WO2015045743A1 - トロリ線測定装置及びトロリ線測定方法 - Google Patents

トロリ線測定装置及びトロリ線測定方法 Download PDF

Info

Publication number
WO2015045743A1
WO2015045743A1 PCT/JP2014/072879 JP2014072879W WO2015045743A1 WO 2015045743 A1 WO2015045743 A1 WO 2015045743A1 JP 2014072879 W JP2014072879 W JP 2014072879W WO 2015045743 A1 WO2015045743 A1 WO 2015045743A1
Authority
WO
WIPO (PCT)
Prior art keywords
trolley wire
trolley
light
line
vehicle
Prior art date
Application number
PCT/JP2014/072879
Other languages
English (en)
French (fr)
Inventor
正久 渡邉
Original Assignee
株式会社日立ハイテクファインシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクファインシステムズ filed Critical 株式会社日立ハイテクファインシステムズ
Priority to CN201480039911.3A priority Critical patent/CN105393080B/zh
Priority to EP14849875.1A priority patent/EP3051252B1/en
Publication of WO2015045743A1 publication Critical patent/WO2015045743A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/12Trolley lines; Accessories therefor
    • B60M1/28Manufacturing or repairing trolley lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image

Definitions

  • the present invention relates to a trolley wire measuring device and a trolley wire measuring method for measuring a wear amount of a trolley wire which is a power supply source of a vehicle.
  • the train car running on the train track obtains the required power from the trolley line via the top of the pantograph (sliding board).
  • the lower surface (sliding surface or sliding surface) of the trolley wire and the upper surface of the pantograph are gradually worn by sliding contact with each other.
  • the trolley wire is alternately displaced in the left-right direction for each supporting power pole so that the wear on the pantograph side does not concentrate on a part.
  • the wear amount and displacement amount of the trolley wire are inspected for good or bad by carrying a trolley wire measuring device in a test vehicle or the like and periodically measuring the running amount.
  • One of the trolley wire measuring devices is one that rotates a rotating polygon mirror (polygon mirror) on a horizontal plane, irradiates the trolley wire with a laser beam, and scans the trolley wire over its deflection range.
  • a rotating polygon mirror polygon mirror
  • the reflected light from the trolley wire sliding surface obtained according to the scanning is received by the light receiving element through the perforated mirror to obtain the detection signal for the trolley wire sliding surface, corresponding to the scanning
  • the generation width of the detection signal obtained in this way is calculated by a data processing device, thereby measuring the amount of trolley wire wear.
  • a test vehicle equipped with such a trolley wire wear amount measuring device there are those described in Patent Documents 1, 3, and 4.
  • Patent Document 2 The calculation of the wear amount of the trolley wire measuring device is described in Patent Document 2 in which an image is collected by a CCD camera, the width of the sliding surface of the trolley wire is obtained by image processing, and the wear amount is measured therefrom.
  • Patent Documents 5 and 7 describe a method in which a reflection signal from the trolley wire sliding surface is obtained, the width of the trolley wire sliding surface is obtained from the waveform, and the wear amount is calculated therefrom. .
  • Patent Document 6 describes a trolley wire measuring device that measures the remaining amount.
  • Patent Documents 1 to 7 show that a trolley wire measuring device that measures the amount of residual trolley wire wear by converting the remaining amount of the trolley wire to a straight line from the sliding surface width is measured with laser light, sodium lamp light, or LED light on the trolley wire sliding surface.
  • the width of the trolley wire surface is measured by the reflected light from the trolley wire surface. For this reason, it is greatly influenced by the state of the trolley wire sliding surface, and if the reflected light of the trolley wire sliding surface does not return to the measuring unit light receiving part due to blackening, rust, inclination or partial reduction, the sliding surface width is narrowed. It may be measured.
  • the device configured to directly measure the remaining diameter of the trolley wire by projecting from the side of the trolley wire guides the detector in contact with the trolley wire, so when the train speed increases, the detector will jump Therefore, measurement at a low speed becomes a condition, and the overlap of the trolley wire may take time to replace the guide.
  • the present invention has been made in view of the above points, and an object thereof is to provide a trolley wire measuring device and a trolley wire measuring method capable of easily measuring the shape of a worn portion of a trolley wire from a vehicle traveling.
  • the first feature of the trolley wire measuring apparatus is that the slit laser beam is projected substantially vertically from the left and right lower sides of the trolley wire so as to cross the trolley wire, and the projected laser beam First and second trolley wire measuring means provided on the roof of the vehicle for acquiring images indicating the shape of the lower left and right sides including the side surface of the trolley wire based on the light cut image by the reflected light of Data indicating the cross-sectional shape of the sliding surface and the left and right side surfaces of the trolley wire by processing an image showing the shape of the lower left and right sides including the side surface of the trolley wire acquired by the first and second trolley wire measuring means And a control means for generating.
  • a slit-shaped laser beam is irradiated onto the trolley line substantially perpendicularly to the traveling direction of the vehicle from the roof of the vehicle.
  • a light section image is generated on the lower side including the side surface of the trolley line.
  • the data indicating the sectional shape of the sliding surface and the left and right side surfaces of the trolley wire can be generated. Based on the generated data indicating the sliding surface of the trolley wire and the cross-sectional shape of the left and right side surfaces, the remaining amount of the side surface of the trolley wire can be calculated, and the wear amount of the trolley wire can be calculated without being affected by the trolley wire sliding surface. It becomes possible to measure.
  • a second feature of the trolley wire measurement device is the trolley wire measurement device according to the first feature, characterized in that the cross-sectional shapes of the sliding surface and the left and right side surfaces of the trolley wire generated by the control means are as follows. And measuring means for calculating the amount of wear of the trolley wire based on the indicated data and calculating data indicating the three-dimensional shape of the trolley wire. This is based on the data indicating the cross-sectional shape of the sliding surface and the left and right side surfaces of the trolley line generated by the control means, and the measuring means calculates the remaining amount of the side surface of the trolley line and indicates the three-dimensional shape of the trolley line Is calculated. Thereby, the wear amount of the trolley wire can be measured without being affected by the trolley wire sliding surface.
  • a third feature of the trolley wire measuring device is the trolley wire measuring device according to the first or second feature, wherein the imaging field range of the first and second trolley wire measuring means is the above.
  • Rotating stage means provided at both left and right ends on the roof of the vehicle for controlling the rotation while holding the first and second trolley wire measuring means so as to rotate in a plane substantially perpendicular to the traveling direction of the vehicle; Rotation of the rotary stage means so that the trolley line enters the imaging field of view of the first and second trolley line measuring means based on the height deviation coordinates of the trolley line that change as the vehicle travels And a rotation control means for controlling the rotation.
  • a trolley wire measuring means comprising a light projecting unit and a light receiving unit is attached to a rotating stage means, and this rotating stage means is installed on the vehicle roof in a pair of directions at the left and right ends with the displacement center in the direction of trolley wire displacement.
  • the lower side surface including the left and right side surfaces of the trolley wire, that is, the sliding surface is measured simultaneously.
  • Two sets of the light projecting unit and the light receiving unit are installed at the left and right positions of deviation, and the remaining amount of the side surface of the trolley wire is obtained by measuring the shape of the left and right side surfaces of the trolley wire.
  • the amount of trolley wire wear can be measured without being affected by the surface.
  • the trolley wire cross-sectional shape including the trolley wire sliding surface can be measured. It becomes possible.
  • a trolley wire measurement device is the trolley wire measurement device according to the third feature, wherein the trolley wire measurement device is provided near the center of the roof of the vehicle. And a laser length measuring means for scanning the laser beam and a height displacement detecting means for detecting the trolley line height deviation coordinate based on a signal from the laser length measuring sensor means.
  • the laser length sensor means provided near the center of the vehicle roof is used to scan the laser beam in the direction of deflection of the trolley line, and based on the signal corresponding to the reflected light from the trolley line, The distance and angle between the length measuring sensor means and the trolley line are measured, and the height deviation coordinate of the trolley line from the installation position of the first and second trolley line measuring means is detected based on the distance and angle. It is what you do.
  • the rotation control means can control the rotation of the rotary stage means.
  • a fifth feature of the trolley wire measuring apparatus is the trolley wire measuring device according to the first, second, third, or fourth feature, wherein the first and second trolley wire measuring means include: And a light projecting means for projecting the laser light beam substantially perpendicularly to the trolley line, and a light receiving means for capturing the light-cut image at a predetermined elevation angle in the traveling direction of the vehicle. It is in.
  • the trolley wire measuring means is composed of a light projecting means and a light receiving means.
  • the trolley wire measuring means may be constituted by a two-dimensional displacement sensor using a laser or LED.
  • a sixth feature of the trolley wire measurement device is the trolley wire measurement device according to the first, second, third, or fourth feature, wherein the first and second trolley wire measurement means include:
  • the first and second trolley wire measurement means include:
  • the laser beam monochromatic light in the infrared region that generates reflected light that is stronger than the light intensity of sunlight in the daytime is projected, and a light-cut image of the trolley line is formed on the light receiving surface through the lens. It is to receive light.
  • the wavelength of the projection laser is monochromatic light in the infrared region, and an infrared transmission interference filter or the like is combined with the light receiving part so that a large difference in intensity from sunlight during the day can be obtained. Measurement is possible.
