JP2005339961A - プロトン伝導性膜及びそれを用いた燃料電池 - Google Patents

プロトン伝導性膜及びそれを用いた燃料電池 Download PDF

Info

Publication number
JP2005339961A
JP2005339961A JP2004156439A JP2004156439A JP2005339961A JP 2005339961 A JP2005339961 A JP 2005339961A JP 2004156439 A JP2004156439 A JP 2004156439A JP 2004156439 A JP2004156439 A JP 2004156439A JP 2005339961 A JP2005339961 A JP 2005339961A
Authority
JP
Japan
Prior art keywords
proton conductive
silsesquioxane
conductive membrane
group
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004156439A
Other languages
English (en)
Inventor
Toshihiro Nakai
敏浩 中井
Shoji Nishihara
昭二 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004156439A priority Critical patent/JP2005339961A/ja
Publication of JP2005339961A publication Critical patent/JP2005339961A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Silicon Polymers (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 メタノールクロスオーバーを抑制し、且つ高いプロトン伝導性を有する新規なプロトン伝導性膜と、それを用いた放電特性に優れた燃料電池を提供する。
【解決手段】 アニオン性基を含み且つ炭素を主骨格とする高分子材料を含むプロトン伝導性膜であって、前記プロトン伝導性膜は、シルセスキオキサンをさらに含むプロトン伝導性膜とする。また、上記プロトン伝導性膜を、正極2と負極1との間に配置した固体電解質膜3として用いた燃料電池とする。
【選択図】 図1

