WO2015052966A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2015052966A1
WO2015052966A1 PCT/JP2014/067424 JP2014067424W WO2015052966A1 WO 2015052966 A1 WO2015052966 A1 WO 2015052966A1 JP 2014067424 W JP2014067424 W JP 2014067424W WO 2015052966 A1 WO2015052966 A1 WO 2015052966A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
land portion
apex
land
Prior art date
Application number
PCT/JP2014/067424
Other languages
English (en)
French (fr)
Inventor
雅史 脇山
省二 林
家朋 松永
正樹 和田
征史 小出
達也 中井
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP14852374.9A priority Critical patent/EP3056355B1/en
Priority to CN201480055332.8A priority patent/CN105705344B/zh
Priority to US15/026,639 priority patent/US10245892B2/en
Publication of WO2015052966A1 publication Critical patent/WO2015052966A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs

Definitions

  • the present invention relates to a tire having a plurality of land portions in a tread portion.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to improve the noise performance of a tire while improving the motion performance on a dry road surface and a wet road surface of a tire having a land portion.
  • the present invention is a tire that includes a plurality of land portions formed in a tread portion by a plurality of circumferential grooves extending in the tire circumferential direction, and a mounting direction with respect to the vehicle is designated.
  • At least one land portion includes an outer wall surface located outside the vehicle, an inner wall surface located inside the vehicle, a tread surface in the tire radial direction, an outer edge of the tread surface in contact with the outer wall surface, and an inner side of the tread surface in contact with the inner wall surface. And an edge.
  • the tread surface of the land portion is smoothly curved between the outer edge and the inner edge in the cross section of the land portion in the tire width direction, and is formed in a convex shape having a vertex that protrudes most outward in the tire radial direction.
  • the present invention it is possible to improve the noise performance of the tire while improving the motion performance on the dry road surface and the wet road surface of the tire provided with the land portion.
  • the tire of this embodiment is a pneumatic tire for a vehicle (for example, a passenger car), and is formed in a well-known structure using a general tire constituent member. That is, the tire includes a pair of bead portions, a tread portion, and a pair of sidewall portions positioned between the bead portion and the tread portion.
  • the tire includes a pair of bead cores, a carcass disposed between the pair of bead cores, a belt disposed on the outer peripheral side of the carcass, and a tread rubber having a predetermined tread pattern.
  • FIG. 1 is a plan view showing a tread pattern of the tire 1 of the present embodiment, and schematically shows a part of the tread portion 2 in the tire circumferential direction S.
  • the tire 1 is a tire in which the mounting direction with respect to the vehicle (the rotation direction when the vehicle moves forward) is specified when the tire 1 is mounted on the vehicle. Out side).
  • the vehicle inner side means a side (vehicle mounting inner side) which becomes an inner side (vehicle center side) in the vehicle width direction when the tire 1 is mounted on the vehicle.
  • the vehicle outer side refers to a side (vehicle mounting outer side) which becomes an outer side (side side of the vehicle) in the vehicle width direction when the tire 1 is mounted on the vehicle. Therefore, with the tire 1 mounted on the vehicle, the vehicle inner side of the tire 1 is positioned inside the vehicle width direction, and the vehicle outer side of the tire 1 is positioned outside the vehicle width direction.
  • the tread pattern is set corresponding to the mounting direction of the tire 1 with respect to the vehicle and is formed in the tread portion 2.
  • the tire 1 includes a plurality of circumferential grooves 10 to 12, a plurality of width direction grooves 13 and 14, and a plurality of land portions 20 to 23 in the tread portion 2.
  • the plurality of circumferential grooves 10 to 12 are main grooves (circumferential main grooves) extending in the tire circumferential direction S, the central circumferential groove 10 located on the tire equatorial plane C, and the tire circumferential direction of the central circumferential groove 10 It consists of two outer circumferential grooves 11 and 12 located outside H.
  • the tire equatorial plane C is a central plane in the tire width direction H of the tire 1, and the outer circumferential grooves 11 and 12 are formed between the central circumferential groove 10 (tire equatorial plane C) and the tread end T. .
  • the tread portion 2 is partitioned by the plurality of circumferential grooves 10 to 12, and the plurality of land portions 20 to 23 are formed in the tread portion 2 along the tire circumferential direction S.
  • the land portions 20 to 23 are ribs (continuous land portions) continuously extending in the tire circumferential direction S, or block rows (intermittent land portions) composed of a plurality of blocks arranged in the tire circumferential direction S.
  • the land portions 20 to 23 are block rows having a plurality of blocks 20A to 23A, and are composed of two central land portions 20 and 21 and two shoulder land portions 22 and 23.
  • the central land portions 20, 21 have a plurality of width direction grooves 13 and are formed on both sides of the tire equatorial plane C of the tread portion 2.
  • the shoulder land portions 22 and 23 have a plurality of width direction grooves 14, and are formed on the outer side (the shoulder portion side) of the central land portions 20 and 21 in the tire width direction H.
  • the width direction grooves 13 and 14 extend in the tire width direction H and divide the land portions 20 to 23 in the tire circumferential direction S.
  • the blocks 20A to 23A are partitioned by the circumferential grooves 10 to 12 and the width direction grooves 13 and 14, and are formed in the land portions 20 to 23.
  • the treads (landing surfaces) of the land portions 20 to 23 are formed in a convex shape in the cross section of the land portions 20 to 23 in the tire width direction H.
  • at least the entire tread surface of the central land portion 20, 21 closest to the tire equatorial plane C is formed in a convex shape that rises outward in the tire radial direction, and the central land portion 20,
  • the tread surface 21 is a convex curved surface.
  • the tread of the land portion 20 will be described in detail by taking one land portion 20 (central land portion) as an example.
  • FIG. 2 is a cross-sectional view of the land portion 20 in the tire width direction H.
  • the land portion 20 includes an outer wall surface 30 located on the vehicle outer side (out side in FIG. 2), an inner wall surface 31 located on the vehicle inner side (in side in FIG. 2), a tread surface 32, and a tread surface 32. Having a pair of edges 33 and 34.
  • Wall surfaces (outer wall surface, inner wall surface) 30 and 31 are side wall surfaces of the land portion 20 located in the circumferential grooves 10 and 11, and are formed from the groove bottoms of the circumferential grooves 10 and 11 to the tread surface 32.
  • the tread surface 32 is formed outside the land portion 20 in the tire radial direction K, and contacts the road surface when the tire 1 rolls.
  • the pair of edges 33 and 34 are corners of the land portion 20 located between the tread surface 32 and the wall surfaces 30 and 31, and include an outer edge 33 and an inner edge 34.
  • the outer edge 33 is the vehicle outer end of the tread surface 32 in contact with the outer wall surface 30 and the inner edge 34 is the vehicle inner end of the tread surface 32 in contact with the inner wall surface 31.