  • the first feature of the trolley wire measurement method is that the slit laser beam is projected substantially vertically from the left and right lower sides of the trolley wire so as to cross the trolley wire, and the projected laser beam Images showing the shape of the lower left and right sides including the side surface of the trolley line based on the light cut image by the reflected light of the first and second trolley line measuring means provided on the roof of the vehicle, respectively. And processing the image showing the shape of the lower left and right sides including the side surface of the trolley wire acquired by the first and second trolley wire measuring means, and the sectional shape of the sliding surface and the left and right side surfaces of the trolley wire Is to generate data indicating.
  • This is an invention of a trolley wire measurement method corresponding to the first feature of the trolley wire measurement device.
  • a second feature of the trolley wire measurement method according to the present invention is based on data indicating the cross-sectional shapes of the sliding surface and the left and right side surfaces of the generated trolley wire in the trolley wire measurement method according to the first feature. Then, the wear amount of the trolley wire is calculated and data indicating the three-dimensional shape of the trolley wire is calculated.
  • This is an invention of a trolley wire measurement method corresponding to the second feature of the trolley wire measurement device.
  • a third feature of the trolley wire measurement method according to the present invention is the trolley wire measurement method according to the first or second feature, wherein rotary stage means provided at both right and left ends on the roof of the vehicle are used.
  • the first and second trolley line measuring means rotate while holding the first and second trolley line measuring means so that the field of view of the image rotates in a plane substantially perpendicular to the traveling direction of the vehicle.
  • the rotary stage means so that the trolley line enters the imaging field of view of the first and second trolley line measuring means based on the height deviation coordinate of the trolley line that changes as the vehicle moves.
  • the purpose is to control the rotation.
  • This is an invention of a trolley wire measurement method corresponding to the third feature of the trolley wire measurement device.
  • a fourth feature of the trolley wire measurement method according to the present invention is the trolley wire measurement method according to the third feature, wherein a laser length measurement sensor means provided in the vicinity of the center of the roof of the vehicle is used. The laser beam is scanned in the direction of deviation of the trolley line, and the height deviation coordinate of the trolley line is detected based on a signal from the laser measurement sensor means.
  • This is an invention of a trolley wire measurement method corresponding to the fourth feature of the trolley wire measurement device.
  • a fifth feature of the trolley wire measurement method according to the present invention is the trolley wire measurement method according to the first, second, third, or fourth feature, wherein the first and second trolley wire measurement means include: And a light projecting means for projecting the laser light beam substantially perpendicularly to the trolley line, and a light receiving means for capturing the light-cut image at a predetermined elevation angle in the traveling direction of the vehicle. It is in.
  • This is an invention of a trolley wire measurement method corresponding to the fifth feature of the trolley wire measurement device.
  • a sixth feature of the trolley wire measurement method according to the present invention is the trolley wire measurement method according to the first, second, third, fourth, or fifth feature, wherein the first and second trolley wires are the same.
  • the measuring means projects, as the laser beam, monochromatic light in the infrared region that generates reflected light stronger than the intensity of sunlight in the daytime, and connects the light section image of the trolley line to the light receiving surface via a lens. It is to receive light like an image.
  • This is an invention of a trolley wire measurement method corresponding to the sixth feature of the trolley wire measurement device.
  • FIG. 1 is a diagram for explaining the measurement principle of the trolley wire measuring apparatus according to the present invention.
  • the trolley wire measuring device 10 includes a trolley wire measuring device 2 provided on the left side of the vehicle, a trolley wire measuring device 3 provided on the right side thereof, a trolley wire height deviation detector 4 provided near the center of the vehicle, and a trolley wire.
  • a rotary stage 5 that holds the measuring device 2 a rotary stage 6 that holds the trolley wire measuring device 3, an arithmetic device 7 that executes various calculations, and a measuring device 8 are configured.
  • the trolley wire measuring instruments 2 and 3 have the same configuration, and include light projecting units 2a and 3a and light receiving units 2c and 3c.
  • the light projecting units 2 a and 3 a convert the monochromatic light having a specific wavelength in the infrared light range into band-shaped slit light by the light projecting lenses 2 b and 3 b and irradiate the trolley wire 1.
  • the light receiving units 2c and 3c receive the reflected light from the trolley wire 1 through the imaging lenses 2d and 3d after removing disturbance light by the interference filters 2e and 3e.
  • Triangular projection areas L1 and L2 in the figure indicate areas where the projection light of the projection units 2a and 3a can be irradiated.
  • the light receiving units 2c and 3c are configured by a 3D camera provided with a light receiving element formed of a CMOS sensor.
  • the received light signals detected by the light receiving units 2 c and 3 c are output to the trolley line shape detection processing unit 7 a of the arithmetic device 7.
  • the trolley line shape detection processing unit 7 a of the arithmetic device 7 forms a height profile of the contour of the trolley line by the reflected light of the laser slit light based on the laser triangle principle, and outputs the measurement result to the measurement device 8.
  • the trolley line height deviation detector 4 is composed of a laser length measuring sensor and is installed on the roof of the vehicle.
  • the trolley line height deviation detector 4 scans the laser beam in the direction of deviation of the trolley line 1 to receive the reflected light from the trolley line 1 on the roof, and between the laser length sensor and the trolley line 1. Measure the distance and angle.
  • the trolley line height deviation detection processing unit of the arithmetic device 7 calculates the height deviation coordinates based on the installation positions of the trolley line measuring instruments 2 and 3 on the roof.
  • the rotary stages 5 and 6 rotate the trolley wire measuring devices 2 and 3 in a plane substantially perpendicular to the traveling direction of the vehicle in order to put the trolley wire 1 in the field of view of the trolley wire measuring devices 2 and 3. is there.
  • the trolley wire measuring instruments 2 and 3 are attached to the rotating parts of the rotary stages 5 and 6.
  • the rotary stages 5 and 6 are installed on the roof so that the field of view of the trolley wire measuring devices 2 and 3 can be rotated according to the direction of trolley wire deflection.
  • the rotation stage control processing unit 7c of the arithmetic unit 7 controls the rotation of the rotation units 5 and 6 based on the trolley line height deviation coordinates measured by the trolley line height deviation detector 4.
  • the trolley wire measuring devices 2 and 3 are controlled so as to follow the trolley wire position.
  • the trolley line shape detection processing unit 7a of the arithmetic device 7 controls the rotation of the rotating units 5 and 6 based on the trolley line height deviation coordinates measured by the trolley line height deviation detector 4.
  • the visual field of the trolley wire measuring devices 2 and 3 is controlled to follow the trolley wire position.
  • FIG. 2 is a diagram conceptually showing the relationship between the trolley wire and the light receiving field direction of the trolley wire measuring device.
  • the triangular projection area L1 shown in FIG. 1 corresponds to the field of view J1 of the left trolley line measuring instrument 2, and the projection area L2 corresponds to the field of view J2 of the right trolley line measuring instrument 3.
  • FIG. 3 is a diagram showing an example of a measurement waveform corresponding to optical cutting of a trolley wire measured by a trolley wire measuring instrument.
  • the contour of the trolley wire is determined based on the light reception signal from the 3D camera in the light receiving units 2c and 3c.
  • a height profile is generated.
  • the detection profile a1 of the left trolley wire measuring device 2 is the right trolley wire. It becomes larger than the detection profile b2 of the measuring device 3.
  • the detection profile of the left trolley wire measuring device 2 and the detection profile of the right trolley wire measuring device 3 have the same magnitude because the trolley wire 1 is almost the same as the left trolley wire measuring device 2 and the right trolley wire measuring device 3. This is a case where they are located at an equal distance.
  • the trolley wire depends on the detection result of the trolley wire height deviation detector 4. 1 and the left trolley wire measuring device 2 and the right trolley wire measuring device 3 are calculated, the reference distance is arbitrarily determined, correction according to the field angle magnification is performed, and the detection profile sizes are processed to be equal to each other. To do. As a result, the detection profiles a1 and b1 are corrected so that the left and right profile sizes are equal as shown in the correction profiles a2 and b2.
  • the dotted line is a virtual outline showing the outline of the trolley line 1 in an easy-to-understand manner, and the actual detection profile is composed of only a solid line.
  • the reference profile c0 indicates the cross-sectional shape of the new line before the trolley wire 1 is worn.
  • the reference profile c0 corresponds to the size when the distance between the left trolley wire measuring device 2 and the right trolley wire measuring device 3 with respect to the trolley wire 1 is substantially the same. Accordingly, the correction profiles a2 and b2 are corrected to substantially the same size (equal magnification) as the reference profile c0.
  • the new line outline of the trolley wire 1 has a shape in which an upper short arc, a lower long arc, and two wedge shapes obtained by cutting the upper ends of a circle with wedge-shaped grooves.
  • the height of the upper portion of the trolley wire 1 is T1
  • the remaining wear amount of the trolley wire 1 is the diameter of the trolley wire 1, that is, T0.
  • the matching process is performed so that the ends of the long arc corresponding to the height T1 of the reference profile c0 match each other.
  • the pattern matching process is executed by rotating the correction profile a2 clockwise so that the upper end of the left arc of the correction profile a2 and the upper left end of the long arc of the reference profile c0 coincide with each other. To do. Further, by rotating the correction profile b2 counterclockwise so that the upper end portion of the right arc of the correction profile b2 and the upper right end portion of the long arc of the reference profile c0 coincide with each other, the pattern matching processing of both is performed. Execute.
  • Matching profile a3 indicates the result of pattern matching processing between correction profile a2 and reference profile c0
  • matching profile b3 indicates the result of pattern matching processing between correction profile b2 and reference profile c0.
