WO2015046398A1 - エポキシ樹脂組成物、封止材、その硬化物、及びフェノール樹脂 - Google Patents

エポキシ樹脂組成物、封止材、その硬化物、及びフェノール樹脂 Download PDF

Info

Publication number
WO2015046398A1
WO2015046398A1 PCT/JP2014/075560 JP2014075560W WO2015046398A1 WO 2015046398 A1 WO2015046398 A1 WO 2015046398A1 JP 2014075560 W JP2014075560 W JP 2014075560W WO 2015046398 A1 WO2015046398 A1 WO 2015046398A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
phenol
inorganic filler
chemical formula
Prior art date
Application number
PCT/JP2014/075560
Other languages
English (en)
French (fr)
Inventor
日向子 花房
慎司 岡本
教一 篠田
Original Assignee
明和化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明和化成株式会社 filed Critical 明和化成株式会社
Priority to KR1020167005792A priority Critical patent/KR102230012B1/ko
Priority to CN201480048878.0A priority patent/CN105555828B/zh
Publication of WO2015046398A1 publication Critical patent/WO2015046398A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with monohydric phenols having only one hydrocarbon substituent ortho on para to the OH group, e.g. p-tert.-butyl phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an epoxy resin composition, a cured product thereof, a semiconductor sealing material using the same, and a phenol resin that can be suitably used for the epoxy resin composition.
  • an epoxy resin composition containing an epoxy resin, a phenol resin, and an inorganic filler such as fused silica or crystalline silica is suitably used.
  • Inorganic fillers improve mechanical strength and heat resistance, reduce the thermal expansion coefficient of the sealing material to reduce the amount of warpage, and further reduce the proportion of resin components that adversely affect water absorption and flame retardancy Therefore, it plays a role of achieving low water absorption and high flame retardancy.
  • Patent Document 1 proposes to use an inorganic filler having an average particle size of 13 ⁇ m or less as a measure for improving moldability and reflow resistance.
  • Patent Documents 2 and 3 glycidyl ether type epoxy resin having an anthracene ring or naphthalene ring or phenol resin having a naphthalene ring is used as a measure for suppressing warpage of the package and improving reflow resistance.
  • Patent Document 4 discloses that by controlling the molecular weight distribution of a phenol resin using a specific raw material, a reduction in viscosity is achieved while suppressing a decrease in heat resistance and softening point.
  • detailed investigations have not been made on improvement of fluidity, moldability, and various characteristics in the case of an epoxy resin composition containing an inorganic filler, particularly used as a sealing material.
  • JP 2008-274041 A US2007 / 207322A1 JP 2013-10903 A JP-A 63-275620
  • the inorganic filler can be blended at a high ratio, excellent in fluidity and moldability, heat resistance, low water absorption, low elastic modulus (especially high temperature low elastic modulus), and flame retardancy.
  • an epoxy resin composition that can be suitably used as a semiconductor sealing material in a surface-mount semiconductor device.
  • low elastic modulus especially high temperature low elastic modulus
  • a low elastic modulus is effective because the stress generated in the heat cycle in each process including the reflow process is suitably relaxed, the amount of warpage is reduced, and the generation of cracks is suppressed. For this reason, it is considered that a low elastic modulus (particularly high temperature low elastic modulus) is effective.
  • the present invention can be blended in a high proportion of inorganic filler, excellent in fluidity and moldability, heat resistance, low water absorption, low elastic modulus (especially high temperature low elastic modulus), and flame retardancy, Epoxy resin composition that can be suitably used as a semiconductor encapsulant in a surface-mount type semiconductor device, a cured product thereof, a semiconductor encapsulant using the same, and a phenol that can be suitably used for the epoxy resin composition It is to propose a resin.
  • An epoxy resin composition comprising at least an epoxy resin and a phenol resin represented by the following chemical formula (1).
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group
  • R 3 and R 4 are each independently
  • n is 0 or a positive integer
  • the gel permeation chromatograph is applied to the whole phenol resin.
  • R1 is an alkyl group having 1 to 6 carbon atoms and positioned in the ortho position of the hydroxyl group, and R2 is a hydrogen atom, or R1 is an alkyl group having 1 to 6 carbon atoms and the ortho of the hydroxyl group.
  • R2 is a hydrogen atom is also possible.
  • R1 is an alkyl group having 1 to 6 carbon atoms and is located in the ortho position of the hydroxyl group
  • R2 is a hydrogen atom
  • the blending ratio of the inorganic filler in the epoxy resin composition [the mass of the inorganic filler / the mass of the epoxy resin composition containing the inorganic filler] is 70 to 95% by mass.
  • Item 6. The epoxy resin composition according to any one of Items 1 to 5, further comprising a solvent, wherein the epoxy resin and the phenol resin are uniformly dissolved in the solvent.
  • Item 9 The semiconductor sealing material according to Item 8, which is used for a surface mounting type semiconductor device. 10.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group
  • R 3 and R 4 are each independently
  • n is 0 or a positive integer
  • a surface mount can be blended with a high proportion of inorganic filler, has excellent fluidity and moldability, has heat resistance, low water absorption, low elastic modulus (especially high temperature low elastic modulus), and flame retardancy.
  • An epoxy resin composition that can be suitably used as a semiconductor encapsulant in a semiconductor device of the type, a cured product thereof, a semiconductor encapsulant using the same, and a phenol resin that can be suitably used for the epoxy resin composition Obtainable.
  • FIG. 1 is a chart of gel permeation chromatographic analysis of the phenol novolac resin obtained in Example 1.
  • FIG. 2 is a chart of gel permeation chromatographic analysis of the phenol novolac resin obtained in Example 2.
  • FIG. 3 is a chart of gel permeation chromatographic analysis of the phenol novolak resin obtained in Example 3.
  • FIG. 4 is a chart of gel permeation chromatographic analysis of the phenol novolac resin obtained in Example 4.
  • FIG. 5 is a chart of gel permeation chromatographic analysis of the phenol novolac resin obtained in Example 5.
  • FIG. 6 is a chart of gel permeation chromatographic analysis of the phenol novolac resin obtained in Example 6.
  • FIG. 7 is a chart of gel permeation chromatographic analysis of the phenol novolac resin obtained in Comparative Example 1.
  • FIG. 8 is a chart of gel permeation chromatographic analysis of the phenol novolac resin obtained in Comparative Example 2.
  • the present invention relates to an epoxy resin composition
  • an epoxy resin composition comprising at least an epoxy resin and a phenol resin represented by the chemical formula (1).
  • the epoxy resin used in the epoxy resin composition of the present invention is not particularly limited, and an epoxy resin usually used in an epoxy resin composition can be suitably used.
  • an epoxy resin usually used in an epoxy resin composition can be suitably used.
  • a bifunctional or polyfunctional epoxy resin having two or more can be preferably mentioned.
  • One kind of epoxy resin may be used alone, or two or more kinds may be used in combination.
  • the epoxy resin composition of the present invention contains a phenol resin represented by the chemical formula (1) as a curing agent.
  • the epoxy resin composition of the present invention has an advantageous effect that the fluidity and melt viscosity of the epoxy resin composition can be suitably reduced by using a phenol resin that satisfies this condition.
  • this epoxy resin composition can mix
  • n 1 is 30% or more and 50% or less of the entire phenol resin.
  • the phenol resin represented by the chemical formula (1) used in the epoxy resin composition of the present invention is a resole of a phenol represented by the following chemical formula (3) and formaldehyde or a formaldehyde-generating substance in the presence of a basic catalyst.
  • a production method comprising a first step of reacting and a second step of adding a phenol represented by the following chemical formula (4) to the reaction mixture obtained in the first step and causing a novolak reaction in the presence of an acid catalyst can be suitably prepared.
  • the proportion of each component of the phenol resin of the present invention can be easily achieved by adjusting the proportion of reaction raw materials, reaction time, and reaction temperature as described below. By conducting preliminary experiments as necessary, those skilled in the art can accurately determine actual reaction conditions.
  • R1 and R2 are any of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group.
  • R3 and R4 are any of a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group.
  • the first step will be described.
  • Formaldehyde generated from is preferably 1 to 3 mol, more preferably 1.5 to 2.5 mol. If this ratio is less than the lower limit of the preferred range, the low molecular weight component increases, and if it exceeds the upper limit of the preferred range, the high molecular weight component increases, it is difficult to obtain the phenol resin represented by the chemical formula (1) of the present invention. Become.
  • the amount of the basic catalyst used is not limited, but it is preferably 0.1 to 1.5 moles per mole of the phenol represented by the chemical formula (3), 0.3 A ratio of ⁇ 1.0 mol is more preferred. If this ratio is less than the lower limit of the preferred range, the reaction proceeds slowly and unreacted components tend to remain, and if the upper limit of the preferred range is exceeded, removal of the catalyst becomes difficult and productivity may be reduced. .
  • the reaction temperature is not limited, but is preferably about 10 to 80 ° C., more preferably 20 to 60 ° C. If the temperature is lower than 10 ° C., the progress of the reaction is slow.
  • the reaction time is not limited, but is preferably 0.5 to 24 hours, and more preferably 3 to 12 hours.
  • the phenol represented by the chemical formula (3) used in the first step is not particularly limited, but phenol, cresol, ethylphenol, propylphenol, butylphenol, allylphenol, phenylphenol, xylenol, diethylphenol , Dipropylphenol, dibutylphenol, catechol, resorcin and the like can be preferably mentioned.
  • orthocresol or paracresol is preferable from the viewpoints of economy and low melt viscosity.
  • These phenols may be used alone or in combination of two or more.
  • formaldehyde in the first step formaldehyde in an aqueous solution can be suitably used.
  • formaldehyde-generating substance compounds that generate formaldehyde such as paraformaldehyde, trioxane, and tetraoxane can be preferably used.
  • Examples of the basic catalyst used in the first step include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide, ammonium hydroxide, and diethylamine. And amines such as triethylamine, triethanolamine, ethylenediamine, and hexamethylenetetramine.
  • alkali metal hydroxides such as sodium hydroxide and lithium hydroxide
  • alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide
  • ammonium hydroxide and diethylamine.
  • amines such as triethylamine, triethanolamine, ethylenediamine, and hexamethylenetetramine.
  • One type of basic catalyst may be used alone, or two or more types may be used in combination.
  • the reaction in the second step is preferably carried out by adding a phenol represented by the chemical formula (4) to the reaction mixture obtained in the resorification reaction in the first step, neutralizing with an acidic compound, and further using an acid catalyst. It is preferably performed after adding.
  • Preferred examples of the acidic compound used for neutralization include hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, succinic acid, butyric acid, lactic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
  • One type of acidic compound may be used alone, or two or more types may be used in combination.
  • the phenol represented by the chemical formula (4) used in the second step is preferably 0.5 to 5 mol with respect to 1 mol of formaldehyde generated from the formaldehyde or formaldehyde generating material used in the first step. More preferably, it is 1 to 2 mol.
  • the amount of the phenol represented by the chemical formula (4) is less than the lower limit of the preferable range, the melt viscosity of the phenol resin obtained by increasing the high molecular weight component is increased, and when it exceeds the upper limit of the preferable range, unreacted phenols Is likely to remain in large quantities.