  • the tread surface 32 of the land portion 20 is formed in a convex shape in which a plurality of arc-shaped curved portions (arc portions 40 to 42) are smoothly connected in the cross section of the land portion 20 in the tire width direction H. That is, the tread 32 is smoothly curved even at the boundaries (shown by dotted lines in FIG. 2) of the plurality of arc portions 40 to 42, and the entire tread 32 is formed as a smoothly curved surface (convex curved surface). .
  • the convex shape of the tread 32 has a vertex 43 that curves smoothly between the outer edge 33 and the inner edge 34 and protrudes most outward in the tire radial direction K.
  • the convex vertex 43 is the vertex 43 of the tread 32 and is located between the center of the land portion 20 in the tire width direction H (referred to as the center P of the land portion 20) and the inner edge 34. It is unevenly distributed at a position closer to the inner edge 34 than the center P.
  • the distance in the tire radial direction K between the top 43 of the tread 32 and the outer edge 33 is Do
  • the distance in the tire radial direction K between the top 43 of the tread 32 and the inner edge 34 is Di.
  • the distances Do and Di satisfy the relationship (Do ⁇ Di), and the distance Do is smaller than the distance Di.
  • the distance Di is a distance not more than 6 times the distance Do
  • the distances Do and Di satisfy the relationship (1 ⁇ Di / Do ⁇ 6).
  • the apex 43 of the tread surface 32 is located on the inner edge 34 side with respect to the center P of the land portion 20, and between the center P of the land portion 20 and the inner edge 34, It is formed at a position excluding the center P of the portion 20 and the inner edge 34.
  • the width in the tire width direction H of the land portion 20 is W
  • the distance in the tire width direction H between the apex 43 of the tread surface 32 and the outer edge 33 is Lo
  • the tire width direction between the apex 43 of the tread surface 32 and the inner edge 34 be Li.
  • the distances Lo and Li also satisfy the relationship (0.25 ⁇ Li / Lo ⁇ 1).
  • the convex shape of the tread surface 32 of the land portion 20 forms a convex curve in which a plurality of arc portions 40 to 42 each having a predetermined radius of curvature are smoothly connected in the cross section of the land portion 20 in the tire width direction H.
  • the radius of curvature varies between the outer edge 33 and the inner edge 34.
  • the plurality of arc portions 40 to 42 include an apex arc portion 40 including the apex 43 of the tread surface 32, an outer arc portion 41 extending from the outer edge 33 toward the apex arc portion 40, and an inner arc extending from the inner edge 34 toward the apex arc portion 40. Part 42.
  • the apex arc portion 40 is formed in the apex region of the tread 32 including the apex 43 and is located between the outer arc portion 41 and the inner arc portion 42.
  • the outer arc portion 41 is formed in the outer region (region outside the vehicle) of the tread surface 32 including the outer edge 33
  • the inner arc portion 42 is formed in the inner region (region inside the vehicle) of the tread surface 32 including the inner edge 34.
  • the tread surface 32 consists of only three arc portions 40-42.
  • the radius of curvature of the outer arc portion 41 is Ro
  • the radius of curvature of the apex arc portion 40 is Rc
  • the radius of curvature of the inner arc portion 42 is Ri.
  • the curvature radii Ro, Rc, Ri satisfy the relationship of (Ro ⁇ Rc> Ri).
  • the curvature radius Rc is a curvature radius equal to or less than the curvature radius Ro
  • the curvature radius Ri is a curvature radius less than the curvature radius Rc.
  • the curvature radius Ri of the inner arc portion 42 is a curvature radius of 30% or less of the curvature radius Rc of the apex arc portion 40, and the curvature radii Ri and Rc satisfy the relationship of (Ri / Rc ⁇ 0.3).
  • the tread surface 32 of the land portion 20 is formed in a convex shape that is smoothly curved. Therefore, when the tread 32 touches down, the contact pressure of the land portion 20 at the apex 43 becomes higher than the contact pressure at the edges 33 and 34, and the contact pressure of the land portion 20 gradually decreases from the apex 43 toward the edges 33 and 34. . Accordingly, on the wet road surface, water between the tread surface 32 and the road surface can be efficiently discharged around the land portion 20, and sufficient drainage performance can be secured in the land portion 20. As a result of the smooth removal of water between the tread 32 and the road surface, the actual contact area of the land portion 20 on the wet road surface also increases.
  • the drainage performance of the land portion 20 is improved, and the motion performance of the tire 1 when traveling straight on the wet road surface can be improved.
  • Local deformation of rubber at the end of the tread surface 32 in the tire width direction H is also suppressed, and slippage between the road surface and the land portion 20 is reduced.
  • the ground contact area of the land portion 20 is sufficiently secured, and the tire 1 exhibits high exercise performance on a dry road surface.
  • the distance Do between the vertex 43 and the outer edge 33 in the tire radial direction K is smaller than the distance Di between the vertex 43 and the inner edge 34 in the tire radial direction K. Therefore, when cornering the vehicle on a wet road surface, water hardly enters the tread surface 32 from the outer edge 33, and the drainage performance of the land portion 20 is reliably ensured. Further, the contact pressure on the outer edge 33 side of the land portion 20 becomes higher than the contact pressure on the inner edge 34 side of the land portion 20. Accordingly, in the outer region of the tread 32, water is prevented from entering between the tread 32 and the road surface, and water is also prevented from flowing from the outside of the vehicle toward the inside of the vehicle. As a result, the ground contact performance of the land portion 20 and the motion performance of the tire 1 can be improved.
  • the land portion 20 is formed in the outer region and the inner region of the tread 32.
  • the rigidity of the land portion 20 in the outer region becomes relatively high.
  • the vertex 43 of the tread 32 is located on the inner edge 34 side with respect to the center P of the land portion 20, and the rigidity balance of the land portion 20 in the tire width direction H can be improved. it can.
  • the raise of the ground pressure of the land part 20 can be suppressed in an outer side area
  • noise is less likely to occur when the tire 1 is traveling, and the noise performance of the tire 1 can be improved.
  • the ground contact performance of the land portion 20 on the dry road surface and the motion performance of the tire 1 can also be improved.
  • the noise performance can be improved while improving the motion performance on the dry road surface and the wet road surface.
  • the radius of curvature Ro of the outer arc portion 41 is relatively large, the ground pressure of the land portion 20 is prevented from being concentrated locally in the outer region of the tread surface 32, and the land portion 20 is mild on the road surface. Ground.
  • the noise performance of the tire 1 and the ground contact performance of the land portion 20 on the dry road surface can be reliably improved.
  • the contact pressure of the land portion 20 is increased in the top region of the tread surface 32, and the land portion 20
  • the drainage performance can be further improved.