  • the height T2 of the left side surface of the trolley line 1 can be detected based on the matching profile a3, and the height T3 of the right side surface of the trolley line 1 can be calculated based on the matching profile b3.
  • a value obtained by adding the average value of the left side surface height T2 and the right side surface height T3 calculated for each of the left side surface height T3 and the upper height T1 of the trolley wire 1 is the residual wear amount of the trolley wire 1.
  • the cross-sectional profile d0 below the trolley line 1 can be acquired.
  • the shape of the sliding surface portion of the trolley wire 1 can be displayed as a three-dimensional (3D) image 11.
  • the cross-sectional profile d1 shows an example in which two trolley wire sliding surfaces are generated due to the sliding surface of the trolley wire 1 being reduced. In this way, even when two surfaces occur on the trolley wire sliding surface, the trolley wire cross-sectional shape including the trolley wire sliding surface can be measured, so that it is also possible to measure the trolley wire wear amount with one side reduced. .
  • FIG. 4 is a cross-sectional view showing an example of an overhead wire inspection vehicle equipped with the trolley wire measuring device of FIG.
  • the trolley line height deviation detector 4 is installed substantially at the center on the left and right of the vehicle on the roof of the overhead wire inspection vehicle 9.
  • the trolley wire measuring devices 2 and 3 and the rotary stages 5 and 6 are located on the left and right positions on the vehicle roof that are separated from the left and right centers of the overhead vehicle on the overhead line inspection vehicle 9 and are at an angle relative to the trolley wire 1 in the sky. Installed to look up. For example, it is desirable to be installed at a position separated from the center of the vehicle by about 400 [mm] or more.
  • the arithmetic device 7 and the measuring device are installed in the overhead wire inspection vehicle 9.
  • the arithmetic unit 7 calculates the detector signals from the trolley wire measuring devices 2 and 3 and controls the trolley wire measuring devices 2 and 3 and the rotary stages 5 and 6.
  • the measuring device 8 performs operation and data recording.
  • FIG. 5 is a block diagram showing the overall configuration of the trolley wire measuring apparatus of FIG.
  • the computing device 7 includes a height deviation computing personal computer 71, a rotary stage control circuit 72, a trolley wire computing personal computer 73, and a laser projection control circuit 74.
  • the height deviation calculation personal computer 71 includes a personal computer in which a CPU (Central Processing Unit), a memory, an HDD (Hard Disk Drive), and a DIOdisk input-output interface disk input-output interface are connected by a bus.
  • the height deviation calculation personal computer 71 takes the trolley line position detection signal from the height deviation detector 4 of the trolley line into the memory.
  • the height deviation calculation personal computer 71 converts the X coordinate that is the height from the position of the trolley wire measuring instruments 2 and 3 and the Y coordinate that is the deviation by the height deviation coordinate conversion program in the HDD that has been taken in, Based on this, the amount of movement angle of the rotary stages 5 and 6 is calculated.
  • the height deviation calculation personal computer 71 stores the parameterized movement angle amount in the memory, assigns it to the coordinates, and outputs a movement signal to the rotary stage control circuit 72 via the DIO.
  • the rotation stage control circuit 72 outputs an angle movement signal to the rotation stages 5 and 6 in accordance with the movement signal from the rotation stage control circuit 72.
  • the rotation stages 5 and 6 move their angles so that the trolley wire 1 is positioned within the field of view of the trolley wire measuring devices 2 and 3 according to the angle movement signal from the rotation stage control circuit 72.
  • the vehicle displacement information is input to the height deviation calculation personal computer 71, and the vehicle movement position is synchronized.
  • the trolley line calculation personal computer 73 is composed of a personal computer in which a CPU, a memory, an HDD, and a DIO are connected by a bus.
  • the trolley line calculation personal computer 73 outputs a laser emission ON / OFF control signal from the laser projection control circuit 74 to the projection units 2a and 3a.
  • the light projecting units 2 a and 3 a convert the monochromatic light into strip-shaped slit light by the light projecting lenses 2 b and 3 b and irradiate the trolley wire 1.
  • the trolley wire calculation personal computer 73 takes in profile signals output from the 3D camera which is the light receiving units 2c and 3c of the trolley wire measuring devices 2 and 3 into the internal memory.
  • the trolley line computing personal computer 73 performs binarization processing, noise removal processing, and smoothing processing on the captured profile signal by a program in the HDD to generate a light-cut profile image, and temporarily stores it in the internal memory.
  • the trolley wire calculation personal computer 73 performs the processing of FIG. 3 on the stored profile, creates a trolley wire wear amount and a 3D image, and outputs them to the measuring device 8.
  • the vehicle distance information is input to the trolley line calculation personal computer 73, the vehicle movement position is synchronized, and the vehicle movement position information is also added to the measurement data.
  • the measuring device 8 includes a data recording personal computer 81 and an external recording medium 82.
  • the data recording personal computer 81 includes a personal computer in which a CPU, a memory, an HDD, and a DIO are connected by a bus.
  • the data recording personal computer 81 of the measuring device 8, the trolley wire arithmetic personal computer 73 of the arithmetic device 7, and the height deviation arithmetic personal computer 71 are each connected by a LAN.
  • the measuring device 8 receives the measurement data from the arithmetic device 7 and records data in the external recording medium 82.
  • FIG. 6 is a flowchart showing an example of processing executed by the trolley wire measuring apparatus according to this embodiment.
  • the height deviation calculation personal computer 71 in FIG. 5 increases the position of the trolley line 1 based on the signal from the height deviation detector 4 of the trolley line 1. Convert to X coordinate and displacement Y coordinate.
  • the height deviation calculation personal computer 71 shown in FIG. 5 moves in the position direction to the trolley line 1 from the roof mounting position of the rotary stages 5 and 6, as shown in FIG. Calculate and output the angle.
  • step S64 the trolley line computing personal computer 73 in FIG. 5 executes the noise removing process on the binarized image and removes the isolated point from the binarized image.
  • step S65 the process of smoothing the profile line of the light section of the trolley line 1 is executed.
  • the trolley line calculation personal computer 73 in FIG. 5 uses the trolley line 1 based on the distance data between the trolley line 1 and the trolley line measuring devices 2 and 3 calculated by the height deviation calculation personal computer 71 in FIG. Then, a reference distance between the trolley wire measuring devices 2 and 3 is determined, and a magnification conversion process is executed with the magnification of the measurement distance as a detection profile to create a correction profile.
  • the trolley line calculation personal computer 73 of FIG. 5 individually rotates the correction profile of the magnification conversion sign to the trolley line cross-sectional profile basic pattern of the reference magnification (reference profile c0 of FIG. 3), Perform the matching process.
  • the trolley wire calculation personal computer 73 in FIG. 5 extracts the trolley wire side surface of the measured profile of the trolley wire 1 by pattern matching. By calculating the height of the line side (left and right), adding the left and right side heights T2, T3 and dividing by 2, and the height T1 of the upper part of the trolley line of the reference profile c0 in FIG. The trolley wire residual diameter is calculated. At this time, if the profile line worth the sliding surface of the trolley wire cross section as shown in FIG. 3 (f) is not a straight line, the exact trolley wire remaining diameter cannot be obtained by calculating the trolley wire side surface height. The remaining diameter of the trolley wire is obtained by a shape measurement process including the wire sliding surface.
  • the trolley line computing personal computer 73 of FIG. 5 performs a process of synthesizing the matching profiles that are the process data of the trolley line measuring devices 2 and 3, and generates trolley line lower section data.
  • the trolley line lower section data obtained in the process of the previous step S69 is arranged in time series to generate a three-dimensional (3D) image of the trolley line.
  • the data recording personal computer 81 of the measuring device 8 includes the trolley wire height deviation measurement data from the height deviation calculation personal computer 71, the trolley wire wear residual diameter data from the trolley wire calculation personal computer 73, and A process of adding the vehicle position information to the three-dimensional (3D) image data of the trolley line and recording it on an external recording medium is performed.
  • monochromatic light in the infrared region is used as the laser light.
  • the monochromatic light is monochromatic light that generates reflected light on the trolley line that is stronger than the light intensity of daytime sunlight, red light is used. It is not limited to those in the outer region.
  • the laser slit light is projected and received by the 3D camera.
  • the light projecting unit and the light receiving unit of the present invention are not limited to the laser light or the 3D camera.
  • a general two-dimensional displacement sensor using an LED or the like may be used.
  • the rotation stages 5 and 6 are followed in order to secure the trolley line deflection height movement range. However, if the sensor resolution is sufficient and the sensor field of view can secure the height deviation range.
  • the rotary stages 5 and 6 may be omitted, and the trolley wire measuring devices 2 and 3 may be realized by fixed installation.
  • the height deviation detector 4 is used to detect the height deviation coordinates from the installation positions of the trolley wire measuring devices 2 and 3, and the movement angle of the rotary stage is calculated based on the coordinates.
  • the movement angle of the rotary stages 5 and 6 may be controlled by other methods.
  • the detection profiles a1 and b1 may be subjected to image processing, and the movement angles of the rotary stages 5 and 6 may be controlled so that the centroids of the detection profiles a1 and b1 are substantially constant in the screen. Since the sliding surfaces are common, the correction profiles a2 and b2 may be created by performing image processing so that the sizes of the sliding surfaces coincide with each other.
  • the trolley wire measuring devices 2 and 3 are placed at positions where the lower side (sliding surface) including the side surface of the trolley wire can be photographed from the left and right.
  • the fixedly installed trolley wire measuring devices 2 and 3 may be provided with a slide plate that is slidable on the roof of the vehicle along the direction of displacement of the trolley wire.
  • the detection positions a1 and b1 may be subjected to image processing, and the moving position of the slide plate may be controlled so that both sizes are substantially the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

