WO2015056733A1 - ダンパ装置および発進装置 - Google Patents

ダンパ装置および発進装置 Download PDF

Info

Publication number
WO2015056733A1
WO2015056733A1 PCT/JP2014/077519 JP2014077519W WO2015056733A1 WO 2015056733 A1 WO2015056733 A1 WO 2015056733A1 JP 2014077519 W JP2014077519 W JP 2014077519W WO 2015056733 A1 WO2015056733 A1 WO 2015056733A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic body
spring
damper device
damper
plate
Prior art date
Application number
PCT/JP2014/077519
Other languages
English (en)
French (fr)
Inventor
由浩 滝川
陽一 大井
孝行 宮岡
悠一郎 平井
山口 誠
卓也 吉川
昌宏 畑
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US15/024,127 priority Critical patent/US9791019B2/en
Priority to JP2015542649A priority patent/JP6044725B2/ja
Priority to CN201480053420.4A priority patent/CN105593566B/zh
Priority to DE112014003986.1T priority patent/DE112014003986B4/de
Publication of WO2015056733A1 publication Critical patent/WO2015056733A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • F16F15/13469Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/12Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/1236Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/12366Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/021Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type three chamber system, i.e. comprising a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0284Multiple disk type lock-up clutch

Definitions

  • the present invention includes an input element, an output element, a first elastic body that transmits torque between the input element and the output element, and an input element and an output element that are arranged so as to be positioned inside the first elastic body.
  • the present invention relates to a damper device including a second elastic body that transmits torque to and a starting device provided with the damper device.
  • the third elastic body constituting the dynamic damper is the first or second in the radial direction or the first or second elastic body that transmits torque between the input element and the output element. It arrange
  • an output flange Conventionally, an output flange, a first cover plate, a first drive plate fixedly attached to the turbine shell, a plurality of first springs engaged with the first cover plate, A plurality of second springs engaged with the first cover plate and the output flange, a plurality of third springs engaged with the first cover plate and the first drive plate, and the first drive plate.
  • a torque converter having a damper assembly including a torque path from a turbine shell to a damper assembly is known (see, for example, Patent Document 2).
  • a plurality of second springs and a plurality of third springs that constitute a dynamic damper together with the turbine are arranged at the same radial distance from the rotational axis of the torque converter.
  • the third elastic body constituting the dynamic damper has a diameter different from that of the first and second elastic bodies that transmit torque between the input element and the output element.
  • the outer diameter of the damper device increases, and it becomes difficult to make the entire device compact.
  • the damper device described in Patent Document 2 since the second spring and the third spring constituting the dynamic damper are arranged at the same radial distance from the rotation axis, the outer diameter of the damper device is increased. Can be suppressed.
  • the output plate is in contact with the second spring at a position shifted from the center of the second spring in the extending direction of the rotation axis, and the first drive plate is The second spring comes into contact with the third spring at a position shifted from the center of the third spring in the extending direction of the rotation axis. For this reason, the second and third springs cannot be properly expanded and contracted along the axis, and vibration may not be attenuated satisfactorily.
  • the main object of the present invention is to improve the vibration damping performance by making the dynamic damper and the elastic body of the damper device expand and contract more appropriately while downsizing the damper device provided with the dynamic damper.
  • the damper device comprises: An input element, a first elastic body to which power is transmitted from the input element, a second elastic body disposed inside the first elastic body, and power from the first elastic body are transmitted to the second elastic body
  • a damper device comprising: an intermediate element that transmits power from the second elastic body; and an output element that is fixed to an output member.
  • a mass body a third elastic body capable of abutting against the intermediate element or the output element, a fixed portion fixed to the mass body, and a plurality of each provided to abut at least one end of the third elastic body
  • a dynamic damper including a connecting member having an elastic body contact portion
  • the intermediate element includes a plate-like plate portion having an elastic body accommodating portion that accommodates the second elastic body, and an opening portion disposed on a circumference passing through the elastic body accommodating portion,
  • the elastic body abutting portion of the connecting member extends from the fixed portion via a bending portion and is disposed in the opening of the plate portion of the intermediate element, and is circumferentially connected to the second elastic body.
  • the damper device includes a dynamic damper having a third elastic body supported by the connecting member and capable of contacting the intermediate element or the output element, and a mass body connected to the third elastic body via the connecting member.
  • the intermediate element of this damper apparatus contains the plate-shaped plate part which has the elastic body accommodating part which accommodates a 2nd elastic body, and the opening part arrange
  • the elastic member abutting portion of the connecting member extends from the fixed portion through the bent portion and is disposed in the opening portion of the plate portion of the intermediate element, and has an opening so as to be aligned with the second elastic body in the circumferential direction.
  • the plate portion of the intermediate element and the elastic body contact portion of the connecting member at least partially overlap in the thickness direction of the both, and the second within the overlapping range in the thickness direction of the plate portion and the elastic body contact portion.
  • the axis of the elastic body and the third elastic body is included.
  • the third elastic body of the dynamic damper is arranged on the outer side or the inner side in the radial direction of the first elastic body or the second elastic body.
  • the elastic body contact portion extends from the fixed portion of the connecting member fixed to the mass body via the bent portion, and the elastic body contact portion is disposed in the opening formed in the plate portion of the intermediate element.
  • the said plate part and the elastic body contact part of a connection member can be made not to line up in the axial direction of a damper apparatus.
  • the axial centers of the second elastic body and the third elastic body are included in the overlapping range in the thickness direction of the plate portion and the elastic body contact portion, the spring accommodating of the intermediate element and the plate portion is accommodated.
  • the second elastic body housed in the portion is brought into contact with the vicinity of the center line passing through the axis of the second elastic body, and the elastic body contact portion of the connecting member and the third elastic body are brought into contact with the third elastic body Can be brought into contact with each other in the vicinity of the center line passing through the axis. Accordingly, it is possible to further improve the vibration damping performance of the damper device including the dynamic damper by appropriately expanding and contracting the second elastic body and the third elastic body. As a result, the damper device including the dynamic damper can be made compact, and the dynamic damper and the elastic body of the damper device can be more appropriately expanded and contracted to further improve the vibration damping performance.
  • the plate portion of the intermediate element, the elastic body contact portion of the connecting member, the second elastic body, and the third elastic body are center lines in the thickness direction of the plate portion and the elastic body contact portion.
  • the axis of the second elastic body and the axis of the third elastic body may be disposed in the same plane perpendicular to the axis of the damper device.
  • the third elastic body can be supported at the contact portion on the center line passing through the axis of the third elastic body. As a result, it is possible to improve the vibration damping performance of the damper device including the dynamic damper by appropriately expanding and contracting the second elastic body and the third elastic body. In addition, if the distance between the axis of the damper device and the axis of the second elastic body is equal to the distance between the axis of the damper device and the axis of the third elastic body, the outer diameter of the damper device increases. Can be suppressed more satisfactorily.
  • the second elastic body may be arranged (slightly) radially outside the third elastic body. Thereby, the rigidity of the second elastic body can be further reduced, and the overall damping performance of the damper device can be further improved.
  • the plate portion of the intermediate element may be formed in an annular shape, and may each include a plurality of the elastic body accommodating portions and the openings, and the elastic body accommodating portions and the openings are alternately arranged. It may be arranged on the plate portion so as to line up.
  • the fixing portion of the connecting member may be formed in an annular shape, and the plurality of elastic body contact portions of the connecting member may extend radially outward from the fixing portion.
  • the connecting member may include a guide portion extending radially outward from the fixed portion so as to guide the second elastic body.
  • the connecting member may have a guide portion formed between the elastic body contact portions adjacent to each other so as to guide the third elastic body.
  • the output element may include a first output plate and a second output plate connected to each other, and the plate portion of the intermediate element and the elastic body contact portion of the connecting member may be the first output plate. It may be arranged between the second output plate.
  • the output side abutting portions of the first and second output plates are brought into contact with the second elastic body at positions symmetrical with respect to the center line passing through the axis of the second elastic body, and the first and second outputs.
  • the output side contact portion of the plate can be brought into contact with the third elastic body at a position symmetric with respect to the center line passing through the axis of the third elastic body, and the second and third elastic bodies can be expanded and contracted more appropriately.
  • the vibration damping performance of the damper device can be further improved.
  • the first output plate may be fixed to the output member, and the second output plate is disposed so as to surround the fixing portion of the connecting member from the outside in the radial direction, and includes a plurality of pendulum mass bodies.
  • a centrifugal pendulum type vibration absorber may be configured together with the pendulum mass body so as to be swingably supported. Accordingly, it is possible to satisfactorily attenuate (absorb) the vibration of the entire damper device by the dynamic damper and the centrifugal pendulum type vibration absorber.
  • each of the first and second output plates may have a plurality of guide portions for guiding the second or third elastic body.
  • a starting device is a starting device comprising any one of the above-described damper devices, a pump impeller coupled to an input member, a turbine runner that forms a fluid transmission device together with the pump impeller, and a lock-up clutch.
  • the second output plate is disposed closer to the turbine runner than the first output plate
  • the mass body of the dynamic damper includes the turbine runner
  • the fixing portion of the connecting member is a part of the turbine runner.
  • the fixing portion is fixed to an inner peripheral portion, and the fixing portion is disposed so as to be closer to the first output plate than a portion of the second output plate located closest to the turbine runner.
  • the fixed portion of the connecting member of the dynamic damper is fixed to the inner peripheral portion of the turbine runner, and the turbine runner is used as the mass body of the dynamic damper. Accordingly, it is not necessary to separately provide a dynamic damper mass body, and it is possible to suppress an increase in the size of the starting device. Furthermore, the fixed portion of the connecting member fixed to the inner peripheral portion of the turbine runner has a first output higher than the portion of the second output plate that is disposed closer to the turbine runner than the first output plate. By arranging so as to be close to the plate, the axial length of the starting device can be further shortened.
  • the lock-up clutch may be a multi-plate clutch, and the first elastic body and the second elastic body may be spaced apart in the axial direction.
  • the first elastic body may be arranged outside the lockup clutch so as to surround the lockup clutch, and the second elastic body may be arranged so as to be aligned with the lockup clutch in the axial direction.
  • the plurality of pendulum mass bodies of the centrifugal pendulum type vibration absorber are disposed outside the second elastic body so as to surround the second elastic body, and may be aligned with the first elastic body in the axial direction. Good.
  • the damper device including the dynamic damper and the centrifugal pendulum vibration absorber while reducing the size of the entire device.
  • FIG. 1 It is a fragmentary sectional view showing a starting device containing a damper device concerning one embodiment of the present invention. It is a top view of the damper apparatus shown in FIG. It is an enlarged view which shows the principal part of the damper apparatus shown in FIG. It is a schematic block diagram of the start apparatus shown in FIG. It is a schematic block diagram which shows a damper apparatus in a deformation
  • FIG. 1 is a partial cross-sectional view showing a starting device 1 including a damper device 10 according to an embodiment of the present invention.
  • a starting device 1 shown in FIG. 1 is mounted on a vehicle including an engine (internal combustion engine) as a prime mover.
  • an engine internal combustion engine
  • a front cover as an input member connected to a crankshaft of the engine.
  • a damper hub 7 as an output member fixed to an input shaft IS of a transmission that is a transmission (AT) or a continuously variable transmission (CVT), and a lockup clutch 8 that is a multi-plate hydraulic clutch are connected to a damper device 10 respectively.
  • the centrifugal pendulum type vibration absorber 20 and the dynamic damper 30 are included.
  • the pump impeller 4 includes a pump shell 40 that is tightly fixed to the front cover 3 and a plurality of pump blades 41 that are disposed on the inner surface of the pump shell 40.
  • the turbine runner 5 includes a turbine shell 50 and a plurality of turbine blades 51 disposed on the inner surface of the turbine shell 50.
  • An inner peripheral portion of the turbine shell 50 is fixed to the turbine hub 52 via a plurality of rivets.
  • the turbine hub 52 is rotatably supported by the damper hub 7, and the movement of the turbine hub 52 in the axial direction of the starting device 1 is restricted by the damper hub 7 and a snap ring attached to the damper hub 7.
  • the pump impeller 4 and the turbine runner 5 face each other, and a stator 6 that rectifies the flow of hydraulic oil (working fluid) from the turbine runner 5 to the pump impeller 4 is coaxially disposed between the two.
  • the stator 6 has a plurality of stator blades 60, and the rotation direction of the stator 6 is set in only one direction by the one-way clutch 61.
  • the pump impeller 4, the turbine runner 5, and the stator 6 form a torus (annular flow path) for circulating hydraulic oil, and function as a torque converter (fluid transmission device) having a torque amplification function.
  • the stator 6 and the one-way clutch 61 may be omitted, and the pump impeller 4 and the turbine runner 5 may function as a fluid coupling.
  • the lockup clutch 8 executes a lockup for connecting the front cover 3 and the damper hub 7 via the damper device 10 and releases the lockup.
  • the lock-up clutch 8 includes a lock-up piston 80 supported by the center piece 3s fixed to the front cover 3 so as to be movable in the axial direction, a clutch drum 81, and the lock-up piston 80.
  • An annular clutch hub 82 fixed to the inner surface, a plurality of first friction engagement plates (friction plates having friction materials on both surfaces) 83 fitted to splines formed on the inner periphery of the clutch drum 81, and a clutch A plurality of second friction engagement plates 84 (separator plates) fitted to splines formed on the outer periphery of the hub 82.
  • the lock-up clutch 8 is positioned on the opposite side of the front cover 3 with respect to the lock-up piston 80, that is, on the damper hub 7 and the damper device 10 side relative to the lock-up piston 80.
  • An annular flange member (oil chamber defining member) 85 attached to the center piece 3s, and a plurality of return springs 86 disposed between the front cover 3 and the lockup piston 80.
  • the lock-up piston 80 and the flange member 85 define an engagement oil chamber 87, and hydraulic oil (engagement oil pressure) is supplied to the engagement oil chamber 87 from a hydraulic control device (not shown). Is done.
  • the lockup piston 80 is moved in the axial direction so as to press the first and second friction engagement plates 83 and 84 toward the front cover 3. Thereby, the lockup clutch 8 can be engaged (completely engaged or slipped).
  • a single-plate hydraulic clutch including a lock-up piston to which a friction material is attached may be employed.
  • the damper device 10 uses a clutch drum 81 of the lockup clutch 8 as an input element.
  • the damper device 10 has a plurality of (four in this embodiment) outer springs (first elastic bodies) arranged at equal intervals on concentric circles as power transmission elements so as to be close to the outer periphery of the damper device 10.
  • SP1 and a plurality (two in this embodiment) of inner springs (second elastic bodies) SP2 disposed at equal intervals on the inner side and concentric circles with respect to the outer spring SP1.
  • the outer spring SP1 is an arc coil spring made of a metal material wound so as to have an axis extending in an arc shape when no load is applied.
  • the outer spring SP1 can be further reduced in rigidity (spring constant is reduced), and the damper device 10 can be further reduced in rigidity (long stroke).
  • the inner spring SP2 is an arc coil spring made of a metal material wound so as to have an axial center (center line) extending in an arc shape when no load is applied.
  • a linear coil spring made of a metal material spirally wound so as to have an axial center (center line) extending straight when no load is applied may be employed.
  • a clutch drum 81 that also functions as an input element of the damper device 10 extends outward in the radial direction from a drum portion 81a having a spline to which the first friction engagement plate 83 is fitted, and an outer peripheral portion of the drum portion 81a. And a plurality of (in this embodiment, four) spring contact portions (input side contact portions) 81b. In the attached state of the damper device 10, each spring contact portion 81b abuts between the adjacent outer springs SP1 as shown in FIG.
  • the intermediate member 12 is disposed on the side of the front cover 3 (lock-up piston 80), an annular first intermediate plate member 13, the pump impeller 4 and the turbine runner 5 side, and a first through a plurality of rivets. And an annular second intermediate plate member 14 connected (fixed) to the intermediate plate member 13.
  • the first intermediate plate member 13 constituting the intermediate member 12 includes a spring guide portion 13a for guiding inner peripheral portions of the plurality of outer springs SP1, and a plurality (in this embodiment, extending radially outward). 4) spring contact portions 13b. In the mounted state of the damper device 10, each spring contact portion 13b comes into contact with the outer spring SP1 adjacent to each other as shown in FIG.
  • the second intermediate plate member 14 constituting the intermediate member 12 is a spring that guides the outer peripheral portion of the plurality of outer springs SP1 and the side portion on the turbine runner 5 side (the left side portion in FIG. 1). It has a guide part 14a.
  • the plurality of outer springs SP1 are guided by the spring guide portion 13a of the first intermediate plate member 13 and the spring guide portion 14a of the second intermediate plate member 14 so as to surround the lock-up clutch 8. It is arranged outside the lockup clutch, that is, in the outer peripheral side region in the fluid transmission chamber 9.
  • the second intermediate plate member 14 includes a plurality of (four in this embodiment) spring abutments extending in the axial direction from the side of the spring guide portion 14a on the turbine runner 5 side toward the front cover 3. Are offset in the axial direction so as to be located on the turbine runner 5 side (left side in FIG. 1) from the portion (intermediate contact portion) 14b and the spring guide portion 14a, and extend in the radial direction of the damper device 10.
  • a flat annular plate portion 140 In the mounted state of the damper device 10, each spring contact portion 14 b abuts between the outer springs SP ⁇ b> 1 adjacent to each other, similarly to the spring contact portion 13 b of the first intermediate plate member 13.
  • the plate portion 140 of the second intermediate plate member 14 has a plurality (two in this embodiment) of spring accommodating portions (elastic body accommodating portions) that are openings in which the inner spring SP2 is disposed. ) 141 are formed at equal intervals (in this embodiment, 180 ° intervals), and a plurality of (four in this embodiment) spring contact portions (intermediate side contact portions) on both sides of each spring accommodating portion 141. 142) is formed.
  • the two spring contact portions 142 facing each other through the spring accommodating portion 141 are in contact with the end portion of the inner spring SP2 between them (the inner spring SP2) as shown in FIG.
  • the plate portion 140 includes a plurality of (books) arranged on the circumference passing through each spring accommodating portion 141 so as to be positioned between the ends (spring contact portions 142) of the spring accommodating portions 141 adjacent to each other.
  • two openings 143 are formed. That is, the plurality of spring accommodating portions 141 and the plurality of openings 143 are alternately arranged along the circumferential direction of the plate portion 140. Further, as shown in FIG. 2, the plate portion 140 is aligned by the damper hub 7 and is rotatably supported.
  • the driven member 15 is disposed on the front cover 3 (lock-up piston 80) side, and is connected to (fixed to) the damper hub 7 via a plurality of rivets, and the annular first output plate member 16, the pump impeller 4, and the turbine And an annular second output plate member 18 disposed on the runner 5 side.
  • the first output plate member 16 and the second output plate member 18 are connected (fixed) to each other via a plurality of rivets 17 so as to sandwich the plate portion 140 of the second intermediate plate member 14.
  • each rivet 17 that connects the first output plate member 16 and the second output plate member 18 is in an arcuate support hole 144 formed in the second intermediate plate member 14 of the intermediate member 12. Is inserted.
  • the intermediate member 12 (the first intermediate plate member 13 and the second intermediate plate member 14) is driven between the first output plate member 16 and the second output plate member 18 through the support hole 144 and the rivet 17.
  • the member 15 is supported so as to be movable around the axis of the starting device 1 and the damper device 10.
  • the first output plate member 16 constituting the driven member 15 includes a plurality of spring guide portions 16a formed on the inner peripheral side with respect to the connecting portion through which the rivet 17 is inserted, and the inner side corresponding to each of the spring guide portions 16a.
  • a plurality of spring guide portions 16c formed on the inner peripheral side.
  • the two spring contact portions 16b facing each other contact the end of the inner spring SP2 between them (support both ends of the inner spring SP2).
  • the spring guide portion 16a and the spring guide portion 16c are opposed to the radial direction of the first output plate member 16 to guide the side portion (the right side portion in FIG. 1) of the inner spring SP2.
  • the second output plate member 18 constituting the driven member 15 corresponds to a plurality of spring guide portions 18 a formed to face the spring guide portions 16 a of the first output plate member 16, respectively.
  • the two spring contact portions 18b facing each other contact the end portion of the inner spring SP2 between them (support both ends of the inner spring SP2).
  • the spring guide portion 18a and the spring guide portion 18c are opposed to the radial direction of the second output plate member 18 to guide the side portion (the left side portion in FIG. 1) of the inner spring SP2.
  • the plurality of inner springs SP2 are guided by the spring guide portions 16a and 16c of the first output plate member 16 and the spring guide portions 18a and 18c of the second output plate member 18 to be pumped from the plurality of outer springs SP1.
  • the lockup clutch 8 (the lockup piston 80, the clutch hub 82, the first and the second) is disposed inside the plurality of outer springs SP1 so as to be separated from each other in the axial direction of the impeller 4 and the turbine runner 5 and close to the input shaft IS.
  • the second friction engagement plates 83 and 84) are aligned in the axial direction (at least a part of the second friction engagement plates 83 and 84 overlap in the radial direction).
  • the second output plate member 18 constituting the driven member 15 has a mass body support portion 18s extending radially outward from the connecting portion through which the rivet 17 is inserted so as to be aligned in the axial direction with the outer spring SP1.
  • the mass body support portion 18s of the second output plate member 18 supports a plurality of (for example, 3 to 4) pendulum mass bodies 21 so as to be swingable so as to be adjacent to each other in the circumferential direction.
  • the centrifugal output unit 20 is constituted by the second output plate member 18 as the support member and the plurality of pendulum mass bodies 21.
  • a plurality of pendulum mass bodies 21 are connected to the second output plate member 18 in accordance with the rotation of the second output plate member 18 (driven member 15) as a support member that supports each pendulum mass body 21.
  • vibration having a phase opposite to the vibration of the driven member 15 is applied to the driven member 15 of the damper device 10.
  • each pendulum mass body 21 of the centrifugal pendulum type vibration absorber 20 are arranged outside the inner spring SP2 so as to surround the inner spring SP2, and are aligned with the outer spring SP1 in the axial direction ( At least a portion thereof overlaps in the radial direction). Further, each pendulum mass body 21 is rotatably supported by a guide shaft (roller) 22 that is inserted into a guide hole that is, for example, a substantially arc-shaped long hole formed at a predetermined interval on the mass body support portion 18s. And two metal plates (weights) 21a fixed to both ends of the support shaft.
  • the configuration of the centrifugal pendulum vibration absorber 20 is not limited to this.
  • centrifugal pendulum vibration absorber 20 is connected to the driven member 15 of the damper device 10 by sharing the driven member 15 as a supporting member for supporting each pendulum mass body 21, but using a dedicated supporting member.
  • the damper device 10 may be configured to rotate integrally with the intermediate member 12.
  • the dynamic damper 30 is connected to a plurality of third springs (third elastic bodies) SP3 that are linear coil springs or arc coil springs (two linear coil springs in the present embodiment) and the third spring SP3. And the connecting member 31 that constitutes a mass body together with the turbine runner 5 and the turbine hub 52 described above.
  • the “dynamic damper” is a mechanism that attenuates the vibration by adding a vibration in the opposite phase to the vibration body at a frequency (engine speed) that matches the resonance frequency of the vibration body.
  • the spring and the mass body are connected so as not to be included in the transmission path.
  • the dynamic damper can be operated at a desired frequency by adjusting the rigidity of the spring and the weight of the mass body.
  • the connecting member 31 of the dynamic damper 30 includes an annular fixing portion 32 that is fixed to the turbine shell 50 that constitutes the turbine runner 5, and a plurality (from the fixing portion 32 so as to come into contact with both ends of the third spring SP3 ( In the present embodiment, four spring contact portions (elastic body contact portions) 33 are provided.
  • the fixing portion 32 of the connecting member 31 is fixed to the inner peripheral portion of the turbine shell 50 together with the turbine hub 52 via a plurality of rivets, and is surrounded by the second output plate member 18 of the driven member 15. Further, the fixed portion 32 is disposed so as to be closer to the first output plate member 16 than the spring guide portions 18a and 18c which are the portions of the second output plate member 18 that are located closest to the turbine runner 5 side.
  • the plurality of spring contact portions 33 are formed symmetrically with respect to the axis of the damper device 10 (starting device 1) so as to be close to each other by two (a pair), and the two spring contact portions 33 that make a pair with each other. Are opposed to each other with an interval corresponding to the natural length of the third spring SP3, for example.
  • each spring contact portion 33 extends from the fixed portion 32 via the bent portion 34 so as to be separated from the fixed portion 32 in the axial direction and to extend radially outward.
  • 2 is disposed in an opening 143 formed in the plate portion 140 of the intermediate plate member 14, and is positioned between the first output plate member 16 and the second output plate member 18 in the axial direction together with the plate portion 140. That is, the plate part 140 of the second intermediate plate member 14 and each spring contact part 33 of the connecting member 31 overlap at least partially (substantially completely in the present embodiment) in the thickness direction of both, and the plate part 140.
  • the axial centers of the inner spring SP2 and the third spring SP3 are included in the overlapping range in the thickness direction of the spring abutting portion 33.
  • the plate portion 140 of the second intermediate plate member 14 constituting the intermediate member 12 is aligned by the damper hub 7, and the plate portion 140 and the spring contact portion 33 of the connecting member 31 are axially connected to the damper device 10. Therefore, the increase in the axial length of the damper device 10 can be suppressed and the entire device can be made compact. Further, the spring abutting portion 142 of the intermediate member 12 and the inner spring SP2 accommodated in the spring accommodating portion 141 of the plate portion 140 are abutted in the vicinity of the center line passing through the axis of the inner spring SP2, and the connecting member 31 is contacted.
  • the spring contact portion 33 and the third spring SP3 can be brought into contact with each other in the vicinity of the center line passing through the axis of the third spring SP3. Accordingly, it is possible to further improve the vibration damping performance of the damper device 10 including the dynamic damper 30 by expanding and contracting the inner spring SP2 and the third spring SP3 more appropriately.
