WO2015052809A1 - リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム - Google Patents

リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム Download PDF

Info

Publication number
WO2015052809A1
WO2015052809A1 PCT/JP2013/077569 JP2013077569W WO2015052809A1 WO 2015052809 A1 WO2015052809 A1 WO 2015052809A1 JP 2013077569 W JP2013077569 W JP 2013077569W WO 2015052809 A1 WO2015052809 A1 WO 2015052809A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
group
polymer
Prior art date
Application number
PCT/JP2013/077569
Other languages
English (en)
French (fr)
Inventor
紀雄 岩安
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015541378A priority Critical patent/JP6110951B2/ja
Priority to PCT/JP2013/077569 priority patent/WO2015052809A1/ja
Priority to US15/022,819 priority patent/US10355279B2/en
Publication of WO2015052809A1 publication Critical patent/WO2015052809A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery using the same, a lithium ion secondary battery, and a battery system.
  • Li batteries Lithium ion secondary batteries
  • Li batteries have high energy density and are therefore used in mobile devices such as mobile phones.
  • the Li battery has various problems, and among them, increasing the capacity of the battery is an important problem.
  • smartphones have increased rapidly in recent years. Smartphones consume a lot of electricity and can only be used for a short time. Therefore, it is essential to increase the capacity of the battery.
  • the range is short, and in order to extend the range, a battery with higher capacity is also required.
  • Si negative electrode active material
  • SiO x SiO x carbon composite material (SiO x C) of the SiO x coated with carbon is also attracting attention as high capacity material.
  • the Si-based negative electrode active material described above has a high capacity, the cycle characteristics have room for further improvement due to the high level of demand. Therefore, in order to improve the cycle characteristics of the Si-based negative electrode active material, a technology has been developed in which fluorinated ethylene carbonate (FEC) is added to the electrolytic solution (Patent Document 1). By adding FFC, a coating layer having ion conductivity and blocking the electrolyte is formed on the negative electrode. The formation of the coating layer prevents co-insertion of the solvent that occurs when Li is occluded in the negative electrode, and the structure stability of the Si-based negative electrode active material is considered to be improved by improving the cycle characteristics. There is.
  • FEC fluorinated ethylene carbonate
  • the present invention is to provide a novel negative electrode material for a lithium ion secondary battery having high Li ion conductivity and capable of improving the cycle characteristics of the lithium ion secondary battery. .
  • One aspect of the present invention is to achieve the above object by Provided is a negative electrode material for a lithium ion secondary battery, comprising a negative electrode active material containing silicon and / or a silicon compound, and a polymer represented by the following chemical formula (1).
  • a in Chemical Formula (1) is a functional group having an amido group (—CONH—) and a sulfo group (—SO 3 X (X is an alkali metal or hydrogen (H)).
  • B is a functional group having a polar functional group
  • R 1 to R 6 each represent a hydrocarbon group having 1 to 10 carbon atoms or hydrogen (H)
  • x and y each represent a composition ratio of the copolymer, and 0 ⁇ x / (x + y) ⁇ 1.
  • the present invention it is possible to provide a novel negative electrode material for a lithium ion secondary battery having high Li ion conductivity and capable of improving the cycle characteristics of the lithium ion secondary battery.
  • Another embodiment of the present invention includes a negative electrode material containing a negative electrode active material, a binder, and a current collector, wherein the negative electrode active material contains silicon and / or a silicon compound, and the negative electrode material has the above chemical formula (
  • the negative electrode for lithium ion secondary batteries characterized by including the polymer represented by 1) is provided.
  • another aspect of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolytic solution containing a non-aqueous solvent and a support salt, the negative electrode including a negative electrode material including a negative electrode active material, the negative electrode active A material includes silicon and / or a silicon compound, and the negative electrode material includes a polymer represented by the above chemical formula (1) to provide a lithium ion secondary battery.
  • mode of this invention provides the battery system characterized by using the said lithium ion secondary battery.
  • FIG. 1 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to the present invention.
  • the battery 1 includes a positive electrode 10, a separator 11, a negative electrode 12, a battery case (ie, battery can) 13, a positive electrode current collection tab 14, a negative electrode current collection tab 15, an inner lid 16, and an internal pressure release valve 17.
  • a gasket 18, a positive temperature coefficient (PTC) resistance element 19 a battery cover 20 and an axial center 21.
  • the battery lid 20 is an integrated component including the inner lid 16, the internal pressure release valve 17, the gasket 18, and the PTC resistance element 19.
  • the positive electrode 10, the separator 11 and the negative electrode 12 are wound around the axial center 21.
  • the separator 11 is inserted between the positive electrode 10 and the negative electrode 12, and an electrode group wound around the axial center 21 is produced.
  • the shaft 21 any known one can be used as long as it can support the positive electrode 10, the separator 11 and the negative electrode 12.
  • the electrode group may be formed into various shapes, such as one obtained by laminating strip electrodes, or one obtained by winding the positive electrode 10 and the negative electrode 12 into an arbitrary shape such as flat.
  • the shape of the battery case 13 may be a cylindrical shape, a flat oval shape, a flat oval shape, a square shape, or the like, in accordance with the shape of the electrode group.
  • the material of the battery case 13 is selected from materials having corrosion resistance to the non-aqueous electrolyte, such as aluminum, stainless steel, nickel plated steel, and the like. Moreover, when the battery case 13 is electrically connected to the positive electrode 10 or the negative electrode 12, deterioration of the material due to corrosion of the battery case 13 or alloying with lithium ions does not occur in the portion in contact with the non-aqueous electrolyte. Thus, the material of the battery case 13 is selected.
  • the electrode group is housed in the battery case 13, the negative electrode current collection tab 15 is connected to the inner wall of the battery case 13, and the positive electrode current collection tab 14 is connected to the bottom surface of the battery cover 20.
  • the electrolytic solution is injected into the inside of the battery container 13 before sealing the battery.
  • a method of injecting the electrolytic solution there is a method of adding directly to the electrode group in a state where the battery cover 20 is released, or a method of adding from an injection port (not shown) installed in the battery cover 20.
  • the battery cover 20 is brought into close contact with the battery case 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well.
  • Well-known techniques, such as welding and caulking, can be used for the method of sealing a battery.
  • the structure of the lithium ion secondary battery according to the present invention is not limited thereto. It may be a stacked electrode group in which a negative electrode and a separator are stacked.
  • the negative electrode 12 includes a negative electrode material containing a negative electrode active material, a binder, and a current collector.
  • the negative electrode material includes the negative electrode active material containing silicon and / or the silicon compound as described above, and the polymer represented by the above-mentioned chemical formula (1).
  • the negative electrode material according to the present invention will be described in detail.
  • the negative electrode active material of the present invention contains silicon (Si) and / or a Si compound (hereinafter, also referred to as “Si-based negative electrode active material”).
  • Si include metal (simple substance) Si, and examples of the Si compound other than Si such as Si and cobalt (Co), nickel (Ni), titanium (Ti), iron (Fe), manganese (Mn) and the like And alloys of these elements, and further oxides of Si.
  • a material containing Si and oxygen (O) as constituent elements represented by the general composition formula SiO x (0.5 ⁇ x ⁇ 1.5) is preferably used.
  • SiO x is not limited to one containing only an oxide of Si, but may contain a microcrystalline phase or an amorphous phase of Si, and in a SiO 2 matrix of a microcrystalline phase of Si or an amorphous phase, Si A structure in which (for example, microcrystalline Si) is dispersed is included.
  • the atomic ratio of Si to O may be such that x satisfies 0.5 ⁇ x ⁇ 1.5 by combining SiO 2 in the amorphous phase and Si dispersed therein.