トロリ線の摩耗部の形状を走行する車両から簡易に測定できるようにする。 車両9の屋根上から車両進行方向に対し略垂直にトロリ線1にスリット状のレーザ光束L1、L2を照射する。レーザ光束が照射されることによって、トロリ線1の側面を含む下側に光切断像が生成される。この光切断像を斜め下方からカメラなどで受光することによって、トロリ線1の側面を含む下側の形状を示す画像すなわちトロリ線1の光切断像のプロファイルd0を取得する。このような投光部及び受光部をトロリ線1の偏位左右方向に沿った離間した位置に2セット設置して、レーザ光束L1、L2の当たった部分の形状をそれぞれ測定し、それを画像処理することによって、トロリ線1の摺動面及び左右側面の断面形状を示すデータを生成する。生成したトロリ線1の摺動面及び左右側面の断面形状を示すデータに基づいて、トロリ線1の側面の残存量及び摩耗量を測定する。

Description

トロリ線測定装置及びトロリ線測定方法
 本発明は、車両の電源供給源であるトロリ線の摩耗量などを測定するトロリ線測定装置及びトロリ線測定方法に関する。
 電車線路を走行する電車車両は、パンタグラフ上面(摺板)を介してトロリ線から所要の電力を得る。トロリ線の下面(摺動面または摺面)とパンタグラフ上面とは、互いの摺動接触により漸次に摩耗する。パンタグラフ側の摩耗が一部分に集中しないように、トロリ線は支持電柱ごとに左右方向に交互に偏位されている。トロリ線の摩耗量と偏位量は、検測車等にトロリ線測定装置を搭載し、定期的に走行測定してそれぞれの良否が検査されている。
 トロリ線測定装置の1つに回転多面鏡(ポリゴンミラー)を水平面で回転させて、トロリ線へレーザ光を照射してトロリ線をその偏位範囲に亙って走査するものがある。その1つは、走査に応じて得られるトロリ線摺動面からの反射光を穴あきミラーを介して受光素子で受光することでトロリ線摺動面についての検出信号を得て、走査に対応して得られる検出信号の発生幅をデータ処理装置で算出し、それにより、トロリ線摩耗量を測定する。このようなトロリ線摩耗量測定装置を搭載する検測車として、特許文献1,3,4に記載のものがある。
 トロリ線測定装置の摩耗量算出としては、CCDカメラにより画像を採取して画像処理によりトロリ線摺動面の幅を得て、これから摩耗量を測定するようにしたものが特許文献2に記載されている。また、トロリ線摺動面からの反射信号を得て、その波形からトロリ線摺動面の幅を得て、これから摩耗量を算出するようにしたものが特許文献5,7に記載されている。
 トロリ線をガイドレールにガイドし、ガイドレールを挟んで側面に投光部と受光部を有する透過型センサにてセンサ投光部と受光部の間のトロリ線の影の高さ幅を得て残存量を測定するようにしたトロリ線測定装置が特許文献6に記載されている。
特開2001-59710号公報 特開平5-96980号公報 特開平5-34113号公報 特開平10-194015号公報 特開平07-120227号公報 特開平07-120228号公報 特開2010-243274号公報
 特許文献1~7に示されるようなトロリ線の摩耗残存量を摺面幅より残直に変換して測定するトロリ線測定装置は、トロリ線摺面にレーザ光やナトリウムランプ光やLED光を照射しトロリ線摺面の反射光でトロリ線摺面幅の測定を行っている。このためトロリ線摺面の状態に大きく影響され、トロリ線摺面の黒化、錆や傾きまたは片減りによりトロリ線摺面の反射光が測定器受光部に戻らない場合、摺面幅を細く計ってしまうことがある。
 また、トロリ線の横からの投影によってトロリ線残存径を直接測定するように構成した装置は、検出器をトロリ線に接触させてガイドしているので、列車速度が上がると検出器を跳ねてしまうために、低速での測定が条件となり、またトロリ線のオーバーラップ部分ではガイドの架けかえの手間が掛かることがある。
 この発明は、上述の点に鑑みなされたものであって、トロリ線の摩耗部の形状を走行する車両から簡易に測定することができるトロリ線測定装置及びトロリ線測定方法を提供することを目的とする。
 本発明に係るトロリ線測定装置の第1の特徴は、スリット状のレーザ光束をトロリ線の左右下側から前記トロリ線を横断するように略垂直に投光し、投光された前記レーザ光束の反射光による光切断像に基づいて前記トロリ線の側面を含む左右下側の形状を示す画像をそれぞれ取得する車両の屋根上に設けられた第1及び第2のトロリ線測定手段と、前記第1及び第2のトロリ線測定手段によって取得された前記トロリ線の側面を含む左右下側の形状を示す画像を処理して、前記トロリ線の摺動面及び左右側面の断面形状を示すデータを生成する制御手段とを備えたことにある。車両の屋根上から車両進行方向に対し略垂直にトロリ線にスリット状のレーザ光束を照射する。レーザ光束が照射されることによって、トロリ線の側面を含む下側に光切断像が生成される。この光切断像を斜め下方からカメラ等で受光することによって、トロリ線の側面を含む下側の形状を示す画像すなわちトロリ線の光切断像のプロファイルを取得することができる。このような投光部及び受光部をトロリ線の偏位左右方向に沿った離間した位置に2セット設置して、レーザ光束の当たった部分の形状をそれぞれ測定し、それを画像処理することによって、トロリ線の摺動面及び左右側面の断面形状を示すデータを生成することができる。生成したトロリ線の摺動面及び左右側面の断面形状を示すデータに基づいて、トロリ線の側面の残存量を算出することができ、トロリ線摺面に影響されずにトロリ線の摩耗量を測定することが可能となる。
 本発明に係るトロリ線測定装置の第2の特徴は、前記第1の特徴に記載のトロリ線測定装置において、前記制御手段によって生成された前記トロリ線の摺動面及び左右側面の断面形状を示すデータに基づいて前記トロリ線の摩耗量を算出すると共に前記トロリ線の立体形状を示すデータを算出する測定手段を備えたことにある。これは、制御手段によって生成されたトロリ線の摺動面及び左右側面の断面形状を示すデータに基づいて、測定手段がトロリ線の側面の残存量を算出すると共にトロリ線の立体形状を示すデータを算出するようにしたものである。これによって、トロリ線摺面に影響されずにトロリ線の摩耗量を測定することができる。
 本発明に係るトロリ線測定装置の第3の特徴は、前記第1又は第2の特徴に記載のトロリ線測定装置おいて、前記第1及び第2のトロリ線測定手段の撮影視野範囲が前記車両の進行方向にほぼ垂直な面内を回転するように前記第1及び第2のトロリ線測定手段を保持しながら回転制御する前記車両の屋根上の左右両端部に設けられた回転ステージ手段と、前記車両の進行に従って変化する前記トロリ線の高さ偏位座標に基づいて、前記第1及び第2のトロリ線測定手段の撮影視野範囲に前記トロリ線が入るように前記回転ステージ手段の回転を制御する回転制御手段とを備えたことにある。これは、投光ユニットと受光ユニットからなるトロリ線測定手段を回転ステージ手段に取り付け、この回転ステージ手段を車両屋根上にトロリ線偏位方向に偏位中心を挟んで左右両端部に1対設置し、トロリ線の左右側面を含む下側面すなわち摺動面を同時に測定するようにしたものである。この投光ユニット及び受光ユニットを偏位左右位置に2セット設置し、トロリ線左右側面のレーザの当たった部分の形状を測定することにより、トロリ線の側面の残存量が得られ、トロリ線摺面に影響されずトロリ線摩耗量の測定が可能になる。また、トロリ線摺面の片減りによりトロリ線摺面が2面発生した場合、トロリ線摺面を含めたトロリ線断面形状を測定することができるため、片減りのトロリ線摩耗量の測定も可能となる。
 本発明に係るトロリ線測定装置の第4の特徴は、前記第3の特徴に記載のトロリ線測定装置おいて、前記車両の屋根上のほぼ中央付近に設けられ、前記トロリ線の偏位方向にレーザ光を走査するレーザ測長センサ手段と、前記レーザ測長センサ手段からの信号に基づいて前記トロリ線高さ偏位座標を検出する高さ変位検出手段とを備えたことにある。これは、車両屋根上のほぼ中央付近に設けたレーザ測長センサ手段を用いて、トロリ線の偏位方向にレーザ光を走査し、トロリ線からの反射光に対応した信号に基づいて、レーザ測長センサ手段とトロリ線との間の距離と角度を測定し、この距離と角度に基づいて第1及び第2のトロリ線測定手段の設置位置からのトロリ線の高さ偏位座標を検出するようにしたものである。検出したトロリ線高さ変位座標に基づいて、回転制御手段は、回転ステージ手段の回転を制御できるようになる。
 本発明に係るトロリ線測定装置の第5の特徴は、前記第1、第2、第3又は第4の特徴に記載のトロリ線測定装置において、前記第1及び第2のトロリ線測定手段は、前記レーザ光束を前記トロリ線に略垂直に投光する投光手段と、前記光切断像を前記車両の進行方向に向かって所定の仰角を以って撮像する受光手段とから構成されることにある。これは、トロリ線測定手段を投光手段と受光手段で構成するようにしたものである。なお、トロリ線測定手段をレーザまたはLED等を使用した二次元変位センサで構成してもよい。
 本発明に係るトロリ線測定装置の第6の特徴は、前記第1、第2、第3又は第4の特徴に記載のトロリ線測定装置において、前記第1及び第2のトロリ線測定手段は、前記レーザ光束として、昼間の太陽光の光強度より強い反射光を発生させる赤外領域の単色光を投光し、レンズを介して前記トロリ線の光切断像を受光面に結像するように受光することにある。これは、投光レーザの波長を赤外領域の単色光とし、受光部に赤外透過干渉フィルタなどを組み合わせることによって、日中の太陽光との強度差が大きく得られるようにし、日中における測定を可能としたものである。
 本発明に係るトロリ線測定方法の第1の特徴は、スリット状のレーザ光束をトロリ線の左右下側から前記トロリ線を横断するように略垂直に投光し、投光された前記レーザ光束の反射光による光切断像に基づいて前記トロリ線の側面を含む左右下側の形状を示す画像を、車両の屋根上に設けられた第1及び第2のトロリ線測定手段を用いてそれぞれ取得し、前記第1及び第2のトロリ線測定手段によって取得された前記トロリ線の側面を含む左右下側の形状を示す画像を処理して、前記トロリ線の摺動面及び左右側面の断面形状を示すデータを生成することにある。これは、前記トロリ線測定装置の第1の特徴に対応したトロリ線測定方法の発明である。
