를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS-SO3H(POSS-SA)) 합성
Figure PCTKR2016002572-appb-I000001
먼저 1 g의 octaphenyl poss 를 5 ml의 chlorosulfonic acid에 섞어주고, 상온에서 밤새 저어 주었다. 상기 용액을 THF 200 ml에 부어주고 생기는 가루를 필터링한 후 pH가 중성이 될 때까지 반복하였다. 감압 및 건조하여 갈색의 고체를 얻었다.
H-NMR(D2O)-7.54(dd;ArHmeta to POSS), 7.81-7.83(2dd; ArH para to SO3H,ArHpara to POSS), 8.03(dd; ArH ortho to SO3HandPOSS).
FT-IR: 3070 (OH of SO3H), 2330 (SO3H-H2O), 1718, 1590, 1470, 1446, 1395, 1298, 1132 (SO3 asymm), 1081 (SO3 symm), 1023 (SiOSi asymm), 991, 806 (SiOSi symm)
2. 아민기를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS-NH2 (POSS-N)) 합성
Figure PCTKR2016002572-appb-I000002
< ONP(Octaphenyl POSS) 만들기>
얼음물에 5 g의 OPS 와 30 ml 의 fuming nitric acid 를 비이커에 넣어 30 min 정도 혼합하였다. 상온에서 20 hour 정도 반응시켰다. 상기 용액을 얼음물에 풀어주어 가루가 생기게 한 후에 필터링 하였다. 이어서, 필터링하여 수득한 고체 잔류물을 물로 세척한 후에 에탄올 100 ml로 2번 정도 더 세척하였다(ONP 수득).
<OAPS 만들기>
앞에서 수득한 ONP 0.5 g을 0.06 g의 10 wt% Pd/C 와 혼합 및 분쇄하였다. 여기에 THF 20ml와 triethylamine 20ml를 넣었다. 혼합물에 formic acid를 소량 첨가한 후 5 hour 동안 반응시킨다. 반응에 의해, 두 개의 층으로 분리되는데, 위의 투명한 층은 버리고 아래의 검은 층을 모은 다음, 여기에 50 ml의 THF와 50 ml의 water을 섞었다. 섞어준 solution을 celite로 column 크로마토그래피를 하여 Octa nitrophenyl POSS (ONPS)를 수득하였다. 이어서, 50 ml의 ethyl acetate 를 filterate 에 가하고 순수한 물 100 ml를 부어 흔들어 주었다.
EA층(위층)을 덜어내어 갈색의 결정(합성물)을 필터링하여 얻은 후 다시 500ml의 hexane에 섞어 Octa aminophenyl POSS (OAPS)를 제조하였다.
3. 나노복합막 만들기
Dupont사에서 제조된 Nafion solution을 진공 건조를 하여 용매를 제거하고, 디메틸아세트아미드(DMAc)에 1:19 중량 비율로 용해시킨다(5wt% 용액 제조).
상기 5wt%용액 11.76g (나피온은 0.588g)을 4 개의 바이알에 각각 담아 두었다.
나피온 0.588g 대비 POSS-SA 함량을 2wt%로 고정하고, 나피온 대비 POSS-N 함량을 0 ~ 1wt%로 조절하여, 나피온/POSS-SA/POSS-N 나노복합막을 제조하였다.
앞에서 제조된 POSS-SA와 POSS-N을 4개의 나피온 바이알에 각각 섞어 하루 동안 교반하였다.
교반을 마친 나피온/POSS-SA 2wt%/POSS-N 0~1 wt% solution을 각각 샬렛에 부어준 후, 100℃ 오븐에서 밤새 casting하였다. casting을 마친 후, 샬렛에 증류수를 부어주어서, 샬렛에서 나노복합막을 조심스럽게 떼어내었다.