  • Ru in the case of such a structure, for example, a peak attributed to the presence of Si may not be observed in X-ray diffraction analysis, but the presence of fine Si can be confirmed by observation with a transmission electron microscope.
  • the particle diameter of SiO x is preferably 0.1 to 10 ⁇ m as an average particle diameter D50 in order to enhance the effect of complexing with a carbon material described later and to prevent refinement during charge and discharge.
  • D50 is a value determined by laser diffraction / scattering particle size analysis.
  • the negative electrode material according to the present invention is characterized by containing a polymer represented by the chemical formula (1) in addition to the above-mentioned Si-based negative electrode active material.
  • the Si-based negative electrode active material is preferably coated with a polymer from the viewpoint of improving the cycle characteristics of the battery, and the Si-based negative electrode active material and the polymer are mixed by the method described in the examples to be described later.
  • most of the Si-based negative electrode active material is considered to be coated with a polymer, but may not be completely coated. That is, the effects of the present invention can be obtained if the present invention includes the Si-based negative electrode active material described above as the negative electrode material and the polymer described below.
  • the polymer represented by Chemical Formula (1) will be described.
  • the dissociative property of lithium ion can be improved because A has a sulfo group.
  • the sulfo group is considered to be a functional group having a low affinity to the electrolytic solution, which suppresses the co-insertion of the solvent of the Si-based negative electrode active material and is considered to play an important role in the improvement of the cycle characteristics.
  • X in -SO 3 X is an alkali metal or hydrogen (H), and as the alkali metal, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium ( Fr) can be used. From the viewpoint of battery performance, it is preferable to use Li, Na or K, and Li is particularly preferable.
  • SEI Solid Electrolyte Interface
  • a specific example of A of the chemical formula (1) is represented by the following chemical formula (2).
  • R 7 and R 8 in the chemical formula (2) are an alkyl group or H.
  • a methyl group is preferably used from the viewpoint of stability.
  • R 9 in the formula (2) is a methylene group (— (— CH 2 —) n —), and n is 0 or more and 10 or less. n is preferably 1 or more and 5 or less.
  • X of Formula (2) is an alkali metal or H.
  • the polymer of the present invention may be only one obtained by polymerizing the above-mentioned monomer containing A, or one obtained by copolymerizing another monomer (monomer containing B) with the monomer containing A.
  • the polymer according to the present invention exerts an improvement effect on higher cycle characteristics by copolymerizing.
  • B preferably contains a hydroxyl group, a carboxyl group, a sulfo group, an amino group and a phosphoric acid group.
  • monomers containing the structures of the following chemical formulas (3) to (6) are preferable.
  • X is an alkali metal or H, and as the alkali metal, Li or Na is preferable from the viewpoint of electrochemical stability.
  • the chemical formula (3) is particularly preferable. It is considered that when the chemical formula (3) is used, the wettability of the polymer to the negative electrode active material is increased, as a result, the coverage of the negative electrode active material is improved, and the cycle characteristics of the battery can be improved.
  • the polymer of the present invention is obtained by previously synthesizing and mixing a polymer containing A and a polymer containing B in addition to those obtained by mixing and copolymerizing a monomer containing A and a monomer containing B.
  • copolymerized ones are preferable.
  • the composition ratio of the copolymer of the chemical formula (1) is important for obtaining the effects of the present invention.
  • x / (x + y) is 0 ⁇ x / (x + y) ⁇ 1, preferably 0.4 ⁇ x / (x + y) ⁇ 1.
  • composition ratio of the copolymer and the composition ratio of the monomer containing A before the copolymerization and the monomer containing B are the same.
  • Polymerization method There is no particular limitation on the method of polymerizing the monomer containing A, and the method of copolymerizing the monomer containing A with the monomer containing B, and conventionally known methods can be used. For example, bulk polymerization, solution polymerization, emulsion polymerization or radical polymerization is suitable. At the time of polymerization, a polymerization initiator may be used, and it is preferable to use a radical polymerization initiator from the viewpoint of ease of handling.
  • the polymerization method using a radical polymerization initiator can be carried out at a temperature range and polymerization time which are usually performed.
  • the content of the initiator in the present invention is preferably 0.1 wt% to 20 wt%, more preferably 0.3 wt% or more and 5 wt%, with respect to the polymerizable compound.
  • the structure of the polymer containing A and the polymer containing B may be a linear structure, a branched structure, a crosslinked structure, or a dendrimer structure. From the viewpoint of workability, polymers having a linear structure are preferable.
  • the polymerization mode at the time of copolymerizing a monomer is not particularly limited as long as a polymer can be formed, and random copolymerization, alternating copolymerization, block copolymerization, graft copolymerization and the like can be mentioned.
  • Molecular weight of polymer There are no particular limitations on the molecular weight of the polymer containing A and the polymer containing B, as long as the polymer can coat the negative electrode active material, but from the viewpoint of workability, it has a number average molecular weight of 1,000 to 1,000,000. Is preferred.
  • the negative electrode material according to the present invention may further contain a conductive material for compensating for the electron conductivity, in addition to the Si-based negative electrode active material and the polymer described above.
  • a conductive material for compensating for the electron conductivity
  • a carbon material capable of absorbing and desorbing Li (chargeable and dischargeable) is preferably used.
  • the negative electrode active material and the carbon material can be combined or used in combination. Specific examples of the carbon material are not particularly limited as long as they can absorb and release Li, but graphite, soft carbon, and amorphous carbon are preferable from the viewpoint of electrochemical stability.
  • SiO x carbon composite material As a composite of the negative electrode active material and the carbon material, SiO x carbon composite material (SiO x C) can be preferably used.
  • SiO x C silicon oxide forms a core material, and a coating layer of a carbon material is formed on the surface of the core material.
  • the form and method of mixing of the negative electrode active material are important.
  • the forms of the coating include the following (a) to (d).
  • Form c A non-coated Si-based negative electrode active material and a polymer-coated carbon material are mixed.
  • D A Si-based negative electrode active material A form in which the mixture is coated with a polymer after mixing with a carbon material to form a mixture
  • the amount of coating on the carbon material is preferably more than 0 wt% and 10 wt% or less with respect to the carbon material, and more preferably 0.1 wt% or more and 5 wt% or less 0.3 wt% or more and 3 wt% or less are particularly preferable.
  • the mixing method (coating method) of the Si-based negative electrode active material and the polymer is important.
  • the coating is not particularly limited as long as the Si-based negative electrode active material is coated with a polymer, but the polymer may be dissolved in a solvent, the Si-based negative electrode active material may be added to the solution and stirred, and then the solvent may be dried and coated. It is preferable from the viewpoint of cost.
  • the solvent is not particularly limited as long as the polymer is dissolved, but a protic solvent such as water or ethanol, an aprotic solvent such as N-methylpyrrolidone, a nonpolar solvent such as toluene or hexane, or the like is preferable.
  • the negative electrode material is extracted with water, and the extract is measured by 1 H-NMR to confirm the presence of the polymer represented by the chemical formula (1). That is, in 1 H-NMR, the polymer represented by the chemical formula (1) can observe characteristic signals at 7 ppm to 8 ppm and 3 ppm to 4 ppm, so the polymer represented by the chemical formula (1) using this signal as an index The existence of can be confirmed.
  • the choice of the negative electrode binder is important.
  • the binder polyvinylidene fluoride, polyolefin, polytetrafluoroethylene, styrene butadiene rubber, polyamide, polyamide imide, acrylic binder and the like can be mentioned.
  • polyvinylidene fluoride, polyamide, polyamideimide, and an acrylic binder are preferable from the viewpoint of electrochemical stability.
  • these may be used in combination with polysaccharide-based polymers such as cellulose.
  • the negative electrode current collector There is no particular limitation on the negative electrode current collector.