 本発明に係るトロリ線測定方法の第2の特徴は、前記第1の特徴に記載のトロリ線測定方法において、生成された前記トロリ線の摺動面及び左右側面の断面形状を示すデータに基づいて前記トロリ線の摩耗量を算出すると共に前記トロリ線の立体形状を示すデータを算出することにある。これは、前記トロリ線測定装置の第2の特徴に対応したトロリ線測定方法の発明である。
 本発明に係るトロリ線測定方法の第3の特徴は、前記第1又は第2の特徴に記載のトロリ線測定方法において、前記車両の屋根上の左右両端部に設けられた回転ステージ手段を用いて、前記第1及び第2のトロリ線測定手段の撮影視野範囲が前記車両の進行方向にほぼ垂直な面内を回転するように前記第1及び第2のトロリ線測定手段を保持しながら回転制御し、前記車両の進行に従って変化する前記トロリ線の高さ偏位座標に基づいて、前記第1及び第2のトロリ線測定手段の撮影視野範囲に前記トロリ線が入るように前記回転ステージ手段の回転を制御することにある。これは、前記トロリ線測定装置の第3の特徴に対応したトロリ線測定方法の発明である。
 本発明に係るトロリ線測定方法の第4の特徴は、前記第3の特徴に記載のトロリ線測定方法において、前記車両の屋根上のほぼ中央付近に設けられたレーザ測長センサ手段を用いて、前記トロリ線の偏位方向にレーザ光を走査し、前記レーザ測長センサ手段からの信号に基づいて前記トロリ線高さ偏位座標を検出することにある。これは、前記トロリ線測定装置の第4の特徴に対応したトロリ線測定方法の発明である。
 本発明に係るトロリ線測定方法の第5の特徴は、前記第1、第2、第3又は第4の特徴に記載のトロリ線測定方法において、前記第1及び第2のトロリ線測定手段は、前記レーザ光束を前記トロリ線に略垂直に投光する投光手段と、前記光切断像を前記車両の進行方向に向かって所定の仰角を以って撮像する受光手段とから構成されることにある。これは、前記トロリ線測定装置の第5の特徴に対応したトロリ線測定方法の発明である。
 本発明に係るトロリ線測定方法の第6の特徴は、前記第1、第2、第3、第4又は第5の特徴に記載のトロリ線測定方法において、前記第1及び第2のトロリ線測定手段は、前記レーザ光束として、昼間の太陽光の光強度より強い反射光を発生させる赤外領域の単色光を投光し、レンズを介して前記トロリ線の光切断像を受光面に結像するように受光することにある。これは、前記トロリ線測定装置の第6の特徴に対応したトロリ線測定方法の発明である。
 本発明によれば、トロリ線の摩耗部の形状を走行する車両から簡易に測定することができるという効果がある。
この発明に係るトロリ線測定装置の測定原理を説明する図である。 トロリ線に対するトロリ線測定器の受光視野方向との関係を概念的に示す図である。 トロリ線測定器によって測定されるトロリ線の光切断に対応する測定波形の一例を示す図である。 図1のトロリ線測定装置を搭載する架線検測車の一例を示す断面図である。 図1のトロリ線測定装置の全体構成を示すブロック図である。 この実施の形態に係るトロリ線測定装置の実行する処理の一例を示すフローチャート図である。
 以下、図面に基づいて本発明の実施の形態に係るトロリ線測定装置及びトロリ線測定方法を説明する。図1は、この発明に係るトロリ線測定装置の測定原理を説明する図である。トロリ線測定装置10は、車両の左側に設けられるトロリ線測定器2、その右側に設けられるトロリ線測定器3、車両のほぼ中央付近に設けられるトロリ線高さ偏位検出器4、トロリ線測定器2を保持する回転ステージ5、トロリ線測定器3を保持する回転ステージ6、各種演算を実行する演算装置7及び測定装置8を含んで構成される。
 トロリ線測定器2,3は、同じ構成であり、投光ユニット2a,3aと受光ユニット2c,3cとを含んで構成される。投光ユニット2a,3aは、赤外光の範囲にある特定の波長の単色光を投光レンズ2b,3bで帯状のスリット光に変換し、トロリ線1に照射する。受光ユニット2c,3cは、トロリ線1からの反射光を干渉フィルタ2e、3eにより外乱光を除去して結像レンズ2d,3dを通して受光する。図中における三角形状の投光領域L1,L2は、投光ユニット2a,3aの投光光の照射可能領域を示すものである。投光ユニット2a,3aによる単色光の波長は、例えば、λ=780nmに設定される。受光ユニット2c,3cは、内部にCMOSセンサからなる受光素子を備えた3Dカメラで構成される。受光ユニット2c,3cにて検出された受光信号は、演算装置7のトロリ線形状検出処理部7aに出力される。演算装置7のトロリ線形状検出処理部7aは、レーザ三角原理に基づいてレーザスリット光の反射光によるトロリ線の輪郭の高さプロファイルを形成し、その測定結果を測定装置8に出力する。
 トロリ線高さ偏位検出器4は、レーザ測長センサで構成され、車両の屋根上に設置される。トロリ線高さ偏位検出器4は、トロリ線1の偏位方向にレーザ光を走査して屋根上のトロリ線1からの反射光を受光し、レーザ測長センサとトロリ線1との間の距離と角度を測定する。演算装置7のトロリ線高さ偏位検出処理部は、トロリ線測定器2,3の屋根上における設置位置に基づいて、その高さ偏位座標を算出する。回転ステージ5,6は、トロリ線1をトロリ線測定器2,3の撮影視野内に入れるために、車両の進行方向にほぼ垂直な面内でトロリ線測定器2,3を回転するものである。トロリ線測定器2,3は、この回転ステージ5,6の回転部に取り付けられる。
 回転ステージ5,6は、トロリ線測定器2,3の撮影視野をトロリ線偏位方向に従って回転することができるように屋根上に設置されている。演算装置7の回転ステージ制御処理部7cは、トロリ線高さ偏位検出器4によって測定されたトロリ線高さ偏位座標に基づいて、回転ステージ5,6の回転部を回転制御することによって、トロリ線測定器2,3の視野をトロリ線位置に追随するように制御する。演算装置7のトロリ線形状検出処理部7aは、トロリ線高さ偏位検出器4によって測定されたトロリ線高さ偏位座標に基づいて、回転ステージ5,6の回転部を回転制御することによって、トロリ線測定器2,3の視野をトロリ線位置に追随するように制御する。
 図2は、トロリ線に対するトロリ線測定器の受光視野方向との関係を概念的に示す図である。図1に示す三角形状の投光領域L1は、左側トロリ線測定器2の視野J1に対応し、投光領域L2は、右側トロリ線測定器3の視野J2に対応する。
 図3は、トロリ線測定器によって測定されるトロリ線の光切断に対応する測定波形の一例を示す図である。トロリ線測定器2、3の視野内においてトロリ線1が図2に示すような位置に存在する場合に、受光ユニット2c,3c内の3Dカメラからの受光信号に基づいて、トロリ線の輪郭の高さプロファイルが生成される。図2に示すようにトロリ線1が左側トロリ線測定器2に近く、右側トロリ線測定器3よりも遠い位置にある場合には、左側トロリ線測定器2の検出プロファイルa1は、右側トロリ線測定器3の検出プロファイルb2よりも大きくなる。左側トロリ線測定器2の検出プロファイルと、右側トロリ線測定器3の検出プロファイルが同じ大きさになるのは、トロリ線1が左側トロリ線測定器2及び右側トロリ線測定器3に対してほぼ等距離に位置する場合である。
 図2に示すように、トロリ線1に対して左側トロリ線測定器2及び右側トロリ線測定器3の距離が異なる場合は、トロリ線高さ偏位検出器4の検出結果に応じてトロリ線1と左側トロリ線測定器2及び右側トロリ線測定器3との距離を算出し、その基準距離を任意に決めて画角倍率に従った補正を行い、検出プロファイルサイズが互いに等しくなるように処理する。これによって、検出プロファイルa1,b1は、補正プロファイルa2,b2に示すように左右のプロファイルサイズが等しくなるように補正される。なお、検出プロファイルa1,b1及び補正プロファイルa2,b2において、点線はトロリ線1の外形を分かりやすく示す仮想外形線であり、実際の検出プロファイルは実線だけで構成される。
 基準プロファイルc0は、トロリ線1が摩耗する前の新線時の断面形状を示すものである。基準プロファイルc0は、トロリ線1に対して左側トロリ線測定器2及び右側トロリ線測定器3の距離がほぼ同じ場合における大きさに対応する。従って、補正プロファイルa2,b2は、この基準プロファイルc0とほぼ同じ大きさ(等倍率)に補正される。
 等倍率に補正された補正プロファイルa2,b2を回転させて、基準プロファイルc0すなわち基本パターンとのマッチング処理を行う。トロリ線1は、その断面形状から分かるように、図示していないイヤーによって挟み込まれる溝がトロリ線1の上方両端に形成されている。すなわち、トロリ線1の新線外形は、円の上方両端を楔形の溝によって切断された上側の短円弧と下側の長円弧と2個の楔形を組み合わせた形状をしている。基準プロファイルc0において、トロリ線1の上部の高さはT1、トロリ線1の摩耗残存量はトロリ線1の直径すなわちT0となる。
 マッチング処理は、この基準プロファイルc0の高さT1に相当する長円弧の端部がそれぞれ一致するようにマッチング処理を行う。例えば、補正プロファイルa2の左側円弧の上側端部と基準プロファイルc0の長円弧の左側上端部とがそれぞれ一致するように、補正プロファイルa2を時計方向に回転することによって、両者のパターンマッチング処理を実行する。また、補正プロファイルb2の右側円弧の上側端部と基準プロファイルc0の長円弧の右側上端部とがそれぞれ一致するように、補正プロファイルb2を反時計方向に回転することによって、両者のパターンマッチング処理を実行する。
 マッチングプロファイルa3は、補正プロファイルa2と基準プロファイルc0とのパターンマッチング処理の結果を示し、マッチングプロファイルb3は、補正プロファイルb2と基準プロファイルc0とのパターンマッチング処理の結果を示す。このパターンマッチング処理の結果、マッチングプロファイルa3に基づいてトロリ線1の左側残存側面の高さT2が検出でき、マッチングプロファイルb3に基づいてトロリ線1の右側残存側面の高さT3が算出できる。それぞれに算出された左側残存側面高さT2と右側残存側面高さT3との平均値とトロリ線1の上部高さT1とを加算した値がトロリ線1の摩耗残存量となる。