  • each third spring SP ⁇ b> 3 is supported by a pair of spring contact portions 33 and adjacent to each other so as to be aligned with the inner spring SP ⁇ b> 2 in the circumferential direction.
  • One each is arranged between the inner springs SP2, and overlaps with the inner springs SP2 in both the axial direction and the circumferential direction of the starting device 1 and the damper device 10. That is, each spring elastic body 33 of the connecting member 31 is in contact with the end portion of the third spring SP3 disposed in the opening 143 of the plate portion 140 so as to be aligned with the inner spring SP2 body in the circumferential direction.
  • each third spring SP3 are connected to the spring contact portion 16b of the first output plate member 16 and the spring contact portion 18b of the second output plate member 18 constituting the driven member 15 when the damper device 10 is attached. Abut. Thereby, each 3rd spring SP3 is connected with driven member 15 which is an output element of damper device 10.
  • the third spring SP3 constituting the dynamic damper 30 is arranged so as to be aligned with the inner spring SP2 in the circumferential direction, the third spring SP3 is arranged outside or inside in the radial direction of the outer spring SP1 or the inner spring SP2, or Compared to the case where the damper device 10 is disposed between the outer spring SP1 and the inner spring SP2 in the radial direction, an increase in the outer diameter of the damper device 10 can be suppressed and the entire device can be made compact.
  • the plate portion 140 of the second intermediate plate member 14 constituting the intermediate member 12, the spring contact portion 33 of the connecting member 31, the inner spring SP2 and the third spring SP3 are as shown in FIG.
  • the center line in the thickness direction of the plate part 140 and the spring contact part 33 and the axial centers of the inner spring SP2 and the third spring SP3 are included in the same plane PL orthogonal to the axial center of the damper device 10. Be placed. Accordingly, the increase in the axial length of the damper device 10 is suppressed to make the entire device more compact, and the spring contact portion 142 of the intermediate member 12 (second intermediate plate member 14) and the inner spring SP2 are connected to the inner spring SP2. It is possible to abut on the center line passing through the axis of SP2, and to support the third spring SP3 on the center line passing through the axis of the third spring SP3 by the spring abutting portion 33 of the connecting member 31.
  • the plurality of inner springs SP2 and the plurality of third springs SP3 are arranged concentrically as shown in FIG. 2, and the axes of the starting device 1 and the damper device 10 and the inner springs SP2 are arranged.
  • the distance r2 from the shaft center is equal to the distance r3 between the shaft center of the starting device 1 or the damper device 10 and the shaft center of each third spring SP3.
  • the inner springs SP2 and the third springs SP3 are included in the same plane PL (see FIG. 1) whose axis is orthogonal to the axes of the starting device 1 and the damper device 10. Arranged to be. Thereby, the increase in the axial length of the damper apparatus 10 can also be suppressed.
  • the lock-up clutch 8 of the starting device 1 When the lock-up clutch 8 of the starting device 1 is released, as shown in FIG. 4, torque (power) from the engine as the prime mover is applied to the front cover 3, the pump impeller 4, and the turbine runner 5. , The connecting member 31, the third spring SP3, the driven member 15, and the damper hub 7 are transmitted to the input shaft IS of the transmission.
  • the third spring SP3 is arranged side by side with the inner spring SP2 in the circumferential direction so as to overlap the inner spring SP2 in both the axial direction and the radial direction of the damper device 10 and the like.
  • the outer spring SP1 arranged close to the outer periphery of the damper device 10 has a lower rigidity. (Reducing the spring constant) while further improving the damping performance of the damper device 10, while ensuring a sufficient size (outer diameter) of the inner spring SP2 and the third spring SP3 to keep both durability good, Spring characteristics necessary for damping performance can be exhibited.
  • the third spring SP3 is included in the power transmission path from the front cover 3 to the transmission input shaft IS when the lockup is released, the front cover 3 is connected to the transmission input shaft IS. Torque can be transmitted satisfactorily.
  • the driven member 15 of the damper device 10 when the damper device 10 connected to the front cover 3 by the lock-up clutch 8 rotates together with the front cover 3 along with the lock-up, the driven member 15 of the damper device 10 also rotates around the axis of the starting device 1.
  • the pendulum mass bodies 21 constituting the centrifugal pendulum vibration absorber 20 swing in the same direction with respect to the driven member 15.
  • vibration having a phase opposite to the vibration (resonance) of the driven member 15 is applied from the centrifugal pendulum vibration absorber 20 to the driven member 15, thereby causing a vibration between the front cover 3 and the damper hub 7.
  • the vibration can be attenuated (absorbed) also by the centrifugal pendulum vibration absorber 20.
  • the pump impeller 4 and the turbine runner 5 are not involved in torque transmission between the front cover 3 and the input shaft IS of the transmission, and are accompanied by the rotation of the engine.
  • the driven member 15 is rotated by the torque from the engine, one of the spring contact portions 16b and 18b of the driven member 15 (any two sets) presses one end of the corresponding third spring SP3, and each third The other end of the spring SP3 presses one of the corresponding pair of spring contact portions 33 of the connecting member 31.
  • the dynamic damper 30 including the plurality of third springs SP3, the turbine runner 5 as a mass body, and the like is driven by the driven member 15 of the damper device 10. It will be connected to. Thereby, in the starting device 1, it is possible to attenuate (absorb) the vibration from the engine also by the dynamic damper 30.
  • both ends of the third spring SP 3 constituting the dynamic damper 30 are connected to the spring contact portion 16 b of the first output plate member 16 constituting the driven member 15 and the spring contact of the second output plate member 18.
  • the dynamic damper 30 is coupled to the intermediate member 12 by contacting the both ends of the opening portion 143 of the plate portion 140 (second intermediate plate member 14) in the circumferential direction. It may be.
  • the damper device 10 of the starting device 1 is connected to the spring contact portions 16b and 18b of the driven member 15 via the third spring SP3 supported by the connection member 31 and the connection member 31.
  • a dynamic damper 30 having a turbine runner 5 or the like as a mass body connected to the third spring SP3 is included.
  • the intermediate member 12 of the damper device 10 includes a plate portion 140 that has a spring accommodating portion 141 that accommodates the inner spring SP2 and a spring abutting portion 142 that abuts against the inner spring SP2, and is aligned by the damper hub 7.
  • the spring contact portion 33 of the connecting member 31 extends from the fixed portion 32 via the bent portion 34 and is disposed in the opening 143 formed in the plate portion 140 of the intermediate member 12.
  • the spring SP3 is supported so as to be aligned with the inner spring SP2 in the circumferential direction.
  • the plate portion 140 of the intermediate member 12, the spring contact portion 33 of the connecting member 31, the inner spring SP2 and the third spring SP3 are connected to the center line in the thickness direction of the plate portion 140 and the spring contact portion 33 and the inner spring SP2.
  • the third spring SP3 and the third spring SP3 are arranged so as to be included in the same plane PL orthogonal to the axis of the damper device 10.
  • the third spring SP3 of the dynamic damper 30 is arranged outside or inside in the radial direction of the outer spring SP1 or the inner spring SP2, or Compared to a case where the damper device 10 is disposed between the outer spring SP1 and the inner spring SP2 in the radial direction, an increase in the outer diameter of the damper device 10 can be suppressed and the entire device can be made compact.
  • the spring contact portion 33 extends from the fixed portion 32 of the connecting member 31 fixed to the turbine runner 5 as a mass body via the bent portion 34, and the spring contact portion 33 is used as a plate of the intermediate member 12.
  • the plate portion 140 of the intermediate member 12 is aligned by the damper hub 7, and the plate portion 140 and the spring contact portion 33 of the connecting member 31 are connected to the damper device. It is possible not to line up in the 10 axial directions. Thereby, it becomes possible to suppress the increase in the axial length of the damper device 10 and to make the entire device compact.
  • the center line in the thickness direction of the plate portion 140 of the intermediate member 12, the center line in the thickness direction of the spring contact portion 33 of the connecting member 31, and the axial centers of the inner spring SP2 and the third spring SP3 are the damper device.
  • the increase in the axial length of the damper device 10 can be suppressed and the entire device can be made more compact.
  • the spring contact portion 142 of the intermediate member 12 and the inner spring SP2 are brought into contact with each other on the center line passing through the axis of the inner spring SP2, and the spring contact portion 33 of the coupling member 31 is contacted.
  • the third spring SP3 can be supported on a center line passing through the axis of the third spring SP3. Accordingly, it is possible to further improve the vibration damping performance of the damper device 10 including the dynamic damper 30 by expanding and contracting the inner spring SP2 and the third spring SP3 more appropriately.
  • the distance r2 between the axis of the damper device 10 and the axis of the inner spring SP2 is equal to the distance r3 between the axis of the damper device 10 and the axis of the third spring SP3.
  • an increase in the outer diameter of the damper device 10 can be suppressed more favorably.
  • the inner spring SP2 is arranged so as to be aligned with the third spring SP3 in the circumferential direction, the inner spring SP2 is arranged (slightly) radially outside the third spring SP3 as in the damper device 10B shown in FIG. May be.
  • inner spring SP2 can be made low-rigidity more and the damping performance of the whole damper apparatus 10 can be improved more.
  • the axial center of the outer spring SP1 and the axial center of the third spring SP3 may not be completely included in the same plane, and may be slightly shifted in the axial direction due to design tolerances or the like.
  • the driven member 15 includes first and second output plate members 18 having spring contact portions 16 b and 18 b and connected to each other, and the plate portion 140 of the intermediate member 12 and the connecting member 31.
  • the spring contact portion 33 is disposed between the first output plate member 16 and the second output plate member 18 in the axial direction.
  • the spring contact portions 16b, 18b of the first and second output plate members 16, 18 are brought into contact with the inner spring SP2 at positions symmetrical with respect to the center line passing through the axis of the inner spring SP2, and the first And the spring contact portions 16b, 18b of the second output plate member 18 can be brought into contact with the third spring SP3 at positions symmetrical with respect to the center line passing through the axis of the third spring SP3, and the inner spring SP2 and
  • the vibration damping performance of the damper device 10 can be further improved by appropriately extending and contracting the third spring SP3.
  • the first output plate member 16 is fixed to the damper hub 7, and the second output plate member 18 is disposed so as to surround the fixing portion 32 of the connecting member 31 from the radially outer side, and includes a plurality of pendulums
  • a centrifugal pendulum type vibration absorber 20 is configured together with the pendulum mass body 21 by supporting the mass body 21 in a swingable manner.
  • the second output plate member 18 is disposed so as to surround the fixing portion 32 of the connecting member 31 from the outer side in the radial direction, and at least partially overlaps in the thickness direction (substantially completely in the present embodiment).
  • the increase in the axial length of the damper device 10 is suppressed so that the second output plate member 18 and the fixing portion 32 of the connecting member 31 are not aligned in the axial direction of the damper device 10, thereby reducing the size of the entire device. can do.
  • the fixed portion 32 of the connecting member 31 of the dynamic damper 30 is fixed to the inner peripheral portion of the turbine shell 50, and the turbine runner 5 is used as a mass body of the dynamic damper 30.
  • the dynamic damper 30 may be configured to have a dedicated mass body different from the turbine runner 5.
  • the fixing portion 32 of the connecting member 31 fixed to the inner peripheral portion of the turbine runner 5 (the turbine shell 50) is arranged on the second output plate member 18 disposed on the turbine runner 5 side with respect to the first output plate member 16.
  • the shaft length of the starting device 1 can be further shortened by disposing the spring guide portions 18a and 18c, which are portions closest to the turbine runner 5, closer to the first output plate member 16.
  • the outer spring SP1 and the inner spring SP2 are arranged apart from each other in the axial direction of the pump impeller 4 and the turbine runner 5, and the outer spring SP1 surrounds the lockup clutch 8 so as to surround the lockup clutch 8.
  • the inner spring SP2 is arranged so as to line up with the lockup clutch 8 in the axial direction (at least partly overlaps in the radial direction).
  • the plurality of pendulum mass bodies 21 of the centrifugal pendulum vibration absorber 20 are arranged outside the inner spring SP2 so as to surround the inner spring SP2, and are aligned in the axial direction with the outer spring SP1 (at least one in the radial direction). Parts overlap).
  • the vibration from the engine can be satisfactorily damped by the damper device 10 including the dynamic damper 30 and the centrifugal pendulum vibration absorber 20 while reducing the overall size of the device.
  • FIG. 6 The connecting member 31B shown in the figure has a spring guide portion 35 extending radially outward from the fixed portion 32 so as to guide the side portion (the left side portion in FIG. 1) of the inner spring of the damper device. It is.
  • the innermost peripheral spring guide portion 18 c can be omitted from the second output plate member 18 of the damper device 10.
  • the second output plate member 18 can be more easily formed while preventing distortion or the like from occurring in the inner peripheral portion of the second output plate member 18.
  • a spring guide portion 36 that guides the side portion of the third spring SP3 may be formed between the spring contact portions 33 that face each other.
  • both end portions of the third spring SP3 are supported by a pair (two) of spring contact portions 33 of the connecting member 31 in a mounted state of the damper device 10, and each of the first outputs constituting the driven member 15 is supported. Although it contacts with the spring contact portion 16b of the plate member 16 and the spring contact portion 18b of the second output plate member 18, it is not limited to this. That is, the number of the third springs SP3 constituting the dynamic damper 30 is increased as appropriate, and the connecting member 31 is provided with a spring abutting portion that abuts both ends between the two third springs SP3 adjacent to each other. Two adjacent third springs SP3 may be supported by spring contact portions such as the driven member 15 from both sides via the spring contact portions.
  • the dynamic damper 30 can be operated more smoothly.
  • the present invention can be used in the field of manufacturing a damper device and a starting device having the damper device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

 ダンパ装置10の中間部材12は、内側スプリングSP2と当接するスプリング当接部142を有するプレート部140を含み、ダイナミックダンパ30の連結部材31のスプリング当接部33は、固定部32から曲げ部34を介して延出されてプレート部140の開口部143内に配置されると共に内側スプリングSP2と周方向に並ぶように開口部143内に配置される第3スプリングSP3の端部と当接し、プレート部140とスプリング当接部33とは、両者の厚み方向において少なくとも部分的に重なり合い、プレート部140とスプリング当接部33との厚み方向における重なり範囲内に内側スプリングSP2および第3スプリングSP3の軸心が含まれる。

Description

ダンパ装置および発進装置
 本発明は、入力要素と、出力要素と、入力要素と出力要素との間でトルクを伝達する第1弾性体と、第1弾性体の内側に位置するように配置されて入力要素と出力要素との間でトルクを伝達する第2弾性体とを含むダンパ装置、および当該ダンパ装置を備えた発進装置に関する。
 従来、この種のダンパ装置として、ダンパ装置を構成する何れかの回転要素に連結される第3弾性体および当該第3弾性体に連結される質量体を有するダイナミックダンパを備えたものが知られている(例えば、特許文献1参照)。このダンパ装置において、ダイナミックダンパを構成する第3弾性体は、入力要素と出力要素との間でトルクを伝達する第1および第2弾性体の径方向における外側または内側、あるいは径方向における第1弾性体と第2弾性体との間に配置される。
 また、従来、出力フランジと、第1のカバープレートと、タービンシェルに固定して取り付けられた第1の駆動プレートと、第1のカバープレートと係合した複数の第1のばねと、第1のカバープレートおよび出力フランジと係合した複数の第2のばねと、第1のカバープレートおよび第1の駆動プレートと係合した複数の第3のばねと、第1の駆動プレートによって形成されたタービンシェルからダンパアセンブリへの1つのトルクパスと含むダンパアッセンブリを備えたトルクコンバータが知られている(例えば、特許文献2参照)。このトルクコンバータでは、複数の第2のばねと、タービンと共にダイナミックダンパを構成する複数の第3のばねとが、当該トルクコンバータの回転軸線から同じ半径方向距離に配置されている。
国際公開第2011/076168号 特表2013-537963
 しかしながら、特許文献1に記載されたダンパ装置のように、ダイナミックダンパを構成する第3弾性体を、入力要素と出力要素との間でトルクを伝達する第1および第2弾性体とは異なる径方向位置に配置すると、ダンパ装置の外径が増加してしまい、装置全体をコンパクト化することが困難になる。一方、特許文献2に記載されたダンパ装置では、第2のばねとダイナミックダンパを構成する第3のばねとが回転軸線から同じ半径方向距離に配置されるので、ダンパ装置の外径の増加を抑制することができる。しかしながら、特許文献2に記載のダンパ装置では、出力プレートが、回転軸線の延在方向における第2のばねの中央部からずれた位置で当該第2のばねと当接し、第1の駆動プレートが、回転軸線の延在方向における第3のばねの中央部からずれた位置で当該第2のばねと当接する。このため、第2および第3のばねを軸心に沿って適正に伸縮させ得なくなり、振動を良好に減衰できなくなってしまうおそれがある。
 そこで、本発明は、ダイナミックダンパを備えたダンパ装置をコンパクト化しつつ、ダイナミックダンパやダンパ装置の弾性体をより適正に伸縮させて振動の減衰性能をより向上させることを主目的とする。
 本発明によるダンパ装置は、
 入力要素、該入力要素から動力が伝達される第1弾性体、該第1弾性体よりも内側に配置される第2弾性体、前記第1弾性体からの動力を前記第2弾性体に伝達する中間要素、および前記第2弾性体から動力が伝達されると共に出力部材に固定される出力要素とを含むダンパ装置において、
 質量体と、前記中間要素または前記出力要素と当接可能な第3弾性体と、前記質量体に固定される固定部およびそれぞれ前記第3弾性体の少なくとも一端と当接するように設けられた複数の弾性体当接部を有する連結部材とを含むダイナミックダンパを備え、
 前記中間要素は、前記第2弾性体を収容する弾性体収容部と、前記弾性体収容部を通る円周上に配置される開口部とを有する板状のプレート部を含み、
 前記連結部材の前記弾性体当接部は、前記固定部から曲げ部を介して延出されて前記中間要素の前記プレート部の前記開口部内に配置されると共に、前記第2弾性体と周方向に並ぶように前記開口部内に配置される前記第3弾性体の端部と当接し、
 前記中間要素の前記プレート部と、前記連結部材の前記弾性体当接部とは、両者の厚み方向において少なくとも部分的に重なり合い、前記プレート部と前記弾性体当接部との厚み方向における重なり範囲内に前記第2弾性体および前記第3弾性体の軸心が含まれることを特徴とする。
 このダンパ装置は、連結部材により支持されると共に中間要素または出力要素と当接可能な第3弾性体および当該連結部材を介して第3弾性体に連結される質量体を有するダイナミックダンパを含むものである。また、このダンパ装置の中間要素は、第2弾性体を収容する弾性体収容部と、弾性体収容部を通る円周上に配置される開口部とを有する板状のプレート部を含む。更に、連結部材の弾性体当接部は、固定部から曲げ部を介して延出されて中間要素のプレート部の開口部内に配置されると共に、第2弾性体と周方向に並ぶように開口部内に配置される第3弾性体の端部と当接する。そして、中間要素のプレート部と、連結部材の弾性体当接部とは、両者の厚み方向において少なくとも部分的に重なり合い、プレート部と弾性体当接部との厚み方向における重なり範囲内に第2弾性体および第3弾性体の軸心が含まれる。
 このように、ダイナミックダンパの第3弾性体を第2弾性体と周方向に並ぶように配置することで、当該第3弾性体を第1弾性体や第2弾性体の径方向における外側または内側、あるいは径方向における第1弾性体と第2弾性体との間に配置する場合に比べて、ダンパ装置の外径の増加を抑制して装置全体をコンパクト化することが可能となる。また、質量体に固定される連結部材の固定部から曲げ部を介して弾性体当接部を延出すると共に、当該弾性体当接部を中間要素のプレート部に形成された開口部内に配置することで、当該プレート部と連結部材の弾性体当接部とがダンパ装置の軸方向に並ばないようにすることができる。これにより、ダンパ装置の軸長の増加を抑制して装置全体をコンパクト化することが可能となる。加えて、このダンパ装置では、プレート部と弾性体当接部との厚み方向における重なり範囲内に第2弾性体および第3弾性体の軸心が含まれるので、中間要素とプレート部のスプリング収容部に収容された第2弾性体とを当該第2弾性体の軸心を通る中心線付近で当接させ、かつ連結部材の弾性体当接部と第3弾性体とを当該第3弾性体の軸心を通る中心線付近で当接させることができる。これにより、第2弾性体や第3弾性体をより適正に伸縮させてダイナミックダンパを含むダンパ装置の振動の減衰性能をより向上させることが可能となる。この結果、ダイナミックダンパを備えたダンパ装置をコンパクト化しつつ、ダイナミックダンパやダンパ装置の弾性体をより適正に伸縮させて振動の減衰性能をより向上させることができる。
 また、前記中間要素の前記プレート部、前記連結部材の前記弾性体当接部、前記第2弾性体および前記第3弾性体は、前記プレート部および前記弾性体当接部の厚み方向の中心線と、前記第2弾性体および前記第3弾性体の軸心とが前記ダンパ装置の軸心と直交する同一の平面内に含まれるように配置されてもよい。これにより、ダンパ装置の軸長の増加を抑制して装置全体をよりコンパクト化することが可能となる。また、このダンパ装置では、中間要素とプレート部のスプリング収容部に収容された第2弾性体とを当該第2弾性体の軸心を通る中心線上で当接させ、かつ連結部材の弾性体当接部に第3弾性体を当該第3弾性体の軸心を通る中心線上で支持させることができる。この結果、第2弾性体や第3弾性体をより適正に伸縮させてダイナミックダンパを含むダンパ装置の振動の減衰性能をより向上させることが可能となる。加えて、ダンパ装置の軸心と第2弾性体の軸心との距離と、ダンパ装置の軸心と第3弾性体の軸心との距離とを等しくすれば、ダンパ装置の外径の増加をより良好に抑制することが可能となる。ただし、第2弾性体は、第3弾性体と周方向に並ぶように配置されるのであれば、第3弾性体よりも(若干)径方向外側に配置されてもよい。これにより、第2弾性体をより低剛性化して、ダンパ装置の全体の減衰性能をより向上させることができる。
 更に、前記中間要素の前記プレート部は、環状に形成されると共に、それぞれ複数の前記弾性体収容部および前記開口部を有してもよく、前記弾性体収容部と前記開口部とは、交互に並ぶように前記プレート部に配設されてもよい。
 また、連結部材の前記固定部は、環状に形成されてもよく、前記連結部材の前記複数の弾性体当接部は、前記固定部から径方向外側に延出されてもよい。
 また、前記連結部材は、前記第2弾性体をガイドするように前記固定部から径方向外側に延出されたガイド部を有してもよい。
 更に、前記連結部材は、前記第3弾性体をガイドするように互いに隣り合う前記弾性体当接部の間に形成されたガイド部を有してもよい。
 また、前記出力要素は、互いに連結される第1および第2出力プレートを含んでもよく、前記中間要素の前記プレート部と前記連結部材の前記弾性体当接部とは、前記第1出力プレートと前記第2出力プレートとの間に配置されてもよい。これにより、第1および第2出力プレートの出力側当接部を第2弾性体の軸心を通る中心線に関して対称となる位置で第2弾性体と当接させると共に、第1および第2出力プレートの出力側当接部を第3弾性体の軸心を通る中心線に関して対称となる位置で第3弾性体と当接させることが可能となり、第2および第3弾性体をより適正に伸縮させてダンパ装置の振動の減衰性能をより向上させることができる。
 更に、前記第1出力プレートは、前記出力部材に固定されてもよく、前記第2出力プレートは、前記連結部材の前記固定部を径方向外側から囲むように配置され、複数の振子質量体を揺動自在に支持して該振子質量体と共に遠心振子式吸振装置を構成してもよい。これにより、ダイナミックダンパおよび遠心振子式吸振装置によりダンパ装置全体の振動を良好に減衰(吸収)することが可能となる。そして、第2出力プレートを連結部材の固定部を囲むように配置することで、両者がダンパ装置の軸方向に並ばないようにしてダンパ装置の軸長の増加を抑制し、それにより装置全体をコンパクト化することができる。
 また、前記第1および第2出力プレートの各々は、前記第2または第3弾性体をガイドする複数のガイド部を有してもよい。
 本発明による発進装置は、上記何れかのダンパ装置と、入力部材に連結されるポンプインペラと、該ポンプインペラと共に流体伝動装置を構成するタービンランナと、ロックアップクラッチとを備えた発進装置において、前記第2出力プレートは、前記第1出力プレートよりも前記タービンランナ側に配置され、前記ダイナミックダンパの前記質量体は、前記タービンランナを含み、前記連結部材の前記固定部は、前記タービンランナの内周部に固定され、前記固定部は、前記第2出力プレートの最も前記タービンランナ側に位置する部分よりも前記第1出力プレートに近接するように配置されることを特徴とする。
 この発進装置では、ダイナミックダンパの連結部材の固定部がタービンランナの内周部に固定され、当該タービンランナがダイナミックダンパの質量体として用いられる。これにより、ダイナミックダンパの質量体を別途設ける必要が無くなるので、発進装置の大型化を抑制することが可能となる。更に、タービンランナの内周部に固定される連結部材の固定部を、第1出力プレートよりもタービンランナ側に配置される第2出力プレートの最もタービンランナ側に位置する部分よりも第1出力プレートに近接するように配置することで、発進装置の軸長をより短縮化することができる。
 また、前記発進装置において、前記ロックアップクラッチは、多板式クラッチであってもよく、前記第1弾性体と前記第2弾性体とは、軸方向に離間して配置されてもよく、前記第1弾性体は、前記ロックアップクラッチを囲むように該ロックアップクラッチの外側に配置されてもよく、前記第2弾性体は、前記ロックアップクラッチと前記軸方向に並ぶように配置されてもよく、前記遠心振子式吸振装置の前記複数の振子質量体は、前記第2弾性体を囲むように該第2弾性体の外側に配置されると共に、前記第1弾性体と前記軸方向に並んでもよい。これにより、振子質量体の揺動範囲を充分に確保して、遠心振子式吸振装置による振動の減衰性能をより向上させることができる。従って、この発進装置では、装置全体のコンパクト化を図りつつ、ダイナミックダンパおよび遠心振子式吸振装置を含むダンパ装置により入力部材から出力部材までの間で振動を良好に減衰することが可能となる。
本発明の一実施形態に係るダンパ装置を含む発進装置を示す部分断面図である。 図1に示すダンパ装置の平面図である。 図1に示すダンパ装置の要部を示す拡大図である。 図1に示す発進装置の概略構成図である。 変形態様にダンパ装置を示す概略構成図である。 ダイナミックダンパを構成する連結部材の変形態様を示す平面図である。
 次に、図面を参照しながら、本発明を実施するための形態について説明する。
 図1は、本発明の一実施形態に係るダンパ装置10を含む発進装置1を示す部分断面図である。同図に示す発進装置1は、原動機としてのエンジン(内燃機関)を備えた車両に搭載されるものであり、ダンパ装置10に加えて、エンジンのクランクシャフトに連結される入力部材としてのフロントカバー3や、フロントカバー3に固定されるポンプインペラ(入力側流体伝動要素)4、ポンプインペラ4と同軸に回転可能なタービンランナ(出力側流体伝動要素)5、ダンパ装置10に連結されると共に自動変速機(AT)あるいは無段変速機(CVT)である変速機の入力軸ISに固定される出力部材としてのダンパハブ7、多板油圧式クラッチであるロックアップクラッチ8、それぞれダンパ装置10に連結される遠心振子式吸振装置20およびダイナミックダンパ30等を含む。
 ポンプインペラ4は、フロントカバー3に密に固定されるポンプシェル40と、ポンプシェル40の内面に配設された複数のポンプブレード41とを有する。タービンランナ5は、タービンシェル50と、タービンシェル50の内面に配設された複数のタービンブレード51とを有する。タービンシェル50の内周部は、複数のリベットを介してタービンハブ52に固定される。タービンハブ52は、ダンパハブ7により回転自在に支持され、当該タービンハブ52の発進装置1の軸方向における移動は、ダンパハブ7と、当該ダンパハブ7に装着されるスナップリングにより規制される。
 ポンプインペラ4とタービンランナ5とは、互いに対向し合い、両者の間には、タービンランナ5からポンプインペラ4への作動油(作動流体)の流れを整流するステータ6が同軸に配置される。ステータ6は、複数のステータブレード60を有し、ステータ6の回転方向は、ワンウェイクラッチ61により一方向のみに設定される。これらのポンプインペラ4、タービンランナ5およびステータ6は、作動油を循環させるトーラス(環状流路)を形成し、トルク増幅機能をもったトルクコンバータ(流体伝動装置)として機能する。ただし、発進装置1において、ステータ6やワンウェイクラッチ61を省略し、ポンプインペラ4およびタービンランナ5を流体継手として機能させてもよい。
 ロックアップクラッチ8は、ダンパ装置10を介してフロントカバー3とダンパハブ7とを連結するロックアップを実行すると共に当該ロックアップを解除するものである。 ロックアップクラッチ8は、フロントカバー3に固定されたセンターピース3sにより軸方向に移動自在に支持されるロックアップピストン80と、クラッチドラム81と、ロックアップピストン80と対向するようにフロントカバー3の内面に固定される環状のクラッチハブ82と、クラッチドラム81の内周に形成されたスプラインに嵌合される複数の第1摩擦係合プレート(両面に摩擦材を有する摩擦板)83と、クラッチハブ82の外周に形成されたスプラインに嵌合される複数の第2摩擦係合プレート84(セパレータプレート)とを含む。
 更に、ロックアップクラッチ8は、ロックアップピストン80を基準としてフロントカバー3とは反対側に位置するように、すなわちロックアップピストン80よりもダンパハブ7およびダンパ装置10側に位置するようにフロントカバー3のセンターピース3sに取り付けられる環状のフランジ部材(油室画成部材)85と、フロントカバー3とロックアップピストン80との間に配置される複数のリターンスプリング86とを含む。図示するように、ロックアップピストン80とフランジ部材85とは、係合油室87を画成し、当該係合油室87には、図示しない油圧制御装置から作動油(係合油圧)が供給される。そして、係合油室87への係合油圧を高めることにより、第1および第2摩擦係合プレート83,84をフロントカバー3に向けて押圧するようにロックアップピストン80を軸方向に移動させ、それによりロックアップクラッチ8を係合(完全係合あるいはスリップ係合)させることができる。なお、ロックアップクラッチ8として、摩擦材が貼着されたロックアップピストンを含む単板油圧式クラッチが採用されてもよい。
 ダンパ装置10は、図1および図2に示すように、ロックアップクラッチ8のクラッチドラム81を入力要素として利用するものであり、クラッチドラム81以外の回転要素として、中間部材(中間要素)12とドリブン部材(出力要素)15とを含む。更に、ダンパ装置10は、動力伝達要素として、ダンパ装置10の外周に近接するように同心円上に等間隔に配置される複数(本実施形態では、4個)の外側スプリング(第1弾性体)SP1と、外側スプリングSP1よりも内側かつ同心円上に等間隔に配置される複数(本実施形態では、2個)の内側スプリング(第2弾性体)SP2とを含む。
 本実施形態において、外側スプリングSP1は、荷重が加えられてないときに円弧状に延びる軸心を有するように巻かれた金属材からなるアークコイルスプリングである。これにより、外側スプリングSP1をより低剛性化し(バネ定数を小さくし)、ダンパ装置10をより低剛性化(ロングストローク化)することができる。同様に、本実施形態において、内側スプリングSP2は、荷重が加えられてないときに円弧状に延びる軸心(中心線)を有するように巻かれた金属材からなるアークコイルスプリングである。ただし、内側スプリングSP2として、荷重が加えられてないときに真っ直ぐに延びる軸心(中心線)を有するように螺旋状に巻かれた金属材からなる直線型コイルスプリングが採用されてもよい。
 ダンパ装置10の入力要素としても機能するクラッチドラム81は、第1摩擦係合プレート83が嵌合されるスプラインを有するドラム部81aと、ドラム部81aの外周部から径方向外側に延出された複数(本実施形態では、4個)のスプリング当接部(入力側当接部)81bとを有する。ダンパ装置10の取付状態において、各スプリング当接部81bは、図2に示すように、互いに隣り合う外側スプリングSP1の間で両者と当接する。
 中間部材12は、フロントカバー3(ロックアップピストン80)側に配置される環状の第1中間プレート部材13と、ポンプインペラ4およびタービンランナ5側に配置されると共に複数のリベットを介して第1中間プレート部材13に連結(固定)される環状の第2中間プレート部材14とを含む。中間部材12を構成する第1中間プレート部材13は、図1に示すように、複数の外側スプリングSP1の内周部をガイドするスプリングガイド部13aと、径方向外側に延びる複数(本実施形態では、4個)のスプリング当接部13bとを有する。ダンパ装置10の取付状態において、各スプリング当接部13bは、図2に示すように、互いに隣り合う外側スプリングSP1の間で両者と当接する。
 中間部材12を構成する第2中間プレート部材14は、図1に示すように、複数の外側スプリングSP1の外周部やタービンランナ5側の側部(図1における左側の側部)をガイドするスプリングガイド部14aを有する。複数の外側スプリングSP1は、上述の第1中間プレート部材13のスプリングガイド部13aと、第2中間プレート部材14のスプリングガイド部14aとによりガイドされることにより、ロックアップクラッチ8を囲むように当該ロックアップクラッチの外側、すなわち流体伝動室9内の外周側領域に配置される。
 また、第2中間プレート部材14は、スプリングガイド部14aのタービンランナ5側の側部からフロントカバー3に向けて軸方向に延出された複数(本実施形態では、4個)のスプリング当接部(中間側当接部)14bと、スプリングガイド部14aよりもタービンランナ5側(図1における左側)に位置するように軸方向にオフセットされると共に、ダンパ装置10の径方向に延在する平坦な環状のプレート部140とを有する。ダンパ装置10の取付状態において、各スプリング当接部14bは、第1中間プレート部材13のスプリング当接部13bと同様に、互いに隣り合う外側スプリングSP1の間で両者と当接する。
 第2中間プレート部材14のプレート部140には、図2に示すように、内側スプリングSP2が配置される開口部である複数(本実施形態では、2個)のスプリング収容部(弾性体収容部)141が等間隔(本実施形態では、180°間隔)に形成されると共に、各スプリング収容部141の両側に複数(本実施形態では、4個)のスプリング当接部(中間側当接部)142が形成されている。ダンパ装置10の取付状態において、スプリング収容部141を介して向かい合う2個のスプリング当接部142は、図2に示すように、両者の間の内側スプリングSP2の端部と当接(内側スプリングSP2の両端を支持)する。更に、プレート部140には、互いに隣り合うスプリング収容部141の端部(スプリング当接部142)同士の間に位置するように各スプリング収容部141を通る円周上に配置される複数(本実施形態では、2個)の開口部143が形成されている。すなわち、複数のスプリング収容部141と複数の開口部143とは、プレート部140の周方向に沿って交互に並ぶ。また、プレート部140は、図2に示すように、ダンパハブ7によって調心されると共に回転自在に支持される。
 ドリブン部材15は、フロントカバー3(ロックアップピストン80)側に配置されると共に複数のリベットを介してダンパハブ7に連結(固定)される環状の第1出力プレート部材16と、ポンプインペラ4およびタービンランナ5側に配置される環状の第2出力プレート部材18とを含む。第1出力プレート部材16と第2出力プレート部材18とは、第2中間プレート部材14のプレート部140を挟み込むように複数のリベット17介して互いに連結(固定)される。第1出力プレート部材16と第2出力プレート部材18とを連結する各リベット17は、図2に示すように、中間部材12の第2中間プレート部材14に形成された円弧状の支持穴144内に挿通される。これにより、中間部材12(第1中間プレート部材13および第2中間プレート部材14)は、第1出力プレート部材16と第2出力プレート部材18の間で、支持穴144およびリベット17を介してドリブン部材15により発進装置1やダンパ装置10の軸心周りに移動自在に支持される。
 ドリブン部材15を構成する第1出力プレート部材16は、図1に示すように、リベット17が挿通される連結部よりも内周側に形成された複数のスプリングガイド部16aと、それぞれ対応する内側スプリングSP2の端部と当接可能な複数(本実施形態では、4個)のスプリング当接部(出力側当接部)16bと、複数のスプリングガイド部16aよりも第1出力プレート部材16の内周側に形成された複数のスプリングガイド部16cとを有する。ダンパ装置10の取付状態において、互いに向かい合う2個のスプリング当接部16bは、両者の間の内側スプリングSP2の端部と当接(内側スプリングSP2の両端を支持)する。また、スプリングガイド部16aとスプリングガイド部16cとは、第1出力プレート部材16の径方向に対向して内側スプリングSP2の側部(図1における右側の側部)をガイドする。
 ドリブン部材15を構成する第2出力プレート部材18は、図1に示すように、第1出力プレート部材16のスプリングガイド部16aと対向するように形成された複数のスプリングガイド部18aと、それぞれ対応する内側スプリングSP2の端部と当接可能な複数(本実施形態では、4個)のスプリング当接部(出力側当接部)18bと、第1出力プレート部材16のスプリングガイド部16cと対向するように形成された複数のスプリングガイド部18cとを有する。ダンパ装置10の取付状態において、互いに向かい合う2個のスプリング当接部18bは、両者の間の内側スプリングSP2の端部と当接(内側スプリングSP2の両端を支持)する。
 また、スプリングガイド部18aとスプリングガイド部18cとは、第2出力プレート部材18の径方向に対向して内側スプリングSP2の側部(図1における左側の側部)をガイドする。複数の内側スプリングSP2は、上述の第1出力プレート部材16のスプリングガイド部16aおよび16c並びに第2出力プレート部材18のスプリングガイド部18aおよび18cによりガイドされることにより、複数の外側スプリングSP1からポンプインペラ4およびタービンランナ5の軸方向に離間すると共に入力軸ISに近接するように複数の外側スプリングSP1よりも内側に配置され、ロックアップクラッチ8(ロックアップピストン80やクラッチハブ82、第1および第2摩擦係合プレート83,84)と当該軸方向に並ぶ(径方向において少なくとも一部が重なる)ことになる。
 更に、ドリブン部材15を構成する第2出力プレート部材18は、リベット17が挿通される連結部から外側スプリングSP1と軸方向に並ぶように径方向外側に延出された質量体支持部18sを有する。そして、第2出力プレート部材18の質量体支持部18sは、複数(例えば、3~4個)の振子質量体21を周方向に隣り合うように揺動自在に支持する。これにより、支持部材としての第2出力プレート部材18と、複数の振子質量体21とにより、遠心振子式吸振装置20が構成される。遠心振子式吸振装置20は、各振子質量体21を支持する支持部材としての第2出力プレート部材18(ドリブン部材15)の回転に伴って複数の振子質量体21が当該第2出力プレート部材18に対して同方向に揺動することで、ダンパ装置10のドリブン部材15に対して当該ドリブン部材15の振動とは逆方向の位相を有する振動を付与する。
 図1に示すように、遠心振子式吸振装置20の複数の振子質量体21は、内側スプリングSP2を囲むように当該内側スプリングSP2の外側に配置されると共に、外側スプリングSP1と軸方向に並ぶ(径方向において少なくとも一部が重なる)ことになる。また、各振子質量体21は、質量体支持部18sに所定の間隔をおいて複数形成された例えば略円弧状の長穴であるガイド穴に転動自在に挿通される支軸(ころ)22と、当該支軸の両端に固定される2枚の金属板(錘)21aとから構成される。ただし、遠心振子式吸振装置20の構成は、このようなものに限られない。また、遠心振子式吸振装置20は、各振子質量体21を支持する支持部材としてドリブン部材15を共用することにより、ダンパ装置10のドリブン部材15に連結されるが、専用の支持部材を用いてダンパ装置10の中間部材12と一体に回転するように構成されてもよい。
 ダイナミックダンパ30は、直線型コイルスプリングまたはアークコイルスプリングである複数(本実施形態では、2個の直線型コイルスプリング)の第3スプリング(第3弾性体)SP3と、第3スプリングSP3に連結されると共に上述のタービンランナ5やタービンハブ52と共に質量体を構成する連結部材31とを含むものである。なお、「ダイナミックダンパ」は、振動体の共振周波数に一致する周波数(エンジン回転数)で当該振動体に逆位相の振動を付加して振動を減衰する機構であり、振動体に対してトルクの伝達経路に含まれないようにスプリングと質量体とを連結することにより構成される。そして、スプリングの剛性と質量体の重さを調整することで、ダイナミックダンパを所望の周波数で作用させることができる。
 ダイナミックダンパ30の連結部材31は、タービンランナ5を構成するタービンシェル50に固定される環状の固定部32と、第3スプリングSP3の両端と当接するように固定部32から延出された複数(本実施形態では、4個)のスプリング当接部(弾性体当接部)33とを有する。連結部材31の固定部32は、タービンハブ52と共にタービンシェル50の内周部に複数のリベットを介して固定され、ドリブン部材15の第2出力プレート部材18により囲まれる。更に、固定部32は、第2出力プレート部材18の最もタービンランナ5側に位置する部分であるスプリングガイド部18a,18cよりも第1出力プレート部材16に近接するように配置される。また、複数のスプリング当接部33は、2個(一対)ずつ近接するようにダンパ装置10(発進装置1)の軸心に関して対称に形成され、互いに対をなす2個のスプリング当接部33は、例えば第3スプリングSP3の自然長に応じた間隔をおいて対向する。
 更に、各スプリング当接部33は、図3に示すように、固定部32から軸方向に離間すると共に径方向外側に延びるように当該固定部32から曲げ部34を介して延出されて第2中間プレート部材14のプレート部140に形成された開口部143内に配置され、プレート部140と共に第1出力プレート部材16と第2出力プレート部材18との軸方向における間に位置する。すなわち、第2中間プレート部材14のプレート部140と、連結部材31の各スプリング当節部33とは、両者の厚み方向において少なくとも部分的(本実施形態では、ほぼ完全)に重なり合い、プレート部140とスプリング当接部33との厚み方向における重なり範囲内に内側スプリングSP2および第3スプリングSP3の軸心が含まれる。
 これにより、中間部材12を構成する第2中間プレート部材14のプレート部140をダンパハブ7により調心しつつ、当該プレート部140と連結部材31のスプリング当接部33とがダンパ装置10の軸方向に並ばないようにすることができるので、ダンパ装置10の軸長の増加を抑制して装置全体をコンパクト化することが可能となる。また、中間部材12のスプリング当接部142とプレート部140のスプリング収容部141に収容された内側スプリングSP2とを当該内側スプリングSP2の軸心を通る中心線付近で当接させ、かつ連結部材31のスプリング当接部33と第3スプリングSP3とを当該第3スプリングSP3の軸心を通る中心線付近で当接させることができる。これにより、内側スプリングSP2や第3スプリングSP3をより適正に伸縮させてダイナミックダンパ30を含むダンパ装置10の振動の減衰性能をより向上させることが可能となる。
 図2に示すように、ダンパ装置10の取付状態において、各第3スプリングSP3は、一対のスプリング当接部33により支持されて、内側スプリングSP2と周方向に並ぶように互いに隣り合う2個の内側スプリングSP2の間に1個ずつ配置され、発進装置1やダンパ装置10の軸方向および周方向の双方において内側スプリングSP2とオーバーラップする。すなわち、連結部材31の各スプリング弾性体33は、内側スプリングSP2体と周方向に並ぶようにプレート部140の開口部143内に配置される第3スプリングSP3の端部と当接する。また、各第3スプリングSP3の両端は、ダンパ装置10の取付状態において、ドリブン部材15を構成する第1出力プレート部材16のスプリング当接部16bおよび第2出力プレート部材18のスプリング当接部18bと当接する。これにより、各第3スプリングSP3は、ダンパ装置10の出力要素であるドリブン部材15に連結される。
 このように、ダイナミックダンパ30を構成する第3スプリングSP3を内側スプリングSP2と周方向に並ぶように配置すれば、第3スプリングSP3を外側スプリングSP1や内側スプリングSP2の径方向における外側または内側、あるいは径方向における外側スプリングSP1と内側スプリングSP2との間に配置する場合に比べて、ダンパ装置10の外径の増加を抑制して装置全体をコンパクト化することができる。また、本実施形態において、中間部材12を構成する第2中間プレート部材14のプレート部140、連結部材31のスプリング当接部33、内側スプリングSP2および第3スプリングSP3は、図3に示すように、プレート部140およびスプリング当接部33の厚み方向の中心線と、内側スプリングSP2および第3スプリングSP3の軸心とがダンパ装置10の軸心と直交する同一の平面PL内に含まれるように配置される。これにより、ダンパ装置10の軸長の増加を抑制して装置全体をよりコンパクト化すると共に、中間部材12(第2中間プレート部材14)のスプリング当接部142と内側スプリングSP2とを当該内側スプリングSP2の軸心を通る中心線上で当接させ、かつ連結部材31のスプリング当接部33に第3スプリングSP3を当該第3スプリングSP3の軸心を通る中心線上で支持させることが可能となる。
 また、本実施形態において、複数の内側スプリングSP2と複数の第3スプリングSP3とは、図2に示すように同心円上に配置され、発進装置1やダンパ装置10の軸心と各内側スプリングSP2の軸心との距離r2と、発進装置1やダンパ装置10の軸心と各第3スプリングSP3の軸心との距離r3とが等しくなっている。これにより、ダンパ装置10の外径の増加をより良好に抑制することが可能となる。更に、本実施形態において、各内側スプリングSP2と各第3スプリングSP3とは、それぞれの軸心が発進装置1やダンパ装置10の軸心と直交する同一の平面PL(図1参照)内に含まれるように配置される。これにより、ダンパ装置10の軸長の増加をも抑制することができる。
 次に、図4を参照しながら、上述のように構成される発進装置1の動作について説明する。
 発進装置1のロックアップクラッチ8によりロックアップが解除されている際には、図4からわかるように、原動機としてのエンジンからのトルク(動力)が、フロントカバー3、ポンプインペラ4、タービンランナ5、連結部材31、第3スプリングSP3、ドリブン部材15、ダンパハブ7という経路を介して変速機の入力軸ISへと伝達される。ここで、本実施形態では、第3スプリングSP3が内側スプリングSP2と周方向に並んでダンパ装置10等の軸方向および径方向の双方において内側スプリングSP2とオーバーラップするように配置される。従って、外側スプリングSP1、内側スプリングSP2および第3スプリングSP3をダンパ装置10の径方向に並べて配置する場合に比べて、ダンパ装置10の外周に近接して配置される外側スプリングSP1をより低剛性化して(バネ定数を小さくして)ダンパ装置10の減衰性能をより向上させつつ、内側スプリングSP2および第3スプリングSP3のサイズ(外径)を充分に確保して両者の耐久性を良好に保ち、減衰性能に必要なスプリング特性を発揮させることができる。この結果、発進装置1では、ロックアップ解除時に第3スプリングSP3がフロントカバー3から変速機の入力軸ISまでの動力の伝達経路に含まれても、フロントカバー3から変速機の入力軸ISへとトルクを良好に伝達することが可能となる。
 一方、発進装置1のロックアップクラッチ8によりロックアップが実行される際には、図2からわかるように、原動機としてのエンジンからのトルク(動力)が、フロントカバー3、ロックアップクラッチ8、クラッチドラム(ドライブ部材)81、外側スプリングSP1、中間部材12、内側スプリングSP2、ドリブン部材15、ダンパハブ7という経路を介して変速装置の入力軸ISへと伝達される。この際、フロントカバー3に入力されるトルクの変動は、主にダンパ装置10の外側スプリングSP1および内側スプリングSP2により減衰(吸収)される。ここで、発進装置1では、上述のように、ダンパ装置10の外周に近接して配置される外側スプリングSP1をより低剛性化(バネ定数を小さく)することができるので、ロックアップクラッチ8によりロックアップが実行されている際に、フロントカバー3に入力されるトルクの変動をダンパ装置10により良好に減衰(吸収)することができる。
 また、発進装置1では、ロックアップに伴ってロックアップクラッチ8によりフロントカバー3に連結されたダンパ装置10がフロントカバー3と共に回転すると、ダンパ装置10のドリブン部材15も発進装置1の軸心周りに回転し、ドリブン部材15の回転に伴って遠心振子式吸振装置20を構成する各振子質量体21がドリブン部材15に対して同方向に揺動することになる。これにより、遠心振子式吸振装置20からドリブン部材15に対して当該ドリブン部材15の振動(共振)とは逆方向の位相を有する振動を付与し、それによりフロントカバー3とダンパハブ7との間で遠心振子式吸振装置20によっても振動を減衰(吸収)することが可能となる。
 更に、ロックアップの実行時に、ポンプインペラ4やタービンランナ5(流体伝動装置)は、フロントカバー3と変速機の入力軸ISとの間でのトルクの伝達に関与せず、エンジンの回転に伴って当該エンジンからのトルクによりドリブン部材15が回転すると、ドリブン部材15のスプリング当接部16bおよび18bの何れか(何れか2組)が対応する第3スプリングSP3の一端を押圧し、各第3スプリングSP3の他端が連結部材31の対応する一対のスプリング当接部33の一方を押圧する。この結果、タービンランナ5が動力(トルク)の伝達に関与してない際には、複数の第3スプリングSP3や質量体としてのタービンランナ5等を含むダイナミックダンパ30がダンパ装置10のドリブン部材15に連結されることになる。これにより、発進装置1では、ダイナミックダンパ30によっても、エンジンからの振動を減衰(吸収)することが可能となる。ただし、上述のダンパ装置10において、ダイナミックダンパ30を構成する第3スプリングSP3の両端をドリブン部材15を構成する第1出力プレート部材16のスプリング当接部16bおよび第2出力プレート部材18のスプリング当接部18bと当接させる代わりに、プレート部140(第2中間プレート部材14)の開口部143の周方向における両端部と当接させることにより、ダイナミックダンパ30を中間部材12に連結されるようにしてもよい。
 以上説明したように、発進装置1のダンパ装置10は、ドリブン部材15のスプリング当接部16b,18bと当接するように連結部材31により支持される第3スプリングSP3および当該連結部材31を介して第3スプリングSP3に連結される質量体としてのタービンランナ5等を有するダイナミックダンパ30を含むものである。また、ダンパ装置10の中間部材12は、内側スプリングSP2を収容するスプリング収容部141や内側スプリングSP2と当接するスプリング当接部142を有すると共にダンパハブ7により調心されるプレート部140を含む。更に、連結部材31のスプリング当接部33は、固定部32から曲げ部34を介して延出されて中間部材12のプレート部140に形成された開口部143内に配置されると共に、第3スプリングSP3を内側スプリングSP2と周方向に並ぶように支持する。そして、中間部材12のプレート部140、連結部材31のスプリング当接部33、内側スプリングSP2および第3スプリングSP3は、プレート部140およびスプリング当接部33の厚み方向の中心線と、内側スプリングSP2および第3スプリングSP3の軸心とがダンパ装置10の軸心と直交する同一の平面PL内に含まれるように配置される。
 このように、ダイナミックダンパ30の第3スプリングSP3を内側スプリングSP2と周方向に並ぶように配置することで、当該第3スプリングSP3を外側スプリングSP1や内側スプリングSP2の径方向における外側または内側、あるいは径方向における外側スプリングSP1と内側スプリングSP2との間に配置する場合に比べて、ダンパ装置10の外径の増加を抑制して装置全体をコンパクト化することが可能となる。また、質量体としてのタービンランナ5に固定される連結部材31の固定部32から曲げ部34を介してスプリング当接部33を延出すると共に、当該スプリング当接部33を中間部材12のプレート部140に形成された開口部143内に配置することで、中間部材12のプレート部140をダンパハブ7により調心しつつ、当該プレート部140と連結部材31のスプリング当接部33とがダンパ装置10の軸方向に並ばないようにすることができる。これにより、ダンパ装置10の軸長の増加を抑制して装置全体をコンパクト化することが可能となる。
 更に、中間部材12のプレート部140の厚み方向の中心線と、連結部材31のスプリング当接部33の厚み方向の中心線と、内側スプリングSP2および第3スプリングSP3の軸心とが、ダンパ装置10の軸心と直交する同一の平面PL内に含まれるようにすることで、ダンパ装置10の軸長の増加を抑制して装置全体をよりコンパクト化することが可能となる。加えて、このダンパ装置10では、中間部材12のスプリング当接部142と内側スプリングSP2とを当該内側スプリングSP2の軸心を通る中心線上で当接させ、かつ連結部材31のスプリング当接部33に第3スプリングSP3を当該第3スプリングSP3の軸心を通る中心線上で支持させることができる。これにより、内側スプリングSP2や第3スプリングSP3をより適正に伸縮させてダイナミックダンパ30を含むダンパ装置10の振動の減衰性能をより向上させることが可能となる。
 また、上記実施形態のように、ダンパ装置10の軸心と内側スプリングSP2の軸心との距離r2と、ダンパ装置10の軸心と第3スプリングSP3の軸心との距離r3とを等しくすれば、ダンパ装置10の外径の増加をより良好に抑制することが可能となる。ただし、内側スプリングSP2は、第3スプリングSP3と周方向に並ぶように配置されるのであれば、図5に示すダンパ装置10Bのように、第3スプリングSP3よりも(若干)径方向外側に配置されてもよい。これにより、内側スプリングSP2をより低剛性化して、ダンパ装置10の全体の減衰性能をより向上させることができる。そして、外側スプリングSP1の軸心と第3スプリングSP3の軸心とは、完全に同一の平面内に含まれていなくてもよく、設計公差等により軸方向に若干ズレてもよい。
 更に、ダンパ装置10において、ドリブン部材15は、それぞれスプリング当接部16b,18bを有すると共に互いに連結される第1および第2出力プレート部材18を含み、中間部材12のプレート部140と連結部材31のスプリング当接部33とは、第1出力プレート部材16と第2出力プレート部材18との軸方向における間に配置される。これにより、第1および第2出力プレート部材16,18のスプリング当接部16b,18bを内側スプリングSP2の軸心を通る中心線に関して対称となる位置で内側スプリングSP2と当接させると共に、第1および第2出力プレート部材18のスプリング当接部16b,18bを第3スプリングSP3の軸心を通る中心線に関して対称となる位置で第3スプリングSP3と当接させることが可能となり、内側スプリングSP2および第3スプリングSP3をより適正に伸縮させてダンパ装置10の振動の減衰性能をより向上させることができる。
 また、ダンパ装置10において、第1出力プレート部材16は、ダンパハブ7に固定され、第2出力プレート部材18は、連結部材31の固定部32を径方向外側から囲むように配置され、複数の振子質量体21を揺動自在に支持して当該振子質量体21と共に遠心振子式吸振装置20を構成する。これにより、ダイナミックダンパ30および遠心振子式吸振装置20によりダンパ装置10全体の振動を良好に減衰(吸収)することが可能となる。そして、第2出力プレート部材18を連結部材31の固定部32を径方向外側から囲むように配置すると共に、両者が厚み方向において少なくとも部分的(本実施形態では、ほぼ完全)に重なり合うようにすることで、第2出力プレート部材18と連結部材31の固定部32とがダンパ装置10の軸方向に並ばないようにしてダンパ装置10の軸長の増加を抑制し、それにより装置全体をコンパクト化することができる。
 更に、上述の発進装置1では、ダイナミックダンパ30の連結部材31の固定部32がタービンシェル50の内周部に固定され、タービンランナ5がダイナミックダンパ30の質量体として用いられる。これにより、ダイナミックダンパ30の質量体を別途設ける必要が無くなるので、発進装置1の大型化を抑制することが可能となる。ただし、ダイナミックダンパ30がタービンランナ5とは異なる専用の質量体を有するものとして構成されてもよいことはいうまでもない。
 また、タービンランナ5(タービンシェル50)の内周部に固定される連結部材31の固定部32を、第1出力プレート部材16よりもタービンランナ5側に配置される第2出力プレート部材18の最もタービンランナ5側に位置する部分であるスプリングガイド部18a,18cよりも第1出力プレート部材16に近接するように配置することで、発進装置1の軸長をより短縮化することができる。
 更に、発進装置1では、外側スプリングSP1と内側スプリングSP2とがポンプインペラ4およびタービンランナ5の軸方向に離間して配置され、外側スプリングSP1は、ロックアップクラッチ8を囲むように当該ロックアップクラッチ8の外側に配置される一方、内側スプリングSP2は、ロックアップクラッチ8と軸方向に並ぶ(径方向において少なくとも一部が重なる)ように配置される。そして、遠心振子式吸振装置20の複数の振子質量体21は、内側スプリングSP2を囲むように当該内側スプリングSP2の外側に配置されると共に、外側スプリングSP1と軸方向に並ぶ(径方向において少なくとも一部が重なる)。これにより、振子質量体21の揺動範囲を充分に確保して、遠心振子式吸振装置20による振動の減衰性能をより向上させることができる。従って、この発進装置1では、装置全体のコンパクト化を図りつつ、ダイナミックダンパ30および遠心振子式吸振装置20を含むダンパ装置10によりエンジンからの振動を良好に減衰することが可能となる。
 なお、ダイナミックダンパ30において、上述の連結部材31の代わりに、図6に示す連結部材31Bを採用してもよい。同図に示す連結部材31Bは、ダンパ装置の内側スプリングの側部(図1における左側の側部)をガイドするように固定部32から径方向外側に延出されたスプリングガイド部35を有するものである。このようなダイナミックダンパ30を上述のダンパ装置10に適用した場合、ダンパ装置10の第2出力プレート部材18から最内周側のスプリングガイド部18cを省略することができる。これにより、第2出力プレート部材18の内周部に歪み等を生じさせないようにしながら、当該第2出力プレート部材18をより容易に形成することが可能となる。また、図6に示すように、互いに対向し合うスプリング当接部33の間に、第3スプリングSP3の側部をガイドするスプリングガイド部36が形成されてもよい。
 また、第3スプリングSP3の両端部は、ダンパ装置10の取付状態において、連結部材31の一対(2つ)のスプリング当接部33により支持されると共に、それぞれドリブン部材15を構成する第1出力プレート部材16のスプリング当接部16bおよび第2出力プレート部材18のスプリング当接部18bと当接するが、これに限られるものではない。すなわち、ダイナミックダンパ30を構成する第3スプリングSP3の数を適宜増やすと共に、連結部材31に互いに隣り合う2つの第3スプリングSP3の間で両者の端部と当接するスプリング当接部を設け、当該スプリング当接部を介して隣り合う2つの第3スプリングSP3を両側からドリブン部材15等のスプリング当接部により支持してもよい。これにより、1本の第3スプリングSP3を少なくとも一対のスプリング当接部により両側から支持する場合に生じがちな製造交差に起因したガタ、すなわち第3スプリングSP3の端部とスプリング当接部との隙間を無くすことができるので、ダイナミックダンパ30をよりスムースに作動させることが可能となる。
 そして、本発明は上記実施形態に何ら限定されるものではなく、本発明の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記発明を実施するための形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
 本発明は、ダンパ装置やそれを備えた発進装置の製造分野等において利用可能である。

Claims (11)

  1.  入力要素、該入力要素から動力が伝達される第1弾性体、該第1弾性体よりも内側に配置される第2弾性体、前記第1弾性体からの動力を前記第2弾性体に伝達する中間要素、および前記第2弾性体から動力が伝達されると共に出力部材に固定される出力要素とを含むダンパ装置において、
     質量体と、前記中間要素または前記出力要素と当接可能な第3弾性体と、前記質量体に固定される固定部およびそれぞれ前記第3弾性体の少なくとも一端と当接するように設けられた複数の弾性体当接部を有する連結部材とを含むダイナミックダンパを備え、
     前記中間要素は、前記第2弾性体を収容する弾性体収容部と、前記弾性体収容部を通る円周上に配置される開口部とを有する板状のプレート部を含み、
     前記連結部材の前記弾性体当接部は、前記固定部から曲げ部を介して延出されて前記中間要素の前記プレート部の前記開口部内に配置されると共に、前記第2弾性体と周方向に並ぶように前記開口部内に配置される前記第3弾性体の端部と当接し、
     前記中間要素の前記プレート部と、前記連結部材の前記弾性体当接部とは、両者の厚み方向において少なくとも部分的に重なり合い、前記プレート部と前記弾性体当接部との厚み方向における重なり範囲内に前記第2弾性体および前記第3弾性体の軸心が含まれることを特徴とするダンパ装置。
  2.  請求項1の何れか一項に記載のダンパ装置において、
     前記中間要素の前記プレート部、前記連結部材の前記弾性体当接部、前記第2弾性体および前記第3弾性体は、前記プレート部および前記弾性体当接部の厚み方向の中心線と、前記第2弾性体および前記第3弾性体の軸心とが前記ダンパ装置の軸心と直交する同一の平面内に含まれるように配置されることを特徴とするダンパ装置。
  3.  請求項1または2に記載のダンパ装置において、
     前記中間要素の前記プレート部は、環状に形成されると共に、それぞれ複数の前記弾性体収容部および前記開口部を有し、前記弾性体収容部と前記開口部とは、交互に並ぶように前記プレート部に配設されることを特徴とするダンパ装置。
  4.  請求項1から3の何れか一項に記載のダンパ装置において、
     前記連結部材の前記固定部は、環状に形成されており、前記連結部材の前記複数の弾性体当接部は、前記固定部から径方向外側に延出されていることを特徴とするダンパ装置。
  5.  請求項1から4の何れか一項に記載のダンパ装置において、
     前記連結部材は、前記第2弾性体をガイドするように前記固定部から径方向外側に延出されたガイド部を有することを特徴とするダンパ装置。
  6.  請求項1から5の何れか一項に記載のダンパ装置において、
     前記連結部材は、前記第3弾性体をガイドするように互いに隣り合う前記弾性体当接部の間に形成されたガイド部を有することを特徴とするダンパ装置。
  7.  請求項1から6の何れか一項に記載のダンパ装置において、
     前記出力要素は、互いに連結される第1および第2出力プレートを含み、
     前記中間要素の前記プレート部と前記連結部材の前記弾性体当接部とは、前記第1出力プレートと前記第2出力プレートとの間に配置されることを特徴とするダンパ装置。
  8.  請求項7に記載のダンパ装置において、
     前記第1出力プレートは、前記出力部材に固定され、
     前記第2出力プレートは、前記連結部材の前記固定部を径方向外側から囲むように配置され、複数の振子質量体を揺動自在に支持して該振子質量体と共に遠心振子式吸振装置を構成することを特徴とするダンパ装置。
  9.  請求項7または8に記載のダンパ装置において、
     前記第1および第2出力プレートの各々は、前記第2または第3弾性体をガイドする複数のガイド部を有することを特徴とするダンパ装置。
  10.  請求項7から9の何れか一項に記載のダンパ装置と、入力部材に連結されるポンプインペラと、該ポンプインペラと共に流体伝動装置を構成するタービンランナと、ロックアップクラッチとを備えた発進装置において、
     前記第2出力プレートは、前記第1出力プレートよりも前記タービンランナ側に配置され、
     前記ダイナミックダンパの前記質量体は、前記タービンランナを含み、
     前記連結部材の前記固定部は、前記タービンランナの内周部に固定され、
     前記固定部は、前記第2出力プレートの最も前記タービンランナ側に位置する部分よりも前記第1出力プレートに近接するように配置されることを特徴とする発進装置。
  11.  請求項10に記載の発進装置において、
     前記ロックアップクラッチは、多板式クラッチであり、
     前記第1弾性体と前記第2弾性体とは、軸方向に離間して配置され、
     前記第1弾性体は、前記ロックアップクラッチを囲むように該ロックアップクラッチの外側に配置され、
     前記第2弾性体は、前記ロックアップクラッチと前記軸方向に並ぶように配置され、
     前記遠心振子式吸振装置の前記複数の振子質量体は、前記第2弾性体を囲むように該第2弾性体の外側に配置されると共に、前記第1弾性体と前記軸方向に並ぶことを特徴とする発進装置。
PCT/JP2014/077519 2013-10-16 2014-10-16 ダンパ装置および発進装置 WO2015056733A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/024,127 US9791019B2 (en) 2013-10-16 2014-10-16 Damper device and starting device
JP2015542649A JP6044725B2 (ja) 2013-10-16 2014-10-16 ダンパ装置および発進装置
CN201480053420.4A CN105593566B (zh) 2013-10-16 2014-10-16 减震装置以及起步装置
DE112014003986.1T DE112014003986B4 (de) 2013-10-16 2014-10-16 Dämpfervorrichtung und Startvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013215475 2013-10-16
JP2013-215475 2013-10-16