  • a copper foil having a thickness of 10 to 100 ⁇ m, a perforated copper foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam copper plate, etc. are used. Titanium, nickel, etc. are also applicable.
  • a negative electrode slurry in which a negative electrode material, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, dipping method, spray method or the like, then the organic solvent is dried and pressure-formed by a roll press.
  • the negative electrode 12 can be manufactured.
  • the positive electrode 10 includes a positive electrode active material, a conductive agent, a binder, and a current collector.
  • the positive electrode active material is not particularly limited, and, for example, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are preferable.
  • the particle size of the positive electrode active material is usually defined to be equal to or less than the thickness of the mixture layer formed from the positive electrode active material, the conductive agent, and the binder.
  • the powder of the positive electrode active material contains coarse particles having a size equal to or larger than the mixture layer thickness, the coarse particles are removed in advance by sieve classification, air flow classification, etc. to produce particles of the mixed layer thickness or less. preferable.
  • the positive electrode active material is generally oxide-based and has high electrical resistance
  • a conductive agent made of carbon powder is used to compensate for the electrical conductivity. Since both the positive electrode active material and the conductive agent are usually powders, the powders can be mixed with a binder to bond the powders together and simultaneously adhere to the current collector.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, a perforated aluminum foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate or the like is used.
  • materials such as stainless steel and titanium are also applicable.
  • any current collector can be used without being limited to the material, shape, manufacturing method and the like.
  • a positive electrode slurry obtained by mixing a positive electrode active material, a conductive agent, a binder, and an organic solvent is attached to a current collector by a doctor blade method, dipping method, spray method or the like, then the organic solvent is dried and added by a roll press.
  • the positive electrode 10 can be manufactured by pressure molding. Moreover, it is also possible to laminate a plurality of mixture layers on the current collector by performing application to drying a plurality of times.
  • the separator 11 is inserted between the positive electrode 10 and the negative electrode 12 manufactured by the above-described method to prevent a short circuit of the positive electrode 10 and the negative electrode 12.
  • the separator 11 it is possible to use a polyolefin-based polymer sheet made of polyethylene, polypropylene or the like, or a two-layer structure in which a polyolefin-based polymer and a fluorine-based polymer sheet represented by polyethylene tetrafluoride are welded. It is.
  • a mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 11 so that the separator 11 does not shrink when the battery temperature rises. Since these separators 11 need to transmit lithium ions at the time of charge and discharge of the battery, they can generally be used in lithium ion secondary batteries if the pore size is 0.01 to 10 ⁇ m and the porosity is 20 to 90%. It is.
  • the present invention is not limited to the type of solvent and electrolyte, and the mixing ratio of solvents, and other electrolytic solutions can also be used.
  • non-aqueous solvents examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2- Dimethoxyethane, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3- Methyl-2-oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate, etc.
  • solvent There is a solvent.
  • Other solvents may be used as long as they do not decompose on the positive electrode 10 or the negative electrode
  • examples of the electrolyte LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or imide salts such as lithium represented by lithium trifluoromethane sulfonimide, multi
  • lithium salt LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or imide salts such as lithium represented by lithium trifluoromethane sulfonimide, multi
  • a non-aqueous electrolytic solution prepared by dissolving these salts in the above-mentioned solvent can be used as a battery electrolytic solution.
  • An electrolyte other than this may be used as long as it does not decompose on the positive electrode 10 and the negative electrode 12 of the battery according to the present embodiment.
  • an ion conductive polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, polyethylene oxide can be used as the electrolyte.
  • an ion conductive polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, polyethylene oxide.
  • ionic liquids can be used.
  • EMI-BF 4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • LiTFSI lithium LiN (SO 2 CF 3 ) 2
  • N- cyclic quaternary ammonium-based cation
  • a combination which does not decompose at the positive electrode 10 and the negative electrode 12 is selected from methyl-N-propylpyrolidinium and imide-based anions (for example, bis (fluorosulfonyl) imide). It can be used for such a battery.
  • the lithium battery using the negative electrode material of the present invention has high capacity and excellent cycle characteristics, it is suitable for small batteries for portable devices and large batteries for vehicles and the like.
  • composition x (mol%) of monomer I in copolymer and composition y (mol%) of monomer II will be described later Shown in 1.
  • the form a is a polymer coated with SiOC.
  • the amount of polymer coating (the amount of polymer mixed with the negative electrode active material) was 0.5 wt% with respect to SiOC.
  • Form b is composed of SiOC and natural graphite, and after SiOC is coated with a polymer, it is mixed with natural graphite. The polymer coverage was 0.5 wt% relative to SiOC.
  • the weight ratio of coated SiOC to natural graphite was 1: 9.
  • Form c is composed of SiOC and natural graphite, which is coated with natural graphite and then mixed with SiOC. The polymer coverage was 0.5 wt% relative to SiOC.
  • the weight ratio of SiOC to coated natural graphite was 1: 9.
  • Form d is composed of SiOC and natural graphite, and after mixing SiOC and natural graphite in a weight ratio of 1: 9 to prepare a mixture, the mixture is coated with a polymer.
  • the polymer coverage was 0.5 wt% relative to SiOC.
  • the coating with the polymer of a negative electrode active material was performed by removing water, after producing the aqueous solution of a polymer, adding and stirring a negative electrode active material.
  • the coating forms of Examples 1 to 7 and Reference Example 1 and Comparative Examples 1 and 2 are described in Table 1 to be described later.
  • a negative electrode active material was prepared by mixing polyvinylidene fluoride at a weight ratio of 95: 5, and further adding and mixing to N-methyl-2-pyrrolidone to prepare a slurry-like solution. .
  • the slurry was applied to a 10 ⁇ m thick copper foil by a doctor blade method and dried. Thereafter, the negative electrode was pressed to obtain a negative electrode for evaluation.
  • a positive electrode active material LiCoO 2
  • a conductive agent SP 270: graphite manufactured by Nippon Graphite Co., Ltd.
  • a polyvinylidene fluoride binder are mixed in a ratio of 85: 7.5: 7.5 wt%, N-
  • the mixture was charged into methyl-2-pyrrolidone to prepare a slurry solution.
  • the slurry was applied to a 20 ⁇ m thick aluminum foil by a doctor blade method and dried.
  • the mixture application amount was 200 g / m 2 . Then, it pressed and produced the positive electrode.
  • Examples 1 to 7 using the negative electrode material according to the present invention exhibited higher cycle characteristics than Comparative Examples 1 and 2.
  • Examples 5 and 6 (having a polymer composition ratio of 0.4 ⁇ x / (x + y) ⁇ 1 and the coating form d) exhibited high cycle characteristics.
  • Reference Example 1 uses only the monomer II as a polymer. Although the one using monomer II as the negative electrode material is not known, the polymer composition ratio (x / (x + y)) deviates from the definition of the present invention, and therefore, it is considered as a “reference example” and shows importance of the polymer composition ratio. Listed for When only the monomer II was used, the cycle characteristics were higher than Comparative Examples 1 and 2, but showed lower values as compared with Examples 4 to 7 which are the same coated form d. It is considered that this is because Monomer II has higher resistance than Monomer I.
  • a novel negative electrode material for a lithium ion secondary battery having high Li ion conductivity and capable of improving the cycle characteristics of the lithium ion secondary battery is provided. It has been demonstrated that it is possible.
  • SYMBOLS 1 ... Battery, 10 ... Positive electrode, 11 ... Separator, 12 ... Negative electrode, 13 ... Battery container (battery can), 14 ... Positive electrode current collection tab, 15 ... Negative electrode current collection tab, 16 ... Inner lid, 17 ... Internal pressure release valve, 18 ... gasket, 19 ... positive temperature coefficient (PTC) resistance element, 20 ... battery lid, 21 ... axis.
  • PTC positive temperature coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Chemistry (AREA)