비교예 1
POSS-SA와 POSS-N를 사용하지 않고 나피온만을 사용하여 양성자 전도성 고분자막을 제조하였다.
실험 : 이온전도도 측정
비교예 1과 실시예 1에서 각각 수득한 복합막 샘플들의 두께를 측정한 후 Bekktech 사의 4 probe conductivity cell을 AC impedance와 연결한 후, 80℃/100% RH 조건에서 이온전도도를 측정하였다. 측정된 이온전도도를 도 1에 나타내었다.
실험 2 : 인장강도 측정
실시예 1과 비교예 1의 막을 건조한 후, 상온에서 universal testing machine (UTM) 장비를 이용해, ASTM d882의 표준실험 방법에 따라 나노복합막의 기계적 강도를 측정하였다. 실시예 1과 비교예 1에서 수득한 나노복합막에 대한 인장강도를 측정한 후 도 2에 나타내었다.
실험 3 : 연료전지 셀의 성능 비교
상기 실시예 1(POSS-SA 2 wt%, POSS-N 0.3wt%를 사용함) 및 비교예 1 에서 제조된 나노복합막의 양면에 상업용 촉매전극 층을 핫-프레스 법으로 코팅하여 막-전극 어셈블리(Membrane-electrode assembly, MEA)를 각각 제조하였다.
사용된 전극은 E-TEK Inc.로부터 입수가능한 단일면의 ELAT®전극으로, 음극에는 백금-루비듐 블랙(Pt-Ru black) 촉매를 사용하였고, 양극에는 백금 블랙 촉매를 사용하였다. 상기 핫-프레스에 사용된 조건은 140 ℃에서 5분동안 약 60kgf/㎠의 압력을 인가하는 것으로 고정하였다. 실리콘이 코팅된 유리섬유 가스켓을 막-전극 어셈블리 위, 아래에 위치시키고, 탄소 소재로 만든 집전판으로 압착 밀봉하여 단위 전지를 조립하였다.
단위 전지 실험시 음극과 양극으로 유입되는 순수한 수소와 산소의 화학 양론비는 각각 2.0, 3.0으로 고정하였으며 유입되는 공급압은 30 psi하에서 실험하였으며, 전지의 성능을 80 ℃, 100% 가습조건에서 각각 측정하여 그 결과를 도 3에 나타내었다.
도 1을 참고하면, POSS-SA의 함량을 2wt%로 고정하고 POSS-N의 함량을 0~1wt%로 변화시킬 때, POSS-N의 함량이 0.3wt%일 때 이온전도도가 0.182 S/cm로 가장 높았다.
도 2는 POSS-N의 함량이 0.5wt%로 고정하고, POSS-SA 함량을 10wt%까지 높였을 때의 응력(stress)을 나타낸다. 도 2를 참고하면, 본 발명의 실시예에서는 변형율(strain)이 80% 이상 140%까지 증가하여도 응력이 유지됨을 확인할 수 있다. 즉, 본 발명의 나노 복합막은 상기 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)의 첨가에 따라 연성의 손실없이 인장 강도가 증가함을 보여준다.
도 3을 참고하면, 실시예 1에서 제조된 복합막을 이용한 경우 0.6V에서 1.6A/cm2로 비교예 1의 셀 성능 1.0A/cm2에 비해 1.6배 이상 높은 것을 확인할 수 있다. 이는 양이온 주게-받게를 통해 향상된 수소결합을 통해 쉽게 호핑되어 이온전도도가 크게 증가하기 때문이다
지금까지 본 발명의 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본질적인 특성에 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명의 양성자 전도성 나노복합막은 고분자 전해질 연료전지뿐만 아니라 직접 메탄올 연료전지(Direct Methanol Fuel Cell)의 고분자 전해질막이나 분리막으로 사용될 수 있다.

