WO2016147827A1 - トリポード型等速自在継手 - Google Patents

トリポード型等速自在継手 Download PDF

Info

Publication number
WO2016147827A1
WO2016147827A1 PCT/JP2016/055565 JP2016055565W WO2016147827A1 WO 2016147827 A1 WO2016147827 A1 WO 2016147827A1 JP 2016055565 W JP2016055565 W JP 2016055565W WO 2016147827 A1 WO2016147827 A1 WO 2016147827A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
trunnion journal
constant velocity
corner
universal joint
Prior art date
Application number
PCT/JP2016/055565
Other languages
English (en)
French (fr)
Inventor
達朗 杉山
弘昭 牧野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP16764657.9A priority Critical patent/EP3269990B1/en
Priority to US15/556,156 priority patent/US10563700B2/en
Priority to CN201680014150.5A priority patent/CN107466341B/zh
Publication of WO2016147827A1 publication Critical patent/WO2016147827A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S464/00Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
    • Y10S464/904Homokinetic coupling
    • Y10S464/905Torque transmitted via radially extending pin

Definitions

  • the present invention relates to a sliding tripod type constant velocity universal joint used for power transmission in automobiles, industrial machines and the like.
  • the tripod type constant velocity universal joint 51 has three track grooves 53 extending in the axial direction at the three-way positions in the circumferential direction, and roller guides are provided on opposite side walls of the track grooves 53.
  • An outer joint member 52 having a surface 54, a tripod member 60 having a trunnion journal 62 projecting radially from a circumferential trisection of the trunnion body 61, and a plurality of needles around each trunnion journal 62
  • a spherical roller 70 rotatably mounted via a roller 72, and this spherical roller 70 is accommodated in the track groove 53 of the outer joint member 52, and the outer spherical surface of the spherical roller 70 is formed on both side walls of the track groove 53. It is guided by the formed roller guide surface 54.
  • the root portion A 'of the trunnion journal 62 is enlarged and shown in FIG.
  • the root portion A ' is formed of a rounded surface having a radius of curvature Rb continuous with the cylindrical outer peripheral surface 74 serving as the inner raceway surface of the needle roller 72, and is connected to the shoulder surface 61a.
  • An inner washer 78 is interposed between the end of the needle roller 72 and the shoulder surface 61a. The contact between the side surface of the inner washer 78 and the end surface of the needle roller 72 restricts the axial movement of the needle roller 72 toward the root A ′ of the trunnion journal 62 (see Patent Document 1).
  • a root portion A ′′ of the trunnion journal 62 ′ is not provided with an inner washer.
  • a shoulder surface 61a ′ provided on the trunnion body 61 ′ and needle rollers 72 are provided.
  • the axial movement of the needle roller 72 ′ toward the root A ′′ side of the trunnion journal 62 ′ is restricted by the contact of the end face of “(see, for example, Patent Document 2).
  • the tripod type constant velocity universal joints described in Patent Document 1 and Patent Document 2 are all designed to reduce the outer diameter of the joint. In making this compact, it is necessary to reduce the pitch circle diameter (PCD) of the roller guide surface while ensuring the thickness of the root portion that is the minimum thickness of the tripod member.
  • PCD pitch circle diameter
  • the tripod type constant velocity universal joint 51 described in Patent Document 1 since there is an inner washer 78, it is difficult to lower the position of the needle roller 72 in the joint radial direction. I can't.
  • an object of the present invention is to provide a lightweight and compact tripod type constant velocity universal joint that cannot be achieved by the prior art while maintaining strength and life.
  • the needle roller may move toward the root part due to the interference between the corner part of the end face of the needle roller and the corner part of the trunnion journal that is not thin. It turns out that it can be regulated.
  • the reason for this is that when the tripod constant velocity universal joint rotates at an operating angle, the swing movement of the trunnion journal that repeats a movement like a wiper in which the trunnion journal is inclined from the inclined state on one side to the opposite side every rotation.
  • the amount of rolling of the needle rollers accompanying this swinging motion is extremely small compared to the amount of rolling of rolling elements in a general rolling bearing.
  • the present invention includes an outer joint member in which a track groove extending in the axial direction is formed at a three-way position in the circumferential direction, and a third order in the circumferential direction of the trunnion body.
  • a tripod member having a trunnion journal projecting radially from a minute position, and a spherical roller rotatably mounted via a plurality of needle rollers around each trunnion journal, the spherical roller having the track groove
  • a tripod type constant velocity universal joint in which the outer spherical surface of the spherical roller is guided by roller guide surfaces formed on both side walls of the track groove.
  • the corner portion of the root portion of the trunnion journal is round.
  • the strength of the root portion is ensured, and continuous hardened steel cutting from the cylindrical outer peripheral surface to the corner portion of the trunnion journal becomes easy.
  • grinding with an integral grindstone is easy from the cylindrical outer peripheral surface to the corner.
  • the ratio R / r of the radius of curvature R of the root portion of the trunnion journal to the radius of curvature r of the end face corner radius portion of the needle roller is 1.0 to 5.0.
  • Forming corners that smoothly connect to the cylindrical outer peripheral surface by applying continuous hardened steel cutting or grinding with an integral grindstone from the cylindrical outer peripheral surface that forms the raceway surface of the above trunnion journal to the corner of the root portion Can be processed easily.
  • the surface hardness from the outer peripheral surface serving as the raceway surface of the above trunnion journal to the corner of the root is lower than the surface hardness of the needle roller.
  • the center position of the length of the needle roller is substantially matched with the pitch circle diameter (PCD) of the roller guide surface.
  • PCD pitch circle diameter
  • the radial position of the needle roller can be lowered while maintaining the strength and the life, the number of parts is reduced, and the weight and the compactness that cannot be achieved by the prior art are achieved. be able to.
  • FIG. 9 is a side view showing the tripod member of FIG. 1 as viewed along the line FF of FIG. 8b. It is a longitudinal cross-sectional view of the tripod member of FIG. It is the figure which expanded the base A part of FIG. It is the figure which expanded the base A part of FIG. 8a after an endurance test. It is a cross-sectional view which shows the knowledge of a development process. It is a cross-sectional view of a conventional tripod type constant velocity universal joint. It is the figure which expanded root A 'of FIG. 12a. It is a figure which shows a part of other conventional tripod type constant velocity universal joint.
  • FIG. 1a is a cross-sectional view of a tripod constant velocity universal joint according to an embodiment of the present invention
  • FIG. 1b is a vertical cross-sectional view.
  • a tripod type constant velocity universal joint 1 according to the present embodiment has an outer joint member 2, a tripod member 3 as an inner joint member, a spherical roller 4, and a needle roller 5 as a rolling element.
  • the outer joint member 2 is in the shape of a hollow cup having three track grooves 6 extending in the axial direction at circumferentially equally divided positions on the inner periphery thereof.
  • Roller guide surfaces 7 are formed on opposite side walls of each track groove 6.
  • the roller guide surface 7 is formed of a part of a cylindrical surface, that is, a partial cylindrical surface.
  • the tripod member 3 includes a trunnion body 8 and a trunnion journal 9, and three trunnion journals 9 are formed so as to protrude in the radial direction from the circumferentially divided position of the trunnion body 8.
  • Each trunnion journal 9 includes a cylindrical outer peripheral surface 10 and an annular retaining ring groove 11 formed near the shaft end.
  • a spherical roller 4 is rotatably mounted around a cylindrical outer peripheral surface 10 of the trunnion journal 9 via a plurality of needle rollers 5.
  • the cylindrical outer peripheral surface 10 of the trunnion journal 9 forms the inner raceway surface of the needle roller 5.
  • the inner peripheral surface 4 a of the spherical roller 4 is cylindrical and forms the outer raceway surface of the needle roller 5.
  • a retaining ring 13 is attached to a retaining ring groove 11 formed near the shaft end of the trunnion journal 9 via an outer washer 12.
  • the needle roller 5 is restricted from moving in the axial direction of the trunnion journal 9 by the root portion A of the trunnion journal 9 and the outer washer 12.
  • the outer washer 12 includes a disk portion 12 a extending in the radial direction of the trunnion journal 9 and a cylindrical portion 12 b extending in the axial direction of the trunnion journal 9.
  • the cylindrical portion 12 b of the outer washer 12 has an outer diameter smaller than the inner peripheral surface 4 a of the spherical roller 4, and the outer end 12 c of the cylindrical portion 12 b viewed in the radial direction of the tripod member 3 is the inner periphery of the spherical roller 4. It has a larger diameter than the surface 4a. Therefore, the spherical roller 4 can move in the axial direction of the trunnion journal 9 and is prevented from falling off by the end 12c.
  • FIG. 2 shows a state where the tripod type constant velocity universal joint 1 takes an operating angle ⁇ . Since the roller guide surface 7 is formed of a partial cylindrical surface, the spherical roller 4 can be inclined in the roller guide surface 7. With such a structure, relative axial displacement and angular displacement between the outer joint member 2 and the tripod member 3 are absorbed, and rotation is transmitted at a constant speed.
  • Angular contact has a contact angle and contacts at two points.
  • the circular contact contacts at one point as shown in FIG.
  • the contact rate Rt / Rr is about 1.02 to 1.15.
  • the outer joint member 2 has an inner diameter composed of a large inner diameter portion having an inner diameter D1 and a smaller inner diameter portion having an inner diameter D2 that appear alternately in the circumferential direction.
  • the tripod member 3 incorporated in the outer joint member 2 has a spline hole having a large spline diameter (shaft diameter) d in the trunnion body portion 8, and the cylindrical outer peripheral surface 10 of the trunnion journal 9 has an outer diameter Dj.
  • the outer diameter of the tripod member 3 is SDj, and the outer diameter of the trunnion body is dr.
  • the outer diameter of the spherical roller 4 is Ds, and the width of the spherical roller 4 is Ls. Needle roller 5 has a length Ln.
  • the pitch circle diameter of the roller guide surface 7 is PCD.
  • the tripod type constant velocity universal joint 1 has dimensions that are significantly different from those of the prior art in order to achieve a compact joint outer diameter while maintaining strength and life. First, the dimension setting used as the base of the tripod type constant velocity universal joint 1 of this embodiment is demonstrated.
  • the strength of the tripod type constant velocity universal joint 1 is basically set to be equal to or higher than the shaft strength, but the members that need to be secured next are the tripod member 3 and the spherical roller 4.
  • the tripod type constant velocity universal joint 1 is dimensioned on the assumption that the strength of the tripod member 3 and the spherical roller 4 is ensured.
  • the shaft diameter d determined for each joint size is constant, and the pitch of the roller guide surface 7 is secured while ensuring the minimum thickness t of the trunnion body 8 at the root A of the trunnion journal 9 in the torque load direction.
  • the circle diameter PCD is greatly reduced.
  • the outer diameter of the outer joint member 2 is also increased. Therefore, the outer diameter of the outer joint member 2 is reduced by reducing the width Ls of the spherical roller 4.
  • the outer diameter of the outer joint member 2 is reduced, the small inner diameter D2 / large inner diameter D1 (D2 / D1) is increased, and the unevenness between the small inner diameter D2 and the large inner diameter D1 is reduced.
  • the outer diameter Dj of the trunnion journal 9 is increased, so that the number of needle rollers 5 to be loaded is increased and the surface pressure is reduced. Yes.
  • Table 1 shows dimensional ratios serving as a base of the tripod type constant velocity universal joint 1 of the present embodiment.
  • a corner portion 10b without a dull shape is formed at the root A of the trunnion journal 9 of the tripod member 3 which is a constituent member of the tripod type constant velocity universal joint 1, and the corner portion 10b is a round shape. It has become.
  • the rounded corner 10b interferes with the rounded corner of the end surface of the needle roller 5
  • the needle roller 5 is restricted from moving the trunnion journal 9 toward the root A.
  • the center position of the length of the needle roller 5 can be made to substantially coincide with the pitch circle diameter (PCD, see FIG. 3) of the roller guide surface 7, and the load balance between the spherical roller 4 and the needle roller 5 is good.
  • the rotation of the needle roller 5 is stabilized.
  • FIG. 5b shows a state in which the operating angle is 0 °
  • FIG. 5a shows a state in which the trunnion journal 9 (spherical roller 4) swings to the left side of the drawing with the operating angle ⁇ .
  • 5A is described in detail.
  • the remaining two trunnion journals 9 (spherical roller 4, not shown) having a circumferential interval of 120 ° from the phase angle of 0 ° are positioned in the two lower roller guide surfaces 7 (see FIG. 1a). is doing.
  • the axes of the three trunnion journals 9 and the spherical roller 4 are aligned on a plane J ⁇ inclined by ⁇ with respect to the axis X of the outer joint member 2. Then, during one rotation of the joint, it swings from the inclined state of FIG. 5a through the opposite inclined state.
  • the spherical roller 4 moves relative to the trunnion journal 9 in the axial direction thereof. This relative movement amount will be described with reference to a state where the operating angle is 0 °.
  • the position of the spherical roller 4 of FIG. 5b showing the operating angle of 0 ° with respect to the trunnion journal 9 is indicated by a broken line, overlapping with FIG. 5a showing the operating angle ⁇ and swinging to the left.
  • the spherical roller 4 relatively moves in the axial direction of the trunnion journal 9 in a state where the operating angle is taken.
  • FIG. 6 is a schematic view showing the center of the spherical roller 4,
  • FIG. 6a shows the state of FIG. 5a, that is, one trunnion journal 9 (spherical roller 4) is positioned at a phase angle of 0 °, and
  • 6a and 6b a perfect pitch circle indicated by a two-dot chain line connects the centers of the roller guide surfaces 7 in an operating angle of 0 °, that is, in the state of FIG. 5b.
  • the elliptical pitch circle indicated by the alternate long and short dash line connects the centers of the roller guide surfaces 7 on the plane J ⁇ inclined in FIG. 5a.
  • the center of the roller guide surface 7 (the spherical roller 4 of the spherical roller 4) Is also the center).
  • the center Ot0 of the tripod member 3 coincides with the axis X of the outer joint member 2.
  • the center Or ⁇ of the roller guide surface 7 is positioned on an elliptic pitch circle indicated by a one-dot chain line. Since the trunnion journal 9 protrudes radially from the circumferential trisection position (120 ° interval) of the trunnion body 8 (see FIG.
  • one trunnion journal 9 (spherical roller 4) has a phase angle of 0.
  • the center Ot ⁇ of the tripod member 3 is deviated from the axis X of the outer joint member 2 by ⁇ 1 in the state of being located at °. Further, the centers Or ⁇ and Or0 of the roller guide surface 7 are shifted by ⁇ 2. For this reason, the spherical roller 4 positioned at a phase angle of 0 ° moves relative to the trunnion journal 9 toward the shaft end side of the trunnion journal 9 by an amount of ⁇ 1 + ⁇ 2.
  • a state in which the tripod member 3 rotates and one trunnion journal 9 (spherical roller 4) is positioned at a phase angle of 90 ° as shown in FIG. 6b will be described.
  • the center of the roller guide surface 7 (also the center of the spherical roller 4) is positioned at Or0 ′ on a perfect circle pitch circle indicated by a two-dot chain line.
  • the center Ot0 of the tripod member 3 coincides with the axis X of the outer joint member 2.
  • the center Or ⁇ ′ of the roller guide surface 7 is located on an elliptic pitch circle indicated by a one-dot chain line.
  • the center Ot ⁇ ′ of the tripod member 3 is shifted by ⁇ 3 to the left from the axis X of the outer joint member 2. Accordingly, the spherical roller 4 positioned at a phase angle of 90 ° moves relative to the trunnion journal 9 toward the root A of the trunnion journal 9 by an amount of ⁇ 3.
  • the tripod type constant velocity universal joint 1 has constant velocity due to the above-described displacement movement of the centers Ot ⁇ and Ot ⁇ ′ of the tripod member 3.
  • the state of relative movement of the spherical roller 4 with respect to the trunnion journal 9 is shown together in FIG.
  • the spherical roller 4 shown by the solid line is at the operating angle of 0 ° and the spherical roller 4 ′ shown by the broken line is relatively moved at the phase angles of 0 ° and 180 °
  • the spherical roller 4 ′′ shown by the thin broken line is in phase.
  • the relative movement is shown at angles of 90 ° and 270 °, and the spherical roller 4 ′ is moved relative to the shaft end side of the trunnion journal 9 by an amount of ⁇ 1 + ⁇ 2, with reference to the position of the spherical roller 4 having an operating angle of 0 °.
  • the spherical roller 4 ′′ moves relative to the root A side of the trunnion journal 9 by an amount of ⁇ 3.
  • the spherical roller 4 moves relative to the torque load while performing the above-described swinging motion. At that time, the needle roller 5 rotates under the load from the spherical roller 4 and is dragged in the moving direction of the spherical roller 4. Therefore, when the spherical roller 4 (4 ′′) moves relatively in the direction indicated by the thin broken line in FIG. 7, the needle roller 5 moves to the root A side of the trunnion journal 9, and the needle roller 5 is moved to the corner 10b. The edge corners are interfered.
  • FIG. 8 shows the tripod member 3
  • FIG. 8a is a side view taken along the line FF in FIG. 8b
  • FIG. 8b is a partial longitudinal sectional view.
  • a corner 10b is formed at the root A of the trunnion journal 9 of the tripod member 3.
  • the corner 10 b is formed over the entire circumference of the cylindrical outer peripheral surface 10 of the trunnion journal 9. In the trunnion journal 9, it is the portion of the cylindrical outer peripheral surface 10 that receives the torque load.
  • the detailed shape of the root A of the trunnion journal 9 is shown in FIG.
  • the solid line indicates the shape of the trunnion journal 9
  • the broken line indicates the shape of the needle roller 5.
  • a rounded corner portion 10b having a radius of curvature R is formed continuously at the root A side end of the cylindrical outer peripheral surface 10 of the trunnion journal 9.
  • the rounded corner portion 10 b is connected to the shoulder surface 8 a of the trunnion trunk portion 8.
  • the needle roller 5 has a flat end surface 5a, and an end surface corner radius portion 5c having a radius of curvature r is formed between the end surface 5a and the rolling surface 5b.
  • the entire length of the needle roller 5 (excluding the end face corner rounded portion) is brought into contact with the cylindrical outer peripheral surface 10 of the trunnion journal 9, and the load center Pn of the needle roller 5 and the spherical roller
  • the key idea is to make the load centers Pr approximately coincide with each other, and this idea is based on a needle roller positioning structure that breaks the conventional common sense. It was a motivation to make the formed test sample and try the durability test.
  • the attachment of the needle roller 5 is surprisingly caused by the interference between the corner surface rounded portion 5c of the needle roller 5 and the corner portion 10b having no dull shape at the root A of the trunnion journal 9. It has been found that the movement toward the root A side can be restricted.
  • the state of the corner 10b of the trunnion journal 9 after the durability test is shown in FIG.
  • the spherical roller 4 moves relatively to the root portion A side of the trunnion journal 9 as the needle roller 5 moves relative to the trunnion journal 9 by performing a relative movement while swinging in a torque load state.
  • the end face corner rounded portion 5c of the needle roller 5 interferes with.
  • the needle roller 5 applies a force to the corner portion 10b of the trunnion journal 9 from the end face corner rounded portion 5c, and the corner portion 10b gradually plastically deforms, and the shape of the end face corner rounded portion 5c of the needle roller 5 is increased.
  • FIG. 10 it was confirmed that the plastic deformation converged within the allowable range G and no damage was caused.
  • the reason for the above is that when the tripod type constant velocity universal joint 1 rotates at an operating angle ⁇ , the trunnion journal 9 performs a movement like a wiper in which the trunnion journal 9 is inclined from the inclined state on one side to the opposite side every rotation. Although the swinging motion is repeated, it is considered that the rolling amount of the needle roller 5 accompanying this swinging motion is extremely small compared to the rolling amount of the rolling element in a general rolling bearing.
  • the present embodiment has been reached based on the above knowledge and idea.
  • the corner 10b of the root A of the trunnion journal 9 is preferably round. Thereby, the strength of the root portion A is ensured, and continuous hardened steel cutting from the cylindrical outer peripheral surface 10 of the trunnion journal 9 to the corner portion 10b becomes easy. In addition, grinding with an integral grindstone is facilitated from the cylindrical outer peripheral surface 10 of the trunnion journal 9 to the corner 10b.
  • the ratio R / r of the radius of curvature R of the corner portion 10b of the root portion A of the trunnion journal 9 and the radius of curvature r of the end surface corner radius portion 5c of the needle roller 5 is determined by the strength and durability of the root portion A and the machining surface. In consideration, 1.0 to 5.0 is preferable.
  • the tripod member 3 is made of chromium steel (for example, SCr415 or SCr420) or chromium / molybdenum steel (for example, SCM420). It is preferable that the surface hardness from the cylindrical outer peripheral surface 10 of the trunnion journal 9 to the corner 10b of the root A is lower than the surface hardness of the needle rollers 5. Specifically, the surface hardness of the trunnion journal 9 is set to HRC57 to 62, and the surface hardness of the needle roller 5 is set to HRC60 to 65. Thereby, while ensuring the intensity

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 円周方向の三等分位置に軸方向に延びるトラック溝6を形成した外側継手部材2と、トラニオン胴部8の円周方向の三等分位置から半径方向に突出したトラニオンジャーナル9を有するトリポード部材3と、トラニオンジャーナル9の回りに複数の針状ころ5を介して回転可能に装着された球状ローラ4とを備え、この球状ローラ4がトラック溝6に収容され、球状ローラ4の外球面がトラック溝6の両側壁に形成されたローラ案内面7によって案内されるようにしたトリポード型等速自在継手1において、トラニオンジャーナル9の付根部Aにぬすみ形状のない隅部10bを形成し、針状ころ5の端面隅アール部5cと付根部Aの隅部10bとの干渉により、トラニオンジャーナル9の付根部A側への針状ころ5の軸方向移動を規制したことを特徴とする。

Description

トリポード型等速自在継手
 本発明は、自動車や産業機械等における動力伝達に使用される摺動式のトリポード型等速自在継手に関する。
 トリポード型等速自在継手51は、図12aに示すように、円周方向の三等分位置に軸方向に延びる3本のトラック溝53を有し、各トラック溝53の対向する側壁にローラ案内面54を形成した外側継手部材52と、トラニオン胴部61の円周方向の三等分位置から半径方向に突出したトラニオンジャーナル62を有するトリポード部材60と、各トラニオンジャーナル62の回りに複数の針状ころ72を介して回転自在に装着された球状ローラ70とを備え、この球状ローラ70が外側継手部材52のトラック溝53に収容され、球状ローラ70の外球面がトラック溝53の両側壁に形成されたローラ案内面54によって案内されるようになっている。
 上記のトラニオンジャーナル62の付根部A’を図12bに拡大して示す。図示のように、付根部A’は、針状ころ72の内側軌道面となる円筒形外周面74に連続した曲率半径Rbのアール面で形成され肩面61aに繋がっている。針状ころ72の端部と肩面61aの間にインナーワッシャ78が介在されている。このインナーワッシャ78の側面と針状ころ72の端面の接触により、トラニオンジャーナル62の付根部A’側への針状ころ72の軸方向移動を規制したものである(特許文献1参照)。
 図12cに示すように、トラニオンジャーナル62’の付根部A”にインナーワッシャを設けないものも知られている。この場合は、トラニオン胴部61’に設けた肩面61a’と針状ころ72’の端面の接触により、トラニオンジャーナル62’の付根部A”側への針状ころ72’の軸方向移動を規制している(例えば、特許文献2参照)。
特許第3947342号公報 特開2005-36982号公報
 特許文献1および特許文献2に記載のトリポード型等速自在継手は、いずれも継手外径のコンパクト化を考えたものである。このコンパクト化に当たっては、トリポード部材の最小肉厚となる付根部の肉厚を確保しながら、ローラ案内面のピッチ円直径(PCD)を下げる必要がある。特許文献1に記載のトリポード型等速自在継手51では、インナーワッシャ78があるので、針状ころ72の継手半径方向の位置を下げることは困難であるため、別の工夫をしないとPCDを下げることができない。
 一方、特許文献2に記載のトリポード型等速自在継手では、インナーワッシャを廃止して針状ころ72’の端面と肩面61a’を接触させるために、トラニオンジャーナル62’の付根部A”にぬすみ部74aを設ける必要がある。ぬすみ部74aを設けると、付根部A”の肉厚が減少し強度が低下することや、針状ころ72’の内側軌道面となる円筒形外周面74’がぬすみ部74aの長さ分減り、転動寿命が低下することが考えられる。
 近年、自動車の燃費向上に対する要求がますます強くなり、自動車部品の1つである等速自在継手のさらなる軽量化・継手外径のコンパクト化が強く望まれている。この要求に対して、これまでに提案されたトリポード型等速自在継手では到達することができないことに着目した。
 本発明は、上記の問題に鑑み、強度および寿命を維持しながら、従来技術では到達できない軽量・コンパクトなトリポード型等速自在継手を提供することを目的とする。
 本発明者らは、上記の目的を達成するため種々検討、検証した結果、以下の知見と着想に基づいて本発明に至った。
(1)トリポード型等速自在継手のトラニオンジャーナルの付根部の円筒形外周面と肩面との間は、強度面からアール形状で接続することが不可欠である。このため、アール形状をぬすみ部のない形状で肩面に繋いだ場合は、インナーワッシャを入れてワッシャ側面と針状ころの端面が接触する構造となる。インナーワッシャを入れない場合は、アール形状のぬすみ部を設けて肩面に繋ぎ、この場合は、針状ころ端面と肩面が直接接触する構造となる。このように、針状ころの端面とつば面あるいはインナーワッシャ側面で規制すること、すなわち、面同士の接触により規制することが技術常識となっている(SAE Universal Joint and Driveshaft DESIGN MANUAL Section 3.2.6 138頁のFig.10参照)。
(2)継手外径がコンパクトなトリポード型等速自在継手を開発するに当って、針状ころの長さを確保するためにはインナーワッシャタイプでは成立不可能との着目により、ぬすみ部を設けて、針状ころの端面と肩面が直接接触するタイプを製作し耐久試験を実施した。その結果、針状ころの付根部側の端部にエッジロードによる損傷が生じることや、針状ころの回転が安定しないことが判明し、この原因を検討した。図11に示すように、針状ころ5が肩面8aに当接するまで付根部A”側に移動したとき、針状ころ5の端部がトラニオンジャーナル9の円筒形外周面10とぬすみ部10aの境界エッジ部10a’に位置するためエッジロードが発生することや、針状ころ5とトラニオンジャーナル9の円筒形外周面10との接触長さがぬすみ部10aの長さ分だけ減少するので、針状ころ5の荷重中心(接触長さの中心)Pnと球状ローラ4の荷重中心(球状ローラの幅方向中心)Prとが一致しなくなり、荷重のバランスが崩れ、針状ころ5の回転が安定しなくなり、この傾向がコンパクトなトリポード型等速自在継手では顕著になることが考察された。
(3)前項の考察を通じて、針状ころの全長(端面隅アール部を除く)をトラニオンジャーナルの円筒形外周面に接触させること、および、針状ころの荷重中心と球状ローラの荷重中心を略一致させることが鍵になるとの着想に至り、この着想が、従来の技術常識を破る針状ころの位置決め構造として、トラニオンジャーナルの付根部にぬすみ形状のない隅部を形成した試験サンプルを製作し耐久試験を試みる動機づけとなった。
(4)前項の耐久試験の結果、意外にも、針状ころの端面隅アール部とトラニオンジャーナルの付根部にぬすみ形状のない隅部の干渉により、針状ころの付根部側への移動を規制できることが判明した。この理由は、トリポード型等速自在継手は、作動角をとって回転するとき、1回転ごとに、トラニオンジャーナルが一方側の傾斜状態から反対側に傾斜するワイパーのような運動を繰り返す揺動運動を行うが、この揺動運動に伴う針状ころの転がり量は、一般的な転がり軸受における転動体の転がり量に比べ、極めて少ないことが起因しているかと考えられる。