Abstract

 高いリチウムイオン伝導性を有し、リチウムイオン二次電池のサイクル特性を向上させることが可能な、新規なリチウムイオン二次電池用負極材料を提供する。本発明に係るリチウムイオン二次電池用負極材料は、シリコン及び/又はシリコン化合物を含む負極活物質及び化学式(1)で表わされる重合体とを含むことを特徴とする(化学式(1)のAはアミド基(-CONH-)とスルホ基(-SOX(Xはアルカリ金属又は水素(H))を有する官能基である。Bは極性官能基を有する官能基である。RからRは、炭素数1~10の炭化水素基又は水素(H)である。x、yは、共重合体の組成比であり、0<x/(x+y)≦1である)。

Description

リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム
 本発明は、リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システムに関する。
 リチウムイオン二次電池(以下、「Li電池」とも称す)は高エネルギー密度を有するため、携帯電話などのモバイル機器に用いられている。またその特性を生かし、車載用などの大型電池の開発も進められている。一方、Li電池は様々な課題があり、そのなかでも電池の高容量化が重要な課題である。モバイル機器においては近年、スマートフォンが急激に増加している。スマートフォンは電気の消費量が多く、現状短時間しか使用できない。そのため電池の高容量化が必須となっている。また、車載などの大型電池においても、航続可能距離が短く、航続距離をのばすには、やはりより高容量の電池が必要となる。
 Li電池の高容量化のため、高容量材料の開発が進められている。Li電池の負極においては、シリコン(Si)を用いた負極活物質(負極材料)が注目されている。Siは4200mAh/gと現状主流のカーボンにくらべて10倍以上の理論容量を持つため高容量材料として期待されている。また、Siと二酸化ケイ素(SiO)を混合して作製するSiO、及びSiOを炭素で被覆したSiO炭素複合材料(SiOC)も高容量化材料として注目されている。
 しかしながら、上述したSi系負極活物質は高容量である一方、サイクル特性については、高いレベルの要求により、さらなる改善の余地がある。そのため、Si系負極活物質のサイクル特性を改善するため、フッ素化エチレンカーボネート(FEC)を電解液に添加する技術が開発されている(特許文献1)。FFCを添加することで、負極上にイオン伝導性があり、かつ電解液を遮断する被膜層が形成される。被膜層が形成されることで、負極にLiが吸蔵される際に生じる溶媒の共挿入を防止し、Si系負極活物質の構造安定性が高くなることで、サイクル特性が改善すると考えられている。
特開2008-210618号公報
 しかしながら、上述した特許文献1のようにFECなどの添加剤を電解液に添加すると、電池の抵抗が高くなる可能性がある。これは、FECにより形成される被膜は、Liイオン伝導性が比較的低いことが原因と考えられる。そのため、高いサイクル特性を有しつつ、電池の抵抗上昇を抑制するために、より高いLiイオン伝導性をもつ被膜で負極活物質を被覆する技術の開発が必要であった。
 本発明は、上記事情に鑑み、高いLiイオン伝導性を有し、リチウムイオン二次電池のサイクル特性を向上させることが可能な、新規なリチウムイオン二次電池用負極材料を提供することにある。
 本発明の一態様は、上記目的を達成するため、
 シリコン及び/又はシリコン化合物を含む負極活物質及び下記化学式(1)で表わされる重合体を含むことを特徴とするリチウムイオン二次電池用負極材料を提供する。
Figure JPOXMLDOC01-appb-C000006
 (化学式(1)のAはアミド基(-CONH-)とスルホ基(-SOX(Xはアルカリ金属又は水素(H))を有する官能基である。Bは極性官能基を有する官能基である。RからRは、炭素数1~10の炭化水素基又は水素(H)である。x、yは、共重合体の組成比であり、0<x/(x+y)≦1である。)
 本発明によれば、高いLiイオン伝導性を有し、リチウムイオン二次電池のサイクル特性を向上させることが可能な、新規なリチウムイオン二次電池用負極材料を提供することができる。
本発明に係るリチウムイオン二次電池の一例を示す断面模式図である。
 本発明の他の一態様は、負極活物質を含む負極材料と、バインダと、集電体とを含み、前記負極活物質は、シリコン及び/又はシリコン化合物を含み、前記負極材料は上記化学式(1)で表わされる重合体を含むことを特徴とするリチウムイオン二次電池用負極を提供する。
 また、本発明の他の一態様は、正極、負極、及び非水溶媒と支持塩とを含む非水電解液とを備え、前記負極は、負極活物質を含む負極材料を含み、前記負極活物質は、シリコン及び/又はシリコン化合物を含み、前記負極材料は、上記化学式(1)で表わされる重合体を含むことを特徴とするリチウムイオン二次電池を提供する。
 また、本発明の他の一態様は、上記リチウムイオン二次電池を用いたことを特徴とする電池システムを提供する。
 以下、本発明に係る実施形態について、より具体的に説明する。ただし、以下の説明は本発明の内容の具体例を示すものであり、本発明はこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更及び修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 <リチウムイオン二次電池の電池構造>
図1は本発明に係るリチウムイオン二次電池の一例を示す断面模式図である。図1に示したように、電池1は、正極10、セパレータ11、負極12、電池容器(即ち電池缶)13、正極集電タブ14、負極集電タブ15、内蓋16、内圧開放弁17、ガスケット18、正温度係数(Positive temperature coefficient;PTC)抵抗素子19、電池蓋20及び軸心21から構成される。電池蓋20は、内蓋16、内圧開放弁17、ガスケット18、及びPTC抵抗素子19からなる一体化部品である。また、軸心21には、正極10、セパレータ11及び負極12が捲回されている。
 セパレータ11を正極10及び負極12の間に挿入し、軸心21に捲回した電極群を作製する。軸心21は、正極10、セパレータ11及び負極12を担持できるものであれば、公知の任意のものを用いることができる。電極群は、図1に示した円筒形状の他に、短冊状電極を積層したもの、又は正極10と負極12を扁平状等の任意の形状に捲回したもの等、種々の形状にすることができる。電池容器13の形状は、電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。
 電池容器13の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、非水電解質に対し耐食性のある材料から選択される。また、電池容器13を正極10又は負極12に電気的に接続する場合は、非水電解質と接触している部分において、電池容器13の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、電池容器13の材料の選定を行う。
 電池容器13に電極群を収納し、電池容器13の内壁に負極集電タブ15を接続し、電池蓋20の底面に正極集電タブ14を接続する。電解液は、電池の密閉の前に電池容器13の内部に注入する。電解液の注入方法は、電池蓋20を解放した状態にて電極群に直接添加する方法、又は電池蓋20に設置した注入口(図示せず)から添加する方法がある。
 その後、電池蓋20を電池容器13に密着させ、電池全体を密閉する。電解液の注入口がある場合は、それも密封する。電池を密閉する方法には、溶接、かしめ等公知の技術を用いることができる。
 上記では正極及び負極とそれらを隔てるセパレータとを捲回した捲回式電極群にの場合について説明したが、本発明に係るリチウムイオン二次電池の構造はこれに限定されるものではなく、正極、負極及びセパレータを積層させた積層型の電極群であってもよい。
 <負極>
負極12は、負極活物質を含む負極材料と、バインダと、集電体とを含む。本発明において負極材料は、上述したようにシリコン及び/又はシリコン化合物を含む負極活物質及び上記した化学式(1)で表わされる重合体とを含む。以下、本発明に係る負極材料について詳述する。
 (負極材料)
(1)負極活物質
本発明において、負極活物質の選定は重要である。本発明の負極活物質はシリコン(Si)及び/又はSi化合物を含む(以下、「Si系負極活物質」とも称す)。Siとしては、金属(単体)のSiが挙げられ、またSi化合物としては、Siとコバルト(Co)、ニッケル(Ni)、チタン(Ti)、鉄(Fe)、マンガン(Mn)等のSi以外の元素との合金、さらにSiの酸化物が挙げられる。Siの酸化物としては、一般組成式がSiO(0.5≦x≦1.5)で表記されるSiと酸素(O)を構成元素に含む材料が好ましく用いられる。
 SiOはSiの酸化物のみを含むものに限定されず、Siの微結晶相又は非晶質相を含んでもよく、Siの微結晶相、又は非晶質相のSiOマトリクス中に、Si(たとえば微結晶Si)が分散した構造のものが含まれる。この場合、SiとOの原子比は、非晶質相のSiOと、その中に分散しているSiを合わせてxが0.5≦x≦1.5を満足していればよい。たとえば、非晶質相のSiOマトリクス中にSiが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1となるので、本発明においてはSiOと表記される。このような構造の場合、たとえばX線回折分析でSiの存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると微細なSiの存在が確認できる。
 SiOの粒径としては、後述する炭素材料との複合化効果を高め、さらに充放電での微細化を防ぐため平均粒径D50として0.1~10μmのものが好適である。なおD50はレーザー回折/散乱式粒度分析法で求める値である。
 (2)重合体
本発明に係る負極材料は、上記したSi系負極活物質の他に上記化学式(1)で表わされる重合体を含むことを特徴とする。Si系負極活物質は、電池のサイクル特性向上の観点では重合体で被覆されていることが好ましく、また実際に後述する実施例で述べた方法でSi系負極活物質と重合体とを混合した場合、Si系負極活物質のほとんどは重合体で被覆されているものと考えられるが、完全に被覆されていなくてもよい。すなわち、本発明は負極材料として上記したSi系負極活物質と以下に説明する重合体とを含んでいれば、本発明の効果を得ることができるものである。以下、化学式(1)で表わされる重合体について説明する。
 (Aのアミド基(-CONH-)の効果)
Aにアミド基を有することで重合体自体の電解液遮断性が高まり、その結果Si系負極活物質を用いた電池のサイクル特性が高くなると考えられる。
 (Aのスルホ基(-SOX)の効果)
