WO2015045983A1 - ボールねじ用ねじ軸の螺旋溝研削用砥石および螺旋溝形成方法 - Google Patents

ボールねじ用ねじ軸の螺旋溝研削用砥石および螺旋溝形成方法 Download PDF

Info

Publication number
WO2015045983A1
WO2015045983A1 PCT/JP2014/074553 JP2014074553W WO2015045983A1 WO 2015045983 A1 WO2015045983 A1 WO 2015045983A1 JP 2014074553 W JP2014074553 W JP 2014074553W WO 2015045983 A1 WO2015045983 A1 WO 2015045983A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
arc
shaped
ball
chamfered portion
Prior art date
Application number
PCT/JP2014/074553
Other languages
English (en)
French (fr)
Inventor
渡辺 靖巳
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201480054149.6A priority Critical patent/CN105592980A/zh
Publication of WO2015045983A1 publication Critical patent/WO2015045983A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/06Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for grinding races, e.g. roller races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/022Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for helicoidal grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls

Definitions

  • This invention relates to a grinding wheel for spiral groove grinding of a screw shaft for a ball screw and a method for forming a spiral groove of a screw shaft for a ball screw.
  • the ball screw has, for example, a screw shaft 1, a nut 2, and a plurality of balls 3 as shown in FIG.
  • the screw shaft 1 is disposed so as to penetrate the nut 2.
  • a rolling path of the ball 3 is formed by the spiral groove 11 of the screw shaft 1 and the spiral groove 21 of the nut 2.
  • a ball return path 41 for returning the ball 3 from the end point of the rolling path to the start point is formed by attaching the return tube 4 to the nut 2.
  • the ball 3 is disposed in a circulation path including a rolling path formed by the spiral grooves 11 and 21 and a ball return path 41.
  • the ball screw is a device in which the screw shaft 1 and the nut 2 move relative to each other via a ball 3 that circulates in a circulation path and rolls (moves while rotating in a load state) in the rolling path. Examples of the cross-sectional shape perpendicular to the spiral groove 11 of the screw shaft 1 include those shown in FIGS. 4 and 5.
  • a straight chamfered portion 112 is formed in a relatively wide area outside the ball rolling groove 111 where the ball 3 rolls, and the outer side is the outer peripheral surface 12 of the screw shaft 1.
  • the straight chamfered portion 112 is formed in a narrower range than the example of FIG. 4 outside the ball rolling groove 111 where the ball 3 rolls, and the outside is the outer peripheral surface 12 of the screw shaft 1. ing.
  • the cross-sectional shape perpendicular to the groove shown in FIG. 4 is called “deep groove”
  • the cross-sectional shape perpendicular to the groove shown in FIG. 5 is called “shallow groove”.
  • the ball screw having a large lead (the ratio of the lead to the diameter of the screw shaft is large) employs a shallow groove perpendicular cross-sectional shape and moves when the ball 3 enters and exits the ball return path 41. It has been attempted to improve the operability by smoothing.
  • Patent Document 1 describes that in order to solve this problem, the groove perpendicular cross-sectional shape of the spiral groove 11 of the screw shaft 1 is the shape shown in FIG. That is, in the invention described in Patent Document 1, the groove perpendicular cross-sectional shape of the spiral groove 11 of the screw shaft 1 is formed into a shape in which an arc-shaped chamfered portion (arc portion) 113 is smoothly continuous outside the ball rolling groove 111. Yes. Further, the radius of curvature of the arc-shaped chamfered portion 113 is set to be not less than 1/2 and not more than twice the radius of the ball 3.
  • Patent Document 2 as a method of forming a spiral groove having a cross-sectional shape perpendicular to the groove shown in FIG. 6 on the outer peripheral surface of the screw shaft, the ball rolling groove and the arc-shaped chamfered portion are simultaneously processed and positioned between the two. It is described that no deviation occurs. In the processing, it is described that a general grinding wheel having the shape shown in FIG. 7 is used. In the grindstone 60 shown in FIG. 7, the arc-shaped chamfering range grinding part 602 smoothly continues outside the groove range grinding part 601, and no linear chamfering range grinding part exists outside the arc-shaped chamfering area grinding part 602. .
  • Patent Document 3 a straight chamfered portion (chamfer) is provided between the “curved curved surface portion smoothly extending from the inner surface of the thread groove” corresponding to the arc-shaped chamfered portion 113 in FIG. It is described that the curved surface portion smoothly follows the chamfer.
  • Patent Document 3 discloses that stress concentration at the opening edge of the thread groove at high load is alleviated to shorten the life, and that foreign matter is prevented from entering the rolling path due to burrs at the opening edge of the thread groove, and It is described that the purpose of the invention is to ensure the safety when handling the worker.
  • Patent Document 3 describes that a ball rolling groove (inner surface of a thread groove) and an arc-shaped chamfered portion (curved surface portion) are simultaneously processed using a general-purpose grindstone. It is described that an integral grindstone in which a grindstone surface having a cross-sectional shape corresponding to the groove cross-sectional shape of the thread groove and a grindstone surface corresponding to the cross-sectional shape of the curved surface portion are continuous is used as the general-purpose grindstone. Further, Patent Document 3 exemplifies that the radius of curvature when the arc-shaped chamfered portion (curved surface portion) is an arc shape is about 1 mm when the ball diameter is about 19 mm.
  • the groove right-angle cross-sectional shape of the spiral groove of the screw shaft may be a deep groove or a shallow groove, so that even if the ball diameter is the same, the groove right-angle cross-sectional shape is changed. It is necessary to use a grindstone with a different shape each time. Therefore, there is room for improvement in terms of productivity in processing the spiral groove of the screw shaft.