Claims (14)

  1. 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 불소계 양성자 전도성 폴리머 기재에 도입된 양성자 전도성 나노 복합막.
  2. 제 1항에 있어서, 상기 불소계 양성자 전도성 폴리머 기재는 말단기에 술폰산기, 인산기 또는 카르복실기 중에서 선택된 기능기를 가진 불소계 폴리머인 것을 특징으로 하는 양성자 전도성 나노 복합막.
  3. 제 1항에 있어서, 상기 불소계 양성자 전도성 폴리머 기재는 나피온 (Nafion), 하이프론 (Hyflon), 플레미온(Flemion), 다우 (Dow), 아퀴비온 (Aquivion), 고어 (Gore) 또는 에이씨아이플렉스(Aciplex)인 것을 특징으로 하는 양성자 전도성 나노 복합막.
  4. 제 1항에 있어서, 상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 상기 나노 복합막에 1 ~ 20중량%로 함유되는 것을 특징으로 하는 양성자 전도성 나노 복합막.
  5. 제 4항에 있어서, 상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 중량비로 1 : 0.05~1로 함유되는 것을 특징으로 하는 양성자 전도성 나노 복합막.
  6. 제 1항에 있어서, 상기 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS) 입자의 사이즈가 1~3nm인 것을 특징으로 하는 양성자 전도성 나노 복합막.
  7. 제 1항에 있어서, 상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)은 하기 화학식 1로 표시되는 것을 특징으로 하는 양성자 전도성 나노 복합막.
    [화학식 1]
    Figure PCTKR2016002572-appb-I000003
    상기 화학식 1에서, R이 프로톤 주게(proton donor)이고,
    상기 R은 아세트산, 질산, 인산, 술폰산, 과염소산, 염산, 탄산 이들의 염 또는 이들을 포함하는 화합물이다.
  8. 제 7항에 있어서, 상기 R은 -R1-R2이고,
    상기 R1은 (CH2)n(이때, n은 1 내지 6의 정수) 또는 페닐렌이고,
    여기서, R2는 아세트산, 질산, 인산, 술폰산, 과염소산, 염산, 탄산 이들의 염 또는 이들을 포함하는 화합물인 양성자 전도성 나노 복합막.
  9. 제 7항에 있어서, 상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 하기 화학식 2로 표시되는 것을 특징으로 하는 양성자 전도성 나노 복합막.
    [화학식 2]
    Figure PCTKR2016002572-appb-I000004
    상기 식에서 R 중 적어도 하나는 SO3H이고, 상기 R은 16개까지 관능화될 수 있다.
  10. 제 1항에 있어서, 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 하기 화학식 3으로 표시되는 것을 특징으로 하는 양성자 전도성 나노 복합막.
    [화학식 3]
    Figure PCTKR2016002572-appb-I000005
    상기 화학식 1에서, 상기 A는 비공유 전자쌍을 갖는 질소, 산소, 인 황, 불소, 염소 원자를 함유하는 화합물이다.
  11. 제 10항에 있어서, 상기 A는 -A1A2이고,
    상기 A1은 (CH2)n(이때, n은 1 내지 6의 정수) 또는 페닐렌이고, A2는 NH2, NO3-, NH3, PH3, NH2-, Cl-, O2-, S2-, F- 이들의 염 또는 이들을 포함하는 화합물인 양성자 전도성 나노 복합막.
  12. 제 10항에 있어서, 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)이 하기 화학식 4로 표시되는 것을 특징으로 하는 양성자 전도성 나노 복합막.
    [화학식 4]
    Figure PCTKR2016002572-appb-I000006
    상기 식에서 A 중 적어도 하나는 NH2이고, 상기 A는 16개까지 관능화될 수 있다.
  13. 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)을 불소계 양성자 전도성 폴리머 용액에 혼합하는 단계 ; 및
    상기 혼합용액을 캐스팅하고 용매를 제거하는 단계를 포함하는 양성자 전도성 나노 복합막 제조방법.
  14. 제 13항에 있어서, 상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)을 상기 나노 복합막에 1 ~ 20중량%로 첨가시키되, 상기 프로톤 주게(proton donor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)과 상기 프로톤 받게(proton acceptor)를 갖는 폴리헤드럴 올리고메릭 실세스퀴옥산(POSS)을 중량비로 1 : 0.05~1로 첨가하는 것을 특징으로 하는 양성자 전도성 나노 복합막의 제조방법.
PCT/KR2016/002572 2016-03-15 2016-03-15 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법 WO2017159889A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/742,010 US10374244B2 (en) 2016-03-15 2016-03-15 Fluorine-based nanocomposite membrane comprising polyhedral oligomeric silsesquioxanes having proton donor and proton acceptor, and method for manufacturing same
PCT/KR2016/002572 WO2017159889A1 (ko) 2016-03-15 2016-03-15 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
JP2018501968A JP6698148B2 (ja) 2016-03-15 2016-03-15 プロトン供与体とプロトン受容体を有する多面体オリゴマー型シルセスキオキサンを含むフッ素系ナノ複合膜及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/002572 WO2017159889A1 (ko) 2016-03-15 2016-03-15 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017159889A1 true WO2017159889A1 (ko) 2017-09-21