  • the amount of the acid catalyst used in the second step is preferably 0.0001 to 0.07 mol with respect to 1 mol of the phenol represented by the chemical formula (3) used in the first step.
  • a ratio of 0.0005 to 0.05 mol is more preferable. If this ratio is less than the lower limit of the preferred range, the progress of the reaction is slowed.
  • the reaction temperature is not limited, but is preferably about 50 to 150 ° C, more preferably about 70 to 100 ° C. If the temperature is lower than 50 ° C., the progress of the reaction is slow, and if it exceeds 150 ° C., it becomes easy to increase the molecular weight due to heat generation, and it becomes difficult to control the novolak reaction.
  • the reaction time is not limited, but is preferably 0.5 to 12 hours, and more preferably 1 to 6 hours. If this ratio is less than the lower limit of the preferred range, the progress of the reaction is insufficient, and if it exceeds the upper limit of the preferred range, the molecular weight tends to increase.
  • the phenol represented by the chemical formula (4) used in the second step is not particularly limited, but phenol, cresol, ethylphenol, propylphenol, butylphenol, allylphenol, phenylphenol, xylenol, diethylphenol, Preferable examples include dipropylphenol, dibutylphenol, catechol, resorcinol and the like. Among these, orthocresol or paracresol is preferable from the viewpoints of economy and low melt viscosity. These phenols may be used alone or in combination of two or more.
  • hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, succinic acid, butyric acid, lactic acid, benzenesulfonic acid, p-toluenesulfonic acid and the like can be preferably exemplified.
  • One type of acid catalyst may be used alone, or two or more types may be used in combination.
  • the phenol resin used in the present invention removes unreacted phenols and catalysts by subjecting the novolak reaction mixture obtained in the second step to post-treatment such as washing with water and concentration under reduced pressure. Can be suitably obtained.
  • the weight average molecular weight of the phenol resin used in the present invention is not particularly limited, but is preferably 500 to 1000, more preferably 550 to 800, and still more preferably 600 to 750.
  • the degree of dispersion [weight average molecular weight / number average molecular weight] is preferably 1.0 to 1.2.
  • the epoxy resin composition of the present invention at least the epoxy resin and the phenol resin represented by the chemical formula (1) are mixed by, for example, using a mixing device such as a biaxial kneader or a two-roller as necessary. By doing so, it can be suitably obtained.
  • the obtained epoxy resin composition is suitably pulverized by a pulverizer.
  • the epoxy resin composition of the present invention can suitably contain an organic or inorganic filler.
  • the filler is not particularly limited and is selected depending on the application.
  • a filler can be mentioned suitably.
  • amorphous silica, crystalline silica, or the like is preferably used.
  • the blending ratio [mass of inorganic filler / mass of epoxy resin composition containing inorganic filler] in the epoxy resin composition in the case of blending the inorganic filler is not limited, but is 30 to 98% by mass, About 40 to 95% by mass is preferable. In applications such as when used as a sealing material for semiconductor elements, the content is 60 to 95% by mass, preferably 70 to 95% by mass, more preferably 75 to 90% by mass, and still more preferably 80 to 90% by mass. If the proportion of the inorganic filler is less than the lower limit of the above range, the water absorption of the cured product of the epoxy resin composition increases, which is not preferable. Moreover, when there are too many ratios of an inorganic filler from the upper limit of the said range, there exists a possibility that the fluidity
  • the epoxy resin composition of the present invention can further contain additives such as curing accelerators, mold release agents, colorants, coupling agents, flame retardants, and the like used in ordinary epoxy resin compositions, and solvents.
  • additives such as curing accelerators, mold release agents, colorants, coupling agents, flame retardants, and the like used in ordinary epoxy resin compositions, and solvents.
  • the solvent those capable of uniformly dissolving a resin component such as an epoxy resin or a phenol resin are preferable.
  • organic solvents such as alcohols, ethers, ketones, lactones, and heteroatom-containing compounds can be suitably used.
  • the epoxy resin composition of the present invention in which a resin component such as an epoxy resin or a phenol resin is uniformly dissolved in a solvent is impregnated into glass fiber, carbon fiber or the like, and then B-staged while removing the solvent.
  • the curing accelerator used in the epoxy resin composition is not particularly limited as long as it can accelerate the curing reaction between the epoxy resin and the phenol resin.
  • the addition amount of additives such as a curing accelerator, a release agent, a colorant, a coupling agent, a flame retardant, and the use amount of a solvent and the like are not particularly limited, and are the same as the ratio in an already known epoxy resin composition. Good.
  • the epoxy resin composition of the present invention can be suitably used as a sealing material for semiconductor elements.
  • the sealing material for the semiconductor element includes a sealing material for sealing the gap between the semiconductor element and the circuit board and the periphery of the semiconductor element, and an underfill for sealing the gap between the semiconductor element and the circuit board, depending on the sealing form.
  • the epoxy resin composition of the present invention can be suitably used in these sealing forms. That is, the sealing material of the present invention includes an underfill material and a mold underfill material.
  • the epoxy resin composition of the present invention can be cured by, for example, heat treatment at 100 to 350 ° C. for 0.01 to 20 hours to obtain a cured product.
  • heat treatment at 100 to 350 ° C. for 0.01 to 20 hours to obtain a cured product.
  • the temperature of the curing reaction is low, curing does not occur, and when it is high, performance degradation due to thermal decomposition occurs. Further, when the curing reaction time is short, the reaction is not completed, and when it is long, productivity is lowered.
  • a semiconductor device having a semiconductor element sealed with a sealing material made of the epoxy resin composition of the present invention is sealed with the epoxy resin composition of the present invention around the gap between the semiconductor element and the circuit board and around the semiconductor element.
  • a method of introducing and curing a material that is, a method including a step of introducing an underfill material into a gap between a semiconductor element and a circuit board and a step of molding and curing the underfill material, or a semiconductor element and a circuit board And a method including a step of introducing a sealing material around the gap and the periphery of the semiconductor element and a step of molding and curing the sealing material.
  • the epoxy resin composition of the present invention can contain an inorganic filler in a high proportion, has excellent fluidity and moldability, and its cured product has excellent heat resistance, low water absorption, and low elastic modulus (especially high temperature and low elastic modulus). ) And flame retardancy. For this reason, the epoxy resin composition of this invention can be used especially suitably as a semiconductor sealing material in the semiconductor device of a surface mounting system.
  • HLC-8220 manufactured by Tosoh Corporation, gel permeation chromatograph analyzer
  • RANGE 2.56 WAVE LENGTH 254nm
  • Apparatus Dropping point / softening point measurement system (METTLER TOLEDO, FP83HT) Temperature rising rate: 2 ° C./min Measuring method: A molten sample is placed in a sample cup and solidified by cooling. After incorporating it into a cartridge having a slit through which light passes, it was set in a heating furnace and heated at a predetermined temperature increase rate. The temperature at which the sample melted by heating and blocked the light transmitted through the slit was detected by a photocell.
  • Method Dropping point / softening point measurement system (METTLER TOLEDO, FP83HT) Temperature rising rate: 2 ° C./min
  • Measuring method A molten sample is placed in a sample cup and solidified by cooling. After incorporating it into a cartridge having a slit through which light passes, it was set in a heating furnace and heated at a predetermined temperature increase rate. The temperature at which the sample melted by heating and blocked the light transmitted through the slit was detected
  • the tablet was formed into a shape having a length of 127 mm, a width of 13 mm and a thickness of 1 mm with a transfer molding machine, and then heated at 180 ° C. for 8 hours to obtain a cured product.
  • This cured product was cut into a shape of length 35 mm ⁇ width 13 mm ⁇ thickness 1 mm to obtain a test piece.
  • a DMA measuring apparatus RSA-G2 manufactured by TA Instruments
  • the temperature was increased from 30 ° C. at a rate of 3 ° C./min, and the storage elastic modulus at 270 ° C. was measured.
  • the tablet was formed into a shape having a diameter of 50 mm and a thickness of 3 mm with a transfer molding machine, and then heated at 180 ° C. for 8 hours to obtain a test piece (cured product). About this test piece, the water absorption amount after being immersed in 95 degreeC water for 24 hours was measured. The water absorption was calculated by the following formula.
  • Water absorption rate (%) [(mass after water absorption ⁇ mass before water absorption) / (mass before water absorption)] ⁇ 100 [Flame resistance (flame retardant)]
  • the tablet was formed into a shape having a length of 127 mm, a width of 13 mm, and a thickness of 1 mm with a transfer molding machine, and then heated at 180 ° C. for 8 hours to obtain a test piece (cured product). Using this test piece, flame retardancy was measured according to UL-94.
  • This cured product was cut into a shape of length 35 mm ⁇ width 13 mm ⁇ thickness 1 mm to obtain a test piece.
  • a DMA measuring device RSA-G2 manufactured by TA Instruments
  • the glass transition temperature was measured by increasing the temperature from 30 ° C. to 270 ° C. at a temperature increase rate of 3 ° C./min.
  • Epoxy resin EPPN-501H manufactured by Nippon Kayaku Co., Ltd., triphenolmethane type epoxy resin, epoxy equivalent 166 g / eq
  • Curing accelerator Triphenylphosphine Hokuko Chemical Co., Ltd.
  • Inorganic filler Silica Tatsumori Co., Ltd., Kikurosu MSR-2212, average particle size 25 ⁇ m
  • Example 2 Synthesis of phenol resin B Phenol resin B was obtained in the same manner as in Example 1 except that the amount of 2-methylphenol input in the second step was changed to 154.28 g (1.429 mol). It was. The chart measured by gel permeation chromatography analysis of the obtained phenol resin B is shown in FIG.
  • Phenol resin G was obtained by the same operation as in Example 2 except that 134.28 g (1.429 mol) of phenol was used instead of 2-methylphenol in the second step. .
  • the molecular weight distribution was measured to determine the ratio (area ratio) of each component and the Mw / Mn value. Further, the epoxy resin (EPPN-501H) and the phenol resins A to G are weighed in a SUS container so that the ratio of the epoxy resin equivalent and the hydroxyl equivalent is equal, and melted and mixed on a hot plate. An epoxy resin composition containing no inorganic filler was prepared, and its softening point and ICI viscosity at 150 ° C. were measured. The results are shown in Table 1.
  • Example 2 the kneadability of the inorganic filler at the time of preparing an epoxy resin composition was evaluated using the phenol resin of Example 2 and Comparative Example 1. Evaluation was performed by blending silica in 91 parts by mass or 92 parts by mass in 100 parts by mass of epoxy resin and 70 parts by mass of phenol resin. The results are shown in Table 2.
  • the epoxy resin composition containing an inorganic filler was prepared using the phenol resin of Example 2 and Comparative Example 1, and the evaluation was performed. The results are shown in Table 3.
  • a surface-mounting system that can contain a high proportion of inorganic filler, has excellent fluidity and moldability, has heat resistance, low water absorption, low elastic modulus (especially high temperature and low elastic modulus), and flame resistance
  • Epoxy resin composition that can be suitably used as a semiconductor encapsulant in the semiconductor device, a cured product thereof, a semiconductor encapsulant using the same, and a phenol resin that can be suitably used for the epoxy resin composition be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