Aがスルホ基を有することで、リチウムイオンの解離性を高めることができる。その結果として電池の抵抗を低下させる効果が得られる。また、スルホ基は電解液との親和性が低い官能基であると考えられ、Si系負極活物質の溶媒の共挿入を抑制し、サイクル特性の改善にとって重要な役割を果たしていると考えられる。-SOX中のXは、アルカリ金属又は水素(H)であり、アルカリ金属としてはリチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)を用いることができる。電池性能の観点からは、Li、Na又はKを用いることが好ましく、Liが特に好ましい。アルカリ金属にLiを選択することで、負極活物質表面にLiイオン伝導性にすぐれ、かつ電解液の遮断性の高い電解液・電極間物質(SEI:Solid Electrolyte Interface)が形成されるためである。
 (Aの具体例)
 化学式(1)のAの具体的な一例は、下記化学式(2)で表わされるものである。化学式(2)のR及びRは、アルキル基又はHである。アルキル基としては、安定性の観点から、メチル基が好適に用いられる。式(2)のRは、メチレン基(-(-CH-)-)であり、nは0以上10以下である。nは1以上5以下が好ましい。式(2)のXは、アルカリ金属又はHである。
Figure JPOXMLDOC01-appb-C000007
 (Bについて)
本発明の重合体は、上記したAを含むモノマーを重合させたもののみでもよいが、Aを含むモノマーに、他のモノマー(Bを含むモノマー)を共重合させたものであってもよい。本発明に係る重合体は、共重合することでより高いサイクル特性の改善効果を発現する。
 Bは、水酸基、カルボキシル基、スルホ基、アミノ基、リン酸基を含むものであることが好ましい。共重合するモノマー(Bを含むモノマー)としては、下記化学式(3)~化学式(6)の構造を含むモノマーが好適である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 化学式(3)~(6)中、Xはアルカリ金属又はHであり、アルカリ金属としては電気化学的安定性の観点からLi又はNaが好適である。化学式(3)~(6)の中でも、特に化学式(3)が好ましい。化学式(3)を用いると、負極活物質に対して重合体の濡れ性が高くなり、結果として負極活物質の被覆性が向上し、電池のサイクル特性を高めることができると考えられる。
 本発明の重合体は、Aを含むモノマーとBを含むモノマーとを混合し、共重合させたものの他、Aを含むポリマーとBを含むポリマーをそれぞれ事前に合成し、混合して得たものでもよいが、高分子の相溶性の観点からは、共重合させたものが好ましい。
 (共重合体組成比)
本発明において、化学式(1)の共重合体の組成比は、本発明の効果を得る上で重要である。x/(x+y)は、0<x/(x+y)≦1であり、好ましくは0.4≦x/(x+y)≦1である。x/(x+y)を制御することにより、サイクル特性に優れたLi電池を提供することができる。
 なお、本明細書において、共重合体組成比と、共重合前のAを含むモノマーとBを含むモノマーの組成比とは同じものであるとする。
 (重合体の重合法)
Aを含むもモノマーの重合法、及びAを含むモノマーと、Bを含むモノマーとの共重合法には特に限定は無く、従来から知られているものを用いることができる。例えば、バルク重合、溶液重合、乳化重合又はラジカル重合が好適である。重合に際しては、重合開始剤を用いても良く、取り扱いの容易さの点からはラジカル重合開始剤を用いることが好ましい。ラジカル重合開始剤を用いた重合法は、通常行われている温度範囲及び重合時間で行うことができる。本発明における開始剤配合量は、重合性化合物に対し0.1wt%から20wt%が好ましく、0.3wt%以上5wt%がより好ましい。
 (ポリマーの構造)
本発明において、Aを含むポリマー及びBを含むポリマーの構造は直鎖構造、枝分かれ構造、架橋構造、デンドリマー構造でもよい。作業性の観点からは直鎖構造のポリマーが好適である。モノマーを共重合した際の重合様式は、ポリマーが形成できれば特に問わないが、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合などが挙げられる。
 (ポリマーの分子量)
Aを含むポリマー及びBを含むポリマーの分子量は、負極活物質が被覆される程度のものであれば特に問わないが、作業性の観点から数平均分子量で1,000以上1,000,000以下が好適である。
 (重合体の具体例)
Aを含むモノマーとBを含むモノマーとを共重合させて得たポリマーとしては、例えば下記化学式(7)が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 (3)炭素材料
本発明に係る負極材料は、上記したSi系負極活物質及び重合体の他に、さらに電子伝導性を補うための導電材を含んでいてもよい。導電材としてはLi吸蔵放出可能な(充放電可能な)炭素材料が好適に用いられる。負極活物質と炭素材料とは複合化させるか、又は、混合して用いることができる。炭素材料の具体例としては、Liの吸蔵放出ができれば特に問わないが、電気化学的安定性の観点から黒鉛、ソフトカーボン、非晶質炭素が好適である。
 負極活物質と炭素材料とを複合化させたものとして、SiO炭素複合材料(SiOC)を好ましく用いることができる。SiOCは、シリコン酸化物がコア材を形成し、該コア材の表面に炭素材料の被覆層が形成されているものである。
 (負極活物質と重合体の混合形態(負極活物質の重合体による被覆形態)及び混合方法(被覆方法))
本発明の負極材料において、負極活物質の混合の形態及び方法は重要である。被覆の形態は、以下の(a)~(d)がある。
(i)Si系負極活物質を単独で用いる場合
a:Si系負極活物質を重合体で被覆する形態
(ii)Si系負極活物質と炭素材料を混合して用いる場合
b:Si系負極活物質を重合体で被覆し、被覆していない炭素材料と混合する形態
c:被覆していないSi系負極活物質と、重合体で被覆した炭素材料を混合する形態
d:Si系負極活物質と炭素材料とを混合して混合体を作製後、その混合体を重合体で被覆する形態
 a及びbの場合の被覆量(Si系負極活物質に対する重合体の混合量)は、Si系負極活物質に対して0wt%超、10wt%以下が好ましく、0.1wt%以上、5wt%以下がより好ましく、0.3wt%以上、3wt%以下が特に好ましい。
 cの場合、炭素材料への被覆量(炭素材料に対する重合体の混合量)は、炭素材料に対して0wt%超、10wt%以下が好ましく、0.1wt%以上、5wt%以下がより好ましく、0.3wt%以上、3wt%以下が特に好ましい。
 dの場合の被覆量(混合体に対する重合体の混合量)は、0wt%超、10wt%以下が好ましく、0.1wt%以上、5wt%以下がより好ましく、0.3wt%以上、3wt%以下が特に好ましい。
 被覆材の濃度(混合量、被覆量)を上記のように調整することにより、安定性の高いSEIが形成され、Li電池のサイクル特性が向上すると考えられる。
 本発明の負極材料において、Si系負極活物質と重合体の混合方法(被覆方法)は重要である。被覆は、Si系負極活物質が重合体で被覆されれば特に問わないが、重合体を溶媒に溶解させその溶液中にSi系負極活物質を加え撹拌後、溶媒を乾燥させ被覆することが、コストの観点からも好ましい。溶媒としては、重合体が溶解すれば特に問わないが、水、エタノールなどのプロトン性溶媒、N-メチルピロリドンなどの非プロトン性溶媒、トルエン、ヘキサンなどの非極性溶媒などが好適である。
 (負極材料中の重合体の確認方法)
負極材料を水を使って抽出し、その抽出液を1H-NMRで測定することにより化学式(1)で示される重合体の存在を確認することができる。即ち、1H-NMRにおいて、化学式(1)で表わされる重合体は、7ppm~8ppmと、3ppm~4ppmに特徴的なシグナルが観測できるため、このシグナルを指標に化学式(1)で表わされる重合体の存在を確認することができる。
 (バインダ)
本発明において、負極のバインダの選択は重要である。バインダとしては、ポリフッ化ビニリデン、ポリオレフィン、ポリテトラフルオロエチレン、スチレンブタジエンゴム、ポリアミド、ポリアミドイミド、アクリル系バインダなどが挙げられる。この中でも、電気化学的な安定性の観点からポリフッ化ビニリデン及び、ポリアミド、ポリアミドイミド、アクリル系バインダが好適である。また、これらにセルロースなどの多糖類系高分子を組み合わせて用いてもよい。
 (集電体)
負極集電体には特に限定はない。例えば、厚さが10~100μmの銅箔や、厚さ10~100μmで孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられ、材質は、銅の他に、ステンレス、チタン、ニッケルなども適用可能である。
 負極材料、バインダ、及び有機溶媒を混合した負極スラリーを、ドクターブレード法、ディッピング法、又はスプレー法等によって集電体へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、負極12を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
 <正極>
 正極10は、正極活物質と、導電剤と、バインダ及び集電体とを含む。正極活物質としては特に限定は無く、例えば、LiCoO、LiNiO、及びLiMnが好適である。他に、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-x(ただし、M=Co、Ni、Fe、Cr、Zn、Tiからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiMnMO(ただし、M=Fe、Co、Ni、Cu、Znからなる群から選ばれる少なくとも1種)、Li1-xMn(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caからなる群から選ばれる少なくとも1種、x=0.01~0.1)、LiNi1-x(ただし、M=Co、Fe、Gaからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiFeO、Fe(SO、LiCo1-x(ただし、M=Ni、Fe、Mnからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiNi1-x(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Fe(MoO、FeF、LiFePO、又はLiMnPO等を用いることができる。
 正極活物質の粒径は、正極活物質、導電剤、及びバインダから形成される合剤層の厚さ以下になるように通常は規定される。正極活物質の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子を作製することが好ましい。
 また、正極活物質は、一般に酸化物系であるために電気抵抗が高いので、電気伝導性を補うための炭素粉末からなる導電剤を利用する。正極活物質及び導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時に集電体へ接着させることができる。
 正極10の集電体には、厚さが10~100μmのアルミニウム箔、厚さが10~100μmで孔径が0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、又は発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン等の材質も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。
 正極活物質、導電剤、バインダ、及び有機溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、又はスプレー法等によって集電体へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、正極10を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
 <セパレータ>
 上記の方法で作製した正極10及び負極12の間にセパレータ11を挿入し、正極10及び負極12の短絡を防止する。セパレータ11には、ポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、又はポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた2層構造等を使用することが可能である。電池温度が高くなったときにセパレータ11が収縮しないように、セパレータ11の表面にセラミックス及びバインダの混合物を薄層状に形成してもよい。これらのセパレータ11は、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、気孔率が20~90%であれば、リチウムイオン二次電池に使用可能である。
 <電解質>
電解液の例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、又はエチルメチルカーボネート等を混合した溶媒に、電解質(支持塩)として六フッ化リン酸リチウム(LiPF)、又はホウフッ化リチウム(LiBF)を溶解させた溶液がある。本発明は、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。
 なお、電解液に使用可能な非水溶媒の例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、γ‐ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2‐ジメトキシエタン、2‐メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3‐ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3‐メチル‐2‐オキサゾリジノン、テトラヒドロフラン、1,2‐ジエトキシエタン、クロルエチレンカーボネート、又はクロルプロピレンカーボネート等の非水溶媒がある。本発明の電池に内蔵される正極10又は負極12上で分解しなければ、これ以外の溶媒を用いてもよい。
 また、電解質の例としては、LiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、又はリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩等、多種類のリチウム塩がある。これらの塩を、上記の溶媒に溶解してできた非水電解液を電池用電解液として使用することができる。本実施形態に係る電池が有する正極10及び負極12上で分解しなければ、これ以外の電解質を用いてもよい。
 固体高分子電解質(ポリマー電解質)を用いる場合には、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーを電解質に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ11を省略することができる利点がある。
 さらに、イオン性液体を用いることができる。例えば、1‐ethyl‐3‐methylimidazolium tetrafluoroborate(EMI-BF)、リチウム塩LiN(SOCF(LiTFSI)とトリグライムとテトラグライムとの混合錯体、環状四級アンモニウム系陽イオン(N‐methyl-N‐propylpyrrolidiniumが例示される。)、及びイミド系陰イオン(bis(fluorosulfonyl)imideが例示される。)より、正極10及び負極12にて分解しない組み合わせを選択して、本実施形態に係る電池に用いることができる。
 <電池システム>
本発明の負極材料を用いたLi電池は、高容量かつサイクル特性に優れた性質を持つため、携帯機器用の小型電池や、車載用などの大型電池に好適である。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1~7、参考例1及び比較例1及び2のリチウムイオン二次電池の作製)
(1)重合体の合成
反応容器に、下記化学式(8)で示されるモノマーI(化学式(1)において、Aを含むモノマー)及び/又は下記化学式(9)で示されるモノマーII(化学式(1)において、Bを含むモノマー)とを所定量加え、反応溶媒として水を加えた。さらに、その溶液に重合開始剤としてAIBN(2,2´-アゾビス(イソブチロニトリル))を加えた。重合開始剤の濃度はモノマーの総量に対し4wt%になるように加えた。その後、反応溶液を60℃、3h加熱することでポリマー(モノマーI及びモノマーIIの共重合体)を合成した。実施例1~7、参考例1及び比較例1~2の重合体の組成(共重合体におけるモノマーIの組成x(mol%)及びモノマーIIの組成y(mol%))を、後述する表1に示す。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 (2)負極活物質及び重合体の混合(負極活物質の重合体による被覆)
負極活物質として、SiOCと、充放電可能な炭素材料(天然黒鉛)Cを混合したものを用い、上記で用意した重合体と混合した。なおSiOCにおいて、SiOに複合化させた炭素量は10wt%にしたものを用いた。また、混合(被覆)形態は、下記a~dとした。
 すなわち、形態aはSiOCを重合体で被覆したものである。重合体の被覆量(負極活物質に対する重合体の混合量)は、SiOCに対し0.5wt%にした。形態bはSiOCと天然黒鉛から構成され、SiOCを重合体で被覆したあと、天然黒鉛と混合したものである。重合体の被覆量は、SiOCに対し0.5wt%にした。また被覆したSiOCと天然黒鉛の重量比は1:9であった。形態cは、SiOCと天然黒鉛から構成され、天然黒鉛を重合体で被覆したあと、SiOCと混合したものである。重合体の被覆量は、SiOCに対し0.5wt%にした。SiOCと被覆した天然黒鉛の重量比は1:9であった。形態dは、SiOCと天然黒鉛から構成され、SiOCと天然黒鉛を1:9の重量比で混合し混合体を作製した後、混合体を重合体で被覆したものである。重合体の被覆量は、SiOCに対し0.5wt%にした。
 なお、負極活物質の重合体による被覆は、重合体の水溶液を作製したあと負極活物質を加えて撹拌した後、水を除去することで行った。実施例1~7、参考例1及び比較例1~2の被覆形態を、後述する表1に併記する。
 (3)負極の作製
負極は、負極活物質にポリフッ化ビニリデンを95:5の重量%の比率で混合し、更にN‐メチル‐2‐ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ10μmの銅箔にドクターブレード法で塗布し、乾燥した。その後、負極をプレスして評価用の負極を得た。
 (4)正極の作製
正極活物質(LiCoO)、導電剤(SP270:日本黒鉛社製黒鉛)、ポリフッ化ビニリデンバインダーを85:7.5:7.5重量%の割合で混合し、N‐メチル‐2‐ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ20μmのアルミニウム箔にドクターブレード法で塗布し、乾燥した。合剤塗布量は、200g/mであった。その後、プレスして正極を作製した。
 (5)18650電池の作製及び初期化
正極及び負極間に、セパレータを挟み捲回した。捲回体を、電池缶に入れ、さらに電解液を加えた。その後密閉し、18650電池を得た。その後、電池を充放電した。充放電を3サイクル繰り返すことで電池を初期化した。なお、充放電の範囲は2.7Vから4.1Vの範囲であった。
 (6)18650電池のサイクル特性評価
電圧範囲を2.7Vから4.1Vの範囲に設定して、充放電を繰り返した。充放電の電流値は1000mAであった。サイクル特性は、1サイクル目の容量と50サイクル目の容量を測定し、50サイクル目の容量/1サイクル目の容量×100(%)を容量維持率として規定した。評価結果を表1に併記する。
Figure JPOXMLDOC01-appb-T000015
 表1に示したように、本発明に係る負極材料を用いた実施例1~7は、比較例1及び2よりも高いサイクル特性を示した。特に、実施例5及び6(重合体組成比が0.4≦x/(x+y)≦1で、被覆形態dのもの)は、高いサイクル特性を示した。
 参考例1は、重合体としてモノマーIIのみを用いたものである。負極材料としてモノマーIIを用いたものは公知ではないが、重合体組成比(x/(x+y))が本発明の規定を外れるので、「参考例」とし、重合体組成比の重要性を示すために記載した。モノマーIIのみを用いた場合、サイクル特性は比較例1及び2よりは高いが、同じ被覆形態dである実施例4~7と比較すると、低い値を示した。これは、モノマーIIはモノマーIよりも抵抗が高いためであると考えられる。
 実施例1~4を比較すると、被覆形態はdが最も高いサイクル特性を示した。また、実施例4~7を比較すると、モノマーIのみを重合させたものよりも、モノマーI及びモノマーIIを共重合させたものの方が高いサイクル特性を示した。
 以上説明したように、本発明によれば、高いLiイオン伝導性を有し、リチウムイオン二次電池のサイクル特性を向上させることが可能な、新規なリチウムイオン二次電池用負極材料を提供することが可能であることが実証された。
 なお、上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
1…電池、10…正極、11…セパレータ、12…負極、13…電池容器(電池缶)、14…正極集電タブ、15…負極集電タブ、16…内蓋、17…内圧開放弁、18…ガスケット、19…正温度係数(Positive temperature coefficient;PTC)抵抗素子、20…電池蓋、21…軸心。

Claims (14)

  1.  シリコン及び/又はシリコン化合物を含む負極活物質及び下記化学式(1)で表わされる重合体とを含むことを特徴とするリチウムイオン二次電池用負極材料。

    Figure JPOXMLDOC01-appb-C000001

     (化学式(1)のAはアミド基(-CONH-)とスルホ基(-SOX(Xはアルカリ金属又は水素(H))を有する官能基である。Bは極性官能基を有する官能基である。RないしRは、炭素数1~10の炭化水素基又は水素(H)である。x、yは、共重合体の組成比であり、0<x/(x+y)≦1である。)
  2.  前記負極活物質が、前記重合体で被覆されていることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。
  3.  前記重合体のAは、下記化学式(2)で表わされることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。

    Figure JPOXMLDOC01-appb-C000002

     (化学式(2)のR及びRは、炭素数1~10のアルキル基又は水素(H)である。Rは、メチレン基(-(-CH-)-)であり、nは0以上10以下である。Xは、アルカリ金属又は水素(H)である。)
  4.  前記重合体のBは、水酸基、カルボキシル基、スルホ基、アミノ基、リン酸基を含むことを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。
  5.  前記重合体のBは、下記化学式(3)で表わされることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。

    Figure JPOXMLDOC01-appb-C000003
  6.  前記共重合体の組成比が、0.4≦x/(x+y)≦1であることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。
  7.  前記シリコン化合物は、シリコン酸化物又はシリコン及びシリコン以外の元素との化合物であることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。
  8.  さらに炭素材料を含むことを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。
  9.  さらに炭素材料を含み、前記シリコン化合物はシリコン酸化物であり、前記シリコン酸化物がコア材を形成し、該コア材の表面に前記炭素材料の被覆層が形成されていることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材料。
  10.  負極活物質を含む負極材料と、バインダと、集電体とを含み、
     前記負極活物質は、シリコン及び/又はシリコン化合物を含み、
     前記負極材料は下記化学式(1)で表わされる重合体を含むことを特徴とするリチウムイオン二次電池用負極。

    Figure JPOXMLDOC01-appb-C000004

     (化学式(1)のAはアミド基(-CONH-)とスルホ基(-SOX(Xはアルカリ金属又は水素(H))を有する官能基である。Bは極性官能基を有する官能基である。RからRは、炭素数1~10の炭化水素基又は水素(H)である。x、yは、共重合体の組成比であり、0<x/(x+y)≦1である。)
  11.  前記負極活物質が、前記重合体で被覆されていることを特徴とする請求項10に記載のリチウムイオン二次電池用負極。
  12.  正極、負極、及び非水溶媒と支持塩とを含む非水電解液とを備え、
     前記負極は、負極活物質を含む負極材料を含み、
     前記負極活物質は、シリコン及び/又はシリコン化合物を含み、
     前記負極材料は、下記化学式(1)で表わされる重合体を含むことを特徴とするリチウムイオン二次電池。

    Figure JPOXMLDOC01-appb-C000005

     (化学式(1)のAはアミド基(-CONH-)とスルホ基(-SOX(Xはアルカリ金属又は水素(H))を有する官能基である。Bは極性官能基を有する官能基である。RからRは、炭素数1~10の炭化水素基又は水素(H)である。x、yは、共重合体の組成比であり、0<x/(x+y)≦1である。)
  13.  前記負極活物質が、前記重合体で被覆されていることを特徴とする請求項12に記載のリチウムイオン二次電池。
  14.  請求項12に記載のリチウムイオン二次電池を用いたことを特徴とする電池システム。
PCT/JP2013/077569 2013-10-10 2013-10-10 リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム WO2015052809A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015541378A JP6110951B2 (ja) 2013-10-10 2013-10-10 リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム
PCT/JP2013/077569 WO2015052809A1 (ja) 2013-10-10 2013-10-10 リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム
US15/022,819 US10355279B2 (en) 2013-10-10 2013-10-10 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries using same, lithium ion secondary battery and battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077569 WO2015052809A1 (ja) 2013-10-10 2013-10-10 リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム

Publications (1)

Publication Number Publication Date
WO2015052809A1 true WO2015052809A1 (ja) 2015-04-16

Family

ID=52812656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077569 WO2015052809A1 (ja) 2013-10-10 2013-10-10 リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム

Country Status (3)

Country Link
US (1) US10355279B2 (ja)
JP (1) JP6110951B2 (ja)
WO (1) WO2015052809A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152375A (ja) * 2016-02-23 2017-08-31 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219723A1 (de) * 2014-09-29 2016-03-31 Robert Bosch Gmbh Elektrode für eine Batteriezelle und Batteriezelle
CA2989690A1 (en) 2015-06-17 2016-12-22 Clariant International Ltd Water-soluble or water-swellable polymers as water loss reducers in cement slurries
PL3475996T3 (pl) 2016-06-23 2022-04-25 Tesla, Inc. Ogniwo akumulatorowe mające zgrzewane wieko akumulatora
WO2018108609A1 (en) 2016-12-12 2018-06-21 Clariant International Ltd Polymer comprising certain level of bio-based carbon
JP7050784B2 (ja) 2016-12-12 2022-04-08 クラリアント・インターナシヨナル・リミテツド 化粧料組成物、皮膚科学的組成物または医薬組成物におけるバイオベースのポリマーの使用
US11401362B2 (en) 2016-12-15 2022-08-02 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US11306170B2 (en) 2016-12-15 2022-04-19 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
US11542343B2 (en) 2016-12-15 2023-01-03 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
EP3554646A1 (en) 2016-12-15 2019-10-23 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
CN110419128B (zh) * 2017-09-15 2022-12-13 株式会社Lg新能源 用于锂二次电池的负极以及包括该负极的锂二次电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072948A1 (ja) * 2005-12-22 2007-06-28 Jsr Corporation 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
WO2007088979A1 (ja) * 2006-02-02 2007-08-09 Jsr Corporation 重合体組成物、二次電池電極用ペースト、及び二次電池電極
WO2011024789A1 (ja) * 2009-08-24 2011-03-03 Jsr株式会社 電極形成用組成物、電極形成用スラリー、電極および電気化学デバイス
JP2012074167A (ja) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
WO2012111564A1 (ja) * 2011-02-14 2012-08-23 日本ゼオン株式会社 二次電池負極用スラリー、二次電池用負極及びその製造方法、並びに二次電池
WO2012165422A1 (ja) * 2011-05-31 2012-12-06 日本ゼオン株式会社 リチウム二次電池正極用複合粒子、リチウム二次電池正極用複合粒子の製造方法、リチウム二次電池用正極の製造方法、リチウム二次電池用正極、及びリチウム二次電池
JP2013012357A (ja) * 2011-06-28 2013-01-17 Nippon Zeon Co Ltd 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP2013191485A (ja) * 2012-03-15 2013-09-26 Hitachi Maxell Ltd 非水二次電池
JP2013197069A (ja) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology リチウム二次電池用負極材料及びその製造方法、リチウム二次電池用負極及びその製造方法、リチウム二次電池及びこれを用いた電気機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855459B2 (en) * 2002-06-20 2005-02-15 Samsung Sdi Co., Ltd Electrode for rechargeable lithium battery, method of preparing same and rechargeable lithium battery having the same
KR20090109570A (ko) 2007-02-06 2009-10-20 쓰리엠 이노베이티브 프로퍼티즈 컴파니 신규한 결합제를 포함하는 전극과, 그의 제조 방법 및 사용 방법
JP5165258B2 (ja) 2007-02-26 2013-03-21 日立マクセルエナジー株式会社 非水電解質二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072948A1 (ja) * 2005-12-22 2007-06-28 Jsr Corporation 二次電池電極用バインダー組成物、二次電池電極用スラリー、及び二次電池電極
WO2007088979A1 (ja) * 2006-02-02 2007-08-09 Jsr Corporation 重合体組成物、二次電池電極用ペースト、及び二次電池電極
WO2011024789A1 (ja) * 2009-08-24 2011-03-03 Jsr株式会社 電極形成用組成物、電極形成用スラリー、電極および電気化学デバイス
JP2012074167A (ja) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd リチウムイオン二次電池用電極及びその製造方法、並びにリチウムイオン二次電池
WO2012111564A1 (ja) * 2011-02-14 2012-08-23 日本ゼオン株式会社 二次電池負極用スラリー、二次電池用負極及びその製造方法、並びに二次電池
WO2012165422A1 (ja) * 2011-05-31 2012-12-06 日本ゼオン株式会社 リチウム二次電池正極用複合粒子、リチウム二次電池正極用複合粒子の製造方法、リチウム二次電池用正極の製造方法、リチウム二次電池用正極、及びリチウム二次電池
JP2013012357A (ja) * 2011-06-28 2013-01-17 Nippon Zeon Co Ltd 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP2013191485A (ja) * 2012-03-15 2013-09-26 Hitachi Maxell Ltd 非水二次電池
JP2013197069A (ja) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology リチウム二次電池用負極材料及びその製造方法、リチウム二次電池用負極及びその製造方法、リチウム二次電池及びこれを用いた電気機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152375A (ja) * 2016-02-23 2017-08-31 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法

Also Published As

Publication number Publication date
US10355279B2 (en) 2019-07-16
JP6110951B2 (ja) 2017-04-05
US20160211521A1 (en) 2016-07-21
JPWO2015052809A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6110951B2 (ja) リチウムイオン二次電池用負極材料、及びそれを用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、電池システム
JP4222519B2 (ja) リチウムイオン二次電池およびこれを用いた機器
WO2017183696A1 (ja) リチウム二次電池及びリチウム二次電池の製造方法
JP2009302058A (ja) リチウム電池
JP6304746B2 (ja) リチウムイオン二次電池
WO2013042503A1 (ja) 非水系二次電池
JP5564872B2 (ja) 非水電解質二次電池
US10361431B2 (en) Lithium ion secondary battery
JP2015204178A (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
WO2015029248A1 (ja) 負極活物質被覆材並びにこれを用いた負極材料、負極、リチウムイオン二次電池及び電池システム並びにモノマー及びその合成方法
JP2015159050A (ja) Li電池用材料
JP5242315B2 (ja) 非水電解質二次電池
JP2014026868A (ja) 非水電解液二次電池用正極、及び非水電解液二次電池
WO2015037115A1 (ja) リチウムイオン二次電池用負極材料
JP2017117686A (ja) リチウムイオン二次電池
WO2015015598A1 (ja) リチウムイオン二次電池負極活物質用被覆材、前記被覆材で被覆されたリチウムイオン二次電池負極活物質、および、前記負極活物質を負極に用いたリチウムイオン二次電池
WO2014115322A1 (ja) リチウムイオン二次電池用負極活物質及びそれらを用いたリチウムイオン二次電池
JP2006344395A (ja) リチウム二次電池用正極及びその利用と製造
TWI548137B (zh) Lithium ion secondary battery anode material
JP2013239356A (ja) リチウムイオン二次電池用負極保護剤、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
JP6699087B2 (ja) リチウムイオン二次電池用正極およびその製造方法、並びにリチウムイオン二次電池
WO2015029247A1 (ja) 負極活物質被覆材並びにこれを用いた負極材料、負極、リチウムイオン二次電池及び電池システム
WO2015118676A1 (ja) Li電池用材料
WO2015118675A1 (ja) リチウムイオン二次電池用負極材料
JP2017041389A (ja) Li電池用添加剤およびそれを用いたLi電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541378

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15022819

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895217

Country of ref document: EP

Kind code of ref document: A1