Description

本発明は、プロトン伝導性膜及びそれを用いた固体高分子型燃料電池に関する。
近年、パソコン、携帯電話などのコードレス機器の普及に伴い、その電源である二次電池はますます小型化、高容量化が要望されている。現在、エネルギー密度が高く、小型軽量化が図れる二次電池としてリチウムイオン二次電池が実用化されており、ポータブル電源として需要が増大している。しかし、使用されるコードレス機器の種類によっては、このリチウム二次電池では未だ十分な連続使用時間を保証する程度までには至っていない。
このような状況の中で、上記要望に応え得る電池の一例として、固体高分子型燃料電池が挙げられる。電解質に固体高分子電解質、正極活物質に空気中の酸素、負極活物質に燃料(水素、メタノールなど)を用いる固体高分子型燃料電池は、リチウムイオン電池よりも高エネルギー密度化が期待できるポータブル電源として注目されている。一般に燃料電池は燃料及び酸素の供給さえ行えば、連続的に使用することができる。なかでも、液体燃料であるメタノールを直接電池の反応に利用する直接メタノール型燃料電池は、毛管力などを利用してメタノールを供給することにより、ポンプなどの燃料供給装置を用いなくてもよいため、小型化が可能であり、将来のポータブル電源として研究開発が行われている(例えば、特許文献1参照。)。
しかし、固体高分子電解質としてパーフルオロスルホン酸樹脂などのプロトン伝導性固体高分子電解質などを用いた場合、燃料のメタノールが電解質膜を通して正極側に透過してしまう現象、すなわちメタノールクロスオーバーが生じる。この現象が生じると、正極触媒上でメタノールと酸素が直接反応してしまい、本来の電池反応が阻害されるために電池電圧が低下するという問題がある。
固体高分子電解質膜におけるメタノールクロスオーバーを低減するために、従来のパーフルオロスルホン酸樹脂膜とは異なり、スルホン化芳香族ポリエーテルケトンから製造した高分子電解質膜などが提案されている(例えば、特許文献2参照。)。
また、メタノールに対して化学的及び物理的に安定な、スズ酸化物水和物などの金属酸化物水和物と、スルホン化ポリエーテルスルホンなどのプロトン伝導性ポリマーとの複合体からなる膜が提案されている(例えば、特許文献3参照。)。これらは、メタノールに対して安定な無機酸化物をポリマー中に存在させ、金属酸化物によるメタノール遮断性を企図したものである。
特開2000−268836号公報 特開平6−93114号公報 特開2003−331869号公報
しかし、特許文献2などに提案されている高分子電解質膜は、プロトン伝導性が不充分なことが多い。また、それを改善するために、スルホン酸基などのプロトン伝導性置換基の導入量を増やすことも行われているが、スルホン酸基などの導入量を増加させると、高分子電解質膜が水溶性になる場合があり、また、膜膨潤が激しくなりメタノールクロスオーバーが増加するなどの問題があり、実用化には至っていない。
一方、特許文献3などに提案されている金属酸化物を添加する方法は、金属酸化物とプロトン伝導性ポリマーとの間に化学的な結合又は相互作用がなく、メタノールによるポリマーの膨潤を抑制する効果が充分得られず、充分なメタノール不透過性が得られないという問題があった。
本発明は、上記従来の問題を解決するものであり、メタノールクロスオーバーを抑制し、且つ高いプロトン伝導性を有する新規なプロトン伝導性膜を提供するものである。
本発明は、アニオン性基を含み且つ炭素を主骨格とする高分子材料を含むプロトン伝導性膜であって、前記プロトン伝導性膜は、シルセスキオキサンを含むことを特徴とするプロトン伝導性膜である。
また、本発明は、上記プロトン伝導性膜を、正極と負極との間に配置する固体電解質として用いることを特徴とする燃料電池である。
本発明は、メタノールクロスオーバーを抑制し、且つ高いプロトン伝導性を有するプロトン伝導性膜を提供できる。また、本発明のプロトン伝導性膜を燃料電池の固体電解質に用いることにより、燃料電池の放電特性を向上できる。
以下、本発明の実施の形態について説明する。
<プロトン伝導性膜の実施の形態>
本発明のプロトン伝導性膜の一例は、アニオン性基を含み且つ炭素を主骨格とする高分子材料と、シルセスキオキサンとを含むプロトン伝導性膜であり、上記高分子材料とシルセスキオキサンとが複合化されてプロトン伝導性膜を構成している。
本実施形態のプロトン伝導性膜は、アニオン性基を備えた高分子材料を含んでいるので、高いプロトン伝導性を有する。また、本実施形態のプロトン伝導性膜は、上記高分子材料との親和性に優れたシルセスキオキサンを含んでいるので、上記高分子材料の膨潤を抑制することができ、メタノールクロスオーバーを低減することができる。
なお、前述の特許文献3に記載の従来のプロトン伝導性高分子材料にシリカを混合する方法では、シリカの表面にはシラノール基が存在するため、シリカと高分子材料との親和性が低く、高分子材料の膨潤を抑制する効果が充分には得られなかった。