Family

ID=59850943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002572 WO2017159889A1 (ko) 2016-03-15 2016-03-15 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법

Country Status (3)

Country Link
US (1) US10374244B2 (ko)
JP (1) JP6698148B2 (ko)
WO (1) WO2017159889A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200060565A1 (en) * 2018-08-27 2020-02-27 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
WO2024090903A1 (ko) * 2022-10-25 2024-05-02 주식회사 엘지에너지솔루션 고분자 고체 전해질 및 이의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103912B2 (ja) * 2018-10-24 2022-07-20 トヨタ自動車株式会社 橋架け構造を有するプロトン伝導膜及び燃料電池
CN114122470B (zh) * 2021-11-24 2023-12-29 中汽创智科技有限公司 一种质子交换膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001153A1 (en) * 2011-07-01 2013-01-03 International Business Machines Corporation Thin film composite membranes embedded with molecular cage compounds
KR20130118075A (ko) * 2012-04-19 2013-10-29 서강대학교산학협력단 술폰산기를 가지는 실세스퀴옥산을 이용한 양성자 전도성 고분자나노복합막
KR20140142036A (ko) * 2013-06-03 2014-12-11 서강대학교산학협력단 아민기-함유 실세스퀴옥산을 이용한 폴리벤즈이미다졸 나노복합막, 이의 제조 방법, 및 이를 포함하는 연료전지
KR20160110579A (ko) * 2015-03-09 2016-09-22 서강대학교산학협력단 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804195B1 (ko) 2003-09-04 2008-02-18 연세대학교 산학협력단 고온에서 수소이온 전도가 가능한 고분자 전해질막의제조방법 및 이를 이용한 고분자 전해질형 연료전지의고온 운전
JP2005222890A (ja) * 2004-02-09 2005-08-18 Toyota Motor Corp 燃料電池用電解質材料
JP2005339961A (ja) * 2004-05-26 2005-12-08 Hitachi Maxell Ltd プロトン伝導性膜及びそれを用いた燃料電池
US7563828B2 (en) * 2004-07-16 2009-07-21 Alcatel-Lucent Usa Inc. Solid state proton conductor system derived from hybrid composite inorganic-organic multicomponent material
JP2006073357A (ja) * 2004-09-02 2006-03-16 Hitachi Maxell Ltd プロトン伝導性膜及びそれを用いた燃料電池
JP5014612B2 (ja) * 2005-10-20 2012-08-29 旭化成イーマテリアルズ株式会社 芳香族炭化水素系樹脂と籠状シルセスキオキサンとを含有する高分子電解質組成物
WO2008127645A1 (en) * 2007-04-13 2008-10-23 Michigan Molecular Institute Improved fuel cell proton exchange membranes
FR2921517B1 (fr) * 2007-09-26 2010-12-03 Commissariat Energie Atomique Membranes conductrices de protons pour pile a combustible presentant un gradient de protons et procedes de preparation desdites membranes
EP2443195B1 (en) * 2009-06-15 2014-01-15 Arkema Inc. Organic/inorganic composite blend membrane compositions of polyelectrolye blends with nanoparticles
US8283398B2 (en) * 2009-07-29 2012-10-09 Xerox Corporation Polyhedral silsesquioxane modified polyimide containing intermediate transfer members
US8981140B1 (en) * 2010-08-18 2015-03-17 The United States Of America As Represented By The Secretary Of The Air Force Peripherally aromatic silsesquioxanes featuring reactive functionality: synthesis and applications thereof
JP6202431B2 (ja) * 2012-09-04 2017-09-27 学校法人神奈川大学 かご型シルセスキオキサン誘導体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001153A1 (en) * 2011-07-01 2013-01-03 International Business Machines Corporation Thin film composite membranes embedded with molecular cage compounds
KR20130118075A (ko) * 2012-04-19 2013-10-29 서강대학교산학협력단 술폰산기를 가지는 실세스퀴옥산을 이용한 양성자 전도성 고분자나노복합막
KR20140142036A (ko) * 2013-06-03 2014-12-11 서강대학교산학협력단 아민기-함유 실세스퀴옥산을 이용한 폴리벤즈이미다졸 나노복합막, 이의 제조 방법, 및 이를 포함하는 연료전지
KR20160110579A (ko) * 2015-03-09 2016-09-22 서강대학교산학협력단 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MONTICELLI, O. ET AL.: "New Stereocomplex PLA-based Fibers: Effect of POSS on Polymer Functionalization and Properties", MACROMOLECULES, vol. 47, no. 14, 2014, pages 4718 - 4727, XP055422444 *
RAMIREZ, S. M. ET AL.: "Incompletely Condensed Fluoroalkyl Silsesquioxanes and Derivatives: Precursors for Low Surface Energy Materials", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. 50, 2011, pages 20084 - 20087, XP055357177 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200060565A1 (en) * 2018-08-27 2020-02-27 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11839476B2 (en) * 2018-08-27 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
WO2024090903A1 (ko) * 2022-10-25 2024-05-02 주식회사 엘지에너지솔루션 고분자 고체 전해질 및 이의 제조방법