  • the distance Di between the vertex 43 and the inner edge 34 in the tire radial direction K is not more than six times the distance Do between the vertex 43 and the outer edge 33 in the tire radial direction K, uneven wear occurs in the land portion 20. While suppressing, the above-described effects can be obtained with certainty.
  • the distance F in the tire width direction between the center P of the land portion 20 and the apex 43 is a distance of 25% or less (0 ⁇ F ⁇ 0.25W) of the width W in the tire width direction of the land portion 20. preferable.
  • the balance of the rigidity of the land part 20 in the tire width direction H is maintained, and the noise performance of the tire 1 is further improved.
  • the distance Di between the vertex 43 and the inner edge 34 in the tire radial direction K and the distance Do between the vertex 43 and the outer edge 33 in the tire radial direction K are both 1 mm or less, the braking performance of the tire 1 is affected. Can be suppressed.
  • the distance Do between the vertex 43 and the outer edge 33 in the tire radial direction K is preferably 30 to 70% of the distance Di between the vertex 43 and the inner edge 34 in the tire radial direction K.
  • the distance Do in the tire radial direction K between the vertex 43 and the outer edge 33 is 30% or more of the distance Di in the tire radial direction K between the vertex 43 and the inner edge 34. It is possible to suppress the occurrence of uneven wear in the land portion 20 while maintaining the balance.
  • the drainage performance of the land portion 20 is improved by setting the distance Do between the vertex 43 and the outer edge 33 in the tire radial direction K to 70% or less of the distance Di between the vertex 43 and the inner edge 34 in the tire radial direction K.
  • the motion performance of the tire 1 during cornering of the vehicle on a wet road surface can be improved.
  • the present invention has been described by taking a pneumatic tire as an example, but the present invention can also be applied to a tire filled with a gas other than air and other tires.
  • the tread portion 2 may be formed with a sipe having a groove width of 1.5 mm or less or a groove other than the above-described grooves.
  • a land portion for example, land portion 20
  • the land portion may be a land portion without a groove that traverses the land portion, or a land portion having a groove that opens to the circumferential grooves 10 to 12 only at one end.
  • a sufficient ground contact area can be secured in the land portion, and the steering stability performance including the turning performance on the wet road surface can be further improved.
  • the contact area hardly changes. Therefore, sipes may be formed on the land.
  • the central land portions 20 and 21 are formed in the shape of ribs in order to secure a ground contact area and improve steering stability performance.
  • the rib shape is a shape in which the land portion is continuous in the tire circumferential direction S, and includes a shape separated only by sipes (for example, sipes having a groove width of 1.5 mm or less).
  • sipes for example, sipes having a groove width of 1.5 mm or less.
  • the plurality of arc portions of the tread 32 need only have at least three arc portions 40 to 42. That is, arc portions other than the three arc portions 40 to 42 may be formed between the top arc portion 40 and the outer arc portion 41 or between the top arc portion 40 and the inner arc portion 42. Moreover, you may form the small circular arc part (for example, circular arc part whose curvature radius is 1 mm) by chamfering in the outer side of the tire width direction H of the outer side arc part 41 and the inner side arc part 42.
  • the cross-sectional shape has been described by taking the land portion 20 as an example.
  • the effect of the tire 1 of the present embodiment is obtained. be able to.
  • Example 1 to 4 four examples of tires corresponding to the tire 1 of the present embodiment (referred to as Examples 1 to 4), one conventional example tire (referred to as a conventional product), and one comparison Example tires (referred to as comparative products) were produced and their performance was evaluated.
  • the first ratio (Li / Lo) and the second ratio (Di / Do) were changed.
  • the first ratio (Li / Lo) is a ratio of the distance Li between the vertex 43 and the inner edge 34 in the tire width direction H to the distance Lo between the vertex 43 and the outer edge 33 in the tire width direction H.
  • the second ratio (Di / Do) is a ratio of the distance Di between the vertex 43 and the inner edge 34 in the tire radial direction K to the distance Do between the vertex 43 and the outer edge 33 in the tire radial direction K.
  • Configurations other than the first ratio (Li / Lo) and the second ratio (Di / Do) were the same for the implemented product, the conventional product, and the comparative product.
  • Tests were conducted to evaluate braking performance, turning performance on wet road surfaces, and noise performance using the implemented products, conventional products, and comparative products.
  • the vehicle running at a predetermined speed was fully braked and the braking distance until the vehicle stopped was measured.
  • the braking performance was evaluated by comparing the measured braking distances.
  • the vehicle was run on a wet road surface the turning acceleration was measured, and the measured turning acceleration was compared to evaluate the turning performance on the wet road surface. Sound performance was measured while the vehicle was running, and the noise performance was evaluated by comparing the measured noise. Tests using these products, conventional products, and comparative products were all performed under the same conditions, and the test results were obtained under the same conditions. Table 1 shows the first ratio (Li / Lo), the second ratio (Di / Do), and the test results.
  • the first ratio (Li / Lo) and the second ratio (Di / Do) of the conventional product are 1. That is, in the conventional product, the vertex 43 is located at the center P of the land portion, and the two distances Do and Di are the same distance. On the other hand, in the comparative product, the first ratio (Li / Lo) is 1.25, and the vertex 43 is located on the outer edge 33 side with respect to the center P of the land portion.
  • the test results were relatively evaluated based on the test results of conventional products. The performance increases in the order of triangle, circle, and double circle.
  • the performance of the implemented products 1 to 4 was higher than that of the conventional products. As a result, it was found that in the products 1 to 4, the braking performance on the dry road surface and the wet road surface and the turning performance on the wet road surface were improved, and the motion performance was improved. Further, it was found that in the products 1 to 4, the noise was reduced and the noise performance was improved. In addition, the performance of the implementation products 1 and 2 is higher than the performance of the implementation product 3, and it was found that each performance is further improved by setting the second ratio (Di / Do) to 6 or less. That is, when the distance Di between the vertex 43 and the inner edge 34 in the tire radial direction K is 6 times or less of the distance Do between the vertex 43 and the outer edge 33 in the tire radial direction K, each performance is more reliably improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 タイヤの運動性能を向上しつつ、タイヤの騒音性能を改良する。 少なくとも1つの陸部(20)は、車両外側に位置する外側壁面(30)と、車両内側に位置する内側壁面(31)と、タイヤ径方向外側の踏面(32)と、外側壁面(30)に接する踏面(32)の外側エッジ(33)と、内側壁面(31)に接する踏面(32)の内側エッジ(34)を有する。踏面(32)は、タイヤ幅方向の陸部(20)の断面において、外側エッジ(33)と内側エッジ(34)の間で滑らかに湾曲して、タイヤ径方向外側に最も突出する頂点(43)を有する凸形状に形成されている。頂点(43)と外側エッジ(33)のタイヤ径方向の距離をDo、頂点(43)と内側エッジ(34)のタイヤ径方向の距離をDiとしたとき、Do<Diである。頂点(43)は、陸部(20)のタイヤ幅方向の中心(P)よりも内側エッジ(34)側に位置する。

Description

タイヤ
 本発明は、トレッド部に複数の陸部を備えたタイヤに関する。
 陸部を備えたタイヤにおいては、陸部の接地面積を大きくすることで、ドライ路面での運動性能が向上する。また、陸部の端部で生じるゴムの局所的なせん断変形を抑制することで、路面と陸部の間の滑りが低減して、タイヤの運動性能が向上する。これらに加えて、陸部の踏面と路面の間の水を除去することで、実際の陸部の接地面積が大きくなり、ウエット路面における直進時のタイヤの運動性能が向上する。
 ここで、陸部の端部の接地圧を低減することで、踏面の水は、踏面から溝に排出されやすくなり、より多く除去される。この接地圧の低減に関連して、従来、踏面を円弧面に形成して、陸部の端部の接地圧を小さくする空気入りタイヤが知られている(特許文献1参照)。
 ところが、ウエット路面での車両のコーナリング時に、水は、踏面と路面の間に入って車両の外側から内側に向かって流れる傾向がある。これに対し、特許文献1に記載された従来の空気入りタイヤでは、水が陸部の中心近傍まで入り込み、陸部の接地性能及び運動性能に影響が生じる虞がある。また、車両のコーナリング時には、陸部の車両外側の接地圧が上昇して、タイヤの騒音性能(静寂性能)、及び、ドライ路面におけるタイヤの運動性能に影響が生じる虞もある。従って、従来の空気入りタイヤに関しては、ドライ路面とウエット路面における運動性能の向上に加えて、高い騒音性能を確保する観点から、改良の余地がある。
特開2012-116410号公報
 本発明は、前記従来の問題に鑑みなされたもので、その目的は、陸部を備えたタイヤのドライ路面とウエット路面における運動性能を向上しつつ、タイヤの騒音性能を改良することである。
 本発明は、タイヤ周方向に延びる複数の周方向溝によりトレッド部に形成された複数の陸部を備え、車両に対する装着方向が指定されるタイヤである。少なくとも1つの陸部は、車両外側に位置する外側壁面と、車両内側に位置する内側壁面と、タイヤ径方向外側の踏面と、外側壁面に接する踏面の外側エッジと、内側壁面に接する踏面の内側エッジと、を有する。陸部の踏面は、タイヤ幅方向の陸部の断面において、外側エッジと内側エッジの間で滑らかに湾曲して、タイヤ径方向外側に最も突出する頂点を有する凸形状に形成される。踏面の頂点と外側エッジのタイヤ径方向の距離をDo、踏面の頂点と内側エッジのタイヤ径方向の距離をDiとしたとき、Do<Diである。踏面の頂点は、陸部のタイヤ幅方向の中心よりも内側エッジ側に位置する。
 本発明によれば、陸部を備えたタイヤのドライ路面とウエット路面における運動性能を向上しつつ、タイヤの騒音性能を改良することができる。
本実施形態のタイヤのトレッドパターンを示す平面図である。 陸部のタイヤ幅方向の断面図である。
 本発明のタイヤの一実施形態について、図面を参照して説明する。
 本実施形態のタイヤは、車両(例えば乗用車)用の空気入りタイヤであり、一般的なタイヤ構成部材により周知の構造に形成されている。即ち、タイヤは、一対のビード部と、トレッド部と、ビード部とトレッド部の間に位置する一対のサイドウォール部を備えている。また、タイヤは、一対のビードコアと、一対のビードコアの間に配置されたカーカスと、カーカスの外周側に配置されたベルトと、所定のトレッドパターンを有するトレッドゴムを備えている。
 図1は、本実施形態のタイヤ1のトレッドパターンを示す平面図であり、トレッド部2のタイヤ周方向Sの一部を模式的に示している。
 図示のように、タイヤ1は、車両への装着時に、車両に対する装着方向(車両前進時の回転方向)が指定されるタイヤであり、車両内側(図1のin側)と車両外側(図1のout側)が定められている。
 なお、タイヤ1に関して、車両内側とは、タイヤ1を車両に装着したときに車両幅方向の内側(車両の中心側)となる側(車両装着内側)のことをいう。また、車両外側とは、タイヤ1を車両に装着したときに車両幅方向の外側(車両の側方側)となる側(車両装着外側)のことをいう。従って、タイヤ1を車両に装着した状態で、タイヤ1の車両内側が車両幅方向の内側に位置し、タイヤ1の車両外側が車両幅方向の外側に位置する。トレッドパターンは、タイヤ1の車両に対する装着方向に対応して設定されて、トレッド部2に形成される。
 タイヤ1は、トレッド部2に、複数の周方向溝10~12と、複数の幅方向溝13、14と、複数の陸部20~23を備えている。複数の周方向溝10~12は、タイヤ周方向Sに延びる主溝(周方向主溝)であり、タイヤ赤道面Cに位置する中央周方向溝10と、中央周方向溝10のタイヤ幅方向Hの外側に位置する2つの外側周方向溝11、12からなる。タイヤ赤道面Cは、タイヤ1のタイヤ幅方向Hの中央面であり、外側周方向溝11、12は、中央周方向溝10(タイヤ赤道面C)とトレッド端Tの間に形成されている。複数の周方向溝10~12により、トレッド部2が区画されて、複数の陸部20~23がトレッド部2にタイヤ周方向Sに沿って形成されている。
 陸部20~23は、タイヤ周方向Sに連続して延びるリブ(連続陸部)、又は、タイヤ周方向Sに並ぶ複数のブロックからなるブロック列(断続陸部)である。ここでは、陸部20~23は、複数のブロック20A~23Aを有するブロック列であり、2つの中央陸部20、21と2つのショルダ陸部22、23からなる。中央陸部20、21は、複数の幅方向溝13を有し、トレッド部2のタイヤ赤道面Cの両側に形成されている。ショルダ陸部22、23は、複数の幅方向溝14を有し、中央陸部20、21のタイヤ幅方向Hの外側(ショルダ部側)に形成されている。幅方向溝13、14は、タイヤ幅方向Hに延び、陸部20~23をタイヤ周方向Sに分断する。ブロック20A~23Aは、周方向溝10~12と幅方向溝13、14により区画されて、陸部20~23に形成されている。
 陸部20~23の踏面(接地面)は、タイヤ幅方向Hの陸部20~23の断面において、凸形状に形成されている。ここでは、複数の陸部20~23の内、少なくともタイヤ赤道面Cに最も近い中央陸部20、21の踏面の全体が、タイヤ径方向外側に盛り上がる凸形状に形成され、中央陸部20、21の踏面が、凸状の湾曲面になっている。以下、1つの陸部20(中央陸部)を例にとり、陸部20の踏面について、詳しく説明する。
 図2は、陸部20のタイヤ幅方向Hの断面図である。
 図示のように、陸部20は、車両外側(図2のout側)に位置する外側壁面30と、車両内側(図2のin側)に位置する内側壁面31と、踏面32と、踏面32の一対のエッジ33、34を有する。壁面(外側壁面、内側壁面)30、31は、周方向溝10、11内に位置する陸部20の側壁面であり、周方向溝10、11の溝底から踏面32まで形成されている。踏面32は、陸部20のタイヤ径方向Kの外側に形成され、タイヤ1の転動時に路面に接触する。一対のエッジ33、34は、踏面32と壁面30、31の間に位置する陸部20の角部であり、外側エッジ33と内側エッジ34からなる。外側エッジ33は、外側壁面30に接する踏面32の車両外側端であり、内側エッジ34は、内側壁面31に接する踏面32の車両内側端である。