【解決手段】本発明のエポキシ樹脂組成物は、少なくともエポキシ樹脂と特定の化学式(1)で表されるフェノール樹脂とを含有することを特徴とする。このエポキシ樹脂組成物は、更に無機充填材を含有することが好適である。また、エポキシ樹脂組成物中の無機充填材の配合割合[無機充填材の質量/無機充填材を含むエポキシ樹脂組成物の質量]が、70~95質量%であることも好適である。更に、溶媒を含有し、エポキシ樹脂とフェノール樹脂とが溶媒に均一に溶解していることも好適である。

Description

エポキシ樹脂組成物、封止材、その硬化物、及びフェノール樹脂
 本発明は、エポキシ樹脂組成物、その硬化物、それを用いた半導体封止材、及び前記エポキシ樹脂組成物に好適に用いることができるフェノール樹脂に関する。
 集積回路を用いた半導体装置の封止材としては、エポキシ樹脂、フェノール樹脂、及び溶融シリカ、結晶シリカ等の無機充填材を配合したエポキシ樹脂組成物が好適に用いられている。無機充填材は、機械的強度や耐熱性を向上させ、封止材の熱膨張率を小さくして反り量を低下させ、更に吸水性や難燃性に悪影響を与える樹脂成分の割合を低減させることによって、低吸水率や高難燃性を達成する役割を担っている。しかしながら、無機充填材を高い割合で配合すると、エポキシ樹脂組成物の溶融粘度が高くなって流動性を低下するために、成形性に難を生じ、更にリードフレームやワイヤの変形、界面剥離、ボイドなどの原因にもなりかねないため限界があった。
 近年、スマートフォンやタブレット端末などに代表される電子機器の高性能化、小型化、薄型化に伴い、半導体装置の高集積化、小型化、薄型化が加速している。このため、半導体装置の実装方法も、回路基板上に半導体素子を直接搭載するBGA(Ball Grid Array)などの表面実装方式が主流になっている。また、半田の鉛フリー化も進んでいる。
 半導体装置を製造する際のリフロー工程では、室温から、鉛フリー半田のため従来よりも約20℃高温の約260℃のリフロー温度まで上げ、更に冷却されるために、反りが生じるが、表面実装方式では、基板の片面に封止材料がモールドされるために、反りの変化量がより大きくなる。そして、反りの変化量が大きいと、後工程での取り扱いが困難になるし、半田ボールが外れる等の品質上の不具合が生じ易い。また、リフロー工程では、封止材に吸湿している水分が膨張してクラックを生じ易い。
 表面実装方式の半導体装置における封止材に関して、特許文献1では、成形性や耐リフロー性などを高める方策として、平均粒径が13μm以下の無機充填材を用いることが提案されている。また、特許文献2及び3では、パッケージの反りを抑えることと耐リフロー性を改善するための方策として、アントラセン環やナフタレン環を有するグリシジルエーテル型エポキシ樹脂や、ナフタレン環を有するフェノール樹脂を用いることが提案されている。しかしながら、成形性、反りの抑制、耐リフロー性の改善などについては依然として改善の余地があった。
 特許文献4では、特定の原料を用いたフェノール樹脂の分子量分布を制御することによって、耐熱性や軟化点の低下を抑えながら低粘度化を達成することが開示されている。しかしながら、特に封止材料として用いられる、無機充填材を含有するエポキシ樹脂組成物の場合の流動性、成形性、及び諸特性の改良については詳細な検討はなされていない。
特開2008-274041号公報 US2007/207322A1 特開2013-10903公報 特開昭63-275620号公報
 このような半導体装置の状況から、無機充填材を高い割合で配合でき、流動性、成形性が優れ、耐熱性、低吸水性、低弾性率(特に高温低弾性率)、及び難燃性を有する、表面実装方式の半導体装置において半導体封止材として好適に用いることができるエポキシ樹脂組成物が求められている。
 なお、低弾性率(特に高温低弾性率)が求められるのは、リフロー工程を含む各工程でのヒートサイクルで生じる応力を好適に緩和して、反り量を低減し、クラックの発生を抑制するために、低弾性率(特に高温低弾性率)が有効であると考えられるためである。
 すなわち、本発明は、無機充填材を高い割合で配合でき、流動性、及び成形性が優れ、耐熱性、低吸水性、低弾性率(特に高温低弾性率)、及び難燃性を有する、表面実装方式の半導体装置において半導体封止材として好適に用いることができるエポキシ樹脂組成物、その硬化物、それを用いた半導体封止材、及びそのエポキシ樹脂組成物に好適に用いることができるフェノール樹脂を提案することである。
 すなわち、本発明は以下の事項に関する。
1. 少なくとも、エポキシ樹脂と下記化学式(1)で表されるフェノール樹脂とを含有することを特徴とするエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
 化学式(1)において、R1及びR2は、それぞれ独立して、水素原子、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかであり、R3及びR4は、それぞれ独立して、水素原子、水酸基、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかであり、nは0又は正の整数であり、前記フェノール樹脂全体に対して、ゲル浸透クロマトグラフ分析の面積比で、n=1の成分が30%以上であり、n=0の成分が25%以下の割合である。
 なお、nは、好ましくは実質的に(全成分中の90%以上が)0~8の整数であり、また、n=1の成分は、好ましくは全成分中の最大の割合を占める主成分である。
 また、R2が水素原子である態様であっても構わないし、各R1が炭素数1~6のアルキル基、アリル基、又はアリール基のいずれかであり、各R3が水素原子、炭素数1~6のアルキル基、アリル基、又はアリール基のいずれかであり、各R2及び各R4が水素原子である態様でも構わない。
 また、R1が炭素数1~6のアルキル基であって水酸基のオルソ位に位置し、R2が水素原子である態様でも構わないし、R1が炭素数1~6のアルキル基であって水酸基のオルソ位に位置し、R2が水素原子である態様を除く態様でも構わない。
 また、n=1の成分が、好ましくは55%以下、より好ましくは50%以下、更に好ましくは47%以下、特に好ましくは45%以下の態様であっても構わない。n=1の成分が前記の好ましい範囲を超えた場合には、得られる硬化物のガラス転移温度が低くなって十分な耐熱性が得られなくなる恐れがある。
2. 化学式(1)において、n=1の成分が30%以上且つ50%以下、より好ましくはn=1の成分が30%以上且つ47%以下、更に好ましくはn=1の成分が30%以上且つ45%以下であることを特徴とする前記項1に記載のエポキシ樹脂組成物。
3. 化学式(1)において、R1は炭素数が1~6のアルキル基であって水酸基のオルソ位に位置し、R2が水素原子であって、n=1の成分が35%以上且つ50%以下であり、n=0の成分が25%以下且つn=1の成分に対して1/3倍以上の割合であることを特徴とする前記項1に記載のエポキシ樹脂組成物。
4. 更に無機充填材を含有することを特徴とする前記項1~3のいずれかに記載のエポキシ樹脂組成物。
5. エポキシ樹脂組成物中の無機充填材の配合割合[無機充填材の質量/無機充填材を含むエポキシ樹脂組成物の質量]が、70~95質量%であることを特徴とする前記項4に記載のエポキシ樹脂組成物。
6. 更に溶媒を含有し、エポキシ樹脂及びフェノール樹脂が溶媒に均一に溶解していることを特徴とする前記項1~5のいずれかに記載のエポキシ樹脂組成物。
7. 前記項1~6のいずれかのエポキシ樹脂組成物を硬化させた硬化物。
8. 前記項1~6のいずれかのエポキシ樹脂組成物からなる半導体封止材。
9. 表面実装方式の半導体装置用である前記項8に記載の半導体封止材。
10. 前記項8又は9のいずれかの半導体封止材を用いた半導体装置。
11. 下記化学式(2)で表されるフェノール樹脂。
Figure JPOXMLDOC01-appb-C000004
 化学式(2)において、R1及びR2は、それぞれ独立して、水素原子、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかであり、R3及びR4は、それぞれ独立して、水素原子、水酸基、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかであり、nは0又は正の整数であり、フェノール樹脂全体に対して、ゲル浸透クロマトグラフ分析の面積比で、n=1の成分が30%以上且つ50%以下の割合である。
 本発明によって、無機充填材を高い割合で配合でき、流動性、及び成形性が優れ、耐熱性、低吸水性、低弾性率(特に高温低弾性率)、及び難燃性を有する、表面実装方式の半導体装置において半導体封止材として好適に用いることができるエポキシ樹脂組成物、その硬化物、それを用いた半導体封止材、及びそのエポキシ樹脂組成物に好適に用いることができるフェノール樹脂を得ることができる。
図1は、実施例1で得られたフェノールノボラック樹脂のゲル浸透クロマトグラフ分析のチャートである。 図2は、実施例2で得られたフェノールノボラック樹脂のゲル浸透クロマトグラフ分析のチャートである。 図3は、実施例3で得られたフェノールノボラック樹脂のゲル浸透クロマトグラフ分析のチャートである。 図4は、実施例4で得られたフェノールノボラック樹脂のゲル浸透クロマトグラフ分析のチャートである。 図5は、実施例5で得られたフェノールノボラック樹脂のゲル浸透クロマトグラフ分析のチャートである。 図6は、実施例6で得られたフェノールノボラック樹脂のゲル浸透クロマトグラフ分析のチャートである。 図7は、比較例1で得られたフェノールノボラック樹脂のゲル浸透クロマトグラフ分析のチャートである。 図8は、比較例2で得られたフェノールノボラック樹脂のゲル浸透クロマトグラフ分析のチャートである。
 本発明は、少なくともエポキシ樹脂と前記化学式(1)で表されるフェノール樹脂とを含有することを特徴とするエポキシ樹脂組成物に関する。
 本発明のエポキシ樹脂組成物で用いられるエポキシ樹脂は、特に限定されるものではなく、エポキシ樹脂組成物に通常用いられるエポキシ樹脂を好適に使用することができる。例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、特にフェノールビフェニレンメチレン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、スチルベン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂などの分子中にエポキシ基を2個以上有する二官能あるいは多官能のエポキシ樹脂を好適に挙げることができる。エポキシ樹脂は1種類を単独で用いてもよく、2種類以上の複数種を併用しても構わない。
 本発明のエポキシ樹脂組成物の特徴の一つは、硬化剤として化学式(1)で表されるフェノール樹脂を含有するところにある。そして、化学式(1)で表されるこのフェノール樹脂は、特に、ゲル浸透クロマトグラフ分析の面積比で、n=1の成分がフェノール樹脂全体の30%以上であり、n=0の成分がフェノール樹脂全体の25%以下の割合であるという特徴がある。
 本発明のエポキシ樹脂組成物は、この条件を満たすフェノール樹脂を用いることによって、エポキシ樹脂組成物としての流動性や溶融粘度を好適に低下させることができるという有利な効果を奏する。そして、このエポキシ樹脂組成物は、無機充填材を混練する際の混練性が改良されるので、無機充填材を高い割合で容易に配合でき、且つ成形性が優れる。更に、このエポキシ樹脂組成物を硬化させた硬化物は、耐熱性、低吸水性、低弾性率(特に高温低弾性率)、難燃性が好適に改良されたものである。
 本発明のエポキシ樹脂組成物で用いられるフェノール樹脂は、好ましくは、ゲル浸透クロマトグラフ分析の面積比で、n=1の成分がフェノール樹脂全体の30%以上且つ50%以下である。これらの条件を満たすフェノール樹脂を用いることによって、本発明のエポキシ樹脂組成物は、より好ましい軟化点や溶融粘度を容易に得ることができる。ゲル浸透クロマトグラフ分析の測定条件、及び各成分の面積の算出方法は、後述する実施例において詳述する。
 本発明のエポキシ樹脂組成物で用いられる化学式(1)で表されるフェノール樹脂は、下記化学式(3)で表されるフェノール類とホルムアルデヒドあるいはホルムアルデヒド発生物質とを塩基性触媒の存在下でレゾール化反応させる第1工程と、第1工程で得られた反応混合物に下記化学式(4)で表されるフェノール類を加えて、酸触媒の存在下でノボラック化反応させる第2工程とを含む製造方法によって、好適に調製することができる。
 本発明のフェノール樹脂の各成分の割合は、反応原料の割合、反応時間、及び反応温度を、以下で説明するように調節することで容易に達成することが可能である。なお、必要に応じて予備的な実験を行うことによって、当業者は実際の反応条件を精度よく決定することができる。
Figure JPOXMLDOC01-appb-C000005
 化学式(3)において、R1、R2は、水素原子、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかである。
Figure JPOXMLDOC01-appb-C000006
 化学式(4)において、R3、R4は、水素原子、水酸基、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかである。
 第1工程について説明する。
 第1工程で反応する、化学式(3)で表されるフェノール類と、ホルムアルデヒドあるいはホルムアルデヒド発生物質との割合は、化学式(3)で表されるフェノール類1モルに対して、ホルムアルデヒドあるいはホルムアルデヒド発生物質から発生するホルムアルデヒドが、好ましくは1~3モル、より好ましくは1.5~2.5モルである。この割合が、好ましい範囲の下限未満では低分子量成分が増加し、好ましい範囲の上限を超えると高分子量成分が増加するので、本発明の化学式(1)で表されるフェノール樹脂を得ることが難しくなる。
 塩基性触媒の使用量は、限定するものではないが、化学式(3)で表されるフェノール類1モルに対して、0.1~1.5モルの割合であることが好ましく、0.3~1.0モルの割合であることがより好ましい。この割合が、好ましい範囲の下限未満では反応の進行が遅くなって未反応成分が残り易くなり、好ましい範囲の上限を超えると触媒の除去が困難になり生産性が低下する原因になることがある。
 反応温度は、限定するものではないが、好ましくは10~80℃程度、より好ましくは20~60℃である。10℃未満では反応の進行が遅くなり、80℃を超えると高分子量化し易くなりレゾール化反応を制御するのが難しくなる。反応時間は、限定するものではないが、好ましくは0.5~24時間であり、より好ましくは3~12時間である。
 第1工程で用いられる前記化学式(3)で表されるフェノール類としては、特に限定するものではないが、フェノール、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、アリルフェノール、フェニルフェノール、キシレノール、ジエチルフェノール、ジプロピルフェノール、ジブチルフェノール、カテコール、レゾルシンなどを好適に挙げることができる。これらの中では、経済性や低溶融粘度化の観点からオルソクレゾール又はパラクレゾールが好ましい。このフェノール類は、一種類を単独で用いてもよく、二種類以上の複数種を併用しても構わない。
 第1工程で用いられるホルムアルデヒドとしては、水溶液化したホルムアルデヒドを好適に用いることができる。またホルムアルデヒド発生物質としては、パラホルムアルデヒド、トリオキサン、テトラオキサン等のホルムアルデヒドを発生する化合物を好適に使用することができる。
 第1工程で用いられる塩基性触媒としては、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物、水酸化アンモニウム、ジエチルアミン、トリエチルアミン、トリエタノールアミン、エチレンジアミン、ヘキサメチレンテトラミン等のアミン類を例示することができる。塩基性触媒は、一種類を単独で用いてもよく、二種類以上の複数種を併用しても構わない。
 次に、第2工程について説明する。
 第2工程の反応は、好ましくは、第1工程のレゾール化反応で得られた反応混合物に、化学式(4)で表されるフェノール類を加えた後、酸性化合物で中和し、更に酸触媒を加えた後で好適に行われる。
 中和に用いる酸性化合物としては、塩酸、硫酸、リン酸、蟻酸、酢酸、蓚酸、酪酸、乳酸、ベンゼンスルホン酸、p-トルエンスルホン酸等を好適に挙げることができる。酸性化合物は、一種類を単独で用いてもよく、二種類以上の複数種を併用しても構わない。
 第2工程で用いられる化学式(4)で表されるフェノール類は、第1工程で使用されるホルムアルデヒドあるいはホルムアルデヒド発生物質から発生するホルムアルデヒド1モルに対して、好ましくは0.5~5モルであり、より好ましくは1~2モルである。化学式(4)で表されるフェノール類の使用量が、好ましい範囲の下限未満では高分子量成分が多くなって得られるフェノール樹脂の溶融粘度が高くなり、好ましい範囲の上限を超えると未反応フェノール類が多量に残り易くなる。