上記アニオン性基を含み且つ炭素を主骨格とする高分子材料としては、例えば、公知の技術により合成した高分子材料を用いてもよく、市販品の高分子材料を用いてもよい。例えば、ポリパーフルオロスルホン酸樹脂を用いる場合には、テトラフルオロエチレンとパーフルオロアルキルスルホン酸ビニルエーテルとを共重合させたものを用いてもよく、デュポン社製の“ナフィオン”(商品名)、旭硝子社製の“フレミオン”(商品名)、旭化成社製の“アシプレックス”(商品名)などの市販品を用いてもよい。その他にも下記に示す炭素を主骨格とする合成樹脂にアニオン性基を導入したものも使用できる。例えば、ポリテトラフルオロエチレン、ポリパーフルオロスチレン、ポリテトラフルオロエチレン−パーフルオロアルキルエーテル共重合体、ポリテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体、ポリビニリデンフルオライド、ヘキサフルオロプロピレン−フッ化ビニリデン共重合体、エチレン−クロロトリフルオロエチレン共重合体などのフッ素樹脂、ポリイミド、ポリアミド、ポリベンゾオキサゾール、ポリフェニレンスルフィドスルフォン、ポリスルフォン、ポリフェニレンスルフィド、ポリフェニレンスルホキシド、ポリフェニレンスルホン、ポリフェニレンオキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリベンゾイミダゾール、ポリパラフェニレンなどの耐熱・耐酸化性樹脂、ポリスチレン、ポリビニル、スチレン−ブタジエンブロック共重合体、ポリフォスファゼン、スチレン−ジビニルベンゼン共重合体などの炭素を主骨格とする高分子材料であって、上記アニオン性基を有するものが好適に用いられる。但し、アニオン性基を含み且つ炭素を主骨格とする高分子材料は、これらの高分子材料に限定されるものではなく、各種の共重合体などを使用してもよく、これら高分子材料を2種類以上混合して使用することもできる。
また、上記炭素を主骨格とする高分子材料に含まれるアニオン性基としては、スルホン酸基、リン酸基、カルボキシル基、ホスホン酸基などが好適に用いられるがこれらに限定されるものではない。これらのアニオン性基によって、上記高分子材料にプロトン伝導性を付与することができる。
上記シルセスキオキサンは、基本構成単位が下記構造単位であるポリシロキサンの総称である。シルセスキオキサン中のケイ素は3個の酸素と結合し、酸素は2個のケイ素と結合しているため、その実験式はXSiO3/2となる。シルセスキオキサンは、一般に3官能性シランを重合することにより得られ、下記構造単位を有するネットワーク型ポリマー、又は多面体クラスターである。
Figure 2005339961
ここで、Xは、炭素数1〜20のアルキル基、アリール基(フェニル基など)、炭素数1〜20のフルオロカーボン基などの有機基であるが、これらに限定はされない。また、これらの有機基は1種類に限られず、シルセスキオキサン中に2種類以上の有機基を含んでいてもよい。
シルセスキオキサンは上記有機基を有するため、シリカなどの無機ケイ素化合物に比べて柔軟性があり、且つ有機溶媒に溶解するため加工性にも優れる。また、上記有機基を有することにより、炭素を主骨格とする高分子材料との親和性が高くなり、優れたメタノールクロスオーバー低減効果が得られる。
上記シルセスキオキサンの含有量は、プロトン伝導性膜全体に対して1重量%以上が好ましく、5重量%以上がより好ましい。この範囲であれば、プロトン伝導性膜にメタノール透過抑制機能を付与できる。但し、シルセスキオキサンの含有量が多すぎるとプロトン伝導性膜の形態を保ちにくくなるため、含有量は90重量%以下にすることが好ましい。
上記シルセスキオキサンは、ラダー型シルセスキオキサンであることが好ましい。ラダー型シルセスキオキサンは直鎖状のシロキサンポリマーであり、炭素を主骨格とする高分子材料と分子レベルで複合化しやすいからである。そのため、少量のシルセスキオキサンによって複合化の効果が得られ、メタノールクロスオーバーを効果的に低減できる。
また、上記ラダー型シルセスキオキサンは、さらに重合してポリシルセスキオキサンを形成していることが好ましい。これにより、より高いメタノールクロスオーバー低減効果が得られるからである。上記ポリシルセスキオキサンは、末端にアルコキシル基などの反応性官能基を有するラダー型シルセスキオキサンオリゴマーを用い、これと炭素を主骨格とする高分子材料とを混合した後、反応性官能基により架橋させてラダー型シルセスキオキサンオリゴマーをポリマー化させることにより得ることができる。
上記シルセスキオキサンは、スルホン酸基、リン酸基、ホスホン酸基及びカルボキシル基からなる群から選ばれる少なくとも一つのアニオン性基を含むことが好ましい。上記アニオン性基を含むシルセスキオキサンは、シルセスキオキサン自体がそのアニオン性基によってプロトン伝導性を発現する。これにより、プロトン伝導性により優れ、且つメタノールクロスオーバーが低減されたプロトン伝導性膜を得ることができる。
しかし、シルセスキオキサン中のアニオン性基の量が多くなりすぎると、メタノールクロスオーバー低減効果が減少する場合がある。そのため、シルセスキオキサン中のアニオン性基のモル数Aとケイ素原子のモル数Bとの比A/Bは、1/100〜50/100が好ましい。
炭素を主骨格とする高分子材料の種類に合わせて、シルセスキオキサンの有機基として高分子材料との親和性に優れたものを選択することにより、さらに高分子材料の膨潤が抑制されてメタノールクロスオーバー低減効果の優れたプロトン伝導性膜が得られる。具体的には、上記高分子材料としてポリパーフルオロスルホン酸樹脂を用いる場合には、上記シルセスキオキサンの有機基はフルオロカーボン基が好ましい。また、上記高分子材料として芳香環を含む樹脂を用いる場合には、上記シルセスキオキサンの有機基は、炭素数1〜20のアルキル基及びアリール基から選ばれる少なくとも一つの有機基が好ましく、特にフェニル基が好ましい。
次に、本実施形態のプロトン伝導性膜の製造方法について説明する。本実施形態のプロトン伝導性膜は、前述のアニオン性基を含み且つ炭素を主骨格とする高分子材料に、ケイ素アルコキシド又はケイ素ハライドなどのケイ素化合物を添加して、このケイ素化合物を重合させることにより得ることができる。特に、ケイ素アルコキシドは取り扱い及び高分子材料内での重合反応の制御が容易であることから最も好ましい。重合条件は特に限定されないが、加熱、pH制御などによって重合することができる。
上記ケイ素化合物を用いる場合、炭素を主骨格とする高分子材料は固体状態でも、溶媒に溶解した液体状態でもどちらでもよい。固体状態の場合には、ケイ素化合物溶液を膜状の上記高分子材料に含浸させる。液体状態の場合には、高分子材料溶液及びケイ素化合物溶液を混合し、その後溶媒を除去することにより製膜する。固体状態の高分子材料にケイ素化合物溶液を含浸させる方法では、添加量が高分子材料の膨潤性に左右される。そのため、添加量の調節が容易な高分子材料を溶液状態として用いる方法が好ましい。また、上記高分子材料とシルセスキオキサンを溶液の状態で混合することにより、分子レベルでの混合が可能になる。この際には上記高分子材料とシルセスキオキサンは同種の溶媒に溶解することが好ましい。
ケイ素アルコキシドとしては、下記一般式(1)と一般式(2)で表されるものが好適に用いられる。また、これらを混合して用いることもできる。
Figure 2005339961
Figure 2005339961
一般式(1)及び(2)において、Xは、前述のとおり炭素数1〜20のアルキル基、アリール基(フェニル基など)、炭素数1〜20のフルオロカーボン基などの有機基である。また、R1〜R6は、炭素数1〜4のアルキル基などであればよく、R1〜R6はそれぞれ同種の組み合わせでもよく、異種の組み合わせでもよい。
一般式(1)で表されるケイ素アルコキシドは重合してシルセスキオキサンを形成する。シルセスキオキサンを形成するためには、ケイ素に結合している有機基Xは重合時に反応せず、残りの3つの有機基が重合する。そのため、残りの3つの有機基は、アルコキシル基(RX−O−)である必要がある。
一般式(1)で表されるケイ素アルコキシドの具体的な例としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、ドデシルトリエトキシラン、オクタデシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシラン、アリルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、クロロメチルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、4−クロロフェニルトリメトキシシラン、4−クロロフェニルトリエトキシシラン、3−ブロモプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、1H,1H,2H,2H−トリデカフルオロオクチルトリエトキシシラン、3−トリフルオロアセトキシプロピルトリメトキシシラン、3−ヘプタフルオロイソプロポキシプロピルトリメトキシシラン、メルカプトメチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノエチルアミノメチルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−アリルアミノプロピルトリメトキシシラン、3−〔2−(2−アミノエチルアミノ)エチルアミノ〕プロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、3−イソシアネートプロピルトリエトキシシラン、3−ウレイドプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、p−スチリルトリメトキシシラン、2−(4−クロロスルホニルフェニル)エチルトリメトキシシラン、2−シアノエチルトリエトキシシラン、ベンジルトリエトキシシランなどが挙げられる。
一般式(2)で表されるケイ素アルコキシドは、一般式(1)で表されるケイ素アルコキシドが有機基Xを介して結合した構造である。一般式(2)で表されるケイ素アルコキシドの具体的な例としては、ビス〔3−(トリメトキシシリル)プロピル〕アミン、ビス〔3−(トリエトキシシリル)プロピル〕アミン、1,2−ビス(トリメトキシシリル)エタン、1,2−ビス(トリエトキシシリル)エタン、N,N’−ビス〔3−(トリメトキシシリル)プロピル〕エチレンジアミン、1,3−ビス(トリエトキシシリル)ベンゼン、1,4−ビス(トリエトキシシリル)ベンゼン、ビス〔3−(トリエトキシシリル)プロピル〕テトラスルフィドなどが挙げられる。
一方、上記ケイ素化合物を予め重合してオリゴマー又はポリマーの状態になったシルセスキオキサンを、炭素を主骨格とする高分子材料に添加することによっても本実施形態のプロトン伝導性膜を得ることができる。
<燃料電池の実施の形態>
以下、本発明の燃料電池の実施の形態について図面に基づき説明する。図1は、本発明の燃料電池の各構成部品をそれぞれ結合させる前の一例を示す断面図である。負極1は、拡散層1aと、触媒層1bとを積層して構成されている。正極2は、拡散層2aと、触媒層2bとを積層して構成されている。
固体電解質膜3は、前述の実施の形態で説明したプロトン伝導性膜を用いている。これにより、プロトン伝導性を高く維持しつつ、メタノールクロスオーバーを抑制できるので、燃料電池の放電特性を向上できる。即ち、高い出力が得られ、高いエネルギー密度を有する燃料電池が得られる。
負極1は、メタノールを酸化する機能を有しており、例えば、多孔性の炭素材料からなる拡散層1aと、触媒を担持した炭素粉末、及びプロトン伝導性物質からなる触媒層1bとを積層して構成される。
上記多孔性の炭素材料としては、例えば、カーボンクロス、カーボンペーパなどを使用することができる。
上記触媒としては、例えば、白金微粒子や、鉄、ニッケル、コバルト、錫、ルテニウム又は金などと白金との合金微粒子などが用いられるが、これらに限定されるものではない。また、上記触媒は、金属単体として単独で用いることもできるが、炭素粉末などの担体に触媒微粒子を高担持して用いることもできる。
上記触媒の担体である炭素粉末としては、例えばBET比表面積が10〜2000m2/gのカーボンブラックが用いられる。この炭素粉末に上記触媒を例えばコロイド法を用いて担持する。炭素粉末と触媒の重量比は、炭素粉末100重量部に対し、触媒を5〜400重量部とすることが好ましい。この範囲内であれば、十分な触媒活性が得られ、また触媒の粒子径が大きくなりすぎず、触媒活性が低下しないからである。
上記プロトン伝導性物質としては、例えば、ポリパーフルオロスルホン酸樹脂、スルホン化ポリエーテルスルホン酸樹脂、スルホン化ポリイミド樹脂などのスルホン酸基を有する樹脂を用いることができるが、これらに限定されるものではない。このようなプロトン伝導性物質の含有量は、触媒担持炭素粉末100重量部に対し、2〜200重量部とすることが好ましい。この範囲内であれば、十分なプロトン伝導性が得られ、また電気抵抗が大きくならず、電池性能が低下しないからである。
上記プロトン伝導性物質は、バインダとしても機能するため、必ずしもさらにバインダを添加する必要はないが、上記負極の触媒層には、フッ素樹脂バインダを添加してもよい。
正極2は、酸素を還元する機能を有しており、例えば、多孔性の炭素材料からなる拡散層2aと、触媒を担持した炭素粉末及びプロトン伝導性物質からなる触媒層2bとを積層して構成される。また、負極1と同様に正極2の触媒層2bにフッ素樹脂バインダを添加してもよい。これらの正極2の材料としては、前述した負極1と同様の材料を用いることができる。なお、正極2の触媒層2bにフッ素樹脂バインダを用いない場合には、正極2の拡散層2aに用いる多孔性の炭素材料としては、撥水処理を行ったものを用いるのが好ましい。正極2に撥水性を付与するためである。撥水処理としては、多孔性の炭素材料にフッ素樹脂などを塗布することにより行うことができる。
負極1、正極2及び固体電解質膜3は、積層されて電極・電解質一体化物として構成される。即ち、電極・電解質一体化物は、負極1と、正極2と、負極1と正極2との間に設けられた固体電解質膜3とから構成される。
負極1の固体電解質膜3と反対側には、金属からなる負極集電板4を介して、液体燃料5を貯蔵する燃料タンク6が設けられている。液体燃料5としては、例えば、メタノール水溶液、エタノール水溶液、ジメチルエーテル、水素化ホウ素ナトリウム水溶液、水素化ホウ素カリウム水溶液、水素化ホウ素リチウム水溶液などが用いられる。燃料タンク6は、例えば、ポリテトラフルオロエチレン、硬質ポリ塩化ビニル、ポリプロピレン、ポリエチレンなどの樹脂や、ステンレス鋼などの耐食性金属から構成されている。負極集電板4には燃料供給孔7が設けられており、この部分から液体燃料5が負極1へと供給される。
正極2の固体電解質膜3と反対側には、金属からなる正極集電板8が設けられており、正極集電板8と正極2とが接する部分には空気孔9が設けられている。これにより、空気孔9を通して大気中の酸素が正極2と接することになる。
また、負極集電板4及び正極集電板8の端部には、それぞれ負極リード線10、正極リード線11が接続されている。さらに、上記電極・電解質一体化物の周囲には、シリコーンゴムなどからなるシール材12が配置されている。
本実施形態の燃料電池を完成するには、上記結合前の各構成部品を電極・電解質一体化物に対して垂直に加圧して固定ればよい。
(実施例)
以下、実施例に基づき本発明を具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。
メチルトリメトキシシラン0.26g、水0.13g及びメタノール0.12gを50℃で1時間攪拌した後、市販の20%ポリパーフルオロスルホン酸樹脂溶液“ナフィオン”溶液(デュポン社製)5gを添加してさらに1時間攪拌した。上記溶液をシャーレに入れ、50℃で溶媒を蒸発させ、さらに150℃で1日真空乾燥することにより膜状物質を得た。その後、この膜状物質を3%の過酸化水素水で1時間煮沸して不純物を分解除去した後、1Mの硫酸水溶液で1時間煮沸してプロトン交換型膜とし、さらに水で1時間煮沸して、スルホン酸基を有する炭素を主骨格とする高分子材料にシルセスキオキサンを含むプロトン伝導性膜を得た。
実施例1で使用したメチルトリメトキシシラン、水及びメタノールの使用量をそれぞれ0.6g、0.3g、0.27gに変えたこと以外は、実施例1と同様にしてスルホン酸基を有する炭素を主骨格とする高分子材料にシルセスキオキサンを含むプロトン伝導性膜を得た。
市販のラダー型メチルシルセスキオキサン“グラスレジン GR650”(商品名、昭和電工社製)をエタノールに溶解して30%溶液を調製した。この溶液0.41gに前述の20%“ナフィオン”溶液5gを添加して1時間攪拌したこと以外は、実施例1と同様にしてスルホン酸基を有する炭素を主骨格とする高分子材料にラダー型シルセスキオキサンを含むプロトン伝導性膜を得た。なお、本実施例では、プロトン伝導性膜中のシルセスキオキサンの量は、Si量換算で実施例1と同量とした。
実施例1で使用したメチルトリメトキシシランに代えて、メルカプトメチルトリメトキシシランを0.33g用いたこと以外は、実施例1と同様にしてスルホン酸基を有する炭素を主骨格とする高分子材料にスルホン酸基を有するシルセスキオキサンを含むプロトン伝導性膜を得た。なお、本実施例では、3%の過酸化水素水で1時間煮沸することにより、メルカプトメチルトリメトキシシランのメルカプト基をスルホン酸基に変換した。
実施例1で使用したメチルトリメトキシシランに代えて、トリフルオロプロピルトリメトキシシランを0.42g用いたこと以外は、実施例1と同様にしてスルホン酸基を有する炭素を主骨格とする高分子材料にフルオロカーボン基を有するシルセスキオキサンを含むプロトン伝導性膜を得た。
市販のラダー型フェニルシルセスキオキサン“グラスレジン GR950”(商品名、昭和電工社製)をジメチルアセトアミドに溶解して30%溶液を調製した。この溶液0.6gにスルホン化ポリエーテルスルホンを15%含有するN−メチルピロリドン溶液5gを添加して1時間攪拌した。上記溶液をシャーレに入れ、140℃で真空乾燥することにより膜状物質を得た。その後、この膜状物質を1Mの硫酸水溶液に1日浸漬し、さらに水に1日浸漬して、スルホン酸基と芳香環を有する炭素を主骨格とする高分子材料にフェニル基を有するラダー型シルセスキオキサンを含むプロトン伝導性膜を得た。
スルホン化フェニルシルセスキオキサンをジメチルアセトアミドに溶解して30%溶液を調製した。この溶液0.97gにスルホン化ポリエーテルスルホンを15%含有するN−メチルピロリドン溶液5gを添加して1時間攪拌したこと以外は、実施例6と同様にしてスルホン酸基と芳香環を有する炭素を主骨格とする高分子材料にスルホン酸基とフェニル基を有するシルセスキオキサンを含むプロトン伝導性膜を得た。
(比較例1)
市販のポリパーフルオロスルホン酸樹脂膜“ナフィオン112”(商品名、デュポン社製)を3%の過酸化水素水で1時間煮沸して不純物を分解除去した後、1Mの硫酸水溶液で1時間煮沸してプロトン交換型膜とし、さらに水で1時間煮沸して、スルホン酸基を有する炭素を主骨格とする高分子材料のみからなるプロトン伝導性膜を得た。
(比較例2)
スルホン化ポリエーテルスルホンを15%含有するN−メチルピロリドン溶液5gをシャーレに入れ、140℃で真空乾燥することにより膜状物質を得た。その後、この膜状物質を1Mの硫酸水溶液に1日浸漬し、さらに水に1日浸漬して、スルホン酸基と芳香環を有する炭素を主骨格とする高分子材料のみからなるプロトン伝導性膜を得た。
次に、実施例1〜7及び比較例1、2のプロトン伝導性膜のメタノール透過性、イオン伝導率を以下のようにして測定した。
<メタノール透過性の測定>
中央部に穴の開いた塩化ビニル樹脂板でプロトン伝導性膜(試料膜)を挟み、試料膜の両面に液体を保持するためのタンクAとタンクBとを設置した。タンクAには30容量%のメタノール水溶液を入れ、タンクBには水を10ml入れた。時間の経過に伴いタンクA内のメタノールが試料膜を透過してタンクB内の水へ拡散して、タンクB内の水のメタノール濃度が増加する。室温において一定時間ごとにタンクB内の水のメタノール濃度を測定して、以下の式によりKを求め、メタノールの拡散性とした。
(数1)
B(t)=S・〔K/(VB・L)〕・CA(t−t0
ここで、VBはタンクB内の水の体積、CAはタンクA内のメタノール水溶液の濃度、tは時間、CB(t)は時間tにおけるタンクB内の水のメタノール濃度、Sは樹脂板の穴の面積、Lは試料膜の厚みである。また、メタノール濃度は密度比重計を用いて溶液の密度を求め、この密度よりメタノール濃度を求めた。
<イオン伝導率の測定>
試料膜を10mm×20mmに裁断し、電極である白金線を試料膜の長手方向に直交するように2本配置した。これに1Hz〜6MHzまでの交流電圧を印加して、各周波数における複素インピーダンスを室温にて測定した。測定結果のコールコールプロットのX軸切片から交流抵抗の値を求め、イオン伝導率を算出した。なお、試料膜は測定直前まで水中に浸漬したものを用いた。
以上の結果を表1に示す。
Figure 2005339961
表1から、実施例1及び実施例2は、プロトン伝導性を有する高分子材料にシルセスキオキサンを添加することにより、それを添加していない比較例1に比べてメタノール透過性が低減した。実施例3ではラダー型シルセスキオキサンを添加することにより、Si量換算で同量の非ラダー型シルセスキオキサンを添加した実施例1よりメタノール透過性が低減した。これは実施例1のシルセスキオキサンがランダム構造であるのに対し、実施例3のシルセスキオキサンがラダー型であり直鎖状に高分子材料内に存在しているという構造的な違いに起因すると考えられる。実施例4ではシルセスキオキサンにスルホン酸基を導入したことにより、実施例1に比べてイオン伝導率が向上した。実施例5ではシルセスキオキサンにフルオロカーボン基を導入したことにより、実施例1より高分子材料(ナフィオン)との親和性が向上したためメタノール透過性抑制効果が向上したと考えられる。実施例6ではプロトン伝導性を有する高分子材料に芳香環を有するスルホン化ポリエーテルスルホンを用い、この高分子材料との親和性を高めるためフェニル基を有するラダー型シルセスキオキサンを導入した。その結果、比較例2に比べて高いメタノール透過性抑制効果が得られ、実施例1〜5と同様な効果が得られた。実施例7ではスルホン化フェニルシルセスキオキサンを添加した結果、実施例6に比べて高いイオン伝導性が得られ、且つメタノールクロスオーバー低減効果も見られた。これはフェニル基を有するシルセスキオキサンにスルホン酸基を導入したためと考えられる。
以上説明したように本発明は、アニオン性基を含み且つ炭素を主骨格とする高分子材料と、シルセスキオキサンとを含むプロトン伝導性膜とすることによって、高いメタノールクロスオーバー低減効果が得られ、本発明のプロトン伝導性膜をメタノールを燃料とする固体高分子型燃料電池に用いることにより、高出力且つ高エネルギー密度を有する燃料電池を提供することができる。
本発明の燃料電池の各構成部品をそれぞれ結合させる前の一例を示す断面図である。
符号の説明
1 負極
1a 拡散層
1b 触媒層
2 正極
2a 拡散層
2b 触媒層
3 固体電解質膜
4 負極集電板
5 液体燃料
6 燃料タンク
7 燃料供給孔
8 正極集電板
9 空気孔
10 負極リード線
11 正極リード線
12 シール材