  • the groove perpendicular cross-sectional shape of the spiral groove of the screw shaft is such that an arc-shaped chamfered portion smoothly continues outside the ball rolling groove, and a linear chamfered portion continues smoothly outside the arc-shaped chamfered portion. It is described that the ball rolling groove and the arc-shaped chamfered portion are ground simultaneously. However, it is not described that the ball rolling groove, the arc-shaped chamfered portion, and the straight chamfered portion are ground simultaneously.
  • the ball rolling groove In the method of grinding the linear chamfered portion after grinding the arc-shaped chamfered portion at the same time, it is difficult to smoothly connect the arcuate chamfered portion and the linear chamfered portion. Therefore, in order to smoothly and continuously connect the arc-shaped chamfered portion and the linear chamfered portion, post-processing with sandpaper or the like is necessary, and productivity is lowered.
  • the problem of the present invention is that the groove perpendicular cross-sectional shape of the spiral groove of the screw shaft is such that the arc-shaped chamfered portion continues smoothly outside the ball rolling groove, and the linear chamfered portion continues smoothly outside the arc-shaped chamfered portion. In the case of a shape, it is to improve the productivity of processing the spiral groove of the screw shaft.
  • a first aspect of the present invention is a grindstone that forms a spiral groove on the outer peripheral surface of a screw shaft that constitutes a ball screw, and the groove perpendicular cross-sectional shape of the spiral groove is a ball rolling
  • An arc-shaped chamfered portion smoothly continues outside the groove, and a linear chamfered portion continues smoothly outside the arc-shaped chamfered portion, and has the following configuration (1).
  • the arc-shaped chamfered area grinding part smoothly continues outside the groove area grinding part, and the linear chamfering area grinding part smoothly continues outside the arc-shaped chamfering area grinding part.
  • a smoothly rolling ball rolling groove, an arc-shaped chamfered portion, and a straight chamfered portion can be ground simultaneously. If the groove perpendicular cross-sectional shape of the spiral groove of the screw shaft is a shape in which the arc chamfered portion smoothly continues outside the ball rolling groove, and the linear chamfered portion smoothly continues outside the arc chamfered portion, the deep groove If the ball diameter is the same between the shallow groove and the shallow groove, not only the ball rolling groove but also the arc chamfered portion have the same dimensions, and only the length of the linear chamfered portion is different.
  • the grindstone of the first aspect it is possible to grind the spiral groove of the screw shaft using the same grindstone as long as the ball diameter is the same regardless of whether the groove perpendicular cross-sectional shape is a deep groove or a shallow groove. it can.
  • a second aspect of the present invention is a method of forming a spiral groove on the outer peripheral surface of a screw shaft constituting a ball screw, and the groove perpendicular cross-sectional shape of the spiral groove is an arc-shaped chamfered portion outside the ball rolling groove.
  • the groove perpendicular cross-sectional shape of the spiral groove is an arc-shaped chamfered portion outside the ball rolling groove. Is a shape in which a straight chamfered portion smoothly continues outside the arcuate chamfered portion, and the ball rolling groove and the arcuate chamfered portion are formed using the grindstone having the configuration (1).
  • the straight chamfered portion is ground at the same time.
  • the grinding wheel for spiral groove grinding of the screw shaft for the ball screw of the present invention it is possible to simultaneously grind the smoothly rolling ball rolling groove, the arc-shaped chamfered portion, and the straight chamfered portion, and the groove perpendicular cross-sectional shape is In the case of a deep groove or a shallow groove, if the ball diameter is the same, the spiral groove of the screw shaft can be ground using the same grindstone. Therefore, the productivity of the processing of the spiral groove of the screw shaft is improved as compared with the grindstone described in Patent Document 3.
  • a ball rolling groove and an arc-shaped chamfer are ground by simultaneously grinding a smoothly rolling ball rolling groove, an arc-shaped chamfered portion, and a linear chamfered portion.
  • the productivity of machining the spiral groove of the screw shaft is improved.
  • sectional drawing which shows embodiment of the groove
  • FIG. 6 is a cross-sectional view illustrating a problem in the case where the cross-sectional shape perpendicular to the spiral groove of the screw shaft is described in Patent Document 1.
  • the spiral groove 11 having the cross-sectional shape perpendicular to the groove shown in FIG. 1 is formed on the outer peripheral surface 12 of the screw shaft 1 using the grindstone 6 shown in FIG.
  • FIG. 1 shows the cross-sectional shapes of the grooves at right angles both in the case of deep grooves and in the case of shallow grooves.
  • the arc-shaped chamfered portion 113 is a shape in which the arc-shaped chamfered portion 113 smoothly continues outside the ball rolling groove 111, and the straight chamfered portions 112a and 112b continue smoothly outside the arc-shaped chamfered portion 113.
  • the diameter of the ball 3 is the same, not only the ball rolling groove 111 but also the arc-shaped chamfered portion 113 have the same dimensions in the deep groove and the shallow groove, and only the lengths of the straight chamfered portions 112a and 112b are different. That is, the deep groove straight chamfer 112a is longer than the shallow groove straight chamfer 112b.
  • the difference Ya between the ball pitch circle diameter of the deep groove and the diameter of the screw shaft is smaller than the difference Yb between the ball pitch circle diameter of the shallow groove and the diameter of the screw shaft.
  • ⁇ a 60 °
  • ⁇ b 25 °
  • ⁇ c 35 °.
  • the radius of curvature r of the arc-shaped chamfered portion 113 is set to about 0.3 times the diameter of the ball 3.
  • Reference numeral 113 ⁇ / b> B in FIG. 1 indicates a line (see FIG. 8) of the arc-shaped chamfered portion where the radius of curvature exceeds one time the diameter of the ball 3.
  • Reference numeral 115 denotes a boundary point between the ball rolling groove 111 and the arc-shaped chamfer 113.