 第2工程で用いられる酸触媒の使用量は、第1工程で用いられる化学式(3)で表されるフェノール類1モルに対して、好ましくは0.0001~0.07モルの割合であり、より好ましくは0.0005~0.05モルの割合である。この割合が、好ましい範囲の下限未満では反応の進行が遅くなり、好ましい範囲の上限を超えると高分子量化し易くなるので反応制御が難しくなる。
 反応温度は、限定するものではないが、好ましくは50~150℃程度、より好ましくは70~100℃程度である。50℃未満では反応の進行が遅くなり、150℃を超えると、発熱によって高分子量化し易くなり、ノボラック化反応を制御するのが難しくなる。
 反応時間は、限定するものではないが、好ましくは0.5~12時間であり、より好ましくは1~6時間である。この割合が、好ましい範囲の下限未満では反応の進行が不十分になり、好ましい範囲の上限を超えると高分子量化し易くなる。
 第2工程で用いられる化学式(4)で表されるフェノール類としては、特に限定するものではないが、フェノール、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、アリルフェノール、フェニルフェノール、キシレノール、ジエチルフェノール、ジプロピルフェノール、ジブチルフェノール、カテコール、レゾルシンなどを好適に挙げることができる。これらの中では、経済性や低溶融粘度化の観点からオルソクレゾール又はパラクレゾールが好ましい。このフェノール類は、一種類を単独で用いてもよく、二種類以上の複数種を併用しても構わない。
 第2工程で用いられる酸触媒としては、塩酸、硫酸、リン酸、蟻酸、酢酸、蓚酸、酪酸、乳酸、ベンゼンスルホン酸、p-トルエンスルホン酸等を好適に挙げることができる。酸触媒は、一種類を単独で用いてもよく、二種類以上の複数種を併用しても構わない。
 本発明で用いられるフェノール樹脂は、第2工程で得られたノボラック化された反応混合物を、水洗や減圧下での濃縮などの後処理を行って、未反応のフェノール類や触媒を除去することによって、好適に得ることができる。
 このようにして得られる本発明で用いるフェノール樹脂の重量平均分子量は、特に限定するものではないが、好ましくは500~1000、より好ましくは550~800、更に好ましくは600~750である。また、分散度[重量平均分子量/数平均分子量]は、好ましくは1.0~1.2である。
 本発明のエポキシ樹脂組成物は、少なくともエポキシ樹脂と化学式(1)で表されるフェノール樹脂とを、例えば二軸ニーダや二本ロールなどの混合装置を用い、必要に応じて溶融して、混合することによって好適に得ることができる。得られたエポキシ樹脂組成物は、粉砕機によって好適に粉末化される。
 本発明のエポキシ樹脂組成物は、有機又は無機充填材を好適に含有することができる。充填材としては、特に限定するものではなく用途に応じて選択されるが、例えば非晶性シリカ、結晶性シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、タルク、マイカ、硫酸バリウム、酸化マグネシウムなどの無機充填材を好適に挙げることができる。特に半導体封止材として用いる場合には、非晶性シリカや結晶性シリカなどが好適に用いられる。
 無機充填材を配合する場合のエポキシ樹脂組成物中の配合割合[無機充填材の質量/無機充填材を含むエポキシ樹脂組成物の質量]は、限定するものではないが、30~98質量%、好ましくは40~95質量%程度が好適である。半導体素子の封止材として用いる場合などの用途では、60~95質量%、好ましくは70~95質量%、より好ましくは75~90質量%、更に好ましくは80~90質量%である。
 無機充填剤の割合が前記範囲の下限未満であるとエポキシ樹脂組成物の硬化物の吸水率が増加し好ましくない。また、無機充填剤の割合が前記範囲の上限よりも多すぎると半導体封止用エポキシ樹脂組成物の流動性を損なわれる恐れがある。
 本発明のエポキシ樹脂組成物は、更に通常のエポキシ樹脂組成物で用いられる硬化促進剤、離型剤、着色剤、カップリング剤、難燃剤等の添加剤、更に溶媒などを含有することができる。
 溶媒については、エポキシ樹脂やフェノール樹脂などの樹脂成分を均一に溶解できるものが好ましく、例えばアルコール類、エーテル類、ケトン類、ラクトン類、ヘテロ原子含有化合物などの有機溶媒を好適に用いることができる。エポキシ樹脂やフェノール樹脂などの樹脂成分が溶媒に均一に溶解した本発明のエポキシ樹脂組成物は、それをガラス繊維や炭素繊維などに含浸し、次いで溶媒を除去しながらBステージ化するなどの方法によって、繊維強化複合材料や積層板を好適に得ることが可能になる。
 エポキシ樹脂組成物に用いられる硬化促進剤としては、エポキシ樹脂とフェノール樹脂との硬化反応を促進できるものであればよく、例えば有機ホスフィン化合物、そのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類、及びそのテトラフェニルボロン塩などを挙げることができる。
 硬化促進剤、離型剤、着色剤、カップリング剤、難燃剤等の添加剤の添加量、更に溶媒などの使用量は、特に制限はなく、既に公知のエポキシ樹脂組成物における割合と同様でよい。
 本発明のエポキシ樹脂組成物は、半導体素子の封止材として好適に使用することができる。半導体素子の封止材には、封止形態によって、半導体素子と回路基板との隙間及び半導体素子の周囲を封止する封止材と、半導体素子と回路基板との隙間を封止するアンダーフィル材とがある。また、近年ではコストカットを目的とし、トランスファーモールドによりアンダーフィルも同時に行う成形方式で使用されるモールドアンダーフィル材もある。本発明のエポキシ樹脂組成物は、これらの封止形態で好適に使用することができる。すなわち、本発明の封止材はアンダーフィル材及びモールドアンダーフィル材を含む。
 本発明のエポキシ樹脂組成物は、例えば100℃~350℃で0.01~20時間加熱処理することによって硬化反応させて、その硬化物を得ることができる。硬化反応の温度は、低いと硬化せず、高いと熱分解による性能低下が起こる。また、硬化反応の時間は短いと反応が完結せず、長いと生産性が低下する。
 本発明のエポキシ樹脂組成物からなる封止材によって封止された半導体素子を有する半導体装置は、半導体素子と回路基板との隙間及び半導体素子の周囲に本発明のエポキシ樹脂組成物からなる封止材を導入して成形硬化させる方法、すなわち、半導体素子と回路基板との隙間にアンダーフィル材を導入する工程と、アンダーフィル材を成形硬化させる工程とを含む方法、あるいは、半導体素子と回路基板との隙間及び半導体素子の周囲に封止材を導入する工程と、封止材を成形硬化させる工程とを含む方法、によって好適に得ることができる。
 本発明のエポキシ樹脂組成物は、無機充填材を高い割合で配合でき、流動性、成形性が優れ、その硬化物が、優れた耐熱性、低吸水性、低弾性率(特に高温低弾性率)、及び難燃性を有する。このため、本発明のエポキシ樹脂組成物は、表面実装方式の半導体装置において、半導体封止材として特に好適に用いることができる。
 以下、本発明を実施例により更に具体的に説明するが、本発明は、これら実施例に限定されるものではない。
 以下の例で用いた測定方法を説明する。
(1)フェノール樹脂に関する測定方法
[分子量分布の測定]
 以下のようにしてゲル浸透クロマトグラフ分析によりフェノール樹脂を分析した。また、各成分の割合(面積割合)は解析ソフト Multi Station GPC-8020を用いて算出した。その際、ピーク前後の直線部分をベースライン(0値)とし、各成分のピーク間は最も低くなるところでの縦切りでピークを分けた。サンプリングピッチは500ミリ秒とした。また分子量(Mw、Mn)や分散度(Mw/Mn)は標準ポリスチレン換算により算出した。
 装置:HLC-8220(東ソー株式会社製、ゲル浸透クロマトグラフ分析装置)
 カラム:TSK-GEL Hタイプ
     G2000H×L 4本
     G3000H×L 1本
     G4000H×L 1本
 測定条件:カラム圧力 13.5MPa
 溶解液:テトラヒドロフラン(THF)
 フローレート:1mL/分
 測定温度:40℃
 検出器:スペクトロフォトメーター(UV-8020)
 RANGE:2.56 WAVE LENGTH 254nm
(2)無機充填材を含まないエポキシ樹脂組成物に関する測定方法
[粘度の測定]
 以下のようにして150℃のICI粘度を測定した。
 装置:ICIコーンプレート粘度計(TOA工業株式会社、MODEL CV-1S)
 測定温度:150℃
 測定方法:プレート温度を150℃に設定後、プレートに所定量の試料を置き、試料が溶融後に上からコーンを接触させて回転させ、温度が安定した後で、トルク値を読み取ってICI粘度を算出した。
[軟化点の測定]
 以下のようにして軟化点を測定した。
 装置:滴点・軟化点測定システム(メトラー・トレド株式会社、FP83HT)
 昇温速度:2℃/分
 測定方法:サンプルカップに溶融した試料を入れ冷却固化する。それを光が透過するスリットを備えるカートリッジに組み込んだ後、加熱炉に設定し、所定の昇温速度で加熱した。試料が加熱によって溶融し、スリットを透過する光を遮った温度をフォトセルで検出した。
(3)エポキシ樹脂組成物を調製する際の無機充填材の混練性に関する測定方法
[混練性] 
 以下のようにして無機充填材の混練性を測定した。
 所定量のエポキシ樹脂と、フェノール樹脂と、無機充填材のシリカとを二本ロールを用いて温度を63℃にて混練を行い、回収した混練物を目視によって評価した。評価の基準は、○:問題なく均一なシート状の混練物を得ることができる、△:シート状の混練物を得ることはできるが側面が粗い(均一ではない)、×:混練できない又はシート状の混練物が得られない、とした。
(4)無機充填材を含有するエポキシ樹脂組成物に関する測定方法
 無機充填材を含有するエポキシ樹脂組成物について次の測定を行った。なお、測定は、無機充填材を含有するエポキシ樹脂組成物の混合物の粉末をタブレットに成形し、そのタブレット又はそれを用いた硬化物を試料として行った。タブレットの成形は、ハンドプレスを用いて圧力450MPaで1分間加圧することで行った。
[流動性(スパイラルフロー)]
 試料のタブレットについて以下のようにして成形時の流動性を測定した。
 装置:トランスファー成形機(株式会社多加良製作所、60t)
 測定条件:金型温度 170℃、注入圧力 6.9MPa、保持時間 120秒
 測定方法:試料をEMMI-1-66に準じたスパイラルフロー測定用金型に注入し、流動長を測定した。
[機械的強度]
 JIS K7171に準拠して測定した。
 タブレットを、トランスファー成形機で長さ80mm×幅10mm×厚さ4mmの形状に成形し、次いで180℃で8時間加熱して試験片(硬化物)を得た。この試験片について、室温で、3点曲げ試験法にて曲げ弾性率、曲げ強度を測定した。
[高温貯蔵弾性率]
 タブレットを、トランスファー成形機で長さ127mm×幅13mm×厚さ1mmの形状に成形し、次いで180℃で8時間加熱して硬化物を得た。この硬化物を長さ35mm×幅13mm×厚さ1mmの形状に切削して試験片を得た。この試験片について、DMA測定装置(TAインスツルメンツ社製 RSA-G2)を用い、30℃から3℃/分の昇温速度で昇温し、270℃の貯蔵弾性率を測定した。
[吸水性(吸水率)]
 タブレットを、トランスファー成形機で直径50mm×厚さ3mmの形状に成形し、次いで180℃で8時間加熱して試験片(硬化物)を得た。
 この試験片について、95℃の水中に24時間浸漬した後の吸水量を測定した。なお、吸水率は下式によって算出した。
 吸水率(%)=[(吸水後質量-吸水前質量)/(吸水前質量)]×100
[耐燃焼性(難燃性)]
 タブレットを、トランスファー成形機で長さ127mm×幅13mm×厚さ1mmの形状に成形し、次いで180℃で8時間加熱して試験片(硬化物)を得た。この試験片を用いて、UL-94に準拠して難燃性を測定した。
[ガラス転移温度]
 タブレットを、トランスファー成形機で長さ127mm×幅13mm×厚さ1mmの形状に成形し、次いで180℃で8時間加熱して硬化物を得た。この硬化物を長さ35mm×幅13mm×厚さ1mmの形状に切削して試験片を得た。この試験片について、DMA測定装置(TAインスツルメンツ社製 RSA-G2)を用いて、30℃から270℃まで昇温速度3℃/分で昇温して、ガラス転移温度を測定した。
 次に、以下の例で用いたエポキシ樹脂などの材料について説明する。
(a)エポキシ樹脂
 EPPN-501H:日本化薬株式会社製、トリフェノールメタン型のエポキシ樹脂、エポキシ当量 166g/eq
(2)硬化促進剤
 トリフェニルホスフィン:北興化学株式会社製
(3)無機充填材
 シリカ:株式会社龍森製、キクロスMSR-2212、平均粒子径 25μm
 以下フェノール樹脂の調製例について説明する。
〔実施例1〕フェノール樹脂Aの合成
 温度計、冷却器、撹拌装置を備えた4つ口フラスコに、2-メチルフェノール 54.00g(0.500モル)、42%ホルマリン 71.43g(1.000モル)、及び塩基性触媒として25%水酸化ナトリウム 60.00g(0.375モル)を投入し、30℃で5時間反応させて第1工程のレゾール化反応を行った。この反応混合物に、2-メチルフェノール 120.00g(1.111モル)を投入し、25%塩化水素を加えて中和した後で、更に酸触媒として蓚酸 2.16g(0.017モル)を投入し、70℃で1時間、次いで100℃で1時間反応させて第2工程のノボラック化反応を行った。
 得られた反応混合液を、95℃に温度を下げて、同温度の純水 370gにて2回水洗した。水洗後、165℃に昇温し、-760mmHgの減圧下にて水蒸気蒸留により未反応成分を除去することによって、フェノール樹脂Aを得た。
〔実施例2〕フェノール樹脂Bの合成
 第2工程の2-メチルフェノールの投入量を154.28g(1.429モル)に変更したこと以外は実施例1と同様の操作によってフェノール樹脂Bを得た。
 得られたフェノール樹脂Bのゲル浸透クロマトグラフ分析により測定したチャートを図1に示した。
〔実施例3〕フェノール樹脂Cの合成
 第2工程の2-メチルフェノールの投入量を216.00g(2.000モル)に変更したこと以外は実施例1と同様の操作によってフェノール樹脂Cを得た。
〔実施例4〕フェノール樹脂Dの合成
 第1工程の2-メチルフェノールの投入量を43.20g(0.400モル)に変更したこと以外は実施例1と同様の操作によってフェノール樹脂Dを得た。
〔実施例5〕フェノール樹脂Eの合成
 第1工程の2-メチルフェノールの代わりに4-メチルフェノールを用いたこと以外は実施例2と同様の操作によってフェノール樹脂Eを得た。
〔実施例6〕フェノール樹脂Fの合成
 第1工程の2-メチルフェノールの代わりに2-フェニルフェノールを用いたこと以外は実施例2と同様の操作によってフェノール樹脂Fを得た。
 〔比較例1〕フェノール樹脂Gの合成
 温度計、冷却器、撹拌装置を備えた4つ口フラスコに、2-メチルフェノール 54.00g(0.500モル)、42%ホルマリン 71.43g(1.000モル)、及び塩基性触媒として25%水酸化ナトリウム 19.40g(0.121モル)を投入し、60℃で5時間反応させて第1工程のレゾール化反応を行った。この反応混合物に、2-メチルフェノール 152.06g(1.408モル)を投入し、25%塩化水素を加えて中和した後で、更に酸触媒として蓚酸 2.16g(0.017モル)を投入し、70℃で3時間反応させて第2工程のノボラック化反応を行った。
 得られた反応混合液を、水洗した後で、減圧下にて水蒸気蒸留により未反応成分を除去することによって、フェノール樹脂Fを得た。
〔比較例2〕フェノール樹脂Hの合成
 第2工程の2-メチルフェノールの代わりにフェノール 134.28g(1.429モル)を用いこと以外は実施例2と同様の操作によってフェノール樹脂Gを得た。
 実施例1~5、比較例1,2で得られたフェノール樹脂A~Gについて、それぞれ分子量分布の測定を行い、各成分の割合(面積割合)及びMw/Mn値を求めた。
 また、エポキシ樹脂(EPPN-501H)とフェノール樹脂A~Gとを、エポキシ樹脂当量と水酸基当量との割合が等量となるようにSUS容器に量り取り、熱板上にて溶融・混合して無機充填材を含まないエポキシ樹脂組成物を調製し、その軟化点や150℃のICI粘度を測定した。
 結果を表1に示した。
Figure JPOXMLDOC01-appb-T000007
 また、実施例2と比較例1のフェノール樹脂を用いて、エポキシ樹脂組成物を調製する際の無機充填材の混練性を評価した。評価は、エポキシ樹脂100質量部とフェノール樹脂70質量部とに、シリカを組成物中の91質量%あるいは92質量%となるように配合して行った。
 結果を表2に示した。
Figure JPOXMLDOC01-appb-T000008
 また、実施例2と比較例1のフェノール樹脂を用いて、無機充填材を含有するエポキシ樹脂組成物を調製してその評価を行った。
 結果を表3に示した。
Figure JPOXMLDOC01-appb-T000009
 本発明によって、無機充填材を高い割合で配合でき、流動性、成形性が優れ、耐熱性、低吸水性、低弾性率(特に高温低弾性率)、及び難燃性を有する、表面実装方式の半導体装置において半導体封止材として好適に用いることができるエポキシ樹脂組成物、その硬化物、それを用いた半導体封止材、及びそのエポキシ樹脂組成物に好適に用いることができるフェノール樹脂を得ることができる。

Claims (11)

  1.  少なくとも、エポキシ樹脂と下記化学式(1)で表されるフェノール樹脂とを含有することを特徴とするエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     化学式(1)において、R1及びR2は、それぞれ独立して、水素原子、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかであり、R3及びR4は、それぞれ独立して、水素原子、水酸基、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかであり、nは0又は正の整数であり、前記フェノール樹脂全体に対して、ゲル浸透クロマトグラフ分析の面積比で、n=1の成分が30%以上であり、n=0の成分が25%以下の割合である。
  2.  化学式(1)において、n=1の成分が30%以上且つ50%以下であることを特徴とする請求項1に記載のエポキシ樹脂組成物。
  3.  化学式(1)において、R1は炭素数が1~6のアルキル基であって水酸基のオルソ位に位置し、R2が水素原子であって、n=1の成分が35%以上且つ50%以下であり、n=0の成分が25%以下且つn=1の成分に対して1/3倍以上の割合であることを特徴とする請求項1に記載のエポキシ樹脂組成物。
  4.  更に無機充填材を含有することを特徴とする請求項1~3のいずれか一項に記載のエポキシ樹脂組成物。
  5.  エポキシ樹脂組成物中の無機充填材の配合割合[無機充填材の質量/無機充填材を含むエポキシ樹脂組成物の質量]が、70~95質量%であることを特徴とする請求項4に記載のエポキシ樹脂組成物。
  6.  更に溶媒を含有し、エポキシ樹脂及びフェノール樹脂が溶媒に均一に溶解していることを特徴とする請求項1~5いずれか一項に記載のエポキシ樹脂組成物。
  7.  請求項1~6のいずれかのエポキシ樹脂組成物を硬化させた硬化物。
  8.  請求項1~6のいずれかのエポキシ樹脂組成物からなる半導体封止材。
  9.  表面実装方式の半導体装置用である請求項8に記載の半導体封止材。
  10.  請求項8又は9のいずれかの半導体封止材を用いた半導体装置。
  11.  下記化学式(2)で表されるフェノール樹脂。
    Figure JPOXMLDOC01-appb-C000002
     化学式(2)において、R1及びR2は、それぞれ独立して、水素原子、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかであり、R3及びR4は、それぞれ独立して、水素原子、水酸基、炭素数が1~6のアルキル基、アリル基、又はアリール基のいずれかであり、nは0又は正の整数であり、フェノール樹脂全体に対して、ゲル浸透クロマトグラフ分析の面積比で、n=1の成分が30%以上且つ50%以下の割合である。
PCT/JP2014/075560 2013-09-30 2014-09-26 エポキシ樹脂組成物、封止材、その硬化物、及びフェノール樹脂 WO2015046398A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167005792A KR102230012B1 (ko) 2013-09-30 2014-09-26 에폭시 수지 조성물, 봉지재, 그 경화물, 및 페놀 수지
CN201480048878.0A CN105555828B (zh) 2013-09-30 2014-09-26 环氧树脂组合物、密封材、其固化物和酚醛树脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013205962A JP6125967B2 (ja) 2013-09-30 2013-09-30 エポキシ樹脂組成物、封止材、その硬化物、及びフェノール樹脂
JP2013-205962 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046398A1 true WO2015046398A1 (ja) 2015-04-02

Family

ID=52743524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075560 WO2015046398A1 (ja) 2013-09-30 2014-09-26 エポキシ樹脂組成物、封止材、その硬化物、及びフェノール樹脂

Country Status (5)

Country Link
JP (1) JP6125967B2 (ja)
KR (1) KR102230012B1 (ja)
CN (1) CN105555828B (ja)
TW (1) TWI640569B (ja)
WO (1) WO2015046398A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152037A1 (ja) * 2014-03-31 2015-10-08 明和化成株式会社 フェノール樹脂、該フェノール樹脂を含むエポキシ樹脂組成物、該エポキシ樹脂組成物の硬化物、及び該硬化物を有する半導体装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897014B2 (ja) * 2015-06-22 2021-06-30 味の素株式会社 モールドアンダーフィル用樹脂組成物
CN110476243A (zh) * 2017-03-31 2019-11-19 日立化成株式会社 电子电路用保护材料、电子电路用保护材料用密封材料、密封方法和半导体装置的制造方法
JP7543909B2 (ja) * 2018-10-11 2024-09-03 三菱ケミカル株式会社 樹脂組成物、樹脂硬化物および複合成形体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100665A (ja) * 1992-09-18 1994-04-12 Mitsui Toatsu Chem Inc エポキシ樹脂組成物
JP2009242719A (ja) * 2008-03-31 2009-10-22 Sumitomo Bakelite Co Ltd フェノールノボラック樹脂、エポキシ樹脂組成物及びその硬化物、並びに半導体装置
JP2012167142A (ja) * 2011-02-10 2012-09-06 Nippon Steel Chem Co Ltd エポキシ樹脂組成物及び硬化物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681775B2 (ja) 1987-05-07 1994-10-19 荒川化学工業株式会社 ポリヒドロキシ化合物の製造法
US20070207322A1 (en) 2006-03-01 2007-09-06 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
JP2008274041A (ja) 2007-04-26 2008-11-13 Hitachi Chem Co Ltd 半導体封止用エポキシ樹脂組成物及びそれを用いた樹脂封止型半導体装置
JP5708306B2 (ja) 2011-06-30 2015-04-30 Dic株式会社 エポキシ樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、及びプリント配線基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100665A (ja) * 1992-09-18 1994-04-12 Mitsui Toatsu Chem Inc エポキシ樹脂組成物
JP2009242719A (ja) * 2008-03-31 2009-10-22 Sumitomo Bakelite Co Ltd フェノールノボラック樹脂、エポキシ樹脂組成物及びその硬化物、並びに半導体装置
JP2012167142A (ja) * 2011-02-10 2012-09-06 Nippon Steel Chem Co Ltd エポキシ樹脂組成物及び硬化物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152037A1 (ja) * 2014-03-31 2015-10-08 明和化成株式会社 フェノール樹脂、該フェノール樹脂を含むエポキシ樹脂組成物、該エポキシ樹脂組成物の硬化物、及び該硬化物を有する半導体装置

Also Published As

Publication number Publication date
TW201518394A (zh) 2015-05-16
TWI640569B (zh) 2018-11-11
JP6125967B2 (ja) 2017-05-10
CN105555828A (zh) 2016-05-04
KR102230012B1 (ko) 2021-03-19
CN105555828B (zh) 2017-10-20
JP2015067816A (ja) 2015-04-13
KR20160065084A (ko) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5774021B2 (ja) フェノール系オリゴマー及びその製造方法
JP2007106928A (ja) フェノール系重合体、その製法及びその用途
WO2015046398A1 (ja) エポキシ樹脂組成物、封止材、その硬化物、及びフェノール樹脂
JP2008189708A (ja) 低溶融粘度フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物
JP7529111B2 (ja) フェノール樹脂及びその製造方法、並びにエポキシ樹脂組成物及びその硬化物
WO2007026553A1 (ja) 低軟化点フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物
KR102377368B1 (ko) 페놀 수지, 상기 페놀 수지를 포함하는 에폭시 수지 조성물, 상기 에폭시 수지 조성물의 경화물, 및 상기 경화물을 가지는 반도체 장치
WO2011013571A1 (ja) フェノール系化合物及びその製造方法
JP2010229304A (ja) フェノール樹脂、該樹脂の製造方法及び該樹脂を含むエポキシ樹脂組成物、ならびにその硬化物
JP5302147B2 (ja) 封止用エポキシ樹脂組成物および硬化物
JP7314489B2 (ja) フェノール樹脂及びその製造方法、並びにエポキシ樹脂組成物及びその硬化物
JP4696372B2 (ja) エポキシ樹脂組成物及び半導体装置
JP5433294B2 (ja) ジヒドロキシナフタレン系重合体、その製造方法およびその用途
JP5515583B2 (ja) フェノール樹脂及びエポキシ樹脂並びにエポキシ樹脂硬化物
JPS6226649B2 (ja)
JP2001261790A (ja) エポキシ樹脂組成物及び半導体装置
JP2018059095A (ja) フェノール樹脂組成物、硬化剤、エポキシ樹脂組成物、硬化物、及び半導体装置
JP2010229203A (ja) フェノール樹脂組成物、該樹脂組成物の製造方法及び該樹脂組成物を含むエポキシ樹脂組成物
JP2006273907A (ja) フェノール樹脂とその製造方法、エポキシ樹脂硬化剤、およびエポキシ樹脂組成物
JP2012097230A (ja) エポキシ樹脂用硬化剤組成物の製造方法、及び熱硬化性成形材料の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048878.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167005792

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849579

Country of ref document: EP

Kind code of ref document: A1