WO2015046607A1 - 自動変速機の油圧制御装置 - Google Patents

自動変速機の油圧制御装置 Download PDF

Info

Publication number
WO2015046607A1
WO2015046607A1 PCT/JP2014/076206 JP2014076206W WO2015046607A1 WO 2015046607 A1 WO2015046607 A1 WO 2015046607A1 JP 2014076206 W JP2014076206 W JP 2014076206W WO 2015046607 A1 WO2015046607 A1 WO 2015046607A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching valve
state
port
input port
output port
Prior art date
Application number
PCT/JP2014/076206
Other languages
English (en)
French (fr)
Inventor
平井 信行
雅路 山口
芳充 兵藤
土田 建一
深谷 直幸
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US15/021,883 priority Critical patent/US9964206B2/en
Priority to CN201480050476.4A priority patent/CN105556178B/zh
Priority to DE112014003353.7T priority patent/DE112014003353T5/de
Publication of WO2015046607A1 publication Critical patent/WO2015046607A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • F16H61/0267Layout of hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • F16H3/666Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another with compound planetary gear units, e.g. two intermeshing orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0276Elements specially adapted for hydraulic control units, e.g. valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/044Smoothing ratio shift when a freewheel device is disengaged or bridged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0485Smoothing ratio shift during range shift from neutral (N) to reverse (R)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1288Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/006Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising eight forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/202Transmissions using gears with orbital motion characterised by the type of Ravigneaux set
    • F16H2200/2023Transmissions using gears with orbital motion characterised by the type of Ravigneaux set using a Ravigneaux set with 4 connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2046Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with six engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2048Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with seven engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2066Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using one freewheel mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2079Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches
    • F16H2200/2082Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches one freewheel mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • F16H3/663Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another with conveying rotary motion between axially spaced orbital gears, e.g. RAVIGNEAUX

Definitions

  • the present disclosure relates to a hydraulic control device for an automatic transmission mounted on a vehicle such as an automobile.
  • the hydraulic control device sets the reverse range pressure as described above by setting the distribution valve to the right half position in FIG.
  • the hydraulic servo of clutch C-3 and brake B-2 can be supplied.
  • one hydraulic servo of the engagement element forming the reverse stage in the N range is used. It is considered to supply a predetermined hydraulic pressure.
  • the hydraulic control device (20) of the automatic transmission (1) includes a linear solenoid valve (SL3) that outputs a regulated control pressure, and a control pressure (SL) from the linear solenoid valve (SL3).
  • P SL3 ) can be input to the control pressure input port (21g), the first input port (21e), and the hydraulic servo (27) of the first friction engagement element (C-3) engaged when forming the reverse gear.
  • a first state in which the first output port (21f) communicates (right half position in FIG.
  • a second switching valve (22) configured to be switchable to a fourth state (left half position in FIG. 3) in which the second input port (22g) and the third output port (22b) communicate with each other;
  • a first switching section (24) for switching the state of the first switching valve (21);
  • a second switching part (25) for switching the state of the second switching valve (22),
  • P rev The reverse range pressure (P rev ) input from the reverse range pressure input port (22d) of the second switching valve (22) is used as the fourth output port (22e) of the second switch valve (22).
  • the second switching valve (22) When switching from the neutral range to the reverse range, the second switching valve (22) is set to the fourth state (left half position in FIG. 3), and the first switching valve (21) is set to the first state ( Switching from the right half position in FIG. 3 to the second state (left half position in FIG. 3), the reverse range pressure input to the reverse range pressure input port (22d) by the second switching valve (22). (P rev ) is in a blocked state.
  • FIG. 4 is a schematic diagram showing the hydraulic control device of FIG. 3 during NR transition.
  • an automatic transmission 1 suitable for use in, for example, an FR type (front engine / rear drive) vehicle is an input shaft 11 of the automatic transmission 1 that can be connected to an engine (drive source) (not shown).
  • the torque converter 7 and the speed change mechanism 2 are provided around the axial direction of the input shaft 11 so that the rotational power transmitted from the engine can be changed.
  • an FR type vehicle is applied, but the present invention is not limited to this, and for example, an FF type (front engine / front drive) vehicle may be used.
  • the torque converter 7 includes a pump impeller 7a connected to the input shaft 11 of the automatic transmission 1, and a turbine runner 7b to which rotation of the pump impeller 7a is transmitted via a working fluid. 7 b is connected to the input shaft 12 of the speed change mechanism 2 disposed coaxially with the input shaft 11. Further, the torque converter 7 is provided with a lock-up clutch 10. When the lock-up clutch 10 is engaged, the rotation of the input shaft 11 of the automatic transmission 1 is directly applied to the input shaft 12 of the transmission mechanism 2. Communicated.
  • the transmission mechanism 2 includes a planetary gear DP and a planetary gear unit PU on the input shaft 12 (and the intermediate shaft 13).
  • the planetary gear DP includes a sun gear S1, a carrier CR1, and a ring gear R1, and the carrier CR1 has a pinion P1 meshing with the sun gear S1 and a pinion P2 meshing with the ring gear R1 so as to mesh with each other. It is a pinion planetary gear.
  • the planetary gear unit PU has a sun gear S2, a sun gear S3, a carrier CR2 (CR3), and a ring gear R3 (R2) as four rotating elements, and the carrier CR2 is engaged with the sun gear S2 and the ring gear R3. And a so-called Ravigneaux type planetary gear having the long pinion P4 and the short pinion P3 meshing with the sun gear S3 in mesh with each other.
  • the sun gear S1 of the planetary gear DP is connected to, for example, a boss portion 3b that is integrally fixed to the mission case 3, and the rotation is fixed.
  • the boss portion 3b extends from the oil pump body 3a.
  • the carrier CR1 is connected to the input shaft 12 so as to be the same rotation as the rotation of the input shaft 12 (hereinafter referred to as “input rotation”), and is connected to the fourth clutch C-4.
  • the ring gear R1 is decelerated by reducing the input rotation by the fixed sun gear S1 and the carrier CR1 that rotates, and is connected to the first clutch C-1 and the third clutch C-3.
  • the first clutch C-1 forms a transmission path together with other clutches and brakes.
  • the sun gear S2 of the planetary gear unit PU is connected to the first brake B-1 and can be fixed to the transmission case 3, and is connected to the fourth clutch C-4 and the third clutch C-3.
  • the input rotation of the carrier CR1 can be input via the fourth clutch C-4, and the reduction rotation of the ring gear R1 can be input via the third clutch C-3.
  • the sun gear S3 is connected to the first clutch C-1, so that the reduced rotation of the ring gear R1 can be input.
  • the carrier CR2 is connected to the second clutch C-2 to which the rotation of the input shaft 12 is input via the intermediate shaft 13, and the input rotation can be freely input via the second clutch C-2. And connected to the one-way clutch F-1 and the second brake B-2, and the rotation in one direction with respect to the transmission case 3 is restricted via the one-way clutch F-1, and the second brake The rotation can be fixed via B-2.
  • the ring gear R3 is connected to an output shaft 15 that outputs rotation to a drive wheel (not shown).
  • the automatic transmission 1 configured as described above includes the clutches C-1 to C-4, the brake B-1 and the brake B-2, and the one-way clutch F-1 shown in the skeleton diagram of FIG.
  • the first forward speed (1st) to the eighth forward speed (8th) of the drive (D) range (position) and the reverse first speed of the reverse (R) range by engaging and disengaging with the combinations shown in the engagement table (R), parking (P) range, and neutral (N) range are achieved respectively.
  • the hydraulic control device 20 includes a first switching valve 21 and a second switching valve 22, and a range pressure (reverse range pressure Prev and forward range pressure) according to the operation of the shift member 30.
  • a manual shift valve 28, a linear solenoid valve 26, and the like are provided as a range pressure generating unit that generates P D ).
  • the hydraulic control device 20 includes a normally closed type first on / off solenoid valve (first switching unit) 24 that switches the position (state) of the spool 21p of the first switching valve 21 and the second switching valve 22.
  • a normally closed type second on / off solenoid valve (second switching portion) 25 for switching the position (state) of the spool 22p is also provided.
  • the first switching valve 21 is a distribution valve for distributing the control pressure P SL3 from normally closed linear solenoid valve SL3 and the hydraulic servo 27 of the clutch C-3, the hydraulic servo 29 of the brake B-2, As a result, the linear solenoid valve is shared between the clutch C-3 and the brake B-2, and the number of linear solenoid valves used for engagement is reduced by one.
  • the second switching valve 22 is configured to output and shut off the control pressure PSL3 output from the first switching valve 21 to the hydraulic servo 29 of the brake B-2 to the hydraulic servo 29 of the brake B-2.
  • the second switching valve 22 is in the right half position, so that it is possible to achieve a reverse inhibit function that prevents the reverse gear from being formed when traveling forward at a predetermined speed or higher.
  • the first switching valve 21 includes a spool 21p and a spring 21s that urges the spool 21p upward in the drawing, and hydraulic oil is provided above the spool 21p in the drawing. It has a chamber 21a.
  • the input port (control pressure input port) 21g and the input port (first input port) to which the control pressure PSL3 can be input are connected to the output port 26a of the linear solenoid valve 26 via the range pressure input port 21c and the oil passage 41. ) 21e.
  • first switching valve 21 includes an output port (first output port) 21f, an output port (second output port) 21d, an output port (connected to the hydraulic servo 27 of the clutch C-3 via an oil passage 42.
  • (5th output port) 21b is comprised.
  • the first switching valve 21 has a signal pressure P from the first on / off solenoid valve 24.
  • S1 When S1 is output, the left half position (second state) is switched to the right half position (first state).
  • the first switching valve 21 is configured such that the input port 21g and the output port 21f and the input port 21c and the output port 21d communicate with each other when the first switching valve 21 is set to the left half position. Further, the input port 21g and the output port 21d, the input port 21e and the output port 21f, and the input port 21c and the output port 21b communicate with each other when the right half position is set.
  • the second switching valve 22 has a spool 22p and a spring 22s that urges the spool 22p upward in the figure, and has a hydraulic oil chamber 22a in the upper part of the spool 22p in the figure. ing.
  • the second switching valve 22 via the oil passage 43 connected to the reverse range pressure output port 28a of the manual shift valve 28, an input port the reverse range pressure P rev that can not be pressure regulated can be entered (the 1 reverse range pressure input port) 22d, an input port (second input port) 22g connected to the output port 21d via the oil passage 46, and an input port (third input) communicating with the output port 21b via the oil passage 45 Port) 22f.
  • the reverse range pressure Prev can be input to the input port 22f via the output port 21b.
  • the second switching valve 22 is connected to the output port (third output port) 22b connected to the hydraulic servo 29 of the brake B-2 and the output port (fourth output) connected to the input port 21e via the oil passage 47.
  • the second switching valve 22 has a signal pressure P from the second on / off solenoid valve 25.
  • S2 When S2 is output, the left half position (fourth state) is switched to the right half position (third state).
  • the input port 22g and the output port 22b, the output port 22e and the drain port 22c communicate with each other, and the reverse range pressure P rev input to the input port 22d. Is configured to be in a shut-off state.
  • the input port 22f and the output port 22b, the input port 22d and the output port 22e communicate with each other, and the input port 22g is blocked.
  • the drain port 22c is connected to a check valve 23 that is provided in the middle of the drain circuit 48 and functions as a flow rate limiting unit that limits the flow rate of oil discharged from the drain port 22c.
  • the hydraulic control device 20 moves the first switching valve 21 to the left half position in FIG. 3 and the second switching valve 22 to the right half position in FIG.
  • the hydraulic pressure supply is shut off. That is, the first switching valve 21 is configured to block communication between the input port 21e and the output port (fifth output port) 21b of the first switching valve 21 by being in the right half position in FIG.
  • the second switching valve 22 is configured to block communication between the input port 22g and the output port 22b by being in the right half position.
  • the second switching valve 22 is in a reverse inhibit state in which the supply of hydraulic pressure to the hydraulic servo 29 of the brake B-2 is cut off when the first switching valve 21 is in the right half position when the first switching valve 21 is in the left half position. It becomes.
  • the operation of the hydraulic control device 20 at the time of the failure in which the spool 22p cannot move when the second switching valve 22 is in the reverse inhibit state, that is, the right half position (third state) will be described. . As shown in FIG.
  • the spool 22p of the second switching valve 22 is fixed at the right half position due to an on failure of the second on / off solenoid valve 25, a valve stick, or the like, and the driver changes the R range. If the reverse gear cannot be formed by a normal method even if selected, the hydraulic control device 20 sets the first switching valve 21 to the right half position and forms the reverse gear.
  • the reverse range Prev input to the input port 21c via the oil passage 43 is changed to the second switching via the oil passage 45 from the output port 21b. It is output to the input port 22f of the valve 22 and output from the output port 22b to the hydraulic servo 29 of the brake B-2.
  • the reverse range pressure P rev input to the input port 22d of the second switching valve 22 via the oil passage 43 and 44, the input port 21e of the first switching valve 21 through the oil passage 47 from the output port 22e This is input to the hydraulic servo 27 of the clutch C-3 from the output port 21f through the oil passage 42.
  • the brake B-2 and the clutch C-3 are engaged by the reverse range Prev , and the hydraulic control device 20 can ensure the formation of the reverse gear even when the second switching valve 22 fails.
  • the hydraulic oil chamber of the hydraulic servo 27 of the clutch C-3 is formed as small as possible.
  • the hydraulic pressure control device 20 performs low pressure control for supplying a predetermined hydraulic pressure to the brake B-2 in advance in order to improve the responsiveness at the time of NR.
  • the first switching valve 21 is in the right half position (first state)
  • the second switching valve 22 is in the left half position (fourth state).
  • control pressure P SL3 controlled to a low pressure by the linear solenoid valve 26 is input from the input port 21g of the first switching valve 21 and input from the output port 21d via the oil passage 46 to the input port of the second switching valve 22. To 22g. Then, the pressure is output from the input port 22g to the hydraulic servo 29 of the brake B-2 through the output port 22b, and the brake B-2 is controlled at a low pressure.
  • the clutch C-3 which is engaged with the brake B-2 to form the reverse gear, has an oil pressure servo 27 of the output port 21f and the input port 21e of the first switching valve 21, the oil passage 47, and the second switching valve.
  • the drain port 22c communicates with the 22 output ports 22e. Therefore, the hydraulic pressure in the hydraulic servo 27 is discharged from the drain port 22c, and the clutch C-3 is released. At this time, since the check valve 23 is connected to the drain port 22c, the hydraulic pressure of the hydraulic servo 27 of the clutch C-3 is not completely released.
  • the reverse range pressure Prev input from the input port 21c of the first switching valve 21 is input to the input port 22g of the second switching valve 22 via the output port 21d and the oil passage 46, and the brake is output from the output port 22b. It is output to the hydraulic servo 29 of B-2.
  • the hydraulic control device 20 engages the brake B-2 with the reverse range pressure P rev and engages the clutch C-3 with the control pressure P SL3 from the linear solenoid valve 26. ing.
  • the first switching valve 21 is switched from the right half position (first state) during neutral to the left half position (second state) during reverse travel.
  • the hydraulic servo 27 of the clutch C-3 communicates with the drain port 22c of the second switching valve 22 during the neutral state, and this clutch C ⁇ is switched until the state of the first switching valve 21 is switched. No. 3 hydraulic servo 27 is maintained in communication with the drain port 22c.
  • the reverse range ensuring reverse range pressure P rev at the time of failure input from the input port 22d is blocked by the second switching valve 22. .
  • the switching of the spool 21p of the first switching valve 21 is slow, or the reverse range pressure Prev is generated early, so that the reverse range is reached when the first switching valve 21 is in the right half position. Even if the pressure P rev is generated, the reverse range pressure P rev is not supplied and engaged with the hydraulic servo 27 of the clutch C-3. Then, the first switching valve 21 is switched to the left half position, and the clutch C-3 can be engaged while being controlled by the regulated control pressure PSL3 from the linear solenoid valve 26.
  • the hydraulic control device 20 forms the reverse range pressure P rev for engaging the brake B-2 in the reverse range in a separate system from the reverse range reverse range pressure P rev for reverse protection.
  • the reverse range pressure P rev for reverse protection is configured to pass through the second switching valve 22. Therefore, in the right half position (third state) where the second switching valve 22 is in the reverse inhibit state, the guarantee circuits 44, 22d, 22e, 47, 21e, 21f, 42 are formed, and the clutch C-3 While the reverse range pressure Prev can be supplied to the hydraulic servo 27, at the left half position (fourth state) located at the time of the N range, NR, and R range, the above-mentioned guarantee circuit is cut off.
  • the reverse range pressure P rev for reverse protection can be set to the cutoff state.
  • the hydraulic servo 27 of the clutch C-3 is connected to the drain port 22c of the second switching valve 22 from the N range to the NR time. Therefore, at the time of NR, the reverse range pressure P rev is not supplied to the hydraulic servo 27 of the clutch C-3, and after the first switching valve 21 is reliably switched, the clutch pressure is controlled by the control pressure P SL3 .
  • C-3 can be controlled and engaged so as not to cause a shift shock.
  • the first switching valve is in the right half position (first state).
  • the reverse range pressure P rev input from the input port (reverse range pressure input port) 22 d of the second switching valve 22, the output port of the (fourth output port) 22e, and the first switching valve 21 of the second switching valve 22 Via the input port (first input port) 21e, it can be supplied from the output port (first output port) 21f to the hydraulic servo 42 of the clutch (first friction engagement element) C-3.
  • the clutch C-3 can be engaged even during a failure in which the spool 22p cannot move while the second switching valve 22 is in the reverse inhibit state.
  • first switching valve 21 communicates the input port (control pressure input port) 21g and the output port (second output port) 21d in the right half position (first state), and the left half position (second state).
  • the input port (second reverse range pressure input port) 21c and the output port 21d are in communication with each other, and the second switching valve 22 is connected to the input port (third input port) in the right half position (third state).
  • 22f communicates with the output port (third output port) 22b, and the input port (second input port) 22g and the output port (third output port) 22b communicate with each other in the left half position (fourth state). ing. Therefore, at the neutral time, as shown in FIG.
  • the input port (second reverse range pressure input port) 21c of the first switching valve 21 communicates with the output port (fifth output port) 21b when the first switching valve 21 is in the right half position (first state).
  • the output port 21 b is connected to an input port (third input port) 22 f of the second switching valve 22. Therefore, the reverse range pressure P rev is supplied to the hydraulic servo 29 of the brake B-2 via the first switching valve 21 when the second switching valve 22 is in the reverse inhibit state and the spool 22p cannot move. be able to.
  • the hydraulic servo 27 of the clutch (first friction engagement element) is neutrally connected to the drain port 22c. Even at the time (N-R time), it is possible to prevent the hydraulic pressure from being released from the hydraulic servo 27 of the clutch.
  • the reverse range pressure P rev to the input port 22g of the second switching valve 22 is input via the first switching valve 21, but not necessarily required to pass through a first switching valve 21, As long as B-2 low-pressure control and reverse guarantee are possible, the reverse range pressure Prev may be input to the input port 22g in any way. Moreover, the reverse range pressure P rev input to the input port 22d via the second switching valve 22, it is sufficient to selectively cut off state, always has the second switching valve 22 is directly interrupted state There is no need. Further, the first and second switching valves 21 and 22 are switched by the two on / off solenoid valves 24 and 25. However, the present invention is not limited to this. For example, any signal pressure can be output as in a linear solenoid valve. It may consist of things.
  • the hydraulic control device of this automatic transmission can be installed in an automatic transmission of a vehicle such as an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 油圧制御装置(20)は、第1切換えバルブ(21)及び第2切換えバルブ(22)を備え、ニュートラルレンジから後進レンジに切り換わる際に、第2切換えバルブ(22)により後進レンジ圧入力ポート(22d)に入力された後進レンジ圧(Prev)を遮断した状態にする。

Description

自動変速機の油圧制御装置
 本開示は、例えば、自動車などの車両に搭載される自動変速機の油圧制御装置に関する。
 従来、2つのバルブを用いて、後進段を形成するクラッチC-3及びブレーキB-2の油圧サーボに油圧を供給すると共に、一方のバルブがリバースインヒビット状態で固定されるフェール時であっても、後進段を形成可能に構成した自動変速機の油圧制御装置が案出されている(特許文献1参照)。
 より具体的には、上記油圧制御装置は、B2アプライコントロールバルブがリバースインヒビット状態から動かなくなったとしても、振り分けバルブが特許文献1の図1中右半位置となることによって、後進レンジ圧を上記クラッチC-3及びブレーキB-2の油圧サーボに供給することが可能に構成されている。
特開2011-214644号公報
 ところで、近年、ニュートラルレンジ(Nレンジ)から後進レンジ(Rレンジ)へとシフトレンジが切換えられる際の応答性を高めるために、Nレンジ時に後進段を形成する係合要素の一方の油圧サーボに所定の油圧を供給することが考えられている。
 しかしながら、上記特許文献1記載のような油圧制御装置において、このような制御を行おうとして、例えば、ニュートラル時にブレーキB-2の油圧サーボに低い油圧を供給した場合、NレンジからRレンジに切り換わった際に、上記振り分けバルブの切り換わりが遅かったり、後進レンジ圧の発生が早かったりすると、上記フェール時に使用される経路を通って、クラッチC-3の油圧サーボに調圧することのできない後進レンジ圧が供給される虞がある。すると、近年、応答性の向上のために、上記クラッチC-3の作動油室などはできる限り小さく形成する努力が続けられていることと相まって、少しの油圧の出力であってもクラッチC-3が後進レンジ圧によって係合してしまう虞が出てきた。
 そこで、N-R時の応答性の向上及び後進変速段のフェール保障を可能にしつつも車両に発生させる変速ショックの少ない自動変速機の油圧制御装置が望まれている。
 本開示の観点によると、自動変速機(1)の油圧制御装置(20)は、調圧された制御圧を出力するリニアソレノイドバルブ(SL3)と、前記リニアソレノイドバルブ(SL3)から制御圧(PSL3)が入力され得る制御圧入力ポート(21g)、第1入力ポート(21e)、後進段を形成する際に係合される第1摩擦係合要素(C-3)の油圧サーボ(27)に接続された第1出力ポート(21f)、第2出力ポート(21d)を備え、前記制御圧入力ポート(21g)と前記第2出力ポート(21d)、前記第1入力ポート(21e)と前記第1出力ポート(21f)、が連通する第1状態(図3中右半位置)と、前記制御圧入力ポート(21g)と前記第1出力ポート(21f)が連通する第2状態(図3中左半位置)と、に切換え可能に構成された第1切換えバルブ(21)と、
 後進レンジ圧(Prev)が入力される得る後進レンジ圧入力ポート(22d)、前記第2出力ポート(21d)が接続された第2入力ポート(22g)、前記第1摩擦係合要素(C-3)と共に係合されて前記後進段を形成する第2摩擦係合要素(B-2)の油圧サーボ(29)に接続された第3出力ポート(22b)、前記第1入力ポート(21e)と接続された第4出力ポート(22e)を備え、前記後進レンジ圧入力ポート(22d)と前記第4出力ポート(22e)、が連通する第3状態(図3中右半位置)と、前記第2入力ポート(22g)と前記第3出力ポート(22b)が連通する第4状態(図3中左半位置)と、に切換え可能に構成された第2切換えバルブ(22)と、
 前記第1切換えバルブ(21)の状態を切換える第1切換え部(24)と、
 前記第2切換えバルブ(22)の状態を切換える第2切換え部(25)と、を備え、
 前記第2切換えバルブ(22)が前記第3状態(図3中右半位置)の場合において、前記第1切換えバルブ(21)が前記第1状態(図3中右半位置)となることにより、前記第2切換えバルブ(22)の前記後進レンジ圧入力ポート(22d)から入力された前記後進レンジ圧(Prev)を、前記第2切換えバルブ(22)の前記第4出力ポート(22e)及び前記第1切換えバルブ(21)の前記第1入力ポート(21e)を介して、前記第1出力ポート(21f)から前記第1摩擦係合要素(C-3)の油圧サーボ(27)に供給可能であり、
 ニュートラルレンジから後進レンジに切り換わる際に、前記第2切換えバルブ(22)を前記第4状態(図3中左半位置)とすると共に、前記第1切換えバルブ(21)を前記第1状態(図3中右半位置)から前記第2状態(図3中左半位置)へと切換え、前記第2切換えバルブ(22)により前記後進レンジ圧入力ポート(22d)に入力された前記後進レンジ圧(Prev)を遮断した状態にする、ことを特徴とする。
 なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、請求の範囲の構成に何等影響を及ぼすものではない。
実施の形態に係る自動変速機を示すスケルトン図。 実施の形態に係る自動変速機の係合表。 実施の形態に係る自動変速機の油圧制御装置を示す模式図。 リバース保障状態における図3の油圧制御装置を示す模式図。 ニュートラルレンジにおける図3の油圧制御装置を示す模式図。 N-R移行時における図3の油圧制御装置を示す模式図。 リバースレンジにおける図3の油圧制御装置を示す模式図。
 以下、本実施の形態を図1乃至図4Dに沿って説明する。まず、本実施の形態に係る自動変速機1の概略構成について図1に沿って説明する。図1に示すように、例えばFRタイプ(フロントエンジン・リヤドライブ)の車両に用いて好適な自動変速機1は、不図示のエンジン(駆動源)に接続し得る自動変速機1の入力軸11を有しており、該入力軸11の軸方向を中心としてトルクコンバータ7と、変速機構2とを備え、エンジンから伝達される回転動力を変速自在になっている。なお、本実施の形態では、FRタイプの車両を適用しているが、これには限らず、例えばFFタイプ(フロントエンジン・フロントドライブ)の車両であってもよい。
 トルクコンバータ7は、自動変速機1の入力軸11に接続されたポンプインペラ7aと、作動流体を介して該ポンプインペラ7aの回転が伝達されるタービンランナ7bとを有しており、該タービンランナ7bは、入力軸11と同軸上に配設された変速機構2の入力軸12に接続されている。また、トルクコンバータ7には、ロックアップクラッチ10が備えられており、このロックアップクラッチ10が係合されると、自動変速機1の入力軸11の回転が変速機構2の入力軸12に直接伝達される。
 変速機構2には、入力軸12(及び中間軸13)上において、プラネタリギヤDPと、プラネタリギヤユニットPUとが備えられている。プラネタリギヤDPは、サンギヤS1、キャリヤCR1、及びリングギヤR1を備えており、該キャリヤCR1に、サンギヤS1に噛合するピニオンP1及びリングギヤR1に噛合するピニオンP2を互いに噛合する形で有している所謂ダブルピニオンプラネタリギヤである。
 また、プラネタリギヤユニットPUは、4つの回転要素としてサンギヤS2、サンギヤS3、キャリヤCR2(CR3)、及びリングギヤR3(R2)を有し、該キャリヤCR2に、サンギヤS2及びリングギヤR3に噛合するロングピニオンP4と、該ロングピニオンP4及びサンギヤS3に噛合するショートピニオンP3とを互いに噛合する形で有している所謂ラビニヨ型プラネタリギヤである。
 プラネタリギヤDPのサンギヤS1は、例えばミッションケース3に一体的に固定されているボス部3bに接続されて回転が固定されている。ボス部3bは、オイルポンプボディ3aから延設されている。また、キャリヤCR1は、入力軸12に接続されて、該入力軸12の回転と同回転(以下、「入力回転」という。)になっていると共に、第4クラッチC-4に接続されている。更に、リングギヤR1は、固定されたサンギヤS1と入力回転するキャリヤCR1とにより、入力回転が減速された減速回転になると共に、第1クラッチC-1及び第3クラッチC-3に接続されている。尚、第1クラッチC-1は、他のクラッチやブレーキと共に伝達経路を形成している。
 プラネタリギヤユニットPUのサンギヤS2は、第1ブレーキB-1に接続されてミッションケース3に対して固定自在となっていると共に、第4クラッチC-4及び第3クラッチC-3に接続されて、第4クラッチC-4を介してキャリヤCR1の入力回転が、第3クラッチC-3を介してリングギヤR1の減速回転が、それぞれ入力自在となっている。また、サンギヤS3は、第1クラッチC-1に接続されており、リングギヤR1の減速回転が入力自在となっている。
 更に、キャリヤCR2は、中間軸13を介して入力軸12の回転が入力される第2クラッチC-2に接続されて、該第2クラッチC-2を介して入力回転が入力自在となっており、また、ワンウェイクラッチF-1及び第2ブレーキB-2に接続されて、該ワンウェイクラッチF-1を介してミッションケース3に対して一方向の回転が規制されると共に、該第2ブレーキB-2を介して回転が固定自在となっている。そして、リングギヤR3は、不図示の駆動車輪に回転を出力する出力軸15に接続されている。
 以上のように構成された自動変速機1は、図1のスケルトン図に示す各クラッチC-1~クラッチC-4、ブレーキB-1及びブレーキB-2、ワンウェイクラッチF-1が、図2の係合表に示す組み合わせで係脱されることにより、ドライブ(D)レンジ(ポジション)の前進1速段(1st)~前進8速段(8th)、リバース(R)レンジの後進1速段(R)、パーキング(P)レンジ、ニュートラル(N)レンジがそれぞれ達成される。
<油圧制御装置の構成>
 ついで、上述した自動変速機1の油圧制御装置20の構成について、特に後進段を形成するクラッチ(第1摩擦係合要素)C-3及びブレーキ(第2摩擦係合要素)B-2を制御する部分に着目して、図3に基づいて説明をする。なお、本実施の形態においては、スプールの位置を説明するために、図中の右半分の位置を「右半位置」、左半分の位置を「左半位置」というものとする。
 図3に示すように、油圧制御装置20は、第1切換えバルブ21及び第2切換えバルブ22を備えていると共に、シフト部材30の操作に応じてレンジ圧(後進レンジ圧Prev及び前進レンジ圧P)を発生させるレンジ圧生成部としてのマニュアルシフトバルブ28や、リニアソレノイドバルブ26などを備えている。また、油圧制御装置20は、上記第1切換えバルブ21のスプール21pの位置(状態)を切換えるノーマルクローズタイプの第1オン・オフソレノイドバルブ(第1切換え部)24や、第2切換えバルブ22のスプール22pの位置(状態)を切換えるノーマルクローズタイプの第2オン・オフソレノイドバルブ(第2切換え部)25なども備えている。
 第1切換えバルブ21は、ノーマルクローズタイプのリニアソレノイドバルブSL3からの制御圧PSL3をクラッチC-3の油圧サーボ27と、ブレーキB-2の油圧サーボ29とに振り分けるための振り分けバルブであり、これにより、クラッチC-3とブレーキB-2との間でリニアソレノイドバルブを共用し、係合する際に用いられるリニアソレノイドバルブの数を一本少なくしている。また、第2切換えバルブ22は、上記第1切換えバルブ21からブレーキB-2の油圧サーボ29へ出力された制御圧PSL3をブレーキB-2の油圧サーボ29に出力及び遮断可能に構成されており、この第2切換えバルブ22が右半位置となることで、所定速度以上で前進走行している際に後進段を形成しないようにするリバースインヒビット機能を達成可能に構成されている。
 より具体的には、上記第1切換えバルブ21は、スプール21pと、このスプール21pを図中上方に向けて付勢するスプリング21sとを有していると共に、スプール21pの図中上方に作動油室21aを有している。また、第1切換えバルブ21は、油路43を介してマニュアルシフトバルブ28の後進レンジ圧出力ポート28aと接続し、調圧することのできない後進レンジ圧Prevが入力され得る入力ポート(第2後進レンジ圧入力ポート)21c、油路41を介してリニアソレノイドバルブ26の出力ポート26aと接続し、制御圧PSL3が入力され得る入力ポート(制御圧入力ポート)21g、入力ポート(第1入力ポート)21eを有している。更に、第1切換えバルブ21は、油路42を介してクラッチC-3の油圧サーボ27に接続された出力ポート(第1出力ポート)21f、出力ポート(第2出力ポート)21d、出力ポート(第5出力ポート)21bを有して構成されている。
 また、第1切換えバルブ21は、作動油室21aが上記第1オン・オフソレノイドバルブ24に、油路49を介して接続されているため、この第1オン・オフソレノイドバルブ24から信号圧PS1が出力されると、左半位置(第2状態)から右半位置(第1状態)へと切り換わる。
 そして、第1切換えバルブ21は、左半位置にされた際に、入力ポート21gと出力ポート21f、入力ポート21cと出力ポート21dが連通するように構成されている。また、右半位置にされた際には、入力ポート21gと出力ポート21d、入力ポート21eと出力ポート21f、入力ポート21cと出力ポート21bが連通するように構成されている。
 一方、第2切換えバルブ22は、スプール22pと、このスプール22pを図中上方に向けて付勢するスプリング22sとを有していると共に、スプール22pの図中上方に作動油室22aを有している。また、第2切換えバルブ22は、油路43,44を介してマニュアルシフトバルブ28の後進レンジ圧出力ポート28aと接続し、調圧することのできない後進レンジ圧Prevが入力され得る入力ポート(第1後進レンジ圧入力ポート)22d、油路46を介して出力ポート21dが接続された入力ポート(第2入力ポート)22g、油路45を介して出力ポート21bと連通する入力ポート(第3入力ポート)22fを有している。この入力ポート22fには、出力ポート21bを介して後進レンジ圧Prevが入力し得る。更に、第2切換えバルブ22は、ブレーキB-2の油圧サーボ29に接続された出力ポート(第3出力ポート)22b、油路47を介して入力ポート21eと接続された出力ポート(第4出力ポート)22e、ドレーン回路48に接続されて油圧を排出するドレンポート22cを有して構成されている。
 また、第2切換えバルブ22は、作動油室22aが上記第2オン・オフソレノイドバルブ25に、油路50を介して接続されているため、この第2オン・オフソレノイドバルブ25から信号圧PS2が出力されると、左半位置(第4状態)から右半位置(第3状態)へと切り換わる。
 そして、第2切換えバルブ22は、左半位置にされた際に、入力ポート22gと出力ポート22b、出力ポート22eとドレンポート22cが連通すると共に、入力ポート22dに入力された後進レンジ圧Prevを遮断した状態にするように構成されている。また、右半位置にされた際には、入力ポート22fと出力ポート22b、入力ポート22dと出力ポート22eが連通すると共に、入力ポート22gを遮断するように構成されている。また、上記ドレンポート22cには、ドレーン回路48に中途部に設けられ、該ドレンポート22cから排出されるオイルの流量を制限する流量制限部として機能するチェックバルブ23が接続されている。
<油圧制御装置の作用>
 ついで、上述した油圧制御装置20の作用について、図4A~図4Dに基づいて、説明をする。なお、図4A~図4D中において、第1及び第2切換えバルブ21,22は、スプールが塗りつぶされて表示されている側に位置しているものとし、また、係合圧PSL3,Prevが供給されている油路を実線で、係合圧が供給されていない油路を点線で示すものとする。
<フェール時における動作>
 上記油圧制御装置20は、前進走行時、第1切換えバルブ21を図3中左半位置、第2切換えバルブ22を図3中右半位置にすることによって、ブレーキB-2の油圧サーボ29への油圧の供給を遮断している。即ち、第1切換えバルブ21は、図3中右半位置となることによって、第1切換えバルブ21の入力ポート21eと出力ポート(第5出力ポート)21bとの連通を遮断するように構成され、第2切換えバルブ22は、右半位置となることによって、入力ポート22gと出力ポート22bとの連通を遮断するように構成されている。このため、第2切換えバルブ22は、第1切換えバルブ21が左半位置の際に、右半位置となることによって、ブレーキB-2の油圧サーボ29への油圧の供給を遮断するリバースインヒビット状態となる。以下、図4Aに基づいて、第2切換えバルブ22がリバースインヒビット状態、即ち、右半位置(第3状態)にてスプール22pが移動不能となるフェール時における油圧制御装置20の動作について説明をする。図4Aに示すように、第2オン・オフソレノイドバルブ25のオン故障や、バルブスティックなどによって、第2切換えバルブ22のスプール22pが右半位置にて固定されてしまい、運転者がRレンジを選択しても通常の方法で後進段が形成できない場合、油圧制御装置20は、第1切換えバルブ21を右半位置にして後進段を形成する。
 即ち、第1切換えバルブ21のスプール21pが右半位置にあるため、油路43を介して入力ポート21cに入力されたリバースレンジPrevは、出力ポート21bから油路45を介して第2切換えバルブ22の入力ポート22fに出力され、出力ポート22bからブレーキB-2の油圧サーボ29に出力される。
 また、油路43,44を介して第2切換えバルブ22の入力ポート22dに入力された後進レンジ圧Prevは、出力ポート22eから油路47を介して第1切換えバルブ21の入力ポート21eに入力され、出力ポート21fから油路42を介してクラッチC-3の油圧サーボ27に入力される。このため、上記リバースレンジPrevによってブレーキB-2及びクラッチC-3が係合され、油圧制御装置20は、第2切換えバルブ22のフェール時にあっても後進段の形成を保障することができる。なお、本願の自動変速機1では、クラッチC-3の油圧サーボ27の作動油室をできるかぎり小さく形成している。
<ニュートラル時における動作>
 次に、ニュートラル時における油圧制御装置20の動作について図4Bに基づいて説明をする。ニュートラル時において、油圧制御装置20は、N-R時の応答性を高めるために、ブレーキB-2に予め所定の油圧を供給する低圧制御を行っている。具体的には、ニュートラル時において、第1切換えバルブ21は右半位置(第1状態)にあり、第2切換えバルブ22は左半位置(第4状態)にある。
 このため、リニアソレノイドバルブ26によって低圧に制御された制御圧PSL3は、第1切換えバルブ21の入力ポート21gから入力され、出力ポート21dから油路46を介して第2切換えバルブ22の入力ポート22gに出力される。そして、この入力ポート22gから出力ポート22bを介してブレーキB-2の油圧サーボ29へと出力され、ブレーキB-2が低圧制御される。
 一方、上記ブレーキB-2と共に係合されて後進段を形成するクラッチC-3は、その油圧サーボ27が第1切換えバルブ21の出力ポート21f及び入力ポート21e、油路47、第2切換えバルブ22の出力ポート22eを介してドレンポート22cと連通している。このため、油圧サーボ27内の油圧は、ドレンポート22cから排出され、クラッチC-3は解放される。なお、この時、上記ドレンポート22cには、チェックバルブ23が接続されているため、クラッチC-3の油圧サーボ27の油圧が抜け切らないようになっている。
<後進時における動作>
 次に、図4Dに基づいて、後進時の油圧制御装置20の動作について説明をする。図4Dに示すように、Rレンジにおいて、第1切換えバルブ21は左半位置(第2状態)に、第2切換えバルブ22は左半位置(第4状態)にある。このため、第1切換えバルブ21の入力ポート21gに入力されたリニアソレノイドバルブ26からの制御圧PSL3は、出力ポート21fから油路42を介してクラッチC-3の油圧サーボ27に出力される。
 また、第1切換えバルブ21の入力ポート21cから入力された後進レンジ圧Prevは、出力ポート21d、油路46を介して第2切換えバルブ22の入力ポート22gに入力され、出力ポート22bからブレーキB-2の油圧サーボ29に出力される。
 このようにして、後進時において、油圧制御装置20は、ブレーキB-2を後進レンジ圧Prevによって係合させると共に、クラッチC-3をリニアソレノイドバルブ26からの制御圧PSL3によって係合させている。
<N-R時の動作>
 次に、上記ニュートラル時から後進時へと切換える際の油圧制御装置20の動作について図4Cに基づいて説明をする。上述したように、ニュートラル時及び後進時のいずれの場合においても、第2切換えバルブ22は、左半位置(第4状態)にあり、図4Cに示すように、ニュートラルレンジから後進レンジに切り換わる際においても、この第2切換えバルブ22は、左半位置のままである。
 一方で、第1切換えバルブ21は、ニュートラル時の右半位置(第1状態)から後進時の左半位置(第2状態)へと切換えられる。ここで、上述したようにニュートラル時にクラッチC-3の油圧サーボ27は、第2切換えバルブ22のドレンポート22cと連通しており、第1切換えバルブ21の状態が切換わるまで、このクラッチC-3の油圧サーボ27がドレンポート22cと連通した状態が維持される。また、第2切換えバルブ22が左半位置にあるため、入力ポート22dから入力されるフェール時の後進段保障用の後進レンジ圧Prevは、この第2切換えバルブ22により遮断した状態とされる。
 従って、N-R時に例えば、第1切換えバルブ21のスプール21pの切り換わりが遅かったり、後進レンジ圧Prevの発生が早かったりして、第1切換えバルブ21が右半位置の際に後進レンジ圧Prevが発生したとしても、クラッチC-3の油圧サーボ27に後進レンジ圧Prevが供給されて係合してしまうことはない。そして、上記第1切換えバルブ21が左半位置に切り換わって、クラッチC-3をリニアソレノイドバルブ26からの調圧された制御圧PSL3によって制御しながら係合させることができる。
 上述したように、本願発明の油圧制御装置20は、後進レンジにおいて、ブレーキB-2を係合させる後進レンジ圧Prevをリバース保障用の後進レンジ圧Prevとは別系統に形成し、このリバース保障用の後進レンジ圧Prevを第2切換えバルブ22を通すように構成している。このため、第2切換えバルブ22がリバースインヒビッド状態となる右半位置(第3状態)では、保障回路44,22d,22e,47,21e,21f,42を形成して、クラッチC-3の油圧サーボ27に後進レンジ圧Prevを供給可能である一方、Nレンジ時、N-R時、Rレンジ時の際に位置する左半位置(第4状態)では、上記保障回路を遮断して、このリバース保障用の後進レンジ圧Prevを遮断状態とすることができる。また、Nレンジ時からN-R時に亘って、クラッチC-3の油圧サーボ27は第2切換えバルブ22のドレンポート22cと接続する構成となっている。このため、N-R時において、クラッチC-3の油圧サーボ27に後進レンジ圧Prevが供給されることはなく、確実に第1切換えバルブ21が切り換わってから、制御圧PSL3によってクラッチC-3を変速ショックが出ないように制御して係合させることができる。
 即ち、油圧制御装置20は、N-R時に入力ポート(後進レンジ圧入力ポート、第1後進レンジ圧入力ポート)22dに入力された後進レンジ圧Prevを遮断した状態にすると共に、クラッチ(第1摩擦係合要素)C-3の油圧サーボ27を第2切換えバルブ22のドレンポート22cと連通するため、N-R時に第1切換えバルブ21の応答が遅れたり、後進レンジ圧Prevの発生が第1切換えバルブ21の切り換わりよりも早かったりしても、上記後進レンジ圧PrevによりクラッチC-3が係合してしまうことを防止でき、かつ、調圧された制御圧によってこのクラッチC-3を制御しながら係合させることができる。
 また、図4Aに示すように、第2切換えバルブ22がリバースインヒビット状態である右半位置(第3状態)であっても、第1切換えバルブが右半位置(第1状態)となることによって、第2切換えバルブ22の入力ポート(後進レンジ圧入力ポート)22dから入力された後進レンジ圧Prevを、第2切換えバルブ22の出力ポート(第4出力ポート)22e及び第1切換えバルブ21の入力ポート(第1入力ポート)21eを介して、出力ポート(第1出力ポート)21fからクラッチ(第1摩擦係合要素)C-3の油圧サーボ42に供給することができる。このため、第2切換えバルブ22がリバースインヒビット状態にてスプール22pが移動不能となるフェール時においても、クラッチC-3を係合させることができる。
 更に、第1切換えバルブ21は、右半位置(第1状態)において入力ポート(制御圧入力ポート)21gと出力ポート(第2出力ポート)21dとを連通させ、左半位置(第2状態)において入力ポート(第2後進レンジ圧入力ポート)21cと出力ポート21dが連通されるようになっており、第2切換えバルブ22は、右半位置(第3状態)において入力ポート(第3入力ポート)22fと出力ポート(第3出力ポート)22bが連通し、左半位置(第4状態)において入力ポート(第2入力ポート)22gと出力ポート(第3出力ポート)22bが連通するようになっている。このため、ニュートラル時には、図4Bに示すように、上記第1切換えバルブ21が右半位置、第2切換えバルブ22が左半位置となることによって、制御圧PSL3をブレーキB-2の油圧サーボ29に供給することができる。また、図4Aに示す様に、第2切換えバルブ22がリバースインヒビット状態にてスプール22pが移動不能となるフェール時には、入力ポート22fに入力された後進レンジ圧PrevをブレーキB-2の油圧サーボ29に供給することができる。更に、図4Dに示すように、後進時には、第1及び第2切換えバルブ21,22が左半位置となることによって、第1切換えバルブ21の入力ポート21cに入力された後進レンジ圧PrevをブレーキB-2の油圧サーボ29に供給することができる。
 また、第1切換えバルブ21の入力ポート(第2後進レンジ圧入力ポート)21cは、第1切換えバルブ21が右半位置(第1状態)において、出力ポート(第5出力ポート)21bと連通すると共に、この出力ポート21bは、第2切換えバルブ22の入力ポート(第3入力ポート)22fと接続されている。このため、第2切換えバルブ22がリバースインヒビット状態にてスプール22pが移動不能となるフェール時において、ブレーキB-2の油圧サーボ29に第1切換えバルブ21を介して後進レンジ圧Prevを供給することができる。
 更に、第2切換えバルブ22のドレンポート22cにオイルの流量を制限する流量制限部23を接続したことにより、クラッチ(第1摩擦係合要素)の油圧サーボ27がドレンポート22cに接続されるニュートラル時(N-R時)であっても、このクラッチの油圧サーボ27から油圧が抜け切ってしまうことを防止することができる。
 なお、上記実施の形態において、第2切換えバルブ22の入力ポート22gに後進レンジ圧Prevを第1切換えバルブ21を介して入力しているが、かならずしも第1切換えバルブ21を通す必要はなく、B-2低圧制御及びリバース保障が可能であれば、どのように入力ポート22gに後進レンジ圧Prevを入力しても良い。また、入力ポート22dに入力された後進レンジ圧Prevは、第2切換えバルブ22を介して、選択的に遮断状態とされれば良く、必ずしも第2切換えバルブ22が直接的に遮断状態にする必要はない。更に、第1及び第2切換えバルブ21,22を二つのオン・オフソレノイドバルブ24,25によって切換えたが、これに限らず、例えば、リニアソレノイドバルブのように信号圧を出力できれば、どのようなもので構成されても良い。
 本自動変速機の油圧制御装置は、自動車などの車両の自動変速機に搭載することができる。
1:自動変速機、20:油圧制御装置、21:第1切換えバルブ、21b:第5出力ポート、21c:第2後進レンジ圧入力ポート、21d:第2出力ポート、21e:第1入力ポート、21f:第1出力ポート、21g:制御圧入力ポート、22:第2切換えバルブ、22b:第3出力ポート、22c:ドレンポート、22d:第1後進レンジ圧入力ポート、22e:第4出力ポート、22f:第3入力ポート、22g:第2入力ポート、23:流量制限部、24:第1切換え部、25:第2切換え部、27:油圧サーボ、PSL3:制御圧、Prev:後進レンジ圧、C-3:第1摩擦係合要素、B-2:第2摩擦係合要素

Claims (7)

  1.  調圧された制御圧を出力するリニアソレノイドバルブと、
     前記リニアソレノイドバルブから制御圧が入力され得る制御圧入力ポート、第1入力ポート、後進段を形成する際に係合される第1摩擦係合要素の油圧サーボに接続された第1出力ポート、第2出力ポートを備え、前記制御圧入力ポートと前記第2出力ポート、前記第1入力ポートと前記第1出力ポートが連通する第1状態と、前記制御圧入力ポートと前記第1出力ポートが連通する第2状態と、に切換え可能に構成された第1切換えバルブと、
     後進レンジ圧が入力され得る後進レンジ圧入力ポート、前記第2出力ポートが接続された第2入力ポート、前記第1摩擦係合要素と共に係合されて前記後進段を形成する第2摩擦係合要素の油圧サーボに接続された第3出力ポート、前記第1入力ポートと接続された第4出力ポートを備え、前記後進レンジ圧入力ポートと前記第4出力ポート、が連通する第3状態と、前記第2入力ポートと前記第3出力ポートが連通する第4状態と、に切換え可能に構成された第2切換えバルブと、
     前記第1切換えバルブの状態を切換える第1切換え部と、
     前記第2切換えバルブの状態を切換える第2切換え部と、を備え、
     前記第2切換えバルブが前記第3状態の場合において、前記第1切換えバルブが前記第1状態となることにより、前記第2切換えバルブの前記後進レンジ圧入力ポートから入力された前記後進レンジ圧を、前記第2切換えバルブの前記第4出力ポート及び前記第1切換えバルブの前記第1入力ポートを介して、前記第1出力ポートから前記第1摩擦係合要素の油圧サーボに供給可能であり、
     ニュートラルレンジから後進レンジに切り換わる際に、前記第2切換えバルブを前記第4状態とすると共に、前記第1切換えバルブを前記第1状態から前記第2状態へと切換え、前記第2切換えバルブにより前記後進レンジ圧入力ポートに入力された前記後進レンジ圧を遮断した状態にする、
     ことを特徴とする自動変速機の油圧制御装置。
  2.  前記第2切換えバルブは、油圧を排出するドレンポートを備えると共に、前記第4状態において、前記第4出力ポートと前記ドレンポートを連通させ、
     ニュートラルレンジから後進レンジに切り換わる際に、前記第2切換えバルブを前記第4状態とし、前記第1切換えバルブが前記第1状態から前記第2状態へと切換わるまで、前記第1摩擦係合要素の油圧サーボを前記ドレンポートと接続した状態とする、
     ことを特徴とする請求項1記載の自動変速機の油圧制御装置。
  3.  前記第2切換えバルブの前記後進レンジ圧入力ポートは、第1後進レンジ圧入力ポートであり、
     前記第1切換えバルブは、前記後進レンジ圧が入力し得る第2後進レンジ圧入力ポートを有し、該第2後進レンジ圧入力ポートは、前記第2状態において前記第2出力ポートと連通し、
     前記第2切換えバルブは、前記後進レンジ圧が入力し得る第3入力ポートを有し、該第3入力ポートは、前記第3状態において前記第3出力ポートと連通する、
     ことを特徴とする請求項1又は2記載の自動変速機の油圧制御装置。
  4.  前記第1切換えバルブは、前記第1状態において前記第2後進レンジ圧入力ポートと連通する第5出力ポートを有し、
     前記第2切換えバルブの前記第3入力ポートは、前記第1切換えバルブの前記第5出力ポートと接続されている、
     ことを特徴とする請求項3記載の自動変速機の油圧制御装置。
  5.  前記第2切換えバルブは、前記第3状態となることによって、前記第2入力ポートと前記第3出力ポートとの連通を遮断するように構成されていると共に、前記第1切換えバルブが前記第2状態の際に、前記第3状態となることによって、前記第2摩擦係合要素の油圧サーボへの油圧の供給を遮断する、
     ことを特徴とする請求項4記載の自動変速機の油圧制御装置。
  6.  前記第2切換えバルブが前記第3状態となり、かつ、前記第1切換えバルブが前記第1状態となることによって、前記第2後進レンジ圧入力ポートに入力された後進レンジ圧が前記第1切換えバルブの前記第5出力ポート、前記第2切換えバルブの前記第3入力ポート及び前記第3出力ポートを介して、前記第2摩擦係合要素の油圧サーボに供給され、前記第1後進レンジ圧入力ポートに入力された前記後進レンジ圧が前記第2切換えバルブの前記第4出力ポート、前記第1切換えバルブの前記第1入力ポート及び前記第1出力ポートを介して、前記第1摩擦係合要素の油圧サーボに供給される、
     ことを特徴とする請求項4又は5記載の自動変速機の油圧制御装置。
  7.  前記ドレンポートに接続されて、該ドレンポートから排出されるオイルの流量を制限する流量制限部を備えた、
     ことを特徴とする請求項1乃至6のいずれか1項記載の自動変速機の油圧制御装置。
PCT/JP2014/076206 2013-09-30 2014-09-30 自動変速機の油圧制御装置 WO2015046607A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/021,883 US9964206B2 (en) 2013-09-30 2014-09-30 Hydraulic control device for automatic transmission
CN201480050476.4A CN105556178B (zh) 2013-09-30 2014-09-30 自动变速器的油压控制装置
DE112014003353.7T DE112014003353T5 (de) 2013-09-30 2014-09-30 Hydrauliksteuervorrichtung für ein automatisch schaltbares getriebe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-205652 2013-09-30
JP2013205652A JP6201592B2 (ja) 2013-09-30 2013-09-30 自動変速機の油圧制御装置

Publications (1)

Publication Number Publication Date
WO2015046607A1 true WO2015046607A1 (ja) 2015-04-02

Family

ID=52743728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076206 WO2015046607A1 (ja) 2013-09-30 2014-09-30 自動変速機の油圧制御装置

Country Status (5)

Country Link
US (1) US9964206B2 (ja)
JP (1) JP6201592B2 (ja)
CN (1) CN105556178B (ja)
DE (1) DE112014003353T5 (ja)
WO (1) WO2015046607A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934610B (zh) * 2014-01-31 2017-09-22 爱信艾达株式会社 自动变速器的油压控制装置
KR101776728B1 (ko) 2015-12-08 2017-09-08 현대자동차 주식회사 차량용 자동변속기의 유압 제어장치
CN117489780B (zh) * 2023-12-25 2024-03-29 中国第一汽车股份有限公司 一种换挡传动装置、换挡控制方法及混合动力车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024057U (ja) * 1988-06-21 1990-01-11
JP2003090426A (ja) * 2001-09-17 2003-03-28 Jatco Ltd 自動変速機の油圧制御装置
JP2010513798A (ja) * 2006-12-13 2010-04-30 トヨタ自動車株式会社 車両用自動変速機の油圧制御装置および方法
JP2011214644A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 自動変速機の油圧制御装置及び自動変速機の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354005B1 (en) * 1988-08-02 1994-11-02 Toyota Jidosha Kabushiki Kaisha Hydraulic control device for automatic transmission for vehicle with high accuracy reverse inhibition system
DE69028961T2 (de) * 1989-08-09 1997-05-22 Toyota Motor Co Ltd Hydraulische Steuerung für ein Fahrzeuggetriebesystem, welches Ventile enthält, die die Einschaltung des Rückwärtsganges verhindern
JP4056305B2 (ja) * 2002-06-28 2008-03-05 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP4748601B2 (ja) * 2006-12-26 2011-08-17 トヨタ自動車株式会社 自動変速機の油圧制御装置、及びそれを備えたハイブリッド駆動装置
JP4715932B2 (ja) * 2009-02-13 2011-07-06 トヨタ自動車株式会社 車両用自動変速機の油圧制御装置
JP5304690B2 (ja) * 2010-03-11 2013-10-02 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP5099179B2 (ja) * 2010-06-18 2012-12-12 トヨタ自動車株式会社 車両用動力伝達装置
JP5494277B2 (ja) * 2010-06-22 2014-05-14 アイシン・エィ・ダブリュ株式会社 油圧回路装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024057U (ja) * 1988-06-21 1990-01-11
JP2003090426A (ja) * 2001-09-17 2003-03-28 Jatco Ltd 自動変速機の油圧制御装置
JP2010513798A (ja) * 2006-12-13 2010-04-30 トヨタ自動車株式会社 車両用自動変速機の油圧制御装置および方法
JP2011214644A (ja) * 2010-03-31 2011-10-27 Aisin Aw Co Ltd 自動変速機の油圧制御装置及び自動変速機の制御装置

Also Published As

Publication number Publication date
JP6201592B2 (ja) 2017-09-27
US20160230879A1 (en) 2016-08-11
CN105556178B (zh) 2017-10-24
JP2015068482A (ja) 2015-04-13
DE112014003353T5 (de) 2016-04-07
US9964206B2 (en) 2018-05-08
CN105556178A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP3839368B2 (ja) 自動変速機の油圧制御装置
WO2011111435A1 (ja) 自動変速機の油圧制御装置
US8292771B2 (en) Hydraulic control apparatus of automatic transmission
JP2007162930A (ja) 6速自動変速機の油圧制御システム
US9546730B2 (en) Hydraulic control device for automatic transmission
WO2015046607A1 (ja) 自動変速機の油圧制御装置
JP2001248718A (ja) 自動変速機の油圧制御装置
JP6394470B2 (ja) 自動変速機の油圧制御装置
KR20100011844A (ko) 차량용 자동 변속기의 유압 제어장치
JP5299339B2 (ja) 自動変速機の油圧制御装置及び自動変速機の制御装置
JP5177091B2 (ja) 自動変速機の油圧制御装置
JP4480384B2 (ja) 自動変速機の油圧制御装置
US9759315B2 (en) Hydraulic control device for automatic transmission
JP5862607B2 (ja) 自動変速機の油圧制御装置
WO2014104145A1 (ja) 自動変速機の油圧制御装置
JP6206511B2 (ja) 自動変速機の油圧制御装置
JP6111414B2 (ja) 自動変速機の油圧制御装置
JP2013096533A (ja) 自動変速機の油圧制御装置
JP6056035B2 (ja) 自動変速機の油圧制御装置
JP2014199123A (ja) 自動変速機の油圧制御装置
JP5099784B2 (ja) 多段式自動変速機の油圧制御装置
JPS63210444A (ja) 車両用自動変速機の油圧制御装置
JP5099783B2 (ja) 多段式自動変速機の油圧制御装置
JP2019065963A (ja) 自動変速機の油圧制御装置
JP2019152251A (ja) 車両用自動変速機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050476.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003353

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15021883

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14849228

Country of ref document: EP

Kind code of ref document: A1