Publications (1)

Publication Number Publication Date
WO2015056733A1 true WO2015056733A1 (ja) 2015-04-23

Family

ID=52828174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077519 WO2015056733A1 (ja) 2013-10-16 2014-10-16 ダンパ装置および発進装置

Country Status (5)

Country Link
US (1) US9791019B2 (ja)
JP (1) JP6044725B2 (ja)
CN (1) CN105593566B (ja)
DE (1) DE112014003986B4 (ja)
WO (1) WO2015056733A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208765A1 (ja) * 2015-06-26 2016-12-29 アイシン・エィ・ダブリュ工業株式会社 ダンパ装置
WO2016208763A1 (ja) * 2015-06-26 2016-12-29 アイシン・エィ・ダブリュ工業株式会社 ダンパ装置
CN107202148A (zh) * 2016-03-18 2017-09-26 株式会社艾科赛迪 液力变矩器的锁定装置
WO2017191374A1 (fr) * 2016-05-03 2017-11-09 Valeo Embrayages Ensemble amortisseur pour un véhicule automobile et appareil hydrocinétique comprenant un tel ensemble
WO2017191399A1 (fr) * 2016-05-03 2017-11-09 Valeo Embrayages Ensemble amortisseur pour un véhicule automobile et appareil hydrocinetique comprenant un tel ensemble
WO2017202807A1 (en) * 2016-05-23 2017-11-30 Valeo Embrayages Hydrokinetic torque coupling device with torsional vibration damper in combination with two vibration absorbers
CN107709829A (zh) * 2015-06-26 2018-02-16 爱信艾达工业株式会社 阻尼器装置
CN107709827A (zh) * 2015-06-26 2018-02-16 爱信艾达工业株式会社 阻尼器装置
JP2018528374A (ja) * 2015-09-18 2018-09-27 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG トルク伝達装置
KR20190109763A (ko) * 2017-02-27 2019-09-26 가부시키가이샤 유타카기켄 토크 컨버터
US20190383352A1 (en) * 2016-12-20 2019-12-19 Valeo Kapec Co., Ltd. Torsion damper and motor vehicle
JP2021513042A (ja) * 2018-01-29 2021-05-20 エクセディ グローバルパーツ コーポレーション 発進装置のダンパー

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161541A1 (de) * 2013-04-02 2014-10-09 Schaeffler Technologies Gmbh & Co. Kg Dämpfereinrichtung für ein fahrzeug sowie verfahren zum auslegen einer dämpfereinrichtung
WO2016027846A1 (ja) * 2014-08-21 2016-02-25 アイシン・エィ・ダブリュ株式会社 ダンパ装置
DE102014220897A1 (de) * 2014-10-15 2016-04-21 Zf Friedrichshafen Ag Kopplungsanordnung mit einer Schwingungsreduzierungseinrichtung und mit einer Kupplungseinrichtung
KR101707804B1 (ko) * 2015-07-16 2017-02-17 한국파워트레인 주식회사 진자를 이용한 진동저감장치를 포함하는 차량용 토크 컨버터
DE102016211945A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Drehmomentübertragungsvorrichtung
DE102016211954A1 (de) * 2016-06-30 2018-01-04 Zf Friedrichshafen Ag Drehmomentübertragungsvorrichtung
FR3060086A1 (fr) * 2016-12-12 2018-06-15 Valeo Embrayages Amortisseur de torsion et vehicule automobile
JP7138650B2 (ja) * 2017-03-10 2022-09-16 ヴァレオ、カペック、カンパニー、リミテッド センタリングされたロックアップクラッチ付き流体力学的トルクカップリング装置
US10352423B2 (en) * 2017-05-16 2019-07-16 Valeo Embrayages Hydrokinetic torque coupling device with centered friction disc
US10428925B2 (en) * 2017-06-14 2019-10-01 Valeo Embrayages Hydrokinetic torque coupling device with lock-up friction clutch
DE102019125872A1 (de) * 2019-09-25 2021-03-25 Schaeffler Technologies AG & Co. KG Hybridantriebsstrang

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082577A (ja) * 1999-09-17 2001-03-27 Exedy Corp トルクコンバータ用ロックアップ装置
JP2012077784A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 流体伝動装置
JP2012077811A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 流体伝動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877924A (ja) * 1981-10-30 1983-05-11 Daikin Mfg Co Ltd 振動ダンパ組立体
JP2004278744A (ja) * 2003-03-18 2004-10-07 Exedy Corp ダンパー機構及びダンパーディスク組立体
DE112006002796A5 (de) * 2005-11-10 2008-09-04 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydrodynamische Drehmomentwandler-Vorrichtung für einen Kraftfahrzeug-Antriebsstrang
DE102007032693A1 (de) * 2007-07-13 2009-01-22 Zf Friedrichshafen Ag Hydrodynamische Kopplungsanordnung
US8135525B2 (en) 2007-11-14 2012-03-13 Schaeffler Technologies AG & Co. KG Torque converter with turbine mass absorber
DE102007057431B4 (de) 2007-11-29 2018-08-30 Zf Friedrichshafen Ag Hydrodynamische Kopplungseinrichtung
JP4784631B2 (ja) * 2008-09-30 2011-10-05 トヨタ自動車株式会社 駆動力伝達装置
DE102010054249B4 (de) 2009-12-21 2023-11-30 Schaeffler Technologies AG & Co. KG Kraftübertragungsvorrichtung
JP6066090B2 (ja) 2010-09-23 2017-01-25 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG トルクコンバータ
JP5392417B2 (ja) 2010-09-30 2014-01-22 アイシン・エィ・ダブリュ株式会社 発進装置
WO2014119685A1 (ja) 2013-01-30 2014-08-07 アイシン・エィ・ダブリュ株式会社 ダンパ装置および発進装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082577A (ja) * 1999-09-17 2001-03-27 Exedy Corp トルクコンバータ用ロックアップ装置
JP2012077784A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 流体伝動装置
JP2012077811A (ja) * 2010-09-30 2012-04-19 Aisin Aw Co Ltd 流体伝動装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049361A (ja) * 2015-06-26 2019-03-28 アイシン・エィ・ダブリュ工業株式会社 ダンパ装置
US11555527B2 (en) 2015-06-26 2023-01-17 Aisin Corporation Damper device
JPWO2016208765A1 (ja) * 2015-06-26 2018-03-29 アイシン・エィ・ダブリュ工業株式会社 ダンパ装置
US10718401B2 (en) 2015-06-26 2020-07-21 Aisin Aw Industries Co., Ltd Damper device
CN107850181B (zh) * 2015-06-26 2020-05-15 爱信艾达工业株式会社 阻尼器装置
US10487909B2 (en) 2015-06-26 2019-11-26 Aisin Aw Industries Co., Ltd Damper device
CN107709829A (zh) * 2015-06-26 2018-02-16 爱信艾达工业株式会社 阻尼器装置
CN107709827A (zh) * 2015-06-26 2018-02-16 爱信艾达工业株式会社 阻尼器装置
JPWO2016208763A1 (ja) * 2015-06-26 2018-03-22 アイシン・エィ・ダブリュ工業株式会社 ダンパ装置
CN107850181A (zh) * 2015-06-26 2018-03-27 爱信艾达工业株式会社 阻尼器装置
CN110410454A (zh) * 2015-06-26 2019-11-05 爱信艾达工业株式会社 阻尼器装置
WO2016208763A1 (ja) * 2015-06-26 2016-12-29 アイシン・エィ・ダブリュ工業株式会社 ダンパ装置
WO2016208765A1 (ja) * 2015-06-26 2016-12-29 アイシン・エィ・ダブリュ工業株式会社 ダンパ装置
CN107709829B (zh) * 2015-06-26 2019-11-01 爱信艾达工业株式会社 阻尼器装置
JP7034063B2 (ja) 2015-09-18 2022-03-11 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー トルク伝達装置
JP2018528374A (ja) * 2015-09-18 2018-09-27 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG トルク伝達装置
CN107202148B (zh) * 2016-03-18 2022-04-19 株式会社艾科赛迪 液力变矩器的锁定装置
CN107202148A (zh) * 2016-03-18 2017-09-26 株式会社艾科赛迪 液力变矩器的锁定装置
WO2017191399A1 (fr) * 2016-05-03 2017-11-09 Valeo Embrayages Ensemble amortisseur pour un véhicule automobile et appareil hydrocinetique comprenant un tel ensemble
WO2017191374A1 (fr) * 2016-05-03 2017-11-09 Valeo Embrayages Ensemble amortisseur pour un véhicule automobile et appareil hydrocinétique comprenant un tel ensemble
US11105405B2 (en) 2016-05-23 2021-08-31 Valeo Kapec Co., Ltd. Hydrokinetic torque coupling device with torsional vibration damper in combination with two vibration absorbers
US10393247B2 (en) 2016-05-23 2019-08-27 Valeo Embrayages Hydrokinetic torque coupling device with torsional vibration damper in combination with two vibration absorbers
WO2017202807A1 (en) * 2016-05-23 2017-11-30 Valeo Embrayages Hydrokinetic torque coupling device with torsional vibration damper in combination with two vibration absorbers
US20190383352A1 (en) * 2016-12-20 2019-12-19 Valeo Kapec Co., Ltd. Torsion damper and motor vehicle
KR20190109763A (ko) * 2017-02-27 2019-09-26 가부시키가이샤 유타카기켄 토크 컨버터
US10955037B2 (en) 2017-02-27 2021-03-23 Yutaka Giken Co., Ltd. Torque converter
KR102188632B1 (ko) 2017-02-27 2020-12-08 가부시키가이샤 유타카기켄 토크 컨버터
JP2021513042A (ja) * 2018-01-29 2021-05-20 エクセディ グローバルパーツ コーポレーション 発進装置のダンパー
JP7395506B2 (ja) 2018-01-29 2023-12-11 エクセディ グローバルパーツ コーポレーション 発進装置のダンパー

Also Published As

Publication number Publication date
US9791019B2 (en) 2017-10-17
JP6044725B2 (ja) 2016-12-14
JPWO2015056733A1 (ja) 2017-03-09
CN105593566A (zh) 2016-05-18
DE112014003986T5 (de) 2016-05-12
US20160208885A1 (en) 2016-07-21
DE112014003986B4 (de) 2019-10-10
CN105593566B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
JP6044725B2 (ja) ダンパ装置および発進装置
JP5952432B2 (ja) ダンパ装置および発進装置
JP5880696B2 (ja) 発進装置
JP6142812B2 (ja) 発進装置
JP6332421B2 (ja) ダンパ装置および発進装置
JP5573750B2 (ja) ダンパ装置
JP6252458B2 (ja) ダンパ装置
WO2012043301A1 (ja) 流体伝動装置
JP6128275B2 (ja) ダンパ装置
JP6156198B2 (ja) ダンパ装置
JP6197738B2 (ja) 発進装置
JP6206217B2 (ja) ダンパ装置および発進装置
JP6287763B2 (ja) 発進装置
JP6241393B2 (ja) ダンパ装置
JP2017207188A (ja) ダンパ装置
JP2015222120A (ja) ダンパ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542649

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15024127

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140039861

Country of ref document: DE

Ref document number: 112014003986

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854402

Country of ref document: EP

Kind code of ref document: A1