 陸部20の踏面32は、タイヤ幅方向Hの陸部20の断面において、複数の円弧状の曲線部(円弧部40~42)が滑らかに接続された凸形状に形成されている。即ち、踏面32は、複数の円弧部40~42の境界(図2では点線で示す)でも滑らかに湾曲し、踏面32の全体が、滑らかに湾曲する湾曲面(凸曲面)に形成されている。踏面32の凸形状は、外側エッジ33と内側エッジ34の間で滑らかに湾曲して、タイヤ径方向Kの外側に最も突出する頂点43を有する。この凸形状の頂点43は、踏面32の頂点43であり、陸部20のタイヤ幅方向Hの中心(陸部20の中心Pという)と内側エッジ34の間に位置して、陸部20の中心Pよりも内側エッジ34側の位置に偏在する。
 タイヤ幅方向Hの陸部20の断面において、踏面32の頂点43と外側エッジ33のタイヤ径方向Kの距離をDo、踏面32の頂点43と内側エッジ34のタイヤ径方向Kの距離をDiとする。この場合に、距離Do、Diは(Do<Di)の関係を満たし、距離Doは距離Diよりも小さくなる。ここでは、距離Diは距離Doの6倍以下の距離であり、距離Do、Diは(1<Di/Do≦6)の関係を満たす。
 タイヤ幅方向Hの陸部20の断面において、踏面32の頂点43は、陸部20の中心Pよりも内側エッジ34側に位置し、陸部20の中心Pと内側エッジ34の間で、陸部20の中心Pと内側エッジ34を除いた位置に形成されている。具体的には、陸部20のタイヤ幅方向Hの幅をW、踏面32の頂点43と外側エッジ33のタイヤ幅方向Hの距離をLo、踏面32の頂点43と内側エッジ34のタイヤ幅方向Hの距離をLiとする。この場合に、幅Wと距離Lo、Liは、(W>Lo>Li>0、W=Lo+Li)の関係を満たす。また、ここでは、距離Lo、Liは、(0.25≦Li/Lo<1)の関係も満たす。
 陸部20の踏面32の凸形状は、タイヤ幅方向Hの陸部20の断面において、それぞれ所定の曲率半径を有する複数の円弧部40~42が滑らかに接続された凸曲線をなし、踏面32の曲率半径は、外側エッジ33と内側エッジ34の間で変化する。複数の円弧部40~42は、踏面32の頂点43を含む頂円弧部40と、外側エッジ33から頂円弧部40に向かう外側円弧部41と、内側エッジ34から頂円弧部40に向かう内側円弧部42を有する。頂円弧部40は、頂点43を含む踏面32の頂領域に形成され、外側円弧部41と内側円弧部42の間に位置する。外側円弧部41は、外側エッジ33を含む踏面32の外側領域(車両外側の領域)に形成され、内側円弧部42は、内側エッジ34を含む踏面32の内側領域(車両内側の領域)に形成されている。ここでは、踏面32は、3つの円弧部40~42のみからなる。
 外側円弧部41の曲率半径をRo、頂円弧部40の曲率半径をRc、内側円弧部42の曲率半径をRiとする。この場合に、曲率半径Ro、Rc、Riは、(Ro≧Rc>Ri)の関係を満たす。曲率半径Rcは曲率半径Ro以下の曲率半径になり、曲率半径Riは曲率半径Rc未満の曲率半径になる。また、内側円弧部42の曲率半径Riは、頂円弧部40の曲率半径Rcの30%以下の曲率半径であり、曲率半径Ri、Rcは(Ri/Rc≦0.3)の関係を満たす。
 以上説明したように、本実施形態のタイヤ1では、陸部20の踏面32が滑らかに湾曲する凸形状に形成されている。そのため、踏面32の接地時に、頂点43における陸部20の接地圧がエッジ33、34における接地圧よりも高くなり、陸部20の接地圧が頂点43からエッジ33、34に向かって次第に低くなる。これに伴い、ウエット路面では、踏面32と路面の間の水を陸部20の周囲に効率的に排出でき、陸部20に充分な排水性能を確保することができる。踏面32と路面の間の水が円滑に除去される結果、ウエット路面での実際の陸部20の接地面積も大きくなる。従って、陸部20の排水性能が高くなり、ウエット路面における直進時のタイヤ1の運動性能を向上することができる。踏面32のタイヤ幅方向Hの端部におけるゴムの局所的な変形も抑制され、路面と陸部20の間の滑りが低減する。加えて、陸部20の接地面積も充分に確保され、タイヤ1はドライ路面において高い運動性能を発揮する。
 頂点43と外側エッジ33のタイヤ径方向Kの距離Doは、頂点43と内側エッジ34のタイヤ径方向Kの距離Diよりも小さくなっている。そのため、ウエット路面での車両のコーナリング時には、水が外側エッジ33から踏面32に入りにくく、陸部20の排水性能が確実に確保される。また、陸部20の外側エッジ33側の接地圧が陸部20の内側エッジ34側の接地圧よりも高くなる。従って、踏面32の外側領域において、水が踏面32と路面の間に入るのが抑制されるとともに、水が車両外側から車両内側に向かって流れるのも抑制される。その結果、陸部20の接地性能及びタイヤ1の運動性能を向上することができる。
 ここで、頂点43と外側エッジ33のタイヤ径方向Kの距離Doを頂点43と内側エッジ34のタイヤ径方向Kの距離Diよりも小さくすると、踏面32の外側領域と内側領域において、陸部20の剛性に差が生じて、外側領域の陸部20の剛性が相対的に高くなる虞がある。これに対し、このタイヤ1では、踏面32の頂点43が陸部20の中心Pよりも内側エッジ34側に位置しており、タイヤ幅方向Hにおける陸部20の剛性のバランスを改善することができる。また、外側領域の陸部20の剛性が高くなるのを抑制できるとともに、外側領域において、陸部20の接地圧の上昇を抑制することができる。その結果、タイヤ1の走行時に騒音が生じにくくなり、タイヤ1の騒音性能を向上することができる。ドライ路面における陸部20の接地性能及びタイヤ1の運動性能を向上することもできる。
 このように、本実施形態のタイヤ1では、ドライ路面とウエット路面における運動性能を向上しつつ、騒音性能を改良することができる。また、外側円弧部41の曲率半径Roが相対的に大きいため、踏面32の外側領域において、陸部20の接地圧が局所的に集中するのが防止されて、陸部20が路面にマイルドに接地する。その結果、タイヤ1の騒音性能、及び、ドライ路面における陸部20の接地性能を確実に向上することができる。
 内側円弧部42の曲率半径Riが頂円弧部40の曲率半径Rcの30%以下の曲率半径であるときには、踏面32の頂領域で陸部20の接地圧をより高くして、陸部20の排水性能を一層向上することができる。頂点43と内側エッジ34のタイヤ径方向Kの距離Diが頂点43と外側エッジ33のタイヤ径方向Kの距離Doの6倍以下の距離であるときには、陸部20に偏摩耗が発生するのを抑制しつつ、上記した効果を確実に得ることができる。
 なお、陸部20の中心Pと頂点43とのタイヤ幅方向の距離Fは、陸部20のタイヤ幅方向の幅Wの25%以下の距離(0<F≦0.25W)であるのが好ましい。このようにすることで、タイヤ幅方向Hにおける陸部20の剛性のバランスが保たれて、タイヤ1の騒音性能がより向上する。また、頂点43と内側エッジ34のタイヤ径方向Kの距離Diと頂点43と外側エッジ33のタイヤ径方向Kの距離Doが、ともに1mm以下であるときには、タイヤ1の制動性能に影響が生じるのを抑制することができる。