 前述の目的を達成するための技術的手段として、本発明は、円周方向の三等分位置に軸方向に延びるトラック溝を形成した外側継手部材と、トラニオン胴部の円周方向の三等分位置から半径方向に突出したトラニオンジャーナルを有するトリポード部材と、前記各トラニオンジャーナルの回りに複数の針状ころを介して回転可能に装着された球状ローラとを備え、この球状ローラが前記トラック溝に収容され、前記球状ローラの外球面が前記トラック溝の両側壁に形成されたローラ案内面によって案内されるようにしたトリポード型等速自在継手において、前記各トラニオンジャーナルの付根部にぬすみ形状のない隅部を形成し、前記針状ころの端面隅アール部と前記付根部の隅部との干渉により、前記トラニオンジャーナルの付根側への前記針状ころの軸方向移動を規制したことを特徴とする。これにより、強度および寿命を維持しながら針状ころの径方向位置を下げることができ、部品点数を削減し、従来技術では到達できない軽量・コンパクト化を図ることができる。
 具体的には、上記のトラニオンジャーナルの付根部の隅部がアール形状であることが好ましい。これにより、付根部の強度を確保し、トラニオンジャーナルの円筒形外周面から隅部にかけて連続した焼入れ鋼切削加工が容易となる。また、円筒形外周面から隅部にかけて一体砥石による研削加工が容易となる。
 上記のトラニオンジャーナルの付根部の隅部の曲率半径Rと針状ころの端面隅アール部の曲率半径rとの比R/rを1.0~5.0とすることが好ましい。これにより、付根部の強度や耐久性を確保すると共に、加工性に優れ、実用性が高い。
 上記のトラニオンジャーナルの軌道面となる円筒形外周面から付根部の隅部にかけて連続した焼入れ鋼切削加工や一体砥石による研削加工を施すことにより、円筒形外周面に滑らかに接続する隅部を形成でき、かつ加工が容易となる。
 上記のトラニオンジャーナルの軌道面となる外周面から付根部の隅部にかけての表面硬度を針状ころの表面硬度より低くすることが好ましい。これにより、付根部の隅部の強度を確保できると共に、針状ころの位置決め性が確実となる。
 上記の針状ころの長さの中央位置をローラ案内面のピッチ円直径(PCD)に略一致させることが好ましい。これにより、球状ローラと針状ころの荷重バランスがよく、針状ころの回転が安定する。
 本発明のトリポード型等速自在継手によれば、強度および寿命を維持しながら針状ころの径方向位置を下げることができ、部品点数を削減し、従来技術では到達できない軽量・コンパクト化を図ることができる。
本発明の一実施形態に係るトリポード型等速自在継手の横断面図である。 本発明の一実施形態に係るトリポード型等速自在継手の縦断面図である。 図1のトリポード型等速自在継手が作動角を取った状態を示す縦断面図である。 図1のトリポード型等速自在継手の各部の寸法を示す横断面図である。 図1の球状ローラとローラ案内面との接触部を拡大した横断面図である。 図1のトリポード型等速自在継手の作動角を取ったときの球状ローラの動きを示し、外側継手部材とトリポード部材が傾斜した状態を示す縦断面図である。 図1のトリポード型等速自在継手の作動角を取ったときの球状ローラの動きを示し、外側継手部材とトリポード部材が傾斜していない状態を示す縦断面図である。 球状ローラの動作を説明する模式図で、球状ローラが位相角0°に位置する状態を示す。 球状ローラの動作を説明する模式図で、球状ローラが位相角90°に位置する状態を示す。 球状ローラの移動量を示す縦断面図である。 図1のトリポード部材を示し、図8bのF-F線で矢視した側面図である。 図1のトリポード部材の縦断面図である。 図8aの付根部A部を拡大した図である。 耐久試験後の図8aの付根部A部を拡大した図である。 開発過程の知見を示す横断面図である。 従来のトリポード型等速自在継手の横断面図である。 図12aの付根部A’を拡大した図である。 他の従来のトリポード型等速自在継手の一部を示す図である。
 本発明の一実施形態を図1~図10に基づいて説明する。
 図1aは、本発明の一実施形態に係るトリポード型等速自在継手の横断面図であり、図1bは縦断面図である。図示のように、本実施形態に係るトリポード型等速自在継手1は、外側継手部材2、内側継手部材としてのトリポード部材3、球状ローラ4および転動体としての針状ころ5を主な構成とする。外側継手部材2は、その内周に円周方向の三等分位置に軸方向に延びる3本のトラック溝6を有する中空カップ状である。各トラック溝6の対向する側壁にローラ案内面7が形成されている。ローラ案内面7は、円筒面の一部、すなわち部分円筒面で形成されている。
 トリポード部材3は、トラニオン胴部8とトラニオンジャーナル9からなり、トラニオンジャーナル9はトラニオン胴部8の円周方向の三等分位置から半径方向に突出して3本形成されている。各トラニオンジャーナル9は、円筒形外周面10と、軸端付近に形成された環状の止め輪溝11を備えている。トラニオンジャーナル9の円筒形外周面10の周りに複数の針状ころ5を介して回転自在に球状ローラ4が装着されている。トラニオンジャーナル9の円筒形外周面10は針状ころ5の内側軌道面を形成する。球状ローラ4の内周面4aは円筒形状で、針状ころ5の外側軌道面を形成する。
 トラニオンジャーナル9の軸端付近に形成された止め輪溝11には、アウタワッシャ12を介して止め輪13が装着されている。針状ころ5は、トラニオンジャーナル9の付根部Aとアウタワッシャ12により、トラニオンジャーナル9の軸線方向の移動が規制されている。アウタワッシャ12は、トラニオンジャーナル9の半径方向に延びた円盤部12aと、トラニオンジャーナル9の軸線方向に延びた円筒部12bとからなる。アウタワッシャ12の円筒部12bは球状ローラ4の内周面4aより小さな外径を有し、トリポード部材3の半径方向で見た円筒部12bの外側の端部12cは、球状ローラ4の内周面4aよりも大径に形成されている。したがって、球状ローラ4は、トラニオンジャーナル9の軸線方向に移動することができ、かつ、端部12cにより脱落が防止されている。
 トラニオン部材3のトラニオンジャーナル9に回転自在に装着された球状ローラ4は、外側継手部材2のトラック溝6のローラ案内面7に回転自在に案内される。図2にトリポード型等速自在継手1が作動角θを取った状態を示す。ローラ案内面7は部分円筒面で形成されているので、球状ローラ4はローラ案内面7内で傾斜することができる。このような構造により、外側継手部材2とトリポード部材3との間の相対的な軸方向変位や角度変位が吸収され、回転が等速で伝達される。
 球状ローラ4とローラ案内面7の接触形態には、一般的にアンギュラコンタクトとサーキュラコンタクトの二通りがある。アンギュラコンタクトは接触角をもち、2点で接触する。サーキュラコンタクトは、図4に示すように1点で接触する。本実施形態では、ローラ案内面7の曲率半径をRt、球状ローラ4の曲率半径をRrとしたとき、接触率Rt/Rrを1.02~1.15程度としている。本実施形態では、後述するように、従来のトリポード型等速自在継手に対して球状ローラ4の幅Ls(図3参照)を大幅に縮小しているので、サーキュラコンタクトが望ましい。
 図3に示すように、外側継手部材2の内径は、円周方向に交互に現れる内径D1の大内径部と内径D2の小内径部とで構成される。そして、外側継手部材2の内部に組み込まれるトリポード部材3は、そのトラニオン胴部8にスプライン大径(軸径)dのスプライン孔が形成され、トラニオンジャーナル9の円筒形外周面10は外径Djを有する。トリポード部材3の外径はSDjであり、トラニオン胴部の外径はdrである。球状ローラ4は、その外径がDsであり、球状ローラ4の幅はLsである。針状ころ5は長さLnを有する。ローラ案内面7のピッチ円直径はPCDである。
 本実施形態に係るトリポード型等速自在継手1は、強度および寿命を維持しながら、継手外径のコンパクト化を図るために、従来技術とは大幅に異なる寸法設定となっている。まず、本実施形態のトリポード型等速自在継手1のベースになる寸法設定ついて説明する。
 トリポード型等速自在継手1の強度はシャフト強度以上とすることを基本としているが、その次に強度の確保が必要な部材がトリポード部材3と球状ローラ4となることから、本実施形態に係るトリポード型等速自在継手1はトリポード部材3と球状ローラ4の強度の確保を前提とした寸法設定になっている。
 基本指針としては、ジョイントサイズ毎に決められる軸径dを一定として、トルク負荷方向のトラニオンジャーナル9の付根部Aにおけるトラニオン胴部8の最小肉厚tを確保しながら、ローラ案内面7のピッチ円直径PCDが大幅に縮小されている。
 上記の基本指針を実現するためには、上記のようにローラ案内面7のピッチ円直径PCDを縮小しても、トルク負荷方向のトラニオンジャーナル9の付根部Aにおけるトラニオン胴部8の最小肉厚tを確保する必要がある。このために、トラニオンジャーナル9の外径Djを拡大した寸法設定となっている。そして、トラニオンジャーナル9の外径Djに合わせて球状ローラ4の外径Dsも大きくなっている。
 球状ローラ4の外径Dsを大きくすると、外側継手部材2の外径も大きくなるので、球状ローラ4の幅Lsを縮小することにより外側継手部材2の外径を縮小している。
 球状ローラ4の幅Lsを縮小すると、外側継手部材2の外径が縮小され、小内径D2/大内径D1(D2/D1)が大きくなり、小内径D2と大内径D1との凹凸が縮小される。小内径D2と大内径D1の凹凸が縮小されるので、軽量化と鍛造加工性に優位となる。
 寿命(耐久性)の観点からは、トラニオンジャーナル9の外径Djが大きくなることにより、装填する針状ころ5の本数が増加し面圧が減少するので、従来と同等の寿命を確保している。
 本実施形態のトリポード型等速自在継手1のベースになる寸法比率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 次に、本実施形態のトリポード型等速自在継手の特徴的な構成を図4~10に基づいて説明する。図4に示すように、トリポード型等速自在継手1の構成部材であるトリポード部材3のトラニオンジャーナル9の付根部Aには、ぬすみ形状のない隅部10bが形成され、隅部10bはアール形状となっている。このアール形状の隅部10bに針状ころ5の端面隅アール部が干渉することにより、針状ころ5は、トラニオンジャーナル9の付根部A側への移動が規制される。これにより、針状ころ5の長さの中央位置をローラ案内面7のピッチ円直径(PCD、図3参照)に略一致させることができ、球状ローラ4と針状ころ5の荷重バランスがよく、針状ころ5の回転が安定する。
 ここで、トリポード型等速自在継手1が作動角を取ったときの作動について説明する。トリポード型等速自在継手1は、図2のように、作動角θを取って回転するとき、1回転ごとに外側継手部材2のトラック溝6(ローラ案内面7)に対してトラニオンジャーナル9および球状ローラ4がワイパーのような揺動運動を行う。
 上記の揺動運動を図5aおよび図5bに基づいて説明する。図5bは作動角0°の状態を示し、図5aは作動角θを取ってトラニオンジャーナル9(球状ローラ4)が図の左側に揺動した状態を示す。図5aの状態を詳述すると、上死点、すなわち、位相角が0°の位置にある1つのトラニオンジャーナル9(球状ローラ4)は、作動角θと同じ角度で傾斜してローラ案内面7内に位置する。位相角0°の位置から120°の周方向の間隔をもった残り2つのトラニオンジャーナル9(球状ローラ4、図示省略)は、下側の2つのローラ案内面7(図1a参照)内に位置している。このように、3つのトラニオンジャーナル9および球状ローラ4の軸線は、外側継手部材2の軸線Xに対してθ傾いた平面Jθ上に整列している。そして、継手が1回転する間に、図5aの傾斜状態から反対の傾斜状態を経て揺動運動する。
 上記の揺動運動の際、球状ローラ4は、トラニオンジャーナル9に対してその軸線方向に相対移動する。この相対移動量を作動角0°の状態を基準にして説明する。作動角0°の状態を示す図5bの球状ローラ4のトラニオンジャーナル9に対する位置を、作動角θを取って左側に揺動した状態を示す図5aに重ねて破線で示す。このように、球状ローラ4は、作動角を取った状態では、トラニオンジャーナル9の軸線方向に相対移動する。
 球状ローラ4が上記の動作をする理由を図6に基づいて説明する。図6は球状ローラ4の中心を示す模式図で、図6aは図5aの状態、すなわち1つのトラニオンジャーナル9(球状ローラ4)が位相角0°に位置する状態を示し、図6bは、1つのトラニオンジャーナル9(球状ローラ4)が位相角90°に位置する状態を示す。図6aおよび図6bにおいて、二点鎖線で示す真円のピッチ円は、作動角0°の状態、すなわち、図5bの状態におけるローラ案内面7の中心を結んだものである。また、一点鎖線で示す楕円のピッチ円は、図5aのθ傾いた平面Jθにおけるローラ案内面7の中心を結んだものである。
 図6aに示すように、作動角0°の状態では、二点鎖線で示す真円のピッチ円上の円周方向の三等分位置であるOr0にローラ案内面7の中心(球状ローラ4の中心でもある)が位置する。この状態では、トリポード部材3の中心Ot0は、外側継手部材2の軸線Xと一致している。θ傾いた平面Jθの断面では、一点鎖線で示す楕円のピッチ円上にローラ案内面7の中心Orθが位置することになる。トラニオンジャーナル9はトラニオン胴部8(図1a参照)の円周方向の三等分位置(120°間隔)から半径方向に突出しているので、1つのトラニオンジャーナル9(球状ローラ4)が位相角0°に位置する状態で、トリポード部材3の中心Otθは外側継手部材2の軸線Xより下側にδ1ずれる。また、ローラ案内面7の中心OrθとOr0はδ2ずれる。このため、位相角0°に位置する球状ローラ4は、トラニオンジャーナル9に対してδ1+δ2の量だけトラニオンジャーナル9の軸端側に相対移動する。
 トリポード部材3が回転し、図6bに示すように、1つのトラニオンジャーナル9(球状ローラ4)が位相角90°に位置する状態を説明する。作動角0°の状態では、二点鎖線で示す真円のピッチ円上のOr0’にローラ案内面7の中心(球状ローラ4の中心でもある)が位置する。この状態では、トリポード部材3の中心Ot0は、外側継手部材2の軸線Xと一致している。θ傾いた平面Jθの断面では、一点鎖線で示す楕円のピッチ円上にローラ案内面7の中心Orθ’が位置することになる。この場合には、トリポード部材3の中心Otθ’は外側継手部材2の軸線Xより左側にδ3ずれる。これに伴い、位相角90°に位置する球状ローラ4は、トラニオンジャーナル9に対してδ3の量だけトラニオンジャーナル9の付根部A側に相対移動する。
 トリポード部材3がさらに回転し、1つのトラニオンジャーナル9(球状ローラ4)が位相角180°に位置すると、前述した位相角0°の状態と同様になる。さらに、位相角270°に位置すると、前述した位相角90°の状態と同様になり、球状ローラ4は、これらの動作を繰り返す。トリポード型等速自在継手1は、トリポード部材3の中心Otθ、Otθ’の上記ずれ運動により等速性が得られる。
 トラニオンジャーナル9に対する球状ローラ4の相対移動の状態をまとめて図7に示す。実線で示した球状ローラ4が作動角0°の位置で、破線で示した球状ローラ4’が位相角0°および180°において相対移動した状態で、細破線で示した球状ローラ4”が位相角90°および270°において相対移動した状態を示す。作動角0°の球状ローラ4の位置を基準にして、球状ローラ4’はトラニオンジャーナル9の軸端側にδ1+δ2の量で相対移動し、球状ローラ4”はトラニオンジャーナル9の付根部A側にδ3の量で相対移動する。
 球状ローラ4は、トルク負荷状態で、前述した揺動運動をしながら相対移動する。その際、針状ころ5は球状ローラ4から荷重を受けて回転し、球状ローラ4の移動方向に引き摺られる。このため、球状ローラ4(4”)が図7の細破線で示す方向に相対移動するとき、針状ころ5がトラニオンジャーナル9の付根部A側に移動し隅部10bに針状ころ5の端面隅アール部が干渉する。
 本実施形態のトリポード型等速自在継手1のトラニオンジャーナル9の付根部A側における針状ころ5の位置決め構造の詳細を図8~10に基づいて説明する。
 図8はトリポード部材3を示し、図8aは、図8bのF-F線で矢視した側面図で、図8bは部分縦断面図である。トリポード部材3のトラニオンジャーナル9の付根部Aには隅部10bが形成されている。図8aおよび図8bに示すように、隅部10bは、トラニオンジャーナル9の円筒形外周面10の全周にわたって形成されている。トラニオンジャーナル9において、トルク負荷を受けるのは円筒形外周面10の部分である。
 トラニオンジャーナル9の付根部Aの詳細形状を図9に示す。図9において、実線はトラニオンジャーナル9の形状を示し、破線は針状ころ5の形状を示す。トラニオンジャーナル9の円筒形外周面10の付根部A側端部に連続して曲率半径Rのアール形状の隅部10bが形成されている。アール形状の隅部10bはトラニオン胴部8の肩面8aに繋がっている。針状ころ5は平坦な端面5aを有し、この端面5aと転動面5bとの間に曲率半径rの端面隅アール部5cが形成されている。そして、トラニオンジャーナル9の隅部10bのアール形状の立ち上がり部に針状ころ5の端面隅アール部5cが干渉することにより、針状ころ5は、トラニオンジャーナル9の付根部A側への移動が規制される。
 ここで、本実施形態に至った開発過程の知見と着想を説明する。
(1)トリポード型等速自在継手のトラニオンジャーナルの付根部の円筒状外周面と肩面との間は、強度面からアール形状で接続することが不可欠である。このため、アール形状をぬすみ部のない形状で肩面に繋いだ場合は、インナーワッシャを入れてワッシャ側面と針状ころの端面が接触する構造となる。インナーワッシャを入れない場合は、アール形状のぬすみ部を設けて肩面に繋ぎ、この場合は、針状ころ端面と肩面が直接接触する構造となる。このように、針状ころの端面とつば面あるいはインナーワッシャ側面で規制すること、すなわち、面同士の接触により規制することが技術常識となっている(SAE Universal Joint and Driveshaft DESIGN MANUAL Section 3.2.6 138頁のFig.10参照)。
(2)前述した寸法設定をベースとする継手外径がコンパクトなトリポード型等速自在継手を開発するに当って、針状ころの長さを確保するためにはインナーワッシャタイプでは成立不可能との着目により、ぬすみ部を設けて、針状ころの端面と肩面が直接接触するタイプを製作し耐久試験を実施した。その結果、針状ころの付根部側の端部にエッジロードによる損傷が生じることや、針状ころの回転が安定しないことが判明し、この原因を検討した。
 その結果、図11に示すように、針状ころ5が肩面8aに当接するまで付根部A”側に移動したとき、針状ころ5の端部がトラニオンジャーナル9の円筒形外周面10とぬすみ部10aの境界エッジ部10a’に位置するためエッジロードが発生することや、針状ころ5とトラニオンジャーナル9の円筒形外周面10との接触長さがぬすみ部10aの長さ分だけ減少するので、針状ころ5の荷重中心(接触長さの中心)Pnと球状ローラ4の荷重中心(球状ローラの幅方向中心)Prとが一致しなくなり、荷重のバランスが崩れ、針状ころ5の回転が安定しなくなり、この傾向が、前述した針状ころの長さLnを短縮したコンパクトなトリポード型等速自在継手1では顕著になることが考察された。
(3)前項の考察を通じて、針状ころ5の全長(端面隅アール部を除く)をトラニオンジャーナル9の円筒状外周面10に接触させること、および、針状ころ5の荷重中心Pnと球状ローラ4の荷重中心Prを略一致させることが鍵になるとの着想に至り、この着想が、従来の技術常識を破る針状ころの位置決め構造として、トラニオンジャーナルの付根部にぬすみ形状のない隅部を形成した試験サンプルを製作し耐久試験を試みる動機づけとなった。
(4)前項の耐久試験の結果、意外にも、針状ころ5の端面隅アール部5cとトラニオンジャーナル9の付根部Aにぬすみ形状のない隅部10bの干渉により、針状ころ5の付根部A側への移動を規制できることが判明した。なお、耐久試験は、高負荷をかけながら回転させて寿命・破損モードを確認するためのもので、負荷トルクT=540Nm、角度θ=6deg、回転数N=270rpmの条件で実施をした。
 耐久試験後のトラニオンジャーナル9の隅部10bの状態を図10に示す。前述したように、球状ローラ4(図7参照)は、トルク負荷状態で揺動運動をしながら相対移動することにより、針状ころ5がトラニオンジャーナル9の付根部A側に移動し隅部10bに針状ころ5の端面隅アール部5cが干渉する。耐久試験中に針状ころ5が、その端面隅アール部5cよりトラニオンジャーナル9の隅部10bに力を加え、次第に隅部10bが塑性変形し、針状ころ5の端面隅アール部5cの形状が転写されるが、図10に示すように、許容範囲Gで塑性変形が収束し、損傷に至ることがないことが確認できた。
 上記の理由は、トリポード型等速自在継手1は、作動角θをとって回転するとき、1回転ごとに、トラニオンジャーナル9が一方側の傾斜状態から反対側に傾斜するワイパーのような運動を繰り返す揺動運動を行うが、この揺動運動に伴う針状ころ5の転がり量は、一般的な転がり軸受における転動体の転がり量に比べ、極めて少ないことが起因しているかと考えられる。以上の知見および着想に基づいて本実施形態に至った。
 トラニオンジャーナル9の付根部Aの隅部10bはアール形状が好ましい。これにより、付根部Aの強度を確保し、トラニオンジャーナル9の円筒形外周面10から隅部10bにかけて連続した焼入れ鋼切削加工が容易となる。また、トラニオンジャーナル9の円筒形外周面10から隅部10bにかけて一体砥石による研削加工が容易となる。
 トラニオンジャーナル9の付根部Aの隅部10bの曲率半径Rと針状ころ5の端面隅アール部5cの曲率半径rとの比R/rは、付根部Aの強度や耐久性、加工面を考慮すると、1.0~5.0が好ましい。
 トリポード部材3は、クロム鋼(例えば、SCr415又はSCr420)やクロム・モリブデン鋼(例えば、SCM420)からなる。トラニオンジャーナル9の円筒形外周面10から付根部Aの隅部10bにかけての表面硬度を針状ころ5の表面硬度より低くすることが好ましい。具体的には、トラニオンジャーナル9の表面硬度をHRC57~62とし、針状ころ5の表面硬さをHRC60~65とした。これにより、付根部Aの隅部10bの強度を確保できると共に、針状ころ5の位置決め性が確実となる。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1     トリポード型等速自在継手
2     外側継手部材
3     トリポード部材
4     球状ローラ
5     針状ころ
5c    端面隅アール部
6     トラック溝
7     ローラ案内面
8     トラニオン胴部
9     トラニオンジャーナル
10    円筒形外周面
10b   隅部
A     付根部
Ls    球状ローラの幅
PCD   ローラ案内面のピッチ円直径
R     曲率半径
r     曲率半径

Claims (7)

  1.  円周方向の三等分位置に軸方向に延びるトラック溝を形成した外側継手部材と、トラニオン胴部の円周方向の三等分位置から半径方向に突出したトラニオンジャーナルを有するトリポード部材と、前記各トラニオンジャーナルの回りに複数の針状ころを介して回転可能に装着された球状ローラとを備え、この球状ローラが前記トラック溝に収容され、前記球状ローラの外球面が前記トラック溝の両側壁に形成されたローラ案内面によって案内されるようにしたトリポード型等速自在継手において、
     前記各トラニオンジャーナルの付根部にぬすみ形状のない隅部を形成し、前記針状ころの端面隅アール部と前記付根部の隅部との干渉により、前記トラニオンジャーナルの付根部側への前記針状ころの軸方向移動を規制したことを特徴とするトリポード型等速自在継手。
  2.  前記トラニオンジャーナルの付根部の隅部がアール形状であることを特徴とする請求項1に記載のトリポード型等速自在継手。
  3.  前記トラニオンジャーナルの付根部の隅部の曲率半径Rと前記針状ころの端面隅アール部の曲率半径rとの比R/rを1.0~5.0としたことを特徴とする請求項1又は請求項2に記載のトリポード型等速自在継手。
  4.  前記トラニオンジャーナルの軌道面となる円筒形外周面から前記付根部の隅部にかけて連続して焼入れ鋼切削加工が施されていることを特徴とする請求項1~3のいずれか一項に記載のトリポード型等速自在継手。
  5.  前記トラニオンジャーナルの軌道面となる円筒形外周面から前記付根部の隅部にかけて一体砥石による研削加工が施されていることを特徴とする請求項1~3のいずれか一項に記載のトリポード型等速自在継手。
  6.  前記トラニオンジャーナルの軌道面となる円筒形外周面から前記付根部の隅部にかけての表面硬度を前記針状ころの表面硬度より低くしたことを特徴とする請求項1~5のいずれか一項に記載のトリポード型等速自在継手。
  7.  前記針状ころの長さの中央位置を前記ローラ案内面のピッチ円直径(PCD)に略一致させたことを特徴とする請求項1~6のいずれか一項に記載のトリポード型等速自在継手。
PCT/JP2016/055565 2015-03-13 2016-02-25 トリポード型等速自在継手 WO2016147827A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16764657.9A EP3269990B1 (en) 2015-03-13 2016-02-25 Tripod type constant velocity universal joint
US15/556,156 US10563700B2 (en) 2015-03-13 2016-02-25 Tripod type constant velocity universal joint
CN201680014150.5A CN107466341B (zh) 2015-03-13 2016-02-25 三球销型等速万向联轴器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-051120 2015-03-13
JP2015051120A JP6545489B2 (ja) 2015-03-13 2015-03-13 トリポード型等速自在継手

Publications (1)

Publication Number Publication Date
WO2016147827A1 true WO2016147827A1 (ja) 2016-09-22

Family

ID=56918939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055565 WO2016147827A1 (ja) 2015-03-13 2016-02-25 トリポード型等速自在継手

Country Status (5)

Country Link
US (1) US10563700B2 (ja)
EP (1) EP3269990B1 (ja)
JP (1) JP6545489B2 (ja)
CN (1) CN107466341B (ja)
WO (1) WO2016147827A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757758A (zh) * 2018-08-03 2018-11-06 浙江德福精密驱动制造有限公司 一种移动节组件
JP7358046B2 (ja) * 2018-12-27 2023-10-10 Ntn株式会社 トリポード型等速自在継手
JP7075879B2 (ja) * 2018-12-28 2022-05-26 本田技研工業株式会社 等速ジョイント
US11585388B2 (en) 2019-01-30 2023-02-21 Steering Solutions Ip Holding Corporation Needle retainer for constant velocity joint and method of determining trunnion shape
CN115143197B (zh) * 2022-09-06 2022-12-02 万向钱潮股份公司 一种轻量化万向节

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025599A (ja) * 2006-07-18 2008-02-07 Ntn Corp トリポード型等速自在継手
JP2009058076A (ja) * 2007-08-31 2009-03-19 Ntn Corp トリポード型等速自在継手
JP2013234702A (ja) * 2012-05-08 2013-11-21 Nsk Ltd プラネタリギヤ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096430A (ja) * 1996-09-20 1998-04-14 Ntn Corp トリポード型等速自在継手
JP3947342B2 (ja) 2000-05-22 2007-07-18 Ntn株式会社 トリポード型等速自在継手
FR2857710B1 (fr) 2003-07-16 2005-11-04 Gkn Driveline Sa Joint homocinetique compact
JP2005248998A (ja) * 2004-03-02 2005-09-15 Honda Motor Co Ltd 等速ジョイント
EP1726839A4 (en) * 2004-03-02 2009-09-30 Honda Motor Co Ltd ARTICULATION AT CONSTANT SPEED
JP5020750B2 (ja) * 2007-09-10 2012-09-05 Ntn株式会社 トリポード型等速自在継手
JP6152650B2 (ja) * 2013-02-05 2017-06-28 株式会社ジェイテクト ダブルローラタイプのトリポード型等速ジョイント

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025599A (ja) * 2006-07-18 2008-02-07 Ntn Corp トリポード型等速自在継手
JP2009058076A (ja) * 2007-08-31 2009-03-19 Ntn Corp トリポード型等速自在継手
JP2013234702A (ja) * 2012-05-08 2013-11-21 Nsk Ltd プラネタリギヤ装置

Also Published As

Publication number Publication date
EP3269990B1 (en) 2019-11-27
US20180045249A1 (en) 2018-02-15
EP3269990A1 (en) 2018-01-17
JP6545489B2 (ja) 2019-07-17
US10563700B2 (en) 2020-02-18
EP3269990A4 (en) 2018-12-05
CN107466341A (zh) 2017-12-12
JP2016169833A (ja) 2016-09-23
CN107466341B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2016147827A1 (ja) トリポード型等速自在継手
JP2006283828A (ja) トリポード型等速自在継手
JP2010043667A (ja) 固定式等速自在継手
WO2016006563A1 (ja) トリポード型等速自在継手
US7217194B2 (en) Constant velocity universal joint
EP2141375A1 (en) Trunnion, toripod-type constant-velocity universal joint using the trunnion and method of producing the same
JP2016130533A (ja) 摺動式等速ジョイント
US7435181B2 (en) Tripot ball with two point contact
EP3067582B1 (en) Stationary constant velocity universal joint
JP2008286330A (ja) トリポード型等速自在継手
JP3984776B2 (ja) トリポード型等速自在継手
JP2008190621A (ja) トリポード型等速自在継手
JP2012197832A (ja) 摺動式トリポード型等速ジョイント
JP2006258255A (ja) トリポード型等速自在継手
JP2000291677A (ja) トリポード型等速自在継手
JP2023128849A (ja) トリポード型等速自在継手
JP2010106892A (ja) トリポード型等速自在継手
JP2006266324A (ja) 等速自在継手
JP2009002388A (ja) トリポード型等速自在継手
JP2006266325A (ja) 等速自在継手
JP2007211800A (ja) トリポード型等速自在継手
JP2007024266A (ja) トリポード型等速自在継手
JP2000291678A (ja) トリポード型等速自在継手
JP2006097853A (ja) 等速自在継手及びその製造方法
JP2008019952A (ja) トリポード型等速自在継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15556156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016764657

Country of ref document: EP