  • the arc-shaped chamfering range grinding part 62 is smoothly continued outside the groove range grinding part 61, and the linear chamfering range grinding part 63 is smoothly continued outside the arcuate chamfering range grinding part 62.
  • the arc-shaped convex surface of the groove range grinding portion 61 is formed in the same range as the ball rolling groove 111 with the same radius of curvature.
  • the arc-shaped concave portion of the arc-shaped chamfered area grinding portion 62 is formed in the same range as the arc-shaped chamfered portion 113 with the same radius of curvature R as the radius of curvature r of the arc-shaped chamfered portion 113.
  • the straight chamfered range grinding portion 63 is formed at the same angle as the angle ⁇ c with respect to the outer peripheral surface 12 of the straight chamfered portions 112a and 112b.
  • the length of the straight chamfered area grinding portion 63 is slightly longer than the length of the deep groove straight chamfered portion 112a.
  • the smoothly rolling ball rolling groove 111, the arc-shaped chamfered portion 113, and the linear chamfered portions 112a and 112b are ground simultaneously. be able to.
  • the spiral groove of the screw shaft can be ground using the same grindstone 6.
  • the ball rolling groove 111, the arc-shaped chamfered portion 113, and the linear chamfered portion that are smoothly continuous using the grindstone 6 shown in FIG. 112a and 112b are ground simultaneously.
  • productivity is improved compared with the method of processing the linear chamfered portions 112a and 112b after processing the ball rolling groove 111 and the arc-shaped chamfered portion 113 simultaneously using the grindstone 60 shown in FIG. .
  • the groove width of the arc-shaped chamfered portion 113 is set to about 0.3 times the diameter of the ball 3, the groove width can be increased even when a shallow groove is formed. Even when the ball screw is used for high-speed rotation (shaft diameter x number of rotations of about 70,000 to 100,000), the surface pressure at the time of ball collision can be kept low, and the ball 3 and the arc-shaped chamfered portion 113 can be applied early. Can be made difficult to occur.
  • the radius of curvature of the arc-shaped chamfered portion 113 may be smaller than 0.3 times the diameter of the ball 3.
  • the radius of curvature of the arc-shaped chamfered portion 113 is set to be larger than 0.3 times the diameter of the ball 3. It is preferable.
  • Patent Document 3 exemplifies that the radius of curvature of the arc-shaped chamfered portion is about 1 mm when the ball diameter is about 19 mm. That is, in this example, the radius of curvature of the arc forming the arc-shaped chamfer is about 0.05 times the ball diameter.
  • the purpose of providing the arc-shaped chamfered portion in Patent Document 3 is to reduce the edge load of the contact surface pressure.
  • FIG. 8 shows a case where the cross-sectional shape of the spiral groove of the screw shaft is perpendicular to the outer surface of the ball rolling groove, and the arc-shaped chamfered portion extends smoothly to the outer peripheral surface of the screw shaft. It is sectional drawing explaining about.
  • the center of the radius of curvature r of the arc-shaped chamfered portion 113 connects the center of the arc of the ball rolling groove 111 and the boundary point 115 of the ball rolling groove 111 and the arc-shaped chamfered portion 113. It exists on the extension line L of the line. If the arc of the arc-shaped chamfered portion 113 is a line 113A indicated by a solid line in FIG. 8, in the case of a deep groove, the line 12c extended outside the line 113A of the arc-shaped chamfered portion is from the outer peripheral surface 12a of the ball screw shaft. The dimension T is lowered.
  • the line 113A does not hold as a thread groove perpendicular cross-sectional shape.
  • the groove width (the distance between the intersection points 117 between the outer peripheral surface 12b of the screw shaft and the line 113A of the arc-shaped chamfered portion) Wb is an appropriate width. That is, the radius of curvature of the arc-shaped chamfer line 113A shown by the solid line in FIG. 8 is too small in the case of a deep groove.
  • the groove width Wb is set in the case of a shallow groove.
  • the movement of the ball 3 when entering and exiting the ball return path is hindered, which may cause malfunction.
  • the ball 3 easily collides with the boundary between the line 113B of the arc-shaped chamfered portion and the outer peripheral surface 12b of the thread groove.
  • the boundary may be damaged. That is, the curvature radius of the line 113B of the arc-shaped chamfered portion indicated by a broken line in FIG. 8 is too large in the case of the shallow groove.
  • the circular cross-sectional shape of the spiral groove of the screw shaft is such that the arc-shaped chamfered portion 113 smoothly continues to the outside of the ball rolling groove 111 and the outer side of the arc-shaped chamfered portion 113.
  • the straight chamfered portions 112a and 112b are formed in a smoothly continuous shape.
  • the radius of curvature of the arc-shaped chamfered portion 113 is set such that the groove width of the shallow groove (the distance between the intersection points 116 of the outer peripheral surface 12b of the screw shaft and the arc-shaped chamfered portion 113) Wb is an appropriate width. Even if it is small (for example, the same as the line 113A in FIG.
  • a thread groove perpendicular cross-sectional shape is established in the case of a deep groove. That is, even if the radius of curvature of the arc-shaped chamfered portion 113 is reduced, the straight chamfered portion 112a is extended to the outer peripheral surface 12a of the screw shaft, so that a right-angle cross-sectional shape of the thread groove is established even in the case of deep grooves.
  • the present invention is based on Japanese Patent Application No. 2013-204876 filed on September 30, 2013, the contents of which are incorporated herein by reference.
  • Screw shaft 11 Spiral groove of screw shaft 111 Ball rolling groove 112 Straight chamfered portion 112a Straight chamfered portion of deep groove 112b Straight chamfered portion of shallow groove 113 Arc chamfered portion 12 Outer surface of screw shaft 12a Outer surface of screw shaft of deep groove 12b Outer peripheral surface of screw shaft of shallow groove 2 Nut 21 Spiral groove of nut 3 Ball 4 Return tube 41 Ball return path 6 Grinding wheel 61 Groove range grinding part 62 Arc chamfering range grinding part 63 Linear chamfering range grinding part