 頂点43と外側エッジ33のタイヤ径方向Kの距離Doは、頂点43と内側エッジ34のタイヤ径方向Kの距離Diの30~70%の距離であるのが好ましい。頂点43と外側エッジ33のタイヤ径方向Kの距離Doを頂点43と内側エッジ34のタイヤ径方向Kの距離Diの30%以上の距離にすることで、タイヤ幅方向Hにおける陸部20の剛性のバランスを保ちつつ、陸部20に偏摩耗が発生するのを抑制することができる。また、頂点43と外側エッジ33のタイヤ径方向Kの距離Doを頂点43と内側エッジ34のタイヤ径方向Kの距離Diの70%以下の距離にすることで、陸部20の排水性能を向上しつつ、ウエット路面での車両のコーナリング時におけるタイヤ1の運動性能を向上することができる。
 以上、本発明について、空気入りタイヤを例に説明したが、本発明は、空気以外の気体を充填したタイヤや、その他のタイヤにも適用できる。また、トレッド部2には、溝幅が1.5mm以下のサイプや、上記した溝以外の溝を形成してもよい。
 上記した断面形状を適用した陸部(例えば、陸部20)においては、陸部をタイヤ幅方向Hに横断する溝を設けなくても、充分な排水性能が得られる。そのため、当該陸部は、陸部を横断する溝のない陸部、或いは、一端のみが周方向溝10~12に開口する溝を備えた陸部であってもよい。この場合には、陸部に充分な接地面積を確保でき、ウエット路面における旋回性能を含む操縦安定性能を一層向上させることができる。ただし、このような陸部において、サイプがタイヤ幅方向Hに横断したとしても、接地面積は殆ど変らない。従って、サイプを陸部に形成してもよい。
 このように、排水性能に加えて、接地面積の確保と操縦安定性能の向上とを実現できるため、中央陸部20、21はリブ状に形成するのが好ましい。リブ状とは、陸部がタイヤ周方向Sに連続する形状であり、サイプ(例えば、溝幅が1.5mm以下のサイプ)のみにより区切られた形状を含む。車両の旋回時には、車両外側の中央陸部20の接地圧が、車両内側の中央陸部21の接地圧よりも高くなる。中央陸部20の距離Do、Diを、それぞれ中央陸部21の距離Do、Diよりも大きくすることで、中央陸部20の凸形状が相対的に高い接地圧に合わせて設定されて、旋回時に、有効な排水性能が確保される。これに対し、車両の通常走行時(直進時)には、ネガティブキャンバー等に起因して、車両内側の中央陸部21の接地圧が、車両外側の中央陸部20の接地圧よりも高くなる。中央陸部20の距離Do、Diを、それぞれ中央陸部21の距離Do、Diよりも小さくすることで、中央陸部21の凸形状が相対的に高い接地圧に合わせて設定されて、直進時の排水性能が向上する。これにより、直進時の排水性能に特化したタイヤが得られる。
 踏面32の複数の円弧部は、3つの円弧部40~42を少なくとも有していればよい。即ち、3つの円弧部40~42以外の円弧部を、頂円弧部40と外側円弧部41の間や、頂円弧部40と内側円弧部42の間に形成してもよい。また、外側円弧部41と内側円弧部42のタイヤ幅方向Hの外側に、面取りによる小円弧部(例えば、曲率半径が1mmの円弧部)を形成してもよい。
 加えて、本実施形態では、陸部20を例にして断面形状を説明したが、少なくとも1つの陸部20~23を上記したように形成することで、本実施形態のタイヤ1による効果を得ることができる。ただし、タイヤ幅方向Hの最外側に位置する外側周方向溝11、12に挟まれる全ての陸部に、上記した断面形状を適用するのが好ましい。
 (タイヤ試験)
 本発明の効果を確認するため、本実施形態のタイヤ1に対応する4つの実施例のタイヤ(実施品1~4という)、1つの従来例のタイヤ(従来品という)、及び、1つの比較例のタイヤ(比較品という)を作製して、それらの性能を評価した。実施品、従来品、及び、比較品では、第1比(Li/Lo)と第2比(Di/Do)を変化させた。第1比(Li/Lo)は、頂点43と外側エッジ33のタイヤ幅方向Hの距離Loに対する頂点43と内側エッジ34のタイヤ幅方向Hの距離Liの比である。第2比(Di/Do)は、頂点43と外側エッジ33のタイヤ径方向Kの距離Doに対する頂点43と内側エッジ34のタイヤ径方向Kの距離Diの比である。第1比(Li/Lo)と第2比(Di/Do)以外の構成は、実施品、従来品、及び、比較品で同一にした。
 実施品、従来品、及び、比較品を用いて、制動性能、ウエット路面における旋回性能、及び、騒音性能を評価する試験を行った。その際、直線路のドライ路面とウエット路面において、所定速度で走行中の車両にフル制動をかけて、車両が停止するまでの制動距離を測定した。測定した制動距離を比較して、制動性能を評価した。また、ウエット路面で車両を走行させて、旋回加速度を測定し、測定した旋回加速度を比較して、ウエット路面における旋回性能を評価した。車両の走行中に車内で音を測定し、測定した騒音を比較して、騒音性能を評価した。これら実施品、従来品、及び、比較品を用いた試験は全て同一の条件で行い、同一の条件で試験結果を取得した。表1に、第1比(Li/Lo)、第2比(Di/Do)、及び、試験結果を示す。
Figure JPOXMLDOC01-appb-T000001
 従来品の第1比(Li/Lo)と第2比(Di/Do)は1である。即ち、従来品では、頂点43が陸部の中心Pに位置し、2つの距離Do、Diが同じ距離になっている。これに対し、比較品では、第1比(Li/Lo)が1.25であり、頂点43が陸部の中心Pよりも外側エッジ33側に位置する。試験結果は、従来品の試験結果を基準に相対的に評価した。三角形、丸、二重丸の順に性能が高くなる。
 全ての試験において、実施品1~4の性能は従来品の性能よりも高くなった。これより、実施品1~4では、ドライ路面とウエット路面における制動性能、及び、ウエット路面における旋回性能が高くなり、運動性能が向上することが分かった。また、実施品1~4では、騒音が小さくなり、騒音性能が向上することが分かった。加えて、実施品1、2の性能は実施品3の性能よりも高くなっており、第2比(Di/Do)を6以下にすることで、各性能がより向上することが分かった。即ち、頂点43と内側エッジ34のタイヤ径方向Kの距離Diが頂点43と外側エッジ33のタイヤ径方向Kの距離Doの6倍以下であるときには、各性能がより確実に向上した。
 1・・・タイヤ、2・・・トレッド部、10・・・中央周方向溝、11・・・外側周方向溝、12・・・外側周方向溝、20・・・中央陸部、21・・・中央陸部、22・・・ショルダ陸部、23・・・ショルダ陸部、30・・・外側壁面、31・・・内側壁面、32・・・踏面、33・・・外側エッジ、34・・・内側エッジ、40・・・頂円弧部、41・・・外側円弧部、42・・・内側円弧部、43・・・頂点。