Also Published As

Publication number Publication date
US10374244B2 (en) 2019-08-06
US20180198147A1 (en) 2018-07-12
JP6698148B2 (ja) 2020-05-27
JP2018525778A (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
CN103517912B (zh) 磺酸盐类化合物、包含该化合物的聚合物电解质膜和包含该聚合物电解质膜的燃料电池
WO2017159889A1 (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
WO2018048134A1 (ko) 연료전지용 막-전극 계면 접착층, 이를 이용한 막-전극 접합체 및 연료전지
WO2012173352A2 (ko) 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지
WO2011074905A2 (ko) 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
KR101352564B1 (ko) 술폰산기를 가지는 실세스퀴옥산을 이용한 양성자 전도성 고분자나노복합막
WO2016006869A1 (ko) 술폰산기를 포함하는 다면체 올리고머형 실세스퀴옥산을 포함하는 나노 복합막 및 이의 제조방법
WO2017159890A1 (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 탄화수소계 나노 복합막 및 이의 제조방법
KR100907476B1 (ko) 부분적으로 불소가 도입된 이온 전도성 공중합체를 함유한고분자 전해질 막, 그의 제조방법 및 고분자 전해질 막을채용한 고분자 전해질형 연료전지
WO2023106657A1 (ko) 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법
KR101773245B1 (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 탄화수소계 나노 복합막 및 이의 제조방법
WO2023033561A1 (ko) 레독스 전지용 양쪽성 이온 교환 분리막, 이의 제조 방법 및 이를 포함하는 레독스 전지
KR20170107634A (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
KR20170107633A (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 탄화수소계 나노 복합막 및 이의 제조방법
KR100524819B1 (ko) 고온용 양성자 전도성 고분자막과 이의 제조방법 및 이를이용한 막-전극 어셈블리와 이를 포함하는 연료전지
KR101773246B1 (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
EP2212372B1 (en) Ionically conductive polymer for use in electrochemical devices
KR101353078B1 (ko) 인산기를 가지는 실세스퀴옥산을 이용한 양성자 전도성 고분자 나노복합막
WO2016122287A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
KR102275134B1 (ko) 호핑 전도 메카니즘이 우수한 기능성 나노입자를 포함하는 탄화수소계 양성자 전도성 나노복합막 및 이의 제조방법
KR20040107590A (ko) 수소이온 전도성 폴리머
WO2017090860A1 (ko) 고분자 전해질막, 이를 포함하는 막 전극 접합체 및 상기 막 전극 접합체를 포함하는 연료 전지
WO2015190887A1 (ko) 복합체 전해질막 및 이의 제조방법
US20070275273A1 (en) Trimetaspheres for Ion Selective Membranes

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894620

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894620

Country of ref document: EP

Kind code of ref document: A1