 基準プロファイルc0を取り除いたマッチングプロファイルa3,b3を合成することによって、トロリ線1下部の断面プロファイルd0を取得することができる。このようにして取得した断面プロファイルd0を時系列に並べることで、トロリ線1の摺面部の形状を立体(3D)画像11として表示することが可能になる。断面プロファイルd1は、トロリ線1の摺面が片減りによって、トロリ線摺面が2面発生した場合の一例を示す。このように、トロリ線摺面に2面が発生した場合でも、そのトロリ線摺面を含めたトロリ線断面形状を測定することができるため、片減りのトロリ線摩耗量の測定も可能となる。
 図4は、図1のトロリ線測定装置を搭載する架線検測車の一例を示す断面図である。図4において、トロリ線高さ偏位検出器4は、架線検測車9の屋根上車両左右のほぼ中心に設置される。トロリ線測定器2,3及び回転ステージ5,6は、架線検測車9の屋根上車両左右中心より左右の離間した車両屋根上左右位置であって、上空のトロリ線1を相対する角度で見上げるように設置される。例えば、車両左右中心より約400[mm]以上離間した位置に設置されることが望ましい。架線検測車9内に、演算装置7および測定装置が設置される。演算装置7は、トロリ線測定器2,3からの検出器信号を演算すると共にトロリ線測定器2,3及び回転ステージ5,6の制御を行う。測定装置8は、オペレーションとデータ収録を行う。
 図5は、図1のトロリ線測定装置の全体構成を示すブロック図である。演算装置7は、高さ偏位演算パソコン71、回転ステージ制御回路72、トロリ線演算パソコン73及びレーザ投光制御回路74を含んで構成される。高さ偏位演算パソコン71は、CPU(Central Processing Unit)とメモリとHDD(Hard Disk Drive)とDIOdisk input-output interface disk input-output interface)とがそれぞれバスで接続されたパソコンで構成される。高さ偏位演算パソコン71は、トロリ線の高さ偏位検出器4からのトロリ線位置検出信号をメモリに取り込む。高さ偏位演算パソコン71は、取り込んだHDD内の高さ偏位座標変換プログラムによってトロリ線測定器2,3の位置からの高さであるX座標と偏位であるY座標に変換し、それに基づいて回転ステージ5,6の移動角度量を算出する。高さ偏位演算パソコン71は、パラメータ化した移動角度量をメモリに格納し、それを座標に引き当て、DIOを介して移動信号を回転ステージ制御回路72に出力する。回転ステージ制御回路72は、回転ステージ制御回路72からの移動信号に従って、回転ステージ5,6に角度移動信号を出力する。回転ステージ5,6は、回転ステージ制御回路72からの角度移動信号に従ってトロリ線測定器2,3の視野内にトロリ線1が位置するようにその角度を移動する。高さ偏位演算パソコン71には、車両距離情報が入力され、車両移動位置の同期がなされる。
 トロリ線演算パソコン73は、CPUとメモリとHDDとDIOとがそれぞれバスで接続されたパソコンで構成される。トロリ線演算パソコン73は、レーザ投光制御回路74から投光ユニット2a,3aにレーザ発光のON/OFF制御信号を出力する。投光ユニット2a,3aは、単色光を投光レンズ2b,3bで帯状のスリット光に変換し、トロリ線1に照射する。トロリ線演算パソコン73は、トロリ線測定器2,3の受光ユニット2c,3cである3Dカメラから出力されるプロファイル信号を内部メモリに取り込む。トロリ線演算パソコン73は、取り込んだプロファイル信号をHDD内のプログラムで2値化処理、ノイズ除去処理及びスムージング処理を施して光切断のプロファイル画像を生成し、内部メモリに一時格納する。トロリ線演算パソコン73は、格納されたプロファイルに対して図3の処理を行い、トロリ線摩耗量と3D画像を作成し、測定装置8に出力する。また、トロリ線演算パソコン73には、車両距離情報が入力され、車両移動位置の同期がなされ、測定データにも車両移動位置情報が付加される。
 測定装置8は、データ収録パソコン81及び外部記録媒体82を含んで構成される。データ収録パソコン81は、CPUとメモリとHDDとDIOとがそれぞれバスで接続されたパソコンで構成される。測定装置8のデータ収録パソコン81、演算装置7のトロリ線演算パソコン73及び高さ偏位演算パソコン71は、それぞれLANで接続されている。測定装置8は、演算装置7から測定データを受け取り、外部記録媒体82にデータ収録を行う。
 図6は、この実施の形態に係るトロリ線測定装置の実行する処理の一例を示すフローチャート図である。ステップS61のトロリ線高さ偏位検出処理では、図5の高さ偏位演算パソコン71は、トロリ線1の高さ偏位検出器4からの信号に基づいて、トロリ線1の位置を高さX座標、偏位Y座標に変換する。ステップS62のステージ角度演算処理では、図5に示す高さ偏位演算パソコン71は、図4に示すように、回転ステージ5,6の屋根上取付け位置からのトロリ線1に位置方向への移動角度を算出して出力する。ステップS63の2値化処理では、図5のトロリ線演算パソコン73は、図1の受光ユニット2c,3cである3Dカメラからの信号を2値化し2値化画像を作成する。ステップS64のノイズ(孤立点)除去処理では、図5のトロリ線演算パソコン73は、2値化画像にノイズ除去処理を実行し、2値化された画像から孤立点を除去する。ステップS65の輪郭スムージング処理では、トロリ線1の光切断のプロファイルラインをスムージングする処理を実行する。
 ステップS66の倍率変換処理では、図5のトロリ線演算パソコン73は、図5の高さ偏位演算パソコン71で算出したトロリ線1とトロリ線測定器2,3との距離データよりトロリ線1とトロリ線測定器2,3の基準距離を決めて、測定距離との倍率を検出プロファイルに倍率変換処理を実行して、補正プロファイルを作成する。ステップS67の角度変換処理では、図5のトロリ線演算パソコン73は、基準倍率のトロリ線断面形状プロファイル基本パターン(図3の基準プロファイルc0)に倍率変換号の補正プロファイルを個々に回転させて、マッチング処理を行う。ステップS68のトロリ線残存径算出処理では、図5のトロリ線演算パソコン73は、図5のトロリ線演算パソコン73は、測定したトロリ線1のプロファイルのトロリ線側面をパターンマッチングで抽出し、トロリ線側面(左側と右側)の高さを算出し、左右側面高さT2,T3を足して2で割った値と、図3の基準プロファイルc0のトロリ線上部の高さT1とを足すことによって、トロリ線残存径を算出する。この時、図3の(f)に示すようなトロリ線断面の摺面に値するプロファイルラインが直線でない場合、上記トロリ線側面高さの算出では正確なトロリ線残存径は求められないため、トロリ線摺面を含めた形状測定処理にてトロリ線残存径を求める。
 ステップS69の左右輪郭画像合成処理では、図5のトロリ線演算パソコン73は、トロリ線測定器2,3の処理データであるマッチングプロファイル同士の合成処理を行い、トロリ線下部断面データを生成する。ステップS70の3D形状生成処理では、前ステップS69の処理で得られたトロリ線下部断面データを時系列に並べてトロリ線の立体(3D)画像の生成を行う。ステップS71のデータ収録では、測定装置8のデータ収録パソコン81は、高さ偏位演算パソコン71からのトロリ線高さ偏位測定データ、トロリ線演算パソコン73からのトロリ線摩耗残存径のデータ及びトロリ線の立体(3D)画像データに、車両位置情報を付加して外部記録媒体に収録する処理を行う。
 上述の実施の形態では、レーザ光として赤外領域の単色光を用いているが、単色光は、昼間の太陽光の光強度より強い反射光をトロリ線に発生させる単色光であれば、赤外領域のものに限定されるものではない。また、上述の実施の形態では、レーザスリット光を投光し、3Dカメラで受光しているが、この発明の投光ユニット及び受光ユニットはレーザ光または3Dカメラに限定されるものではなく、レーザまたはLED等を使用した二次元変位センサ一般で構成してもよい。さらに、上述の実施の形態では、トロリ線偏位高さ移動範囲を確保するために回転ステージ5,6で追随しているが、センサ分解能が充分でセンサ視野が高さ偏位範囲を確保できれば、回転ステージ5,6を省略し、トロリ線測定器2,3を固定設置で実現してもよい。
 上述の実施の形態では、高さ偏位検出器4を用いてトロリ線測定器2,3の設置位置からの高さ偏位座標を検出し、それに基づいて回転ステージの移動角度を算出しているが、これ以外の方法で回転ステージ5,6の移動角度を制御するようにしてもよい。例えば、検出プロファイルa1,b1を画像処理して、検出プロファイルa1,b1の重心が画面内においてほぼ一定となるように、回転ステージ5,6の移動角度を制御するようにしてもよい。また、摺動面は共通なので、この摺動面の大きさが互いに一致するように画像処理を施すことによって、補正プロファイルa2,b2を作成するようにしてもよい。
 上述の実施の形態では、回転ステージ5,6を用いて追随しているが、トロリ線の側面を含む下側(摺動面)を左右から撮影可能な位置にトロリ線測定器2,3を固定設置し、固定設置されたトロリ線測定器2,3をトロリ線の偏位方向に沿って車両の屋根上をスライド移動可能なスライド板を設けるようにしてもよい。この場合、検出プロファイルa1,b1を画像処理して、両方の大きさがほぼ同じとなるように、スライド板の移動位置を制御するようにしてもよい。
a1,b1…検出プロファイル
a2,b2…補正プロファイル
a3,b3…マッチングプロファイル
c0…基準プロファイル
d0,d1…断面プロファイル
1…トロリ線
J1,J2…受光視野
L1,L2…投光領域
10…トロリ線測定装置
11…立体画像
2,3…トロリ線測定器
2a,3a…投光ユニット
2b,3b…投光レンズ
2c,3c…受光ユニット
2d,3d…結像レンズ
2e,3e…干渉フィルタ
4…トロリ線高さ偏位検出器
5,6…回転ステージ
7…演算装置
71…高さ偏位演算パソコン
72…回転ステージ制御回路
73…トロリ線演算パソコン
74…レーザ投光制御回路
8…測定装置
81…データ収録パソコン
82…外部記録媒体
9…架線検測車