Claims (5)

  1.  タイヤ周方向に延びる複数の周方向溝によりトレッド部に形成された複数の陸部を備え、車両に対する装着方向が指定されるタイヤであって、
     少なくとも1つの陸部は、車両外側に位置する外側壁面と、車両内側に位置する内側壁面と、タイヤ径方向外側の踏面と、外側壁面に接する踏面の外側エッジと、内側壁面に接する踏面の内側エッジと、を有し、
     陸部の踏面は、タイヤ幅方向の陸部の断面において、外側エッジと内側エッジの間で滑らかに湾曲して、タイヤ径方向外側に最も突出する頂点を有する凸形状に形成され、
     踏面の頂点と外側エッジのタイヤ径方向の距離をDo、踏面の頂点と内側エッジのタイヤ径方向の距離をDiとしたとき、Do<Diであり、
     踏面の頂点は、陸部のタイヤ幅方向の中心よりも内側エッジ側に位置するタイヤ。
  2.  請求項1に記載されたタイヤにおいて、
     複数の陸部の内、少なくともタイヤ赤道面に最も近い中央陸部の踏面の凸形状は、複数の円弧部が滑らかに接続された凸曲線をなし、
     複数の円弧部は、踏面の頂点を含む頂円弧部と、外側エッジから頂円弧部に向かう外側円弧部と、内側エッジから頂円弧部に向かう内側円弧部と、を少なくとも有し、
     外側円弧部の曲率半径をRo、頂円弧部の曲率半径をRc、内側円弧部の曲率半径をRiとしたとき、Ro≧Rc>Riであるタイヤ。
  3.  請求項2に記載されたタイヤにおいて、
     内側円弧部の曲率半径Riは、頂円弧部の曲率半径Rcの30%以下の曲率半径であるタイヤ。
  4.  請求項1ないし3のいずれかに記載されたタイヤにおいて、
     踏面の頂点と内側エッジのタイヤ径方向の距離Diは、踏面の頂点と外側エッジのタイヤ径方向の距離Doの6倍以下の距離であるタイヤ。
  5.  請求項1ないし4のいずれかに記載されたタイヤにおいて、
     陸部のタイヤ幅方向の中心と踏面の頂点とのタイヤ幅方向の距離は、陸部のタイヤ幅方向の幅の25%以下の距離であるタイヤ。
PCT/JP2014/067424 2013-10-09 2014-06-30 タイヤ WO2015052966A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14852374.9A EP3056355B1 (en) 2013-10-09 2014-06-30 Tire
CN201480055332.8A CN105705344B (zh) 2013-10-09 2014-06-30 轮胎
US15/026,639 US10245892B2 (en) 2013-10-09 2014-06-30 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013211745A JP6253941B2 (ja) 2013-10-09 2013-10-09 タイヤ
JP2013-211745 2013-10-09