Abstract

 ボールねじを構成するねじ軸の外周面に螺旋溝を形成する砥石は、ボール転動溝に対応する溝範囲研削部と、円弧状面取り部に対応する円弧状面取り範囲研削部と、直線面取り部に対応する直線面取り範囲研削部とを有する。溝範囲研削部の外側に円弧状面取り範囲研削部が滑らかに連続し、円状面取り範囲研削部の外側に直線面取り範囲研削部が滑らかに連続している。

Description

ボールねじ用ねじ軸の螺旋溝研削用砥石および螺旋溝形成方法
 この発明は、ボールねじ用ねじ軸の螺旋溝研削用砥石とボールねじ用ねじ軸の螺旋溝形成方法に関する。
 ボールねじは、例えば図3に示すように、ねじ軸1とナット2と複数のボール3を有する。ねじ軸1はナット2を貫通するように配置されている。ねじ軸1の螺旋溝11とナット2の螺旋溝21とでボール3の転動路が形成される。この例では、ナット2にリターンチューブ4を取り付けることで、ボール3を転動路の終点から始点に戻すボール戻し路41が形成されている。
 ボール3は、螺旋溝11,21で形成される転動路とボール戻し路41とからなる循環経路内に配置されている。ボールねじは、循環経路を循環し転動路内で転動(負荷状態で回転しながら移動)するボール3を介して、ねじ軸1とナット2とが相対移動する装置である。
 ねじ軸1の螺旋溝11の溝直角断面形状としては、図4および図5に示すものが例示できる。
 図4の例では、ボール3が転動するボール転動溝111の外側に、直線面取り部112が比較的広範囲に形成され、その外側がねじ軸1の外周面12となっている。図5の例では、ボール3が転動するボール転動溝111の外側に、直線面取り部112が図4の例よりも狭い範囲に形成され、その外側がねじ軸1の外周面12となっている。以下、図4に示す溝直角断面形状を「深溝」、図5に示す溝直角断面形状を「浅溝」と称する。
 ボールピッチ円直径とねじ軸の直径との差を、深溝の場合Ya、浅溝の場合Ybとすると、ボール3の直径が同じ図4と図5の例の場合、Ya<Ybとなる。
 大リードの(ねじ軸の直径に対するリードの比率が大きい)ボールねじでは、図5に示すように、浅溝の溝直角断面形状を採用し、ボール3がボール戻し路41に出入りする際の動きをスムーズにすることにより、作動性の向上を図ることが行われている。
 図4および5に示すような溝直角断面形状では、ボールねじの高速回転化に伴い、ボール3が螺旋溝11のボール転動溝111と直線面取り部112との境界のエッジに衝突して、早期はくりが生じ易くなるという問題がある。
 特許文献1には、この問題を解決するために、ねじ軸1の螺旋溝11の溝直角断面形状を図6に示す形状とすることが記載されている。すなわち、特許文献1に記載された発明では、ねじ軸1の螺旋溝11の溝直角断面形状を、ボール転動溝111の外側に円弧状面取り部(円弧部)113が滑らかに連続する形状としている。また、円弧状面取り部113の曲率半径をボール3の半径の1/2以上2倍以下としている。
 特許文献2には、図6に示す溝直角断面形状を有する螺旋溝をねじ軸の外周面に形成する方法として、ボール転動溝と円弧状面取り部を同時に加工して、両者の間に位置ずれを生じさせないようにすることが記載されている。加工に際しては、図7に示す形状の総形研削砥石を用いることが記載されている。図7に示す砥石60は、溝範囲研削部601の外側に円弧状面取り範囲研削部602が滑らかに連続し、円弧状面取り範囲研削部602の外側に直線面取り範囲研削部が存在しないものである。
 特許文献3には、図6の円弧状面取り部113に相当する「ねじ溝内面から滑らかに続く凸曲面の曲面部分」と外周面12との間に、直線面取り部(チャンファー)を設け、曲面部分がチャンファーに滑らかに続くものとすることが記載されている。
 また、特許文献3には、高負荷荷重時のねじ溝開口縁の応力集中を緩和して短寿命化を回避すると共に、ねじ溝開口縁のバリによる転走路内への異物混入の防止、および作業者の取り扱い時の安全を図ることが発明の目的であると記載されている。
 また、特許文献3には、ボール転動溝(ねじ溝内面)と円弧状面取り部(曲面部分)を、総形砥石を使用して同時に加工することが記載されている。総形砥石として、ねじ溝の溝断面形状に対応する断面形状の砥石面と、曲面部分の断面形状に対応する砥石面とが連続した一体の砥石を使用することが記載されている。
 さらに、特許文献3には、円弧状面取り部(曲面部分)を円弧状とする場合の曲率半径について、ボール径が19mm程度の場合に曲率半径を1mm程度とすることが例示されている。
日本国特許3325679号公報 日本国特開2001-193815号公報 日本国特開2003-207015号公報
 上述のように、ボールねじには、ねじ軸の螺旋溝の溝直角断面形状が深溝の場合と浅溝の場合があるため、ボール径が同じであっても、溝直角断面形状が変更になるたびに異なる形状の砥石を使用する必要がある。よって、ねじ軸の螺旋溝の加工には、生産性の点で改善の余地がある。
 特許文献3には、ねじ軸の螺旋溝の溝直角断面形状を、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、円弧状面取り部の外側に直線面取り部が滑らかに連続する形状とし、ボール転動溝と円弧状面取り部を同時に研削することは記載されている。しかし、ボール転動溝と円弧状面取り部と直線面取り部を同時に研削することは記載されていない。
 螺旋溝の溝直角断面形状が、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、円弧状面取り部の外側に直線面取り部が滑らかに連続する形状である場合、ボール転動溝と円弧状面取り部を同時に研削した後に直線面取り部を研削する方法では、円弧状面取り部と直線面取り部を滑らかに連続させることは難しい。よって、円弧状面取り部と直線面取り部を滑らかに連続させるために、サンドペーパーなどによる後加工が必要となり、生産性が低下する。
 この発明の課題は、ねじ軸の螺旋溝の溝直角断面形状が、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、円弧状面取り部の外側に直線面取り部が滑らかに連続する形状である場合に、ねじ軸の螺旋溝の加工の生産性を向上させることである。
 上記課題を解決するために、この発明の第一態様は、ボールねじを構成するねじ軸の外周面に螺旋溝を形成する砥石であって、前記螺旋溝の溝直角断面形状は、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、前記円弧状面取り部の外側に直線面取り部が滑らかに連続する形状であり、下記の構成(1)を有することを特徴とする。
(1)前記ボール転動溝に対応する溝範囲研削部と、前記円弧状面取り部に対応する円弧状面取り範囲研削部と、前記直線面取り部に対応する直線面取り範囲研削部とを有し、前記溝範囲研削部の外側に前記円弧状面取り範囲研削部が滑らかに連続し、前記円弧状面取り範囲研削部の外側に前記直線面取り範囲研削部が滑らかに連続している。
 第一態様の砥石によれば、滑らかに連続するボール転動溝、円弧状面取り部、および直線面取り部を同時に研削することができる。
 ねじ軸の螺旋溝の溝直角断面形状が、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、円弧状面取り部の外側に直線面取り部が滑らかに連続する形状である場合、深溝と浅溝とでは、ボール径が同じであれば、ボール転動溝だけでなく円弧状面取り部の寸法も同じで、直線面取り部の長さのみが異なる形状になっている。そのため、第一態様の砥石によれば、溝直角断面形状が深溝の場合でも浅溝の場合でも、ボール径が同じであれば、同じ砥石を使用してねじ軸の螺旋溝を研削することができる。
 この発明の第二態様は、ボールねじを構成するねじ軸の外周面に螺旋溝を形成する方法であって、前記螺旋溝の溝直角断面形状は、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、前記円弧状面取り部の外側に直線面取り部が滑らかに連続する形状であり、前記構成(1)を有する砥石を使用して、前記ボール転動溝、前記円弧状面取り部、前記直線面取り部を同時に研削することを特徴とする。 
 この発明のボールねじ用ねじ軸の螺旋溝研削用砥石によれば、滑らかに連続するボール転動溝、円弧状面取り部、および直線面取り部を同時に研削することができるとともに、溝直角断面形状が深溝の場合でも浅溝の場合でも、ボール径が同じであれば、同じ砥石を使用してねじ軸の螺旋溝を研削することができる。そのため、特許文献3に記載された砥石と比較してねじ軸の螺旋溝の加工の生産性が向上する。
 この発明のボールねじ用ねじ軸の螺旋溝形成方法によれば、滑らかに連続するボール転動溝、円弧状面取り部、および直線面取り部を同時に研削することで、ボール転動溝と円弧状面取り部を同時に加工した後に直線面取り部を加工する方法と比較して、ねじ軸の螺旋溝の加工の生産性が向上する。
ねじ軸の螺旋溝の溝直角断面形状の実施形態を示す断面図である。 実施形態の砥石を示す断面図である。 ボールねじの一例を示す断面図である。 ねじ軸の螺旋溝の溝直角断面形状の従来例(深溝)を示す断面図である。 ねじ軸の螺旋溝の溝直角断面形状の従来例(浅溝)を示す断面図である。 ねじ軸の螺旋溝の溝直角断面形状の特許文献1に記載された例を示す断面図である。 ボール転動溝と円弧状面取り部を同時に加工する砥石を示す断面図である。 ねじ軸の螺旋溝の溝直角断面形状が特許文献1に記載された例の場合の問題点を説明する断面図である。
 以下、この発明の実施形態について説明するが、この発明はこの実施形態に限定されない。
 この実施形態では、図1に示す溝直角断面形状を有する螺旋溝11を、図2に示す砥石6を用いてねじ軸1の外周面12に形成する。図1では、深溝の場合と浅溝の場合の両方の溝直角断面形状を示している。
 図1の溝直角断面形状は、ボール転動溝111の外側に円弧状面取り部113が滑らかに連続し、円弧状面取り部113の外側に直線面取り部112a,112bが滑らかに連続する形状である。ボール3の直径が同じ場合、深溝と浅溝とでは、ボール転動溝111だけでなく円弧状面取り部113の寸法も同じで、直線面取り部112a,112bの長さのみが異なる。すなわち、深溝の直線面取り部112aは浅溝の直線面取り部112bより長い。
 深溝のボールピッチ円直径とねじ軸の直径との差Yaは、浅溝のボールピッチ円直径とねじ軸の直径との差Ybよりも小さい。
 ボール3の中心軸Cを基準としたボール転動溝111の範囲を示す角度θaと、円弧状面取り部113の範囲を示す角度θbと、直線面取り部112a,112bの外周面12に対する角度θcが、θa=θb+θcを満たすように設定されている。これにより、ボール転動溝111と円弧状面取り部113、円弧状面取り部113と直線面取り部112a,112bが、それぞれ滑らかに連続している。
 この例では、θa=60°、θb=25°、θc=35°となっている。円弧状面取り部113の曲率半径rは、ボール3の直径の0.3倍程度に設定されている。
 図1の符号113Bは、曲率半径がボール3の直径の一倍を超える円弧状面取り部のライン(図8参照)を示す。符号115はボール転動溝111と円弧状面取り部113との境界点を示す。
 図2の砥石6は、ボール転動溝111に対応する溝範囲研削部61と、円弧状面取り部113に対応する円弧状面取り範囲研削部62と、直線面取り部112a,112bに対応する直線面取り範囲研削部63とを有する。溝範囲研削部61の外側に円弧状面取り範囲研削部62が滑らかに連続し、円弧状面取り範囲研削部62の外側に直線面取り範囲研削部63が滑らかに連続している。
 つまり、溝範囲研削部61の円弧状凸面は、ボール転動溝111と同じ範囲に同じ曲率半径で形成されている。円弧状面取り範囲研削部62の円弧状凹部は、円弧状面取り部113と同じ範囲に円弧状面取り部113の曲率半径rと同じ曲率半径Rで形成されている。直線面取り範囲研削部63は、直線面取り部112a,112bの外周面12に対する角度θcと同じ角度で形成されている。直線面取り範囲研削部63の長さは、深溝の直線面取り部112aの長さより少し長い。
 この実施形態の砥石(ボールねじ用ねじ軸の螺旋溝研削用砥石)6によれば、滑らかに連続するボール転動溝111、円弧状面取り部113、および直線面取り部112a,112bを同時に研削することができる。また、溝直角断面形状が直線面取り部112a,112bの長さのみが異なる深溝の場合でも浅溝の場合でも、同じ砥石6を使用してねじ軸の螺旋溝を研削することができる。
 この実施形態の方法(ボールねじ用ねじ軸の螺旋溝形成方法)では、図2に示す砥石6を使用して、滑らかに連続するボール転動溝111、円弧状面取り部113、および直線面取り部112a,112bを同時に研削している。これにより、図7に示す砥石60を使用してボール転動溝111と円弧状面取り部113を同時に加工した後に、直線面取り部112a,112bを加工する方法と比較して、生産性が向上する。
 この実施形態では、円弧状面取り部113の曲率半径を、ボール3の直径の0.3倍程度に設定されているため、浅溝を形成する場合でも溝幅を広くとることができる。ボールねじを高速回転(軸径×回転数が7万~10万程度)で使用した場合でも、ボール衝突時の面圧を低く抑えることができ、ボール3や円弧状面取り部113に早期はくりが生じにくくすることができる。
 θa~θcの組合せの別の例としては、θa=60°とθb=15°とθc=45°、θa=65°とθb=25°とθc=40°等が挙げられる。
 ボールねじの回転速度が低速である場合は、円弧状面取り部113の曲率半径をボール3の直径の0.3倍より小さくしても良い。逆に、ボールねじの回転速度が高速である場合や高い長期耐久性を求められる用途に使用される場合は、円弧状面取り部113の曲率半径をボール3の直径の0.3倍より大きくすることが好ましい。
[円弧状面取り部の曲率半径について]
 上述のように、特許文献3には、ボール径が19mm程度の場合に円弧状面取り部の曲率半径を1mm程度とすることが例示されている。つまり、この例では、円弧状面取り部をなす円弧の曲率半径はボール直径の0.05倍程度である。特許文献3で円弧状面取り部分を設ける目的は、接触面圧のエッジロードを低減することである。
 高速回転するボールねじでは、円弧状面取り部の曲率半径rのボールの直径Dに対する比(r/D)が小さ過ぎると、ボール衝突時の面圧が高くなるため、ボールあるいは円弧状面取り部に早期はくりが生じて、寿命が低下するおそれがある。
[円弧状面取り部の外側に直線面取り部がない場合の問題点について]
 図8は、ねじ軸の螺旋溝の溝直角断面形状が、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、円弧状面取り部がそのままねじ軸の外周面に至る形状である場合について説明する断面図である。
 円弧状面取り部113の曲率半径rの中心は、図8に示すように、ボール転動溝111の円弧の中心と、ボール転動溝111と円弧状面取り部113の境界点115と、を結ぶ線の延長線L上に存在する。円弧状面取り部113の円弧が図8に実線で示すライン113Aであると、深溝の場合には、円弧状面取り部のライン113Aの外側に延長させたライン12cがボールねじ軸の外周面12aより寸法Tだけ低くなる。そのため、ライン113Aは、ねじ溝直角断面形状として成り立たない。浅溝の場合には、溝幅(ねじ軸の外周面12bと円弧状面取り部のライン113Aとの交点117間の距離)Wbが適切な幅となる。つまり、図8に実線で示す円弧状面取り部のライン113Aの曲率半径は、深溝の場合には小さすぎる。
 円弧状面取り部113の円弧が図8に破線で示すライン113Bである(円弧状面取り部の曲率半径が、例えばボール3の直径の一倍を超える)と、浅溝の場合に溝幅Wbが狭くなり、ボール3がボール戻し路に出入りする際の動きが阻害されて、作動不良となるおそれがある。特に、ボール戻し路形成部材としてリターンチューブを用いたチューブ式大リードボールねじでは、円弧状面取り部のライン113Bとねじ溝の外周面12bとの境界にボール3が衝突し易くなる。そのため、ボールねじを高速回転で使用した場合には、その境界に損傷が生じるおそれがある。つまり、図8に破線で示す円弧状面取り部のライン113Bの曲率半径は、浅溝の場合には大きすぎる。
 これに対して、ねじ軸の螺旋溝の溝直角断面形状を、図1に示すように、ボール転動溝111の外側に円弧状面取り部113が滑らかに連続し、円弧状面取り部113の外側に直線面取り部112a,112bが滑らかに連続する形状とする。この形状にすれば、円弧状面取り部113の曲率半径を、浅溝の溝幅(ねじ軸の外周面12bと円弧状面取り部113との交点116間の距離)Wbが適切な幅となる程度に小さく(例えば図8のライン113Aと同じに)しても、深溝の場合にねじ溝直角断面形状が成立する。すなわち、円弧状面取り部113の曲率半径を小さくしても、直線面取り部112aをねじ軸の外周面12aまで延長することで、深溝の場合でもねじ溝直角断面形状が成立する。
 本発明は、2013年9月30日出願の日本国特許出願2013-204876号に基づき、その内容は参照としてここに取り込まれる。
 1 ねじ軸
 11 ねじ軸の螺旋溝
 111 ボール転動溝
 112 直線面取り部
 112a 深溝の直線面取り部
 112b 浅溝の直線面取り部
 113 円弧状面取り部
 12 ねじ軸の外周面
 12a 深溝のねじ軸の外周面
 12b 浅溝のねじ軸の外周面
 2 ナット
 21 ナットの螺旋溝
 3 ボール
 4 リターンチューブ
 41 ボール戻し路
 6 砥石
 61 溝範囲研削部
 62 円弧状面取り範囲研削部
 63 直線面取り範囲研削部

Claims (2)

  1.  ボールねじを構成するねじ軸の外周面に螺旋溝を形成する砥石であって、
     前記螺旋溝の溝直角断面形状は、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、前記円弧状面取り部の外側に直線面取り部が滑らかに連続する形状であり、
     前記ボール転動溝に対応する溝範囲研削部と、前記円弧状面取り部に対応する円弧状面取り範囲研削部と、前記直線面取り部に対応する直線面取り範囲研削部とを有し、前記溝範囲研削部の外側に前記円弧状面取り範囲研削部が滑らかに連続し、前記円弧状面取り範囲研削部の外側に前記直線面取り範囲研削部が滑らかに連続していることを特徴とするボールねじ用ねじ軸の螺旋溝研削用砥石。
  2.  ボールねじを構成するねじ軸の外周面に螺旋溝を形成する方法であって、
     前記螺旋溝の溝直角断面形状は、ボール転動溝の外側に円弧状面取り部が滑らかに連続し、前記円弧状面取り部の外側に直線面取り部が滑らかに連続する形状であり、
     前記ボール転動溝に対応する溝範囲研削部と、前記円弧状面取り部に対応する円弧状面取り範囲研削部と、前記直線面取り部に対応する直線面取り範囲研削部とを有し、前記溝範囲研削部の外側に前記円弧状面取り範囲研削部が滑らかに連続し、前記円弧状面取り範囲研削部の外側に前記直線面取り範囲研削部が滑らかに連続している砥石を使用して、
     前記ボール転動溝、前記円弧状面取り部、前記直線面取り部を同時に研削することを特徴とするボールねじ用ねじ軸の螺旋溝形成方法。
PCT/JP2014/074553 2013-09-30 2014-09-17 ボールねじ用ねじ軸の螺旋溝研削用砥石および螺旋溝形成方法 WO2015045983A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480054149.6A CN105592980A (zh) 2013-09-30 2014-09-17 滚珠丝杠用丝杠轴的螺旋槽磨削用磨石和螺旋槽形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-204876 2013-09-30
JP2013204876A JP2015066651A (ja) 2013-09-30 2013-09-30 ボールねじ用ねじ軸の螺旋溝研削用砥石および螺旋溝形成方法

Publications (1)

Publication Number Publication Date
WO2015045983A1 true WO2015045983A1 (ja) 2015-04-02

Family

ID=52743124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074553 WO2015045983A1 (ja) 2013-09-30 2014-09-17 ボールねじ用ねじ軸の螺旋溝研削用砥石および螺旋溝形成方法

Country Status (4)

Country Link
JP (1) JP2015066651A (ja)
CN (1) CN105592980A (ja)
TW (1) TW201529230A (ja)
WO (1) WO2015045983A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263457A (zh) * 2021-05-25 2021-08-17 重庆建设工业(集团)有限责任公司 一种圆切形结构芯棒螺旋槽磨削开槽砂轮

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109834346B (zh) * 2017-11-24 2020-11-27 株式会社三信 滚珠丝杠研磨方法及其装置
CN111958480A (zh) * 2020-08-06 2020-11-20 天津大学 用于滚珠的滚动表面精加工的研具套件、设备及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207015A (ja) * 2002-01-15 2003-07-25 Ntn Corp ボールねじ
JP2007301700A (ja) * 2006-05-15 2007-11-22 Nsk Ltd 多層構造を有する研削砥石
JP2013076424A (ja) * 2011-09-29 2013-04-25 Ntn Corp 車輪用軸受装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803360A (zh) * 2006-01-25 2006-07-19 潘旭华 一种螺母磨削的方法及用该方法磨削螺母的专用机床
DE102006009986B4 (de) * 2006-03-03 2010-04-01 Erwin Junker Maschinenfabrik Gmbh Verfahren zum Hinterschleifen der Schneidzähne von Gewindebohrern, Gewindeformern und ähnlichen Werkzeugen, und Schleifmaschine zur Durchführung des Verfahrens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207015A (ja) * 2002-01-15 2003-07-25 Ntn Corp ボールねじ
JP2007301700A (ja) * 2006-05-15 2007-11-22 Nsk Ltd 多層構造を有する研削砥石
JP2013076424A (ja) * 2011-09-29 2013-04-25 Ntn Corp 車輪用軸受装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113263457A (zh) * 2021-05-25 2021-08-17 重庆建设工业(集团)有限责任公司 一种圆切形结构芯棒螺旋槽磨削开槽砂轮

Also Published As

Publication number Publication date
CN105592980A (zh) 2016-05-18
TW201529230A (zh) 2015-08-01
JP2015066651A (ja) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6244108B2 (ja) ねじ装置
US20150267750A1 (en) Bearing device for wheel
KR20160074451A (ko) 볼 엔드 밀
US20020023513A1 (en) Ball screw apparatus
WO2015045983A1 (ja) ボールねじ用ねじ軸の螺旋溝研削用砥石および螺旋溝形成方法
WO2016147827A1 (ja) トリポード型等速自在継手
CN104813076A (zh) 齿圈安装结构
US10458480B2 (en) Constant velocity joint and method of manufacturing the same
JP2011167749A (ja) 転造ダイス
US10464593B2 (en) Power steering apparatus and method of manufacturing power steering apparatus
JP2008157374A (ja) ボールねじ機構
JP2015024471A (ja) ボールねじ用ナットの加工工具及び加工方法
JP4784132B2 (ja) ボールねじ機構
JP6318808B2 (ja) ボールねじ
JP5699716B2 (ja) 摺動式トリポード型等速ジョイント
JP5004312B2 (ja) 駒式ボールねじ
JP2017089707A (ja) ボールねじ
JP2006336690A (ja) 直動装置
JP6559199B2 (ja) ねじ装置
JP6786196B2 (ja) 円すいころ軸受用保持器の製造方法
KR20200042909A (ko) 동력 최적화 드라이브를 가지는 회전식 인덱싱 테이블
JP2006242252A (ja) ボールねじ機構
JP5772586B2 (ja) ボールねじ用ナット
WO2023234029A1 (ja) ボールねじ装置
JP2010185538A (ja) ボール型等速ジョイント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848871

Country of ref document: EP

Kind code of ref document: A1