Claims (12)

  1.  スリット状のレーザ光束をトロリ線の左右下側から前記トロリ線を横断するように略垂直に投光し、投光された前記レーザ光束の反射光による光切断像に基づいて前記トロリ線の側面を含む左右下側の形状を示す画像をそれぞれ取得する車両の屋根上に設けられた第1及び第2のトロリ線測定手段と、
     前記第1及び第2のトロリ線測定手段によって取得された前記トロリ線の側面を含む左右下側の形状を示す画像を処理して、前記トロリ線の摺動面及び左右側面の断面形状を示すデータを生成する制御手段と
     を備えたことを特徴とするトロリ線測定装置。
  2.  請求項1に記載のトロリ線測定装置において、
     前記制御手段によって生成された前記トロリ線の摺動面及び左右側面の断面形状を示すデータに基づいて前記トロリ線の摩耗量を算出すると共に前記トロリ線の立体形状を示すデータを算出する測定手段を備えたことを特徴とするトロリ線測定装置。
  3.  請求項1又は2に記載のトロリ線測定装置において、
     前記第1及び第2のトロリ線測定手段の撮影視野範囲が前記車両の進行方向にほぼ垂直な面内を回転するように前記第1及び第2のトロリ線測定手段を保持しながら回転制御する前記車両の屋根上の左右両端部に設けられた回転ステージ手段と、
     前記車両の進行に従って変化する前記トロリ線の高さ偏位座標に基づいて、前記第1及び第2のトロリ線測定手段の撮影視野範囲に前記トロリ線が入るように前記回転ステージ手段の回転を制御する回転制御手段と
     を備えたことを特徴とするトロリ線測定装置。
  4.  請求項3に記載のトロリ線測定装置において、
     前記車両の屋根上のほぼ中央付近に設けられ、前記トロリ線の偏位方向にレーザ光を走査するレーザ測長センサ手段と、
     前記レーザ測長センサ手段からの信号に基づいて前記トロリ線高さ偏位座標を検出する高さ変位検出手段と
     を備えたことを特徴とするトロリ線測定装置。
  5.  請求項1、2、3又は4に記載のトロリ線測定装置において、
     前記第1及び第2のトロリ線測定手段は、前記レーザ光束を前記トロリ線に略垂直に投光する投光手段と、前記光切断像を前記車両の進行方向に向かって所定の仰角を以って撮像する受光手段とから構成されることを特徴とするトロリ線測定装置。
  6.  請求項1、2、3、4又は5に記載のトロリ線測定装置において、
     前記第1及び第2のトロリ線測定手段は、前記レーザ光束として、昼間の太陽光の光強度より強い反射光を発生させる赤外領域の単色光を投光し、レンズを介して前記トロリ線の光切断像を受光面に結像するように受光することを特徴とするトロリ線測定装置。
  7.  スリット状のレーザ光束をトロリ線の左右下側から前記トロリ線を横断するように略垂直に投光し、
     投光された前記レーザ光束の反射光による光切断像に基づいて前記トロリ線の側面を含む左右下側の形状を示す画像を、車両の屋根上に設けられた第1及び第2のトロリ線測定手段を用いてそれぞれ取得し、
     前記第1及び第2のトロリ線測定手段によって取得された前記トロリ線の側面を含む左右下側の形状を示す画像を処理して、前記トロリ線の摺動面及び左右側面の断面形状を示すデータを生成することを特徴とするトロリ線測定方法。
  8.  請求項7に記載のトロリ線測定方法において、
     生成された前記トロリ線の摺動面及び左右側面の断面形状を示すデータに基づいて前記トロリ線の摩耗量を算出すると共に前記トロリ線の立体形状を示すデータを算出することを特徴とするトロリ線測定方法。
  9.  請求項7又は8に記載のトロリ線測定方法において、
     前記車両の屋根上の左右両端部に設けられた回転ステージ手段を用いて、前記第1及び第2のトロリ線測定手段の撮影視野範囲が前記車両の進行方向にほぼ垂直な面内を回転するように前記第1及び第2のトロリ線測定手段を保持しながら回転制御し、
     前記車両の進行に従って変化する前記トロリ線の高さ偏位座標に基づいて、前記第1及び第2のトロリ線測定手段の撮影視野範囲に前記トロリ線が入るように前記回転ステージ手段の回転を制御することを特徴とするトロリ線測定方法。
  10.  請求項9に記載のトロリ線測定方法において、
     前記車両の屋根上のほぼ中央付近に設けられたレーザ測長センサ手段を用いて、前記トロリ線の偏位方向にレーザ光を走査し、
     前記レーザ測長センサ手段からの信号に基づいて前記トロリ線高さ偏位座標を検出することを特徴とするトロリ線測定方法。
  11.  請求項7、8、9又は10に記載のトロリ線測定方法において、
     前記第1及び第2のトロリ線測定手段は、前記レーザ光束を前記トロリ線に略垂直に投光する投光手段と、前記光切断像を前記車両の進行方向に向かって所定の仰角を以って撮像する受光手段とから構成されることを特徴とするトロリ線測定方法。
  12.  請求項7、8、9、10又は11に記載のトロリ線測定方法において、
     前記第1及び第2のトロリ線測定手段は、前記レーザ光束として、昼間の太陽光の光強度より強い反射光を発生させる赤外領域の単色光を投光し、レンズを介して前記トロリ線の光切断像を受光面に結像するように受光することを特徴とするトロリ線測定方法。
PCT/JP2014/072879 2013-09-27 2014-09-01 トロリ線測定装置及びトロリ線測定方法 WO2015045743A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480039911.3A CN105393080B (zh) 2013-09-27 2014-09-01 架空线测定装置及架空线测定方法
EP14849875.1A EP3051252B1 (en) 2013-09-27 2014-09-01 Trolley wire measurement device and trolley wire measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-201383 2013-09-27
JP2013201383A JP6206957B2 (ja) 2013-09-27 2013-09-27 トロリ線測定装置及びトロリ線測定方法

Publications (1)

Publication Number Publication Date
WO2015045743A1 true WO2015045743A1 (ja) 2015-04-02

Family

ID=52742892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072879 WO2015045743A1 (ja) 2013-09-27 2014-09-01 トロリ線測定装置及びトロリ線測定方法

Country Status (4)