Publications (1)

Publication Number Publication Date
WO2015052966A1 true WO2015052966A1 (ja) 2015-04-16

Family

ID=52812787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067424 WO2015052966A1 (ja) 2013-10-09 2014-06-30 タイヤ

Country Status (5)

Country Link
US (1) US10245892B2 (ja)
EP (1) EP3056355B1 (ja)
JP (1) JP6253941B2 (ja)
CN (1) CN105705344B (ja)
WO (1) WO2015052966A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030635A (ja) * 2015-08-04 2017-02-09 東洋ゴム工業株式会社 空気入りタイヤ
WO2017217425A1 (ja) * 2016-06-13 2017-12-21 株式会社ブリヂストン タイヤ

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6567377B2 (ja) * 2015-09-28 2019-08-28 株式会社ブリヂストン タイヤ
JP6549472B2 (ja) * 2015-11-05 2019-07-24 Toyo Tire株式会社 空気入りタイヤ
JP6647970B2 (ja) * 2016-06-14 2020-02-14 株式会社ブリヂストン タイヤ
JP6610717B1 (ja) * 2018-07-02 2019-11-27 横浜ゴム株式会社 空気入りタイヤ
EP3795387B1 (en) * 2018-08-09 2023-06-07 Bridgestone Corporation Motorcycle tire
JP7447510B2 (ja) 2020-01-29 2024-03-12 住友ゴム工業株式会社 空気入りタイヤ
JP2022069985A (ja) * 2020-10-26 2022-05-12 住友ゴム工業株式会社 タイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029216A (ja) * 2000-07-19 2002-01-29 Bridgestone Corp 空気入りタイヤおよびそれの装着方法
JP2005263180A (ja) * 2004-03-22 2005-09-29 Bridgestone Corp 空気入りタイヤ
JP2012017008A (ja) * 2010-07-07 2012-01-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012116410A (ja) 2010-12-02 2012-06-21 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722378A (en) * 1986-05-19 1988-02-02 The Goodyear Tire & Rubber Company Tire treads with convex elements
JPS63305008A (ja) * 1987-06-03 1988-12-13 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JPH0688252B2 (ja) * 1990-01-10 1994-11-09 住友ゴム工業株式会社 タイヤ加硫金型
JP4468545B2 (ja) * 2000-04-06 2010-05-26 株式会社ブリヂストン 空気入りタイヤ
KR20050033610A (ko) * 2002-09-10 2005-04-12 요코하마 고무 가부시키가이샤 공기 주입 타이어
JP2006176055A (ja) * 2004-12-24 2006-07-06 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP4973708B2 (ja) 2009-09-11 2012-07-11 横浜ゴム株式会社 空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029216A (ja) * 2000-07-19 2002-01-29 Bridgestone Corp 空気入りタイヤおよびそれの装着方法
JP2005263180A (ja) * 2004-03-22 2005-09-29 Bridgestone Corp 空気入りタイヤ
JP2012017008A (ja) * 2010-07-07 2012-01-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012116410A (ja) 2010-12-02 2012-06-21 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030635A (ja) * 2015-08-04 2017-02-09 東洋ゴム工業株式会社 空気入りタイヤ
WO2017217425A1 (ja) * 2016-06-13 2017-12-21 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
CN105705344B (zh) 2018-09-25
CN105705344A (zh) 2016-06-22
EP3056355A1 (en) 2016-08-17
US20160236519A1 (en) 2016-08-18
JP2015074335A (ja) 2015-04-20
EP3056355B1 (en) 2018-04-11
JP6253941B2 (ja) 2017-12-27
EP3056355A4 (en) 2016-10-26
US10245892B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2015052966A1 (ja) タイヤ
US10384491B2 (en) Pneumatic tire
JP6526402B2 (ja) 空気入りタイヤ
WO2016125814A1 (ja) 空気入りタイヤ
JP6436080B2 (ja) 空気入りタイヤ
US9375981B2 (en) Pneumatic tire
JP6834291B2 (ja) 空気入りタイヤ
US11203234B2 (en) Pneumatic tire
WO2012133334A1 (ja) 空気入りタイヤ
CN107639975B (zh) 轮胎
JP7187255B2 (ja) 空気入りタイヤ
JP2009262675A (ja) 空気入りタイヤ
JP6599218B2 (ja) 空気入りタイヤ
JP6088336B2 (ja) 空気入りタイヤ
CN111660735A (zh) 轮胎
US9889710B2 (en) Pneumatic tire mount method, and combination pneumatic tire
WO2017043071A1 (ja) タイヤ
AU2011228471A1 (en) Pneumatic tire
JP2011255685A (ja) 空気入りタイヤ
JP2014233992A (ja) タイヤ
JP6411947B2 (ja) タイヤ
JP6292264B2 (ja) 空気入りタイヤ
JP7291005B2 (ja) 空気入りタイヤ
JP2014108704A (ja) 空気入りタイヤ
JP2003170706A (ja) 空気入りタイヤ及びその装着方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15026639

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014852374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014852374

Country of ref document: EP