Claims (8)

  1. アニオン性基を含み且つ炭素を主骨格とする高分子材料を含むプロトン伝導性膜であって、
    前記プロトン伝導性膜は、シルセスキオキサンを含むことを特徴とするプロトン伝導性膜。
  2. 前記シルセスキオキサンの含有量は、プロトン伝導性膜全体に対して1重量%以上90重量%以下である請求項1に記載のプロトン伝導性膜。
  3. 前記シルセスキオキサンは、ラダー型シルセスキオキサンである請求項1又は2に記載のプロトン伝導性膜。
  4. 前記ラダー型シルセスキオキサンは、さらに重合してポリシルセスキオキサンを形成している請求項3に記載のプロトン伝導性膜。
  5. 前記シルセスキオキサンは、スルホン酸基、リン酸基、ホスホン酸基及びカルボキシル基からなる群から選ばれる少なくとも一つのアニオン性基を含む請求項1〜4のいずれかに記載のプロトン伝導性膜。
  6. 前記高分子材料は、ポリパーフルオロスルホン酸樹脂であり、前記シルセスキオキサンは、フルオロカーボン基を含む請求項1〜5のいずれかに記載のプロトン伝導性膜。
  7. 前記高分子材料は、芳香環を含む樹脂であり、前記シルセスキオキサンは、炭素数1〜20のアルキル基及びアリール基から選ばれる少なくとも一つの有機基を含む請求項1〜5のいずれかに記載のプロトン伝導性膜。
  8. 請求項1〜7のいずれかに記載のプロトン伝導性膜を、正極と負極との間に配置する固体電解質として用いることを特徴とする燃料電池。
JP2004156439A 2004-05-26 2004-05-26 プロトン伝導性膜及びそれを用いた燃料電池 Withdrawn JP2005339961A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156439A JP2005339961A (ja) 2004-05-26 2004-05-26 プロトン伝導性膜及びそれを用いた燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156439A JP2005339961A (ja) 2004-05-26 2004-05-26 プロトン伝導性膜及びそれを用いた燃料電池

Publications (1)

Publication Number Publication Date
JP2005339961A true JP2005339961A (ja) 2005-12-08

Family

ID=35493286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156439A Withdrawn JP2005339961A (ja) 2004-05-26 2004-05-26 プロトン伝導性膜及びそれを用いた燃料電池

Country Status (1)

Country Link
JP (1) JP2005339961A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070246A (ja) * 2004-07-16 2006-03-16 Lucent Technol Inc 無機−有機混成複合多成分材料から誘導されるソリッド・ステート・プロトン伝導体系
JP2007220672A (ja) * 2006-02-14 2007-08-30 Samsung Sdi Co Ltd 高分子電解質膜とその製造方法及び燃料電池
KR100800313B1 (ko) * 2006-11-07 2008-02-01 한양대학교 산학협력단 설폰산기를 갖는 폴리실세스퀴옥산 나노입자를 함유한직접메탄올 연료전지용 유무기 하이브리드 분리막
KR100942426B1 (ko) * 2007-10-12 2010-02-17 한국화학연구원 수소이온 전도성 무기물을 함유하는 나노복합전해질 막,이의 제조방법 및 이를 이용한 막-전극 접합체
JP2012074331A (ja) * 2010-09-30 2012-04-12 Hitachi Ltd 膜電極接合体および燃料電池
JP2013007007A (ja) * 2011-06-27 2013-01-10 Tohoku Univ 新規シルセスキオキサン誘導体及びそれから構成されるプロトン伝導膜
CN103408760A (zh) * 2013-08-16 2013-11-27 武汉理工大学 一种中温质子交换膜材料及其制备方法及使用该材料制备的燃料电池
JP2018525778A (ja) * 2016-03-15 2018-09-06 ソガン ユニバーシティ リサーチ ファウンデーションSogang University Research Foundation プロトン供与体とプロトン受容体を有する多面体オリゴマー型シルセスキオキサンを含むフッ素系ナノ複合膜及びその製造方法
JP2018529792A (ja) * 2016-03-15 2018-10-11 ソガン ユニバーシティ リサーチ ファウンデーションSogang University Research Foundation プロトン供与体とプロトン受容体を有する多面体オリゴマー型シルセスキオキサンを含む炭化水素系ナノ複合膜及びその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070246A (ja) * 2004-07-16 2006-03-16 Lucent Technol Inc 無機−有機混成複合多成分材料から誘導されるソリッド・ステート・プロトン伝導体系
JP4733654B2 (ja) * 2006-02-14 2011-07-27 三星エスディアイ株式会社 高分子電解質膜とその製造方法及び燃料電池
KR100813242B1 (ko) 2006-02-14 2008-03-13 삼성에스디아이 주식회사 고분자 전해질막, 이의 제조 방법 및 이를 구비한 연료전지
US7893119B2 (en) 2006-02-14 2011-02-22 Samsung Sdi Co., Ltd. Polymer electrolyte membrane, method of preparing the same and fuel cell including the same
JP2007220672A (ja) * 2006-02-14 2007-08-30 Samsung Sdi Co Ltd 高分子電解質膜とその製造方法及び燃料電池
KR100800313B1 (ko) * 2006-11-07 2008-02-01 한양대학교 산학협력단 설폰산기를 갖는 폴리실세스퀴옥산 나노입자를 함유한직접메탄올 연료전지용 유무기 하이브리드 분리막
KR100942426B1 (ko) * 2007-10-12 2010-02-17 한국화학연구원 수소이온 전도성 무기물을 함유하는 나노복합전해질 막,이의 제조방법 및 이를 이용한 막-전극 접합체
JP2012074331A (ja) * 2010-09-30 2012-04-12 Hitachi Ltd 膜電極接合体および燃料電池
JP2013007007A (ja) * 2011-06-27 2013-01-10 Tohoku Univ 新規シルセスキオキサン誘導体及びそれから構成されるプロトン伝導膜
CN103408760A (zh) * 2013-08-16 2013-11-27 武汉理工大学 一种中温质子交换膜材料及其制备方法及使用该材料制备的燃料电池
CN103408760B (zh) * 2013-08-16 2015-09-30 武汉理工大学 一种中温质子交换膜材料及其制备方法及使用该材料制备的燃料电池
JP2018525778A (ja) * 2016-03-15 2018-09-06 ソガン ユニバーシティ リサーチ ファウンデーションSogang University Research Foundation プロトン供与体とプロトン受容体を有する多面体オリゴマー型シルセスキオキサンを含むフッ素系ナノ複合膜及びその製造方法
JP2018529792A (ja) * 2016-03-15 2018-10-11 ソガン ユニバーシティ リサーチ ファウンデーションSogang University Research Foundation プロトン供与体とプロトン受容体を有する多面体オリゴマー型シルセスキオキサンを含む炭化水素系ナノ複合膜及びその製造方法

Similar Documents

Publication Publication Date Title
KR100733100B1 (ko) 양성자 전도성 막을 갖는 연료 전지
Thiam et al. Overview on nanostructured membrane in fuel cell applications
JP5173099B2 (ja) プロトン伝導膜を有する燃料電池
Su et al. Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst
JP2003520412A5 (ja)
US20060199059A1 (en) Ion conductive polymer electrolyte and its membrane electrode assembly
JP2007299754A (ja) 燃料電池用セパレータ、燃料電池用セパレータの製造方法および燃料電池用セパレータを備える燃料電池システム
CN109565058B (zh) 包括有机官能性金属氧化物的电极及其制造方法,膜电极组件,以及包括该组件的燃料电池
Sadhasivam et al. Development of perfluorosulfonic acid polymer‐based hybrid composite membrane with alkoxysilane functionalized polymer for vanadium redox flow battery
JP2007109599A (ja) 固体高分子形燃料電池用膜電極接合体
Ayyaru et al. Enhanced performance of sulfonated GO in SPEEK proton-exchange membrane for microbial fuel-cell application
JP2002298867A (ja) 固体高分子型燃料電池
JP2005339961A (ja) プロトン伝導性膜及びそれを用いた燃料電池
JP4823583B2 (ja) 燃料電池用高分子膜/電極接合体及びこれを含む燃料電池
JP2007149642A (ja) 固体高分子形燃料電池用電解質材料とこれを用いた電解質膜−触媒層接合体及び電解質膜−電極接合体、並びに燃料電池
JP2008065988A (ja) プロトン伝導性電解質膜とこれを用いた電解質膜−触媒層接合体及び電解質膜−電極接合体、並びに燃料電池
JP5084097B2 (ja) 電解質膜の製造方法
JP2008065987A (ja) 固体高分子形燃料電池用電解質膜とこれを用いた電解質膜−触媒層接合体及び電解質膜−電極接合体、並びに燃料電池
JP2006073357A (ja) プロトン伝導性膜及びそれを用いた燃料電池
JP4882225B2 (ja) 固体高分子形燃料電池用の撥水性電極触媒層、触媒層転写シート及び触媒層−電解質接合体
JP2002298868A (ja) 固体高分子型燃料電池
JP2002289202A (ja) 燃料電池カソード活性化過電圧の低減方法
JP2010135307A (ja) 燃料電池用電極および燃料電池
JP5077658B2 (ja) 固体高分子形燃料電池用電解質膜とこれを用いた電解質膜−触媒層接合体及び電解質膜−電極接合体、並びに燃料電池
JP2002252001A (ja) ガス拡散電極及びこれを備えた固体高分子型燃料電池

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807