Country Link
EP (1) EP3051252B1 (ja)
JP (1) JP6206957B2 (ja)
CN (1) CN105393080B (ja)
WO (1) WO2015045743A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200378750A1 (en) * 2019-05-29 2020-12-03 Hitachi High-Tech Fine Systems Corporation Overhead wire mutual separating situation measuring apparatus and overhead wire mutual separating situation measuring method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6575087B2 (ja) * 2015-03-19 2019-09-18 株式会社明電舎 トロリ線摩耗測定装置
CN105444697A (zh) * 2015-12-31 2016-03-30 河南科达东大国际工程有限公司 阳极炭块外形测量系统
JP6632130B2 (ja) * 2016-02-22 2020-01-15 三菱重工エンジニアリング株式会社 摩耗度合い情報取得装置、摩耗度合い情報取得方法、車両及びプログラム
CN109937340B (zh) * 2016-11-14 2021-01-08 三菱电机株式会社 架空线显示装置、架空线显示系统及架空线显示数据生成方法
JP7043761B2 (ja) * 2017-09-06 2022-03-30 株式会社明電舎 電柱距離測定装置
CN108303371A (zh) * 2017-12-31 2018-07-20 天津木牛流马科技发展股份有限公司 便携式铁路架空接触网的接触线非接触式检测装置
IT201800000757A1 (it) * 2018-01-11 2019-07-11 Dipsa Technes Srl Dispositivo per l'erogazione di un fluido antighiaccio e/o antiusura su un cavo per la trasmissione di corrente elettrica e/o per valutare l'usura di un cavo
RU187243U1 (ru) * 2018-06-06 2019-02-26 Акционерное общество "Фирма ТВЕМА" Устройство контроля контактной сети
JP7310668B2 (ja) * 2020-03-18 2023-07-19 株式会社明電舎 梯形架線残存高さ測定装置及び梯形架線残存高さ測定方法
NL2026149B1 (en) 2020-07-28 2022-03-29 Volkerwessels Intellectuele Eigendom B V Optical measurement system for an overheadline
CN112325781B (zh) * 2020-10-16 2022-05-17 易思维(杭州)科技有限公司 轨道交通接触线磨耗检测装置及方法
NL2028047B1 (en) 2021-04-22 2022-11-02 Asset Rail B V Overhead line measuring device and method for measuring overhead lines
CN117430293B (zh) * 2023-12-18 2024-03-22 水分子(常州)新材料科技有限公司 一种水处理用水位检测装置及处理方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534113A (ja) 1991-08-02 1993-02-09 Railway Technical Res Inst トロリー線の摩耗測定方法
JPH0596980A (ja) 1991-10-09 1993-04-20 Mitsubishi Heavy Ind Ltd 架線検査装置
JPH07120227A (ja) 1993-10-26 1995-05-12 Railway Technical Res Inst トロリー線摩耗測定光学系
JPH07120228A (ja) 1993-10-26 1995-05-12 East Japan Railway Co トロリー線測定装置
JPH10194015A (ja) 1997-01-14 1998-07-28 Railway Technical Res Inst トロリー線の摩耗測定方法
JP2001059710A (ja) 1999-08-25 2001-03-06 Central Japan Railway Co トロリ線摩耗量測定装置
EP1855084A2 (de) * 2006-05-11 2007-11-14 Siemens Aktiengesellschaft Verfahren zur Bestimmung der Resthöhe eines Fahrdrahtes und Vorrichtungen zur Durchführung des Verfahrens
JP2008089524A (ja) * 2006-10-05 2008-04-17 Meidensha Corp トロリ線の摩耗測定装置
JP2009103499A (ja) * 2007-10-22 2009-05-14 Meidensha Corp トロリー線の摩耗量計測装置
JP2010243275A (ja) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp トロリ線摩耗量検出光学系およびトロリ線摩耗量測定装置
JP2010243274A (ja) 2009-04-03 2010-10-28 Hitachi High-Technologies Corp トロリ線摩耗量検出光学系およびトロリ線摩耗量測定装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339719B2 (ja) * 1993-03-04 2002-10-28 日立電子エンジニアリング株式会社 トロリー線の高さ測定装置
DE19634060C1 (de) * 1996-08-23 1998-01-22 Fraunhofer Ges Forschung Fahrdrahtmeßvorrichtung
DE10044432A1 (de) * 2000-09-08 2002-04-04 Siemens Ag Einrichtung, Verfahren und Verwendung für die automatische Erfassung des Verschleißes der Fahrdrähte von Oberleitungen für elektrisch angetriebene Fahrzeuge
JP2006258531A (ja) * 2005-03-16 2006-09-28 Act Denshi Kk レール断面測定方法及びそれに使用されるレール断面測定装置
JP4260148B2 (ja) * 2005-09-14 2009-04-30 ユニバーサル機器株式会社 鉄道設備用検測車
CN2916646Y (zh) * 2006-06-20 2007-06-27 成都唐源科技有限责任公司 基于系统响应测试的接触网动态特性测试装置
JP5494286B2 (ja) * 2010-06-25 2014-05-14 株式会社明電舎 架線位置測定装置
CN202614278U (zh) * 2012-04-27 2012-12-19 苏州艾特光视电子技术有限公司 接触网图像动态采集系统
CN103105132A (zh) * 2012-08-31 2013-05-15 成都唐源电气有限责任公司 一种基于机器视觉的非接触式几何参数检测系统
CN103454556B (zh) * 2013-08-09 2016-01-20 国家电网公司 一种具有3d扫描功能的巡检装置及其检测方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534113A (ja) 1991-08-02 1993-02-09 Railway Technical Res Inst トロリー線の摩耗測定方法
JPH0596980A (ja) 1991-10-09 1993-04-20 Mitsubishi Heavy Ind Ltd 架線検査装置
JPH07120227A (ja) 1993-10-26 1995-05-12 Railway Technical Res Inst トロリー線摩耗測定光学系
JPH07120228A (ja) 1993-10-26 1995-05-12 East Japan Railway Co トロリー線測定装置
JPH10194015A (ja) 1997-01-14 1998-07-28 Railway Technical Res Inst トロリー線の摩耗測定方法
JP2001059710A (ja) 1999-08-25 2001-03-06 Central Japan Railway Co トロリ線摩耗量測定装置
EP1855084A2 (de) * 2006-05-11 2007-11-14 Siemens Aktiengesellschaft Verfahren zur Bestimmung der Resthöhe eines Fahrdrahtes und Vorrichtungen zur Durchführung des Verfahrens
JP2008089524A (ja) * 2006-10-05 2008-04-17 Meidensha Corp トロリ線の摩耗測定装置
JP2009103499A (ja) * 2007-10-22 2009-05-14 Meidensha Corp トロリー線の摩耗量計測装置
JP2010243275A (ja) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp トロリ線摩耗量検出光学系およびトロリ線摩耗量測定装置
JP2010243274A (ja) 2009-04-03 2010-10-28 Hitachi High-Technologies Corp トロリ線摩耗量検出光学系およびトロリ線摩耗量測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200378750A1 (en) * 2019-05-29 2020-12-03 Hitachi High-Tech Fine Systems Corporation Overhead wire mutual separating situation measuring apparatus and overhead wire mutual separating situation measuring method

Also Published As

Publication number Publication date
JP2015068675A (ja) 2015-04-13
CN105393080B (zh) 2018-10-19
EP3051252B1 (en) 2018-05-09
EP3051252A4 (en) 2017-03-29
EP3051252A1 (en) 2016-08-03
JP6206957B2 (ja) 2017-10-04
CN105393080A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6206957B2 (ja) トロリ線測定装置及びトロリ線測定方法
JP4923942B2 (ja) 画像処理によるパンタグラフ測定装置
JP5698285B2 (ja) 架線位置計測装置及び方法
JP2009041934A (ja) 形状測定装置,形状測定方法
TWI593939B (zh) Overhead wire abrasion measuring apparatus and overhead wire abrasion measuring method
JP2007271446A (ja) 画像処理によるトロリ線摩耗測定装置
JP6669294B1 (ja) パンタグラフ変位測定装置及びトロリ線硬点検出方法
NL2016637A (en) Rail profile monitoring, e.g. geometry of the frogs.
JP5162874B2 (ja) トロリ線の摩耗測定装置
JP6317621B2 (ja) 車両に装備された車輪の三次元形状測定方法と車両に装備された車輪の三次元形状測定装置
KR101583274B1 (ko) 간섭 무늬를 이용한 철도 레일의 마모 측정장치
JP3629568B2 (ja) 架線検査方法および架線検査装置
JP6575087B2 (ja) トロリ線摩耗測定装置
JP4779770B2 (ja) 画像処理によるトロリ線摩耗測定装置
KR20040062228A (ko) 3차원 영상을 이용한 열차 팬터그래프 습판자동측정시스템 및 그 제어방법
JP4864734B2 (ja) 光変位センサー及びそれを用いた変位測定装置
JP5223472B2 (ja) 摩耗測定装置及び摩耗測定方法
JP6855405B2 (ja) トロリ線測定方法及びトロリ線測定装置
JP5502009B2 (ja) トロリ線測定方法及び装置
JP5244676B2 (ja) トロリ線摩耗量検出光学系およびトロリ線摩耗量測定装置
JPH10185514A (ja) コイル位置検出装置
JP7332417B2 (ja) 測定装置、及び測定方法
KR20180053125A (ko) 3차원 형상 측정 장치 및 측정 방법
JP7319831B2 (ja) 架線相互離隔測定装置及び架線相互離隔測定方法
JP2010129800A (ja) 干渉光学系撮像画像を用いた干渉縞によるアライメントマーク検出方法およびそれを用いた装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039911.3

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2014849875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849875

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE