WO2015045649A1 - 部品実装装置 - Google Patents

部品実装装置 Download PDF

Info

Publication number
WO2015045649A1
WO2015045649A1 PCT/JP2014/071120 JP2014071120W WO2015045649A1 WO 2015045649 A1 WO2015045649 A1 WO 2015045649A1 JP 2014071120 W JP2014071120 W JP 2014071120W WO 2015045649 A1 WO2015045649 A1 WO 2015045649A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
component mounting
camera
unit
mounting apparatus
Prior art date
Application number
PCT/JP2014/071120
Other languages
English (en)
French (fr)
Inventor
高志 三枝
浅井 順
秀幸 鎌須賀
国宗 駒池
修 金井
一也 山田
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2015045649A1 publication Critical patent/WO2015045649A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement

Definitions

  • the present invention relates to a component mounting apparatus, and more particularly to a component mounting apparatus that holds electronic components and mounts them on a substrate.
  • component mounting apparatuses particularly component mounting apparatuses that mount electronic components on a board (wiring board)
  • wiring board wiring board
  • high-density mounting and a response to miniaturization of mounted parts are required.
  • the component mounting apparatus generally includes a component mounting unit that can be moved to an arbitrary position in the work space, and places a substrate (a member to be mounted) to be mounted in its own work space.
  • the component mounting apparatus holds a plurality of components supplied from the component supply unit by the component mounting unit, and the component mounting unit moves to the substrate while holding the plurality of components, and then moves the component to the substrate. Mount.
  • the mounting accuracy of the components of the component mounting apparatus is guaranteed mainly by the configuration of the mechanism system of the component mounting unit, the configuration of the drive system, and the drive method.
  • a general component supply method of a component mounting apparatus for example, an electronic component supply method using a tape reel
  • variations in the position and orientation of the held components occur.
  • an upward-facing camera is installed on the main body of the component mounting device, and the component mounting unit holds the component until it is mounted on the board until the component is mounted on the board, and the camera holds the component holding unit.
  • the held component can be recognized only at the moment when it passes through the camera, and it cannot cope with the position shift of the component or the change of the posture that occurs in the operation until the subsequent mounting on the board. .
  • Patent Document 1 a technique described in Patent Document 1 is disclosed as a conventional technique.
  • a camera is attached to a mounting head for mounting a component on the board and the mounting head is driven after mounting the component in order to inspect and confirm the mounting state of the component mounted on the board as early as possible. Check for component mounting deviations, etc.
  • Patent Document 1 is a circuit board in the case where the variation is large or high mounting accuracy is required in an environment where the reproducibility of the position and orientation of the component held by the component mounting unit is low. Correction of the mounting position is not easy.
  • correction of the component mounting position is applied at the time of component mounting from the next time (second time) onward, so that the positional deviation of the component held in the component mounting unit is corrected immediately. Difficult to do.
  • An object of the present invention is to provide a technique that enables a component mounting apparatus to mount components with high mounting accuracy.
  • the component mounting apparatus includes a holding unit that holds a component, a first imaging unit that is provided in a direction along a horizontal direction with respect to a tip of the holding unit, and the first imaging unit.
  • a second imaging unit that is provided in a first direction that is the base end direction of the holding unit or a second direction that is the opposite direction and that images the component by tilting the optical axis with respect to the component; Have.
  • the component mounting apparatus uses the images captured by the first and second imaging units to detect the positional deviation of the component held by the holding unit in the orthogonal coordinate system and the positional deviation of the rotation system.
  • a processing unit for recognizing and correcting the position of the orthogonal coordinate system and the rotation system of the component held by the holding unit based on the recognition result of the processing unit, and the component to the mounted member Implement.
  • the position and orientation of the component held by the holding unit can be recognized with high accuracy, and the mounting accuracy of the component mounting apparatus can be improved without impairing the productivity.
  • FIG. 2 is a cross-sectional view showing a structure cut along line AA shown in FIG. It is a side view which shows an example of the structure of the component mounting part of the component mounting apparatus shown in FIG. It is a block diagram which shows an example of the structure of the control system of the component mounting apparatus shown in FIG. It is a flowchart which shows an example of 1 cycle of mounting operation
  • FIG. 1 It is a figure which shows an example of the captured image of each camera at the time of components hold
  • 10A and 10B are image diagrams illustrating an example of recognition processing and position correction by the first camera and the second camera of the component mounting unit illustrated in FIG. 9. It is a side view which shows an example of the structure of the component mounting part of the component mounting apparatus of Embodiment 3 of this invention. It is a side view which shows an example of the structure of the component mounting part of the component mounting apparatus of Embodiment 4 of this invention. It is a fragmentary perspective view which shows an example of a structure of the camera drive mechanism of the component mounting apparatus shown in FIG.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • an electronic component is taken up as an example of a component
  • a board printed board, wiring board
  • the component is mounted on the substrate.
  • the mounting apparatus will be described.
  • the respective directions of the X axis and the Y axis are directions parallel to the horizontal direction.
  • the X axis system and Y in a plane parallel to the horizontal direction are used. It represents the axis system.
  • the horizontal ⁇ rotation system represents a rotation system in a plane parallel to the horizontal direction. The relationship between the X axis and the Y axis may be interchanged.
  • the Z-axis direction is the vertical direction
  • the Z-axis system represents the X-axis system in a plane parallel to the vertical direction.
  • FIG. 1 is a plan view showing an example of the structure of the component mounting apparatus according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the structure cut along the line AA shown in FIG. 1
  • FIG. It is a side view which shows an example of the structure of the component mounting part of the component mounting apparatus shown.
  • the configuration of the component mounting apparatus according to the first embodiment shown in FIG. 1 will be described.
  • the main body 100 of the component mounting apparatus is mounted on a component supply unit 112 that supplies the component 320 shown in FIG. 3, a beam unit 110 that is connected to the main unit 100 and is movable in the Y-axis direction, and the beam unit 110. And a component mounting portion 111 that can move in the X-axis direction on the beam portion.
  • the X axis and the Y axis form an orthogonal coordinate system on a plane along the horizontal direction.
  • the component mounting unit 111 holds a component (electronic component) 320, and the held component 320 is a board (printed circuit board, wiring board) shown in FIG. ) 101 is mounted on the nozzle 101 (holding unit).
  • the nozzle 300 sucks and holds the component 320 by, for example, vacuum suction.
  • the component mounting portion 111 is provided with a nozzle 300 that can be moved up and down in the Z-axis direction, and the nozzle 300 has a function of sucking and holding the component 320 on the tip surface 300b of the tip portion 300a.
  • the Z axis is a vertical coordinate axis, and in the component mounting apparatus, the direction in which the nozzle 300 moves up and down.
  • the first direction which is one direction of the Z axis, is the upper side
  • the second direction which is the opposite direction to the first direction on the Z axis, is the lower side.
  • the main body 100 is provided with a main body camera 113 that captures an image of the component mounting portion 111 that passes therethrough, and a substrate transport portion 114 that transports the substrate 101 in the X-axis direction.
  • the board conveyance unit 114 positions the board 101 in correspondence with a place where the component mounting unit 111 can mount the component 320.
  • the component 320 is sucked and held by the nozzle 300 provided in the component supply unit 112 and taken out from the component supply unit 112, and the substrate placed on the substrate transport unit 114 in a state where the component 320 is sucked and held by the nozzle 300.
  • the part 320 is conveyed onto a predetermined portion 101.
  • the nozzle 300 is lowered and the component 320 is mounted on the predetermined portion of the substrate 101.
  • the component mounting unit 111 moves when the beam unit 110 moves in the Y-axis direction, and the component mounting unit 111 mounted on the beam unit 110 moves in the X-axis direction. Is done.
  • the said predetermined location is a terminal which should mount the component 320 in the board
  • the component mounting unit 111 moves, the component camera 111 passes through the main body camera 113 so that the main body camera 113 images the moving component mounting unit 111 from below. Thereby, the component mounting part 111 in movement can be recognized, and the position of the component mounting part 111 itself during movement can be corrected.
  • the main body 100 is provided with a control unit (processing unit) 200 for controlling the mounting operation of the component 320 therein.
  • a control unit (processing unit) 200 for controlling the mounting operation of the component 320 therein.
  • the beam unit 110 and the component mounting unit 111 are disposed at higher positions (upper positions) than the substrate 101, the component supply unit 112, and the main body camera 113, and do not interfere with each other on the Z axis. Is arranged.
  • the component mounting unit 111 can move to an arbitrary position on the work plane (on the plane on which the orthogonal coordinate system is formed) composed of the X axis and the Y axis of the component mounting apparatus. Then, the component mounting unit 111 that has moved to a predetermined location moves the nozzle 300 provided on the component mounting unit 111 up and down (up and down) in the Z-axis direction to move the component 320 to the substrate 101. Implement.
  • the component mounting apparatus includes a component supply unit 112, a beam unit 110, and a component mounting unit 111 on the left and right sides of the substrate transport unit 114 in the Y-axis direction of the main body 100.
  • One main camera 113 is provided. Therefore, the component mounting process can be alternately performed on the substrate 101 from the left and right sides of the board transport unit 114, and as a result, the component mounting process can be efficiently performed.
  • the component mounting unit 111 of the component mounting apparatus rotates the nozzle 300 around the central axis of the component mounting unit 111, and the nozzle 300 provided so as to be able to move up and down along the Z-axis direction. And a nozzle rotation mechanism 301. Furthermore, a reference mark 302 for recognizing the position of the component mounting unit 111 from below by the main body camera 113 is formed on the component mounting unit 111.
  • the nozzle 300 holds the component 320 by vacuum suction or the like.
  • the component mounting unit 111 is arranged in a direction along the horizontal direction with respect to the tip portion 300 a of the nozzle 300, and a first camera (first imaging unit) that images the component 320 held by the nozzle 300. 310 is provided. Further, the component 320 is disposed in the upper direction (first direction) 340 that is the direction of the base end portion 300 c of the nozzle 300 from the first camera 310 and the optical axis 311 a is inclined with respect to the component 320 held by the nozzle 300. A second camera (second imaging unit) 311 for imaging is provided.
  • the first camera 310 is configured to take an image of the nozzle 300 from the side with the center of the optical axis 310 a passing through the vicinity of the tip surface 300 b of the tip portion 300 a of the nozzle 300. Therefore, it is preferable that the first camera 310 is provided in a horizontal direction with respect to the distal end surface 300b of the distal end portion 300a of the nozzle 300.
  • the first camera 310 is provided at a position in the horizontal direction with respect to the tip surface 300b of the nozzle 300, the part 320 held by the nozzle 300 can be imaged from the side, and the shift in the Z-axis direction can be performed. There is no need to correct the amount. As a result, the misalignment can be easily corrected.
  • the second camera 311 is disposed at a position 340 above the first camera 310, and is provided so that the center of the optical axis 311 a passes near the tip surface 300 b of the tip portion 300 a of the nozzle 300. . That is, the part 320 held by the nozzle 300 is imaged so that the optical axis 311a is inclined from a position 340 above (obliquely above) the first camera 310. In other words, the second camera 311 captures an image of the part 320 held by the nozzle 300 from an oblique upper side 340.
  • the angle of the optical axis 311 a with respect to the reference line 360 in the horizontal plane of the second camera 311 is a second camera attachment angle 330.
  • a plurality of nozzles 300 of the component mounting unit 111 may be mounted on one component mounting unit 111, and may be configured to rotate around the central axis. Good.
  • control unit (processing unit) 200 shown in FIG. 2 of the component mounting apparatus will be described.
  • control unit 200 using the images captured by the first camera 310 and the second camera 311, the positional deviation of the component 320 held by the nozzle 300 in the XY axis system (orthogonal coordinate system) on the horizontal plane, A process for recognizing the positional deviation of the rotating system on the horizontal plane is performed.
  • the component mounting apparatus corrects the position of the XY axis system and the rotation system of the component 320 held by the nozzle 300 by the control unit 200 based on the recognition result of the control unit 200 and then performs the component 320. Is mounted on the substrate 101. That is, immediately before the component 320 is mounted on the substrate 101, the positions of the XY axis system and the rotation system of the component 320 are recognized and corrected by the control unit 200, and then the component 320 is mounted on the substrate 101.
  • FIG. 4 is a block diagram showing an example of the structure of the control system of the component mounting apparatus shown in FIG.
  • the control unit 200 of the component mounting apparatus includes a sequence processing unit 410 that controls the production operation of the component mounting apparatus, an image processing unit 411 that processes an image captured by the camera, and a control processing unit that performs control processing of each driving unit. 412.
  • the image processing unit 411 is connected to all the cameras mounted on the component mounting unit 111.
  • the image processing unit 411 is connected to the first camera 310 and the second camera 311. Then, the displacement amount of the position of the component 320 on the plane of the XY axis system with respect to the nozzle 300 of the component mounting unit 111 and the rotation angle of the component 320 around the Z axis are calculated and output by a method described later.
  • the image processing unit 411 is also connected to all the main body cameras 113 mounted on the main body 100, and calculates and outputs a shift amount of the position of the component mounting unit 111 on the plane of the XY axis system.
  • control processing unit 412 is connected to the XY driving unit 400, the Z ⁇ (Z-axis direction and rotation) driving unit 401, the sequence processing unit 410, and the image processing unit 411. Then, positioning control of the component mounting unit 111 in the X and Y directions and positioning control of the nozzle 300 in the Z ⁇ direction are performed in the operation of the component mounting apparatus.
  • the XY driving unit 400 drives the beam unit 110 in the Y-axis direction and drives the component mounting unit 111 in the X-axis direction in order to move the component mounting unit 111.
  • the Z ⁇ drive unit 401 is mounted on the component mounting unit 111 and drives the nozzle 300 in the Z-axis direction or the rotation direction ( ⁇ direction) around the central axis of the component mounting unit 111.
  • control processing unit 412 includes a displacement amount of the position of the component 320 on the plane of the XY axis system with respect to the nozzle 300 of the component mounting unit 111 output from the image processing unit 411, and the XY axis system of the component mounting unit 111.
  • the displacement amount of the position on the plane is input.
  • the control processing unit 412 drives the component mounting unit 111 and corrects the mounting position of the component 320 by a method described later.
  • FIG. 5 is a flowchart showing an example of one cycle of the mounting operation in the component mounting apparatus shown in FIG.
  • the broken line on the left side indicates the operation of the component mounting unit 111
  • the broken line on the right side indicates all the cameras mounted on the component mounting apparatus (main camera 113, first camera). 310 and the second camera 311).
  • the component mounting apparatus moves the component mounting unit 111 to a predetermined position of the component supply unit 112 (S500), and sucks and holds the component 320 supplied from the component supply unit 112 using the nozzle 300 (S501).
  • the first camera 310 captures the nozzle 300 and the component 320 from the horizontal direction, and transfers the captured image to the image processing unit 411. Then, recognition processing is performed by the image processing unit 411 (S502).
  • the component mounting unit 111 is mounted with one nozzle 300 or when a plurality of nozzles 300 are mounted and all the components 320 to be held are held (S503 ⁇ Yes). It moves right above 113 (S504).
  • the component mounting unit 111 performs the component holding operation on the nozzles 300 that are not held. repeat.
  • the main body camera 113 images the component mounting unit 111 from below and transfers the captured image to the image processing unit 411. Then, the position of the component mounting unit 111 is recognized (S505).
  • the position of the component mounting unit 111 can be recognized, and thereby the positional deviation of the component mounting unit 111 can be corrected. As a result, the alignment accuracy when the component 320 is mounted on the substrate 101 can be increased.
  • the component mounting unit 111 moves to the substrate 101 (S506).
  • the first camera 310 and the second camera 311 capture all the components 320 and the nozzles 300 (held by the nozzles 300) in the component mounting unit 111, and the captured images are input to the image processing unit 411. Forward.
  • recognition processing is performed by the image processing unit 411 (S507).
  • the component mounting unit 111 performs position correction on the planes of the XY axis system and the rotation system for one nozzle 300 and the component 320 based on the recognition result of S507 (S508). Then, by driving (lowering) the nozzle 300 in the Z-axis direction, the component 320 held by the nozzle 300 is mounted at a predetermined location on the substrate 101 (S509).
  • the component mounting unit 111 completes the component mounting operation for one cycle when all the components 320 are mounted on the substrate 101 (S510 ⁇ Yes). Otherwise (S510 ⁇ No), in order to mount the component 320 held by the other nozzle 300 of the component mounting unit 111 on the substrate 101, the XY axes of the component mounting unit 111 with respect to the other nozzle 300 and the component 320 The operation returns to the operation for correcting the position on the plane of the system (S508). And the predetermined operation
  • the position correction of the component 320 held by the nozzle 300 on the planes of the XY axis system and the rotation system is performed by conveying the component 320 and on the predetermined position of the substrate 101. Is performed before the component 320 is mounted on the substrate 101.
  • the component 320 to be mounted first can be mounted on the substrate 101 after correcting the positional deviation.
  • the processing of S503 and S504 need not be performed every cycle when the reproducibility of the positioning operation of the component mounting unit 111 is high, and the reproducibility of the positioning operation is a target mounting of the component mounting apparatus. If the accuracy is much higher than this accuracy, this processing may be omitted.
  • FIG. 6 is an image diagram showing an example of a captured image of the main body camera of the component mounting apparatus shown in FIG.
  • a main body camera image 600 shown in FIG. 6 is an image obtained when the main body camera 113 images the component mounting unit 111 holding the component 320 from below.
  • the component mounting unit 111 In the main body camera image 600, the component mounting unit 111, the nozzle 300, the component 320, and the lower surface of the reference mark 302 are imaged.
  • the reference coordinates 610 that are the center coordinates of the reference mark 302 are calculated by image processing.
  • the component mounting apparatus uses the main body camera image 600 to obtain reference coordinates 610, position information obtained by the XY driving unit 400 at the timing of capturing the main body camera image 600 by an encoder in the X-axis direction, and the beam unit.
  • the position information by the encoder in the Y-axis direction 110 is compared.
  • a component mounting unit error that is a shift amount of the position of the component mounting unit 111 on the plane of the XY axis system is calculated.
  • the second camera 311 is more than the first camera 310. It is preferable to be provided above. That is, by imaging the part 320 from the diagonally upper side by the second camera 311, it is easy to image the upper surface 717 of the part 320, and as a result, the recognition accuracy of the part center coordinate 721 can be increased.
  • the first camera 310 images the component 320 from the side (horizontal direction), and the tip of the nozzle 300 of the component mounting unit 111 that holds the component 320.
  • An image obtained by capturing the part 300 a and the component 320 is a first camera image 700.
  • the second camera 311 images the component 320 from an obliquely upward view, and the nozzle 300 of the component mounting unit 111 holding the component 320.
  • the second camera image 701 is an image obtained by capturing the leading end portion 300 a and the component 320.
  • the coordinates in the vertical direction (Z-axis direction) of the image are expressed as height, and the position of the upper end of the image is the highest and the position of the lower end of the image is the lowest.
  • the surface in contact with the nozzle 300 is called an upper surface 717, and the opposite surface is a lower surface 718.
  • the side having the largest average height of all pixels constituting the side is defined as the first side 713, and among the sides of the lower surface 718 A side having the smallest average height of all pixels constituting the side is defined as a second side 714.
  • the component mounting apparatus recognizes the component height 710, the component thickness 711, and the first component angle 712 from the first camera image 700 shown in FIGS. 7 (a) and 8 (a). .
  • the component height 710 is a distance from the tip 300a (tip surface 300b) of the nozzle 300 to the lowest point P of the component 320 held by the nozzle 300.
  • the component thickness 711 is a distance between the first side 713 of the upper surface 717 and the second side 714 of the lower surface 718 of FIG. That is, the component thickness 711 is the average height of the side on the lower surface 718 side of the component 320 from the first side 713 having the largest average height of the side on the upper surface 717 side of the component 320 held by the nozzle 300. Is the smallest distance to the second side 714.
  • the first part angle 712 is an angle formed by the horizontal reference line 716 passing through the lowest point of the part 320 and the second side 714 of the lower surface 718 of the part 320.
  • the component mounting apparatus recognizes the nozzle center coordinate 720, the component center coordinate 721, and the second component angle 722 from the second camera image 701 shown in FIGS. 7B and 8B.
  • the nozzle center coordinates 720 are the coordinates of the center of the tip surface 300b of the nozzle 300.
  • the component center coordinate 721 is an intersection of the diagonal lines 719 of the upper surface 717 of the component 320 held by the nozzle 300.
  • the second component angle 722 is an angle formed by a horizontal plane reference line 716 passing through the lowest point Q of the component 320 held by the nozzle 300 and the second side 714 of the lower surface 718.
  • the component mounting apparatus performs geometric calculation based on the nozzle center coordinates 720, the component center coordinates 721, the imaging magnification of the second camera image 701, and the second camera mounting angle 330 in the recognized image. Do. Thereby, the nozzle center coordinate 720 and the component center coordinate 721 converted to the XY axis system are calculated.
  • the component mounting apparatus performs a geometric operation from the first component angle 712, the second component angle 722, and the second camera mounting angle 330 shown in FIG.
  • the rotation angle of the part 320 around the Z axis (rotation system) in the XY axis system is calculated.
  • the component mounting apparatus determines the difference between the position of the component 320 in the X axis direction and the Y axis direction with respect to the nozzle 300 obtained from the calculated nozzle center coordinates 720 of the XY axis system and the component center coordinates 721, and the components around the Z axis. A difference between the rotation angle of 320 and the mounting angle of the component 320 of the substrate 101 is obtained. Then, by driving the component mounting unit 111 in the X-axis and Y-axis directions so as to cancel out the difference in the XY axis system and the difference around the Z axis, and further rotating the nozzle 300 of the component mounting unit 111, Correct the misalignment.
  • the component mounting apparatus adjusts the driving amount of the component mounting unit 111 in the X-axis and Y-axis directions and the rotation amount of the nozzle 300 of the component mounting unit 111 so as to cancel out the error caused by the component mounting unit 111. It is also possible to correct misalignment during component mounting.
  • the component mounting apparatus calculates the nozzle center coordinate 720, the component center coordinate 721, and the second component angle 722 in the image using the first camera image 700 and the second camera image 701. Further, these are converted into the XY axis system and its rotation system to correct the positional deviation when mounting the components.
  • the component mounting apparatus does not mount the component 320 on the board 101 as an abnormal holding posture. It may be discarded and component mounting may be retried.
  • the component mounting apparatus discards the component 320 without mounting it on the substrate 101 as an abnormal holding posture. Then, component mounting may be retried.
  • the component mounting apparatus corrects the amount of movement distance in the Z-axis direction of the nozzle 300 during component mounting based on the component thickness 711 recognized from the first camera image 700 and the first component angle 712. May be.
  • each of the component mounting unit 111 and the nozzle 300 is mounted perpendicular to the horizontal plane of the XY axis system, and the first camera 310 is an XY axis system. It is the structure attached in parallel with respect to a horizontal surface.
  • the attachment of the nozzle 300 may not be strictly perpendicular to the horizontal plane of the XY axis system, and the attachment of the first camera 310 may not be strictly parallel to the horizontal plane of the XY axis system. Good.
  • the nozzle center in the XY axis system is added by taking into account the error in the mounting angle of the nozzle 300 and the error in the mounting angle of the first camera 310 described above.
  • the coordinate 720, the component center coordinate 721, and the component rotation angle may be calculated.
  • the position and orientation of the component 320 held by the nozzle 300 are highly accurate in a simple optical system configuration in which the first camera 310 and the second camera 311 are provided. Can be recognized.
  • the displacement of the relative position between the nozzle 300 and the component 320 held by the nozzle 300 can be calculated by imaging and recognizing the component 320 obliquely from above with the second camera 311. Thereby, the position and orientation of the component 320 held by the nozzle 300 can be recognized with high accuracy.
  • the mounting position of the component 320 on the board 101 can be corrected in real time based on the recognized positional deviation of the XY axis system and the rotating system, and as a result, the mounting of the component mounting apparatus can be performed without impairing the productivity. Accuracy can be improved. For example, the mounting accuracy can be increased to the order of several tens of ⁇ m.
  • the positional deviation of the component 320 occurs again until the component 320 is conveyed to a predetermined position on the substrate 101.
  • the position of the component 320 is recognized immediately before the component 320 is mounted on the substrate 101, and the component 320 is mounted after the position correction is performed. It is also possible to correct the position of the component 320 to be mounted.
  • FIG. 9 is a side view showing an example of the structure of the component mounting unit of the component mounting apparatus according to the second embodiment of the present invention
  • FIG. 10 shows the recognition processing by the first camera and the second camera of the component mounting unit shown in FIG. It is a figure which shows an example of position correction, (a) is a 1st camera, (b) is an image figure of a 1st camera.
  • the component mounting unit 111 of the component mounting apparatus of the second embodiment includes a nozzle 300, a nozzle rotation mechanism 301, a reference mark 302, a first camera 310, and a first camera 310. 2 cameras 311.
  • the second camera 311 is provided so as to image the component 320 held by the nozzle 300 with the optical axis 311a inclined from the position of the lower 350.
  • the second camera 311 is provided below 350 from the first camera 310, and thereby, the part 320 held by the nozzle 300 is imaged with a tilt that is an overhead view from below. At that time, the center of the optical axis 311 a of the second camera 311 passes near the tip surface 300 b of the tip portion 300 a of the nozzle 300.
  • the first camera 310 is provided so as to take an image of the component 320 from the side as in the first embodiment.
  • the angle of the optical axis 311a with respect to the reference line 360 on the horizontal plane of the second camera 311 is a second camera attachment angle 330.
  • a plurality of nozzles 300 may be mounted on one component mounting unit 111 as in the first embodiment.
  • the nozzle 300 may be configured to rotate around the central axis.
  • FIG. 10 shows a holding state when the upper surface 717 of the component 320 is smaller than the tip surface 300b of the nozzle 300.
  • the second camera 311 is provided below the first camera 310. It is preferable that That is, by imaging the part 320 from the obliquely lower side by the second camera 311, it is easy to image the lower surface 718 of the part 320, and as a result, the recognition accuracy of the part center coordinate 721 can be improved.
  • the component mounting apparatus has a component height 710, a component thickness 711, and a first component angle 712 from the first camera image 700 shown in FIG. Recognize
  • a second camera 311 provided below 350 from the first camera 310 captures images of the nozzle 300 of the component mounting unit 111 holding the component 320 and the component 320 from an obliquely lower portion 350, and is thus obtained.
  • the obtained image is the second camera image 900 shown in FIG.
  • the component mounting apparatus recognizes the nozzle center coordinate 720, the component center coordinate 721, and the second component angle 722 from the second camera image 900.
  • the second component angle 722 shown in FIG. 10B is formed by a horizontal plane reference line 716 passing through the lowest point Q of the component 320 held by the nozzle 300 and the third side 715 of the lower surface 718. The angle of the angle.
  • the component mounting apparatus uses the recognized nozzle center coordinates 720, the component center coordinates 721, the imaging magnification of the second camera image 900, and the second camera mounting angle 330. Perform the operation. Thereby, the nozzle center coordinate 720 and the component center coordinate 721 in the XY axis system are calculated.
  • the component mounting apparatus performs a geometric calculation from the recognized first component angle 712, second component angle 722, and second camera mounting angle 330. Thereby, the component rotation angle around the Z axis (rotation system) of the XY axis system of the apparatus is calculated.
  • the component mounting apparatus calculates the difference in the X-axis direction and Y-axis direction positions of the component 320 with respect to the nozzle 300 from the calculated nozzle center coordinates 720 of the XY axis system and the component center coordinates 721. calculate. Further, the difference between the component rotation angle around the Z axis and the component mounting angle of the substrate 101 is calculated, and the component mounting unit 111 is driven to the XY axis system so as to cancel these differences. And the position shift at the time of component mounting is correct
  • the component 320 held by the nozzle 300 is imaged from the oblique lower side by the second camera 311.
  • the recognition accuracy of the 320 component center coordinates 721 can be increased.
  • FIG. 11 is a side view showing an example of the structure of the component mounting portion of the component mounting apparatus according to the third embodiment of the present invention.
  • the second camera 311 is provided above the first camera 310 340, and the third imaging unit is disposed below the first camera 310.
  • the third camera 800 is a structure provided.
  • the component mounting unit 111 illustrated in FIG. 11 includes a nozzle 300, a nozzle rotation mechanism 301, a reference mark 302, a first camera 310, a second camera 311, and a third camera 800. ing.
  • the second camera 311 shown in FIG. 11 images the part 320 held by the nozzle 300 with the optical axis 311a tilted from the position of the upper (first direction) 340. That is, it is the same as the second camera 311 of the first embodiment, and images the part 320 held by the nozzle 300 from the diagonally upper side 340.
  • the third camera 800 is provided below the first camera 310 in the same manner as the second camera 311 of the second embodiment, whereby the component 320 held by the nozzle 300 is moved diagonally downward 350.
  • the image is taken with a tilt that is an overhead view.
  • a plurality of nozzles 300 may be mounted on one component mounting unit 111 as in the first embodiment.
  • the nozzle 300 may be configured to rotate around the central axis.
  • the best configuration of the third embodiment is that the recognition process using the first camera 310, the second camera 311, and the third camera 800 is performed with the size of the nozzle 300 and the part 320. It can be switched according to the relationship.
  • the positional deviation of the component 320 held by the nozzle 300 is recognized using the captured images of the first camera 310 and the second camera 311, or the first camera 310 and the third camera 311 are recognized. Whether to use each captured image of the camera 800 is switched according to the size relationship between the tip surface 300 b of the nozzle 300 and the component 320.
  • the tip surface 300b of the nozzle 300 shown in FIG. 7 and FIG. 8 is smaller than the upper surface 717 of the component 320, and the positional relationship between the nozzle 300 and the component 320 is determined in the second camera image 701.
  • the component mounting apparatus performs recognition processing using the first camera image 700 and the second camera image 701 in the same manner as in the first embodiment. And the position shift at the time of component mounting of the component mounting part 111 is correct
  • the tip surface 300b of the nozzle 300 shown in FIG. 10 is larger than the upper surface 717 of the component 320, and the positional relationship between the nozzle 300 and the component 320 cannot be imaged in the second camera image 701.
  • the component mounting apparatus performs a recognition process using the first camera image 700 and the second camera image 900 in the same manner as in the second embodiment. And the position shift at the time of component mounting of the component mounting part 111 is correct
  • FIG. 12 is a side view showing an example of the structure of the component mounting portion of the component mounting apparatus according to the fourth embodiment of the present invention.
  • the component mounting unit 111 of the component mounting apparatus includes a nozzle 300, a nozzle rotation mechanism 301, a reference mark 302, and a first camera 310. Furthermore, a camera drive mechanism 1100 capable of driving the first camera 310 in the vertical direction (Z-axis direction) is provided.
  • the component mounting unit 111 shown in FIG. 12 uses the camera driving mechanism 1100 to image the first camera 310 from the side with the center of the optical axis 310a passing through the vicinity of the tip surface 300b of the nozzle 300 and the nozzle 300 and the component 320. It is structured to be able to move upward 340 or downward 350 from the horizontal state.
  • the part 320 held by the nozzle 300 may be imaged in an overhead view so that the centers of the optical axes 311a and 800a pass near the tip of the nozzle 300. These images can be switched and imaged.
  • a plurality of nozzles 300 may be mounted on one component mounting unit 111 as in the first embodiment.
  • the nozzle 300 may be configured to rotate around the central axis.
  • the component mounting apparatus is configured such that the first camera 310 of the component mounting unit 111 is driven up and down by using the camera driving mechanism 1100, whereby the second camera 311 and the third camera according to the third embodiment. Imaging and recognition with 800 can be performed.
  • the best configuration of the fourth embodiment is to drive the first camera 310, so that the first camera 310, the second camera 311 and the third camera 800, which are the same as the other embodiments, Recognition processing using can be implemented.
  • the component mounting apparatus drives the first camera 310, and similarly to the third embodiment, the captured image used for the recognition process in accordance with the size relationship between the nozzle 300 and the component 320. Can be switched.
  • FIG. 13 is a partial perspective view showing an example of the configuration of the camera drive mechanism of the component mounting apparatus shown in FIG.
  • the camera drive mechanism 1100 shown in FIG. 13 is connected to the first camera 310 and is provided with a link mechanism 1200 for driving the first camera 310 up and down. Further, the camera driving mechanism 1100 is provided in the component mounting unit 111 in order to stop the first camera 310 connected to the link mechanism 1200 and driven by the link mechanism 1200 at a predetermined angle with respect to the horizontal plane. A pressing member 1201 for pressing against the stopper portion 1203 (see FIG. 12) is provided.
  • the camera drive mechanism 1100 is provided with a drive shaft 1202 that is connected to the link mechanism 1200 and that rotationally drives the link mechanism 1200.
  • the camera drive mechanism 1100 of this configuration can realize the imaging of the second camera 311 and the third camera 800 in the third embodiment with the first camera 310 by controlling the drive shaft 1202.
  • the camera drive mechanism 1100 shown in FIG. 13 can be applied to the component mounting unit 111 shown in FIG.
  • the pressing member 1201 of FIG. 13 is fitted into the slit 1204 formed in the component mounting portion 111 of FIG. 12, and the pressing member 1201 is driven to reciprocate within the slit 1204 using the slit 1204 as a guide.
  • the first camera 310 can be moved up and down. At that time, the first camera 310 can be positioned by pressing the pressing member 1201 against the stopper portion 1203.
  • the plurality of nozzles 300 provided in the component mounting unit 111 may be provided in a line.
  • the sizes of the tip surfaces 300b of the plurality of nozzles 300 may be one type or a plurality of types.
  • processing unit for recognizing the position of the component 320 and the processing unit for correcting the position of the component 320 may be provided in one control unit, or may be provided in different different control units. May be.
  • the said embodiment demonstrated the case where a component was an electronic component and the to-be-mounted member was a board
  • the said component may be components other than an electronic component
  • the to-be-mounted member is also a to-be-mounted member other than a board
  • the present invention can be applied to a case where a component other than an electronic component is mounted (mounted) on a mounted member other than a substrate by using a mounting device or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

部品(320)を保持するノズル(300)と、部品(320)を水平方向の位置から撮像する第1のカメラ(310)と、第1のカメラ(310)より上方(340)に設けられ、かつ部品(320)を斜め上から撮像する第2のカメラ(311)と、ノズル(300)により保持された部品(320)の直交座標系および回転系の位置ずれを認識する処理部とを有する。これにより、ノズル(300)により保持された部品(320)の位置を補正してから部品(320)を基板に実装する。また、第2のカメラ(311)を、第1のカメラ(310)より下方(350)に設け、かつ部品(320)を斜め下から撮像するようにしても良い。

Description

部品実装装置
 本発明は、部品実装装置に関し、特に、電子部品を保持して基板に実装する部品実装装置に関する。
 近年、部品実装装置、その中でも特に電子部品を基板(配線基板)に搭載する部品実装装置では、小型の電子機器内に基板を実装するため、基板の小型化が図られており、そして基板の小型化に伴って、高密度実装と、実装部品の微小化への対応とが要求されている。
 そのため、このような部品実装装置では、微小部品を高密度に基板搭載するための実装精度の向上が必要である。
 部品実装装置は、一般的に作業空間内の任意の位置に移動可能な部品実装部を備え、自身の作業空間内に実装対象である基板(被実装部材)を配置する。
 なお、部品実装装置は、部品供給部から供給される複数の部品を、部品実装部によって保持し、部品実装部は、複数の部品を保持した状態で基板まで移動し、そして、基板に部品を搭載する。
 このとき、部品実装装置の部品の実装精度は、主に部品実装部の機構系の構成と、駆動系の構成、および、駆動方法によって保障される。
 部品実装装置の一般的な部品供給の方法、例えばテープリールによる電子部品の供給方法では、供給時の部品の位置や姿勢を一定にすることが容易ではなく、部品実装部が部品を保持する毎に、保持された部品の位置や姿勢にばらつきが発生する。
 そこで、部品実装装置の本体に上向きのカメラを設置し、部品実装部が部品を保持してから部品を基板に搭載するまでの間に、そのカメラ上を通過させ、カメラで部品保持部の保持部分を撮像することにより、保持された部品の位置ずれを認識する方法が考案されている。
 この方法の場合、保持された部品は、カメラを通過した瞬間でしか認識できず、その後の基板上への実装までの動作で発生した部品の位置ずれや、姿勢の変化に対応させることができない。
 また、部品実装装置の生産性能を確保するためには、部品実装部が通過した際の1回の撮像で、保持される全ての部品を撮像し、位置ずれを認識する必要がある。
 そのため、上述の方法では、微小部品の認識おいて、カメラの高解像度化が必須となり、その結果、技術面、コスト面を鑑みると部品実装装置への適用は困難である。
 これらの新たな問題を解消するため、例えば、従来技術として、特許文献1に記載の技術が開示されている。
 特許文献1に記載の技術では、基板に搭載された部品の搭載状態をできる限り早期に検査、確認するために、部品を基板に装着する装着ヘッドにカメラを取り付け、部品実装後に装着ヘッドを駆動させることなく部品の搭載ずれ等を確認する。
特開2007-214460号公報
 ところが、上記特許文献1に記載の技術は、部品実装部により保持した部品の位置や姿勢の再現性が低い環境下で、そのばらつきが大きい場合、もしくは、高い実装精度が要求される場合、基板の搭載位置の補正が容易ではない。
 また、上記特許文献1に記載の技術では、部品の搭載位置の補正は、次回(2回目)以降の部品搭載時に適用されるため、部品実装部に保持された部品の位置ずれを即座に補正することが困難である。
 本発明の目的は、部品実装装置において、高い実装精度で部品の実装を行うことを可能にする技術を提供することにある。
 本発明の上記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
 本発明に係る部品実装装置は、部品を保持する保持部と、上記保持部の先端部に対して水平方向に沿った方向に設けられた第1の撮像部と、上記第1の撮像部より上記保持部の基端部方向である第1方向またはその反対方向である第2方向に設けられ、かつ上記部品に対して光軸を傾けて上記部品を撮像する第2の撮像部と、を有している。さらに、上記部品実装装置は、上記第1および上記第2の撮像部が撮像した画像を用いて、上記保持部により保持された上記部品の直交座標系の位置ずれと回転系の位置ずれとを認識する処理部を有し、上記処理部の認識結果に基づいて、上記保持部により保持された上記部品の上記直交座標系と上記回転系の位置を補正して上記部品を上記被実装部材に実装する。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。
 部品実装装置において、保持部により保持される部品の位置と姿勢を高精度に認識することができ、生産性を損なわずに部品実装装置の実装精度を向上させることができる。
本発明の実施形態1の部品実装装置の構造の一例を示す平面図である。 図1に示すA-A線に沿って切断した構造を示す断面図である。 図1に示す部品実装装置の部品実装部の構造の一例を示す側面図である。 図1に示す部品実装装置の制御系の構造の一例を示す構成図である。 図1に示す部品実装装置における実装動作の1サイクルの一例を示すフロー図である。 図1に示す部品実装装置の本体カメラの撮像画像の一例を示す画像図である。 図1に示す部品実装装置において部品が水平に保持された場合の各カメラの撮像画像の一例を示す図であり、(a)は第1のカメラ、(b)は第2のカメラの画像図である。 図1に示す部品実装装置において部品が斜めに保持された場合の各カメラの撮像画像の一例を示す図であり、(a)は第1のカメラ、(b)は第2のカメラの画像図である。 本発明の実施形態2の部品実装装置の部品実装部の構造の一例を示す側面図である。 (a), (b)は図9に示す部品実装部の第1のカメラと第2のカメラによる認識処理と位置補正の一例を示す画像図である。 本発明の実施形態3の部品実装装置の部品実装部の構造の一例を示す側面図である。 本発明の実施形態4の部品実装装置の部品実装部の構造の一例を示す側面図である。 図12に示す部品実装装置のカメラ駆動機構の構成の一例を示す部分斜視図である。
 以下の実施の形態では特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
 さらに、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。
 また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 また、以下の実施の形態において、構成要素等について、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲等についても同様である。
 以下、本発明の実施の形態(以降、実施形態ともいう)を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 なお、以下の実施形態では、部品の一例として電子部品を取り上げ、かつ上記電子部品を実装する被実装部材の一例として基板(プリント基板、配線基板)を取り上げ、したがって、部品を基板に実装する部品実装装置を取り上げて説明する。
 また、各実施形態(各図面)において、X軸およびY軸のそれぞれの方向は、水平方向と平行な方向であり、XY軸系という場合は、水平方向に平行な平面におけるX軸系とY軸系とを表している。さらに、水平方向のθ回転系という場合は、水平方向に平行な平面における回転系を表している。なお、X軸とY軸の関係は、お互いが入れ替わってもよい。
 また、各実施形態(各図面)において、Z軸の方向は、垂直方向であり、Z軸系という場合は、垂直方向に平行な平面におけるX軸系を表している。
 <実施形態1>
 図1は本発明の実施形態1の部品実装装置の構造の一例を示す平面図、図2は図1に示すA-A線に沿って切断した構造を示す断面図、図3は図1に示す部品実装装置の部品実装部の構造の一例を示す側面図である。
 図1に示す本実施形態1の部品実装装置の構成について説明する。上記部品実装装置の本体100は、図3に示す部品320を供給する部品供給部112と、本体100に接続され、かつY軸方向に移動可能なビーム部110と、ビーム部110に搭載され、かつビーム部上をX軸方向に移動可能な部品実装部111とを有している。
 なお、X軸およびY軸は、水平方向に沿った平面上の直交座標系を形成するものである。
 また、部品実装部111には、図3に示すように、部品(電子部品)320を保持し、かつ保持された部品320をその実装対象部材である図1に示す基板(プリント基板、配線基板)101に搭載するノズル(保持部)300が設けられている。ノズル300は、例えば、真空吸着によって部品320を吸着保持する。
 すなわち、部品実装部111には、Z軸方向に昇降自在なノズル300が設けられており、さらにノズル300は、その先端部300aの先端面300bに部品320を吸着保持する機能を有している。なお、Z軸は、垂直方向の座標軸であり、部品実装装置では、ノズル300が昇降動作を行う方向である。ここでは、Z軸の一方の方向である第1方向を上方とし、Z軸における第1方向と反対の方向である第2方向を下方としている。
 また、図2に示すように、本体100には、通過する部品実装部111を真下から撮像する本体カメラ113と、基板101をX軸方向に搬送する基板搬送部114とが設けられている。基板搬送部114は、部品実装部111が部品320を搭載可能な場所に対応させて基板101を位置決めする。
 これにより、部品供給部112に設けられたノズル300によって、部品320を吸着保持して部品供給部112から取り出し、ノズル300によって部品320を吸着保持した状態で基板搬送部114に載置された基板101の所定箇所上に部品320を搬送する。そして、ノズル300を下降させて基板101の上記所定箇所に部品320を実装する。この時、部品実装部111の移動は、図1に示すように、ビーム部110がY軸方向に移動すること、およびビーム部110上に搭載された部品実装部111がX軸方向に移動することで行われる。
 なお、上記所定箇所とは、基板101における部品320を搭載すべき端子のことである。
 また、部品実装部111が移動する際、本体カメラ113の上を通過させることで、移動中の部品実装部111をその下方から本体カメラ113によって撮像する。これにより、移動中の部品実装部111を認識することができ、移動時の部品実装部111自身の位置を補正することができる。
 また、図2に示すように、本体100は、その内部に部品320の実装動作を制御する制御部(処理部)200が設けられている。
 そして、本体100において、ビーム部110と部品実装部111は、基板101と、部品供給部112と、本体カメラ113とよりも高い位置(上方の位置)に配置され、Z軸上で干渉しない位置に配置されている。
 したがって、部品実装部111は、部品実装装置のX軸とY軸からなる作業平面上(直交座標系が形成された平面上)において任意の位置に移動することができる。そして、所定箇所に移動した部品実装部111は、この部品実装部111に設けられた、部品320を保持したノズル300をZ軸方向に上下動(昇降)させることで、基板101に部品320を実装する。
 なお、図1および図2に示すように、部品実装装置には、本体100のY軸方向において、基板搬送部114の左右両側に、部品供給部112と、ビーム部110と、部品実装部111と、本体カメラ113とがそれぞれ1つずつ設けられている。したがって、基板搬送部114の左右両側から交互に基板101に対して部品実装処理を行うことができ、その結果、上記部品実装処理を効率良く行うことができる。
 次に、図3に示す部品実装部111の構成について説明する。
 部品実装装置の部品実装部111は、図3に示すように、Z軸方向に沿って昇降が可能なように設けられたノズル300と、ノズル300を部品実装部111の中心軸まわりに回転させるノズル回転機構301とを有している。さらに、部品実装部111には、本体カメラ113によって部品実装部111の位置を下方から認識するための基準マーク302が形成されている。なお、ノズル300は、真空吸着等によって部品320を保持するものである。
 また、部品実装部111には、ノズル300の先端部300aに対して水平方向に沿った方向に配置され、ノズル300により保持された部品320を撮像する第1のカメラ(第1の撮像部)310が設けられている。さらに、第1のカメラ310よりノズル300の基端部300cの方向である上方(第1方向)340に配置され、ノズル300により保持された部品320に対して光軸311aを傾けて部品320を撮像する第2のカメラ(第2の撮像部)311が設けられている。
 詳細には、第1のカメラ310は、その光軸310aの中心がノズル300の先端部300aの先端面300b付近を通り、ノズル300を横から撮像するものである。したがって、第1のカメラ310は、ノズル300の先端部300aの先端面300bに対して水平方向に設けられていることが好ましい。
 第1のカメラ310は、ノズル300の先端面300bに対して水平方向の位置に設けられていることにより、ノズル300に保持された部品320を真横から撮像することができ、Z軸方向のずれ量の補正を行わなくて済む。その結果、位置ずれの補正を容易に行うことができる。
 また、第2のカメラ311は、第1のカメラ310よりも上方340の位置に配置され、光軸311aの中心が、ノズル300の先端部300aの先端面300b付近を通るように設けられている。つまり、ノズル300によって保持された部品320を、第1のカメラ310より上方340の位置(斜め上)から光軸311aが傾くように撮像する。言い換えると、第2のカメラ311は、ノズル300によって保持された部品320をその斜め上方340から俯瞰で撮像するものである。
 なお、第2のカメラ311の水平面内の基準線360に対する光軸311aの角度を第2のカメラ取付角度330とする。
 ここで、本実施形態1の部品実装装置では、部品実装部111のノズル300は、1つの部品実装部111に対して複数搭載されていてもよく、さらに、中心軸まわりに回転する構成としてもよい。
 次に、部品実装装置の図2に示す制御部(処理部)200について説明する。
 制御部200では、第1のカメラ310および第2のカメラ311が撮像した画像を用いて、ノズル300により保持された部品320の、水平面上のXY軸系(直交座標系)の位置ずれと、上記水平面上の回転系の位置ずれとを認識する処理を行う。
 すなわち、ノズル300により保持された部品320を第2のカメラ311によって斜め上方340から俯瞰(あおり)で撮像することで、部品320のXY軸系の位置ずれだけでなく、水平面上の回転系の位置ずれも認識することができる。
 したがって、本実施形態1の部品実装装置は、制御部200の認識結果に基づいて、ノズル300により保持された部品320のXY軸系と回転系の位置を制御部200によって補正してから部品320を基板101に実装するものである。つまり、部品320を基板101に搭載する直前に部品320のXY軸系と回転系の位置を制御部200によって認識・位置補正し、その後、基板101に部品320を搭載する。
 次に、部品実装装置における制御系について説明する。
 図4は図1に示す部品実装装置の制御系の構造の一例を示す構成図である。
 部品実装装置の制御部200は、部品実装装置の生産動作を制御するシーケンス処理部410と、カメラによって撮像した画像の処理を行う画像処理部411と、各駆動部の制御処理を行う制御処理部412と、から構成されている。
 ここで、画像処理部411は、部品実装部111に搭載される全てのカメラと接続されている。本実施形態1では、画像処理部411は、第1のカメラ310と、第2のカメラ311とに接続されている。そして、後述の方法により、部品実装部111のノズル300に対する部品320のXY軸系の平面上の位置のずれ量や、部品320のZ軸まわりの回転角度を算出し、出力する。
 さらに、画像処理部411は、本体100に搭載される全ての本体カメラ113とも接続されており、部品実装部111のXY軸系の平面上の位置のずれ量を算出し、出力する。
 一方、制御処理部412は、XY駆動部400と、Zθ(Z軸方向と回転)駆動部401と、シーケンス処理部410と、画像処理部411とに接続されている。そして、部品実装装置の動作における部品実装部111のXY方向の位置決め制御と、ノズル300のZθ方向の位置決め制御とを行う。
 なお、XY駆動部400は、部品実装部111を移動させるために、ビーム部110をY軸方向に駆動させ、かつ部品実装部111をX軸方向に駆動させるものである。さらに、Zθ駆動部401は、部品実装部111に搭載され、かつノズル300をZ軸方向もしくは部品実装部111の中心軸まわりの回転方向(θ方向)に駆動させるものである。
 また、制御処理部412には、画像処理部411から出力される部品実装部111のノズル300に対する部品320のXY軸系の平面上の位置のずれ量と、部品実装部111のXY軸系の平面上の位置のずれ量とが入力される。そして、後述の方法により、制御処理部412は、部品実装部111を駆動させ、部品320の実装位置の補正を行う。
 次に、図1~図5を用いて部品実装装置における実装処理の手順について説明する。
 図5は図1に示す部品実装装置における実装動作の1サイクルの一例を示すフロー図である。なお、図5において、向かって左側の破線内は、部品実装部111の動作を示し、向かって右側の破線内は、部品実装装置に搭載される全てのカメラ(本体カメラ113、第1のカメラ310および第2のカメラ311等)の認識動作を示している。
 まず、部品実装装置は、部品実装部111を部品供給部112の所定位置に移動させ(S500)、部品供給部112から供給される部品320を、ノズル300を用いて吸着保持する(S501)。
 この時、第1のカメラ310は、ノズル300によって部品320を保持した後、ノズル300と部品320とを水平方向から撮像し、撮像画像を画像処理部411に転送する。そして、画像処理部411によって認識処理を実施する(S502)。
 その後、部品実装部111は、1つのノズル300が搭載されている、もしくは、複数のノズル300が搭載されていて、かつ、保持すべき部品320をすべて保持した場合(S503→Yes)、本体カメラ113の真上に移動する(S504)。
 一方、部品実装部111は、複数のノズル300が搭載されていて、保持すべき部品320をすべて保持していない場合(S503→No)、保持していないノズル300に対して部品保持の動作を繰り返す。
 S503の動作によって、部品実装部111が本体カメラ113の真上に移動した際に、本体カメラ113は、下方から部品実装部111を撮像し、撮像画像を画像処理部411に転送する。そして、部品実装部111の位置を認識する(S505)。
 すなわち、部品320を搬送している時にも、部品実装部111の位置を認識することができ、これにより、部品実装部111の位置ずれを補正することができる。その結果、部品320を基板101に搭載する際の位置合わせの精度を高めることができる。
 次に、部品実装部111は、基板101に移動する(S506)。この時、第1のカメラ310と第2のカメラ311は、部品実装部111における(ノズル300によって保持された)全ての部品320とノズル300とを撮像し、その撮像画像を画像処理部411に転送する。そして、画像処理部411によって認識処理を実施する(S507)。
 部品実装部111は、S507の認識結果を基に、1つのノズル300と、部品320とに対して、それぞれXY軸系および回転系の平面上での位置補正を行う(S508)。そして、そのノズル300をZ軸方向に駆動させる(下降させる)ことで、ノズル300によって保持された部品320を基板101の所定箇所に搭載する(S509)。
 部品実装部111は、全ての部品320を基板101に実装した場合(S510→Yes)、1サイクル分の部品実装の動作を終了する。そうでない場合(S510→No)、部品実装部111の他のノズル300に保持されている部品320を基板101に実装するために、他のノズル300と部品320とに対する部品実装部111のXY軸系の平面上の位置補正(S508)を行う動作に戻る。そして、S508以降の所定の動作を繰り返す。
 以上のように、本部品実装装置では、ノズル300により保持された部品320のXY軸系と回転系の平面上での位置補正は、部品320を搬送して基板101の所定箇所上でノズル300を停止させた後、部品320を基板101に搭載する前に行う。
 これにより、一番目に搭載する部品320においても、位置ずれを補正してから基板101に搭載することができる。
 なお、上記S503、S504の処理は、部品実装部111の位置決め動作の再現性が高い場合には、毎サイクルごとに処理する必要はなく、位置決め動作の再現性が部品実装装置の目標とする実装精度よりも大幅に高い場合には、この処理を省いてもよい。
 次に、本実施形態1の部品実装装置に設けられた本体カメラ113による認識処理について説明する。
 図6は図1に示す部品実装装置の本体カメラの撮像画像の一例を示す画像図である。
 図6に示す本体カメラ画像600は、部品320を保持した部品実装部111を下方から本体カメラ113によって撮像した際に得られる画像である。
 本体カメラ画像600には、部品実装部111と、ノズル300と、部品320と、基準マーク302の下面とが撮像される。
 本体カメラ画像600を用いた認識処理では、画像処理によって基準マーク302の中心座標である基準座標610を算出する。
 部品実装装置は、本体カメラ画像600により、基準座標610と、本体カメラ画像600を撮像したタイミングでXY駆動部400が取得した部品実装部111のX軸方向のエンコーダ等による位置情報と、ビーム部110のY軸方向のエンコーダ等による位置情報と、を比較する。そして、上記比較結果に基づいて、部品実装部111のXY軸系の平面上の位置のずれ量である部品実装部誤差を算出する。その結果、移動時の部品実装部111の位置ずれを導き出すことができる。
 次に、本実施形態1の部品実装装置による認識方法と位置補正について詳しく説明する。図7は図1に示す部品実装装置において部品が水平に保持された場合の各カメラの撮像画像の一例を示す画像図であり、(a)は第1のカメラ、(b)は第2のカメラである。また、図8は図1に示す部品実装装置において部品が斜めに保持された場合の各カメラの撮像画像の一例を示す画像図であり、(a)は第1のカメラ、(b)は第2のカメラである。つまり、図7と図8では、部品320の保持姿勢が異なっている。
 また、図7および図8は、ノズル300の先端面300bより部品320の上面717が大きい場合の保持状態を示すものであり、この場合には、第2のカメラ311が第1のカメラ310より上方に設けられていることが好ましい。すなわち、第2のカメラ311によって斜め上方から部品320を撮像することで、部品320の上面717を撮像し易く、その結果、部品中心座標721の認識精度を高めることができる。
 まず、図7(a)と図8(a)において、第1のカメラ310は、部品320を真横(水平方向)から撮像しており、部品320を保持した部品実装部111のノズル300の先端部300aと、部品320とを撮像した画像が第1のカメラ画像700である。
 一方、図7(b)と図8(b)において、第2のカメラ311は、部品320を斜め上方から俯瞰(あおり)で撮像しており、部品320を保持した部品実装部111のノズル300の先端部300aと、部品320とを撮像した画像が第2のカメラ画像701である。
 ここで、便宜上、画像の垂直方向(Z軸方向)の座標を高さと表現し、画像における上端の位置が最も高く、画像の下端の位置が最も低いものとする。
 また、部品320において、ノズル300と接する面を上面717と呼び、その反対側の面を下面718とする。
 さらに、画像中において、部品320の上面717の辺(稜またはエッジともいう)のうち、辺を構成する全画素の平均高さが最も大きい辺を第1辺713とし、下面718の辺のうち、辺を構成する全画素の平均高さが最も小さい辺を第2辺714とする。
 この時、部品実装装置では、図7(a)と図8(a)に示す第1のカメラ画像700より、部品高さ710と、部品厚み711と、第1の部品角度712とを認識する。
 ここで、部品高さ710は、ノズル300の先端部300a(先端面300b)からノズル300によって保持された部品320の最下点Pまでの距離である。また、図8(a)に示すように、部品厚み711は、上面717の第1辺713と図7(a)の下面718の第2辺714との距離である。すなわち、部品厚み711は、ノズル300により保持された部品320の上面717側の辺のうちの平均高さが最も大きい第1辺713から、部品320の下面718側の辺のうちの平均高さが最も小さい第2辺714までの距離である。
 さらに、第1の部品角度712は、部品320の最下点を通る水平面の基準線716と、部品320の下面718の第2辺714とが成す角の角度である。
 また、部品実装装置は、図7(b)と図8(b)に示す第2のカメラ画像701より、ノズル中心座標720と、部品中心座標721と、第2の部品角度722とを認識する。なお、ノズル中心座標720は、ノズル300の先端面300bの中心の座標である。また、部品中心座標721は、ノズル300によって保持された部品320の上面717の対角線719の交点である。さらに、第2の部品角度722は、ノズル300によって保持された部品320の最下点Qを通る水平面の基準線716と、下面718の第2辺714とが成す角の角度である。
 そして、部品実装装置は、認識された画像中でのノズル中心座標720と、部品中心座標721と、第2のカメラ画像701の撮像倍率と、第2のカメラ取付角度330とから幾何学演算を行う。これによって、XY軸系に変換したノズル中心座標720と部品中心座標721とを算出する。
 また、部品実装装置は、認識された画像中での第1の部品角度712と、第2の部品角度722と、図3に示す第2のカメラ取付角度330とから幾何学演算を行い、これにより、XY軸系におけるZ軸まわり(回転系)の部品320の回転角度を算出する。
 部品実装装置は、算出されたXY軸系のノズル中心座標720と、部品中心座標721とから求められるノズル300に対する部品320のX軸方向およびY軸方向の位置の差分と、Z軸まわりの部品320の回転角度と基板101の部品320の搭載角度との差分とを求める。そして、XY軸系の差分およびZ軸まわりの差分を打ち消すように、部品実装部111をX軸およびY軸方向に駆動させ、さらに部品実装部111のノズル300を回転させることで、部品搭載時の位置ずれを補正する。
 この時、部品実装装置は、部品実装部111による誤差も打ち消すように、部品実装部111のX軸およびY軸方向の駆動量と、部品実装部111のノズル300の回転量とを調整し、部品搭載時の位置ずれを補正することも可能である。
 すなわち、部品実装装置は、第1のカメラ画像700と第2のカメラ画像701を用いて、画像中におけるノズル中心座標720と、部品中心座標721と、第2の部品角度722とを算出し、さらにこれらをXY軸系およびその回転系に変換して部品搭載時の位置ずれを補正する。
 なお、部品実装装置は、第1のカメラ画像700から認識された部品高さ710の値が、設定された一定値以上である場合、保持姿勢の異常として基板101に搭載せずに部品320を廃棄し、部品実装をリトライしてもよい。
 また、部品実装装置は、第1のカメラ画像700から認識された部品厚み711の値が、設定された一定値以上である場合、保持姿勢の異常として基板101に搭載せずに部品320を廃棄し、部品実装をリトライしてもよい。
 さらに、部品実装装置は、第1のカメラ画像700から認識された部品厚み711と、第1の部品角度712とを基に、部品搭載時のノズル300のZ軸方向の移動距離量を補正してもよい。
 なお、本実施形態1の部品実装装置における最良の構成は、部品実装部111およびノズル300のそれぞれがXY軸系の水平面に対して垂直に取り付けられ、さらに第1のカメラ310がXY軸系の水平面に対して平行に取り付けられる構成である。
 ただし、ノズル300の取り付けは、XY軸系の水平面に対して厳密に垂直でなくてもよく、また第1のカメラ310の取り付けは、XY軸系の水平面に対して厳密に平行でなくてもよい。
 その場合において、最良の構成と同等の認識精度を実現するために、前述のノズル300の取付角度の誤差と第1のカメラ310の取付角度の誤差とを加味して、XY軸系におけるノズル中心座標720と、部品中心座標721と、部品回転角度とを算出してもよい。
 本実施形態1の部品実装装置によれば、第1のカメラ310と第2のカメラ311とを設けた簡素な光学系の構成において、ノズル300により保持される部品320の位置と姿勢を高精度に認識することができる。
 その際、第2のカメラ311により斜め上方から部品320を撮像して認識を行うことで、ノズル300とノズル300により保持された部品320との相対位置のずれを算出することができる。これにより、ノズル300により保持された部品320の位置と姿勢を高精度に認識することができる。
 したがって、認識されたXY軸系や回転系の位置ずれを基に、基板101への部品320の搭載位置をリアルタイムに補正することができ、その結果、生産性を損なわずに部品実装装置の実装精度を向上させることができる。例えば、上記実装精度を数十μmオーダーに高めることができる。
 したがって、部品実装の精度を高精度にすることができるため、高密度な部品実装にも対応することができる。
 なお、部品320の搬送系では、例えば、部品実装部111を下方からのカメラで認識して位置補正しても、基板101の所定箇所に搬送するまでに部品320の位置ずれは再び発生することが多い。
 しかしながら、本実施形態1の部品実装装置では、部品320を基板101に搭載する直前に部品320の位置認識を行い、そして、位置補正を行ってから部品320を搭載するため、最初(1回目)に搭載する部品320の位置補正も行うことができる。
 <実施形態2>
 本実施形態2では、部品実装装置の部品実装部111において、第2のカメラ311が第1のカメラ310より下方(第2方向)350に設けられている場合を説明する。
 図9は本発明の実施形態2の部品実装装置の部品実装部の構造の一例を示す側面図、図10は図9に示す部品実装部の第1のカメラと第2のカメラによる認識処理と位置補正の一例を示す図であり、(a)は第1のカメラ、(b)は第1のカメラの画像図である。
 本実施形態2の部品実装装置の部品実装部111は、実施形態1の部品実装部111と同様に、ノズル300と、ノズル回転機構301と、基準マーク302と、第1のカメラ310と、第2のカメラ311とを有している。なお、本実施形態2の部品実装部111では、第2のカメラ311が、ノズル300により保持された部品320を下方350の位置から光軸311aを傾けて撮像するように設けられている。
 すなわち、第2のカメラ311は、第1のカメラ310より下方350に設けられ、これにより、ノズル300により保持された部品320を、斜め下方からの俯瞰であるあおりで撮像する。その際、第2のカメラ311の光軸311aの中心はノズル300の先端部300aの先端面300b付近を通る。なお、第1のカメラ310は、実施形態1と同様に部品320を真横から撮像するように設けられている。
 なお、第2のカメラ311の、水平面の基準線360に対する光軸311aの角度を第2のカメラ取付角度330とする。
 また、ノズル300は、第1実施形態と同様に1つの部品実装部111に対して複数搭載されていてもよい。
 さらに、ノズル300は、中心軸まわりに回転する構成としてもよい。
 次に、図10を用いて本実施形態2の部品実装装置の第1のカメラ310と第2のカメラ311による認識の詳細について説明する。
 なお、図10は、ノズル300の先端面300bより部品320の上面717が小さい場合の保持状態を示すものであり、この場合には、第2のカメラ311が第1のカメラ310より下方に設けられていることが好ましい。すなわち、第2のカメラ311によって斜め下方から部品320を撮像することで、部品320の下面718を撮像し易く、その結果、部品中心座標721の認識精度を高めることができる。
 本実施形態2の部品実装装置は、第1実施形態と同様に、図10(a)に示す第1のカメラ画像700より、部品高さ710と、部品厚み711と、第1の部品角度712とを認識する。
 また、第1のカメラ310より下方350に設けられた第2のカメラ311は、部品320を保持した部品実装部111のノズル300と、部品320とを斜め下方350から撮像し、これによって得られた画像が図10(b)に示す第2のカメラ画像900である。
 なお、部品実装装置は、第2のカメラ画像900より、ノズル中心座標720と、部品中心座標721と、第2の部品角度722とを認識する。ここで、図10(b)に示す第2の部品角度722は、ノズル300によって保持された部品320の最下点Qを通る水平面の基準線716と、下面718の第3辺715とが成す角の角度である。
 部品実装装置は、第1実施形態と同様に、認識されたノズル中心座標720と、部品中心座標721と、第2のカメラ画像900の撮像倍率と、第2のカメラ取付角度330とから幾何学演算を行う。これにより、XY軸系におけるノズル中心座標720と部品中心座標721とを算出する。
 また、部品実装装置は、認識された第1の部品角度712と、第2の部品角度722と、第2のカメラ取付角度330とから幾何学演算を行う。これにより、装置のXY軸系のZ軸まわり(回転系)の部品回転角度を算出する。
 部品実装装置は、第1実施形態と同様に、算出されたXY軸系のノズル中心座標720と、部品中心座標721とからノズル300に対する部品320のX軸方向およびY軸方向の位置の差分を算出する。さらに、Z軸まわりの部品回転角度と基板101の部品の搭載角度との差分を算出し、これらの差分を打ち消すように、部品実装部111をXY軸系に駆動させる。そして、部品実装部111のノズル300を回転させることで、部品搭載時の位置ずれを補正する。
 なお、本実施形態2のように、ノズル300の先端面300bより部品320の上面717が小さい場合、第2のカメラ311によって斜め下方から部品320を撮像することで、ノズル300によって保持された部品320の部品中心座標721の認識精度を高めることができる。
 本実施形態2の部品実装装置によって得られるその他の効果については、実施形態1のものと同様であるため、その重複説明は省略する。
 <実施形態3>
 図11は本発明の実施形態3の部品実装装置の部品実装部の構造の一例を示す側面図である。
 本実施形態3の部品実装装置は、その部品実装部111において、第1のカメラ310の上方340に第2のカメラ311が設けられ、さらに第1のカメラ310の下方350に第3の撮像部である第3のカメラ800が設けられた構造のものである。
 すなわち、図11に示す部品実装部111は、ノズル300と、ノズル回転機構301と、基準マーク302と、第1のカメラ310と、第2のカメラ311と、第3のカメラ800とを有している。
 ここで、図11に示す第2のカメラ311は、ノズル300により保持された部品320を上方(第1方向)340の位置から光軸311aを傾けて撮像するものである。すなわち、実施形態1の第2のカメラ311と同様のものであり、ノズル300により保持された部品320を斜め上方340から撮像するものである。
 一方、第3のカメラ800は、実施形態2の第2のカメラ311と同様に、第1のカメラ310より下方350に設けられ、これにより、ノズル300により保持された部品320を、斜め下方350から俯瞰であるあおりで撮像するものである。
 なお、ノズル300は、第1実施形態と同様に1つの部品実装部111に対して複数搭載されていてもよい。
 さらに、ノズル300は、中心軸まわりに回転する構成としてもよい。
 この時、本実施形態3の最良の構成は、第1のカメラ310と、第2のカメラ311と、第3のカメラ800とを用いた認識処理を、ノズル300と、部品320の大きさの関係に合わせて切り替え可能な構成である。
 詳細には、ノズル300によって保持された部品320の位置ずれの認識を、第1のカメラ310および第2のカメラ311のそれぞれの撮像画像を用いて行うか、または第1のカメラ310および第3のカメラ800のそれぞれの撮像画像を用いて実行するかを、ノズル300の先端面300bと部品320との大きさの関係に応じて切り替える。
 すなわち、図7および図8に示すノズル300の先端面300bが、部品320の上面717よりも小さく、第2のカメラ画像701で、ノズル300と部品320との接触部分において、お互いの位置関係を撮像可能な場合、部品実装装置は、第1のカメラ画像700と第2のカメラ画像701とにより、実施形態1と同様の方法で認識処理を行う。そして、その結果を用いて部品実装部111の部品搭載時の位置ずれを補正する。
 一方、図10に示すノズル300の先端面300bが、部品320の上面717よりも大きく、第2のカメラ画像701で、ノズル300と部品320との接触部分において、お互いの位置関係を撮像できない場合、部品実装装置は、第1のカメラ画像700と第2のカメラ画像900とにより、実施形態2と同様の方法で認識処理を行う。そして、その結果を用いて部品実装部111の部品搭載時の位置ずれを補正する。
 本実施形態3の部品実装装置によっても実施形態1の効果と同様の効果を得ることができるため、その重複説明は省略する。
 <実施形態4>
 図12は本発明の実施形態4の部品実装装置の部品実装部の構造の一例を示す側面図である。
 本実施形態4の部品実装装置の部品実装部111は、ノズル300と、ノズル回転機構301と、基準マーク302と、第1のカメラ310とを有している。さらに、第1のカメラ310を上下方向(Z軸方向)に駆動させることが可能なカメラ駆動機構1100を備えている。
 図12に示す部品実装部111は、カメラ駆動機構1100によって、第1のカメラ310を、その光軸310aの中心がノズル300の先端面300b付近を通り、かつノズル300および部品320を横から撮像する水平状態から、上方340または下方350に移動させることが可能な構造になっている。
 これにより、ノズル300によって保持された部品320を、水平方向からの撮像に加えて、さらに光軸311a,800aの中心がノズル300の先端付近を通るように、俯瞰(あおり)で撮像することもでき、これらを切り替えて撮像することが可能である。
 なお、ノズル300は、実施形態1と同様に1つの部品実装部111に対して複数搭載されていてもよい。
 さらに、ノズル300は、中心軸まわりに回転する構成としてもよい。
 本実施形態4の部品実装装置は、部品実装部111の第1のカメラ310を、カメラ駆動機構1100を用いて上下に駆動させることによって、実施形態3の第2のカメラ311と第3のカメラ800とによる撮像および認識を実施することができる。
 したがって、本実施形態4の最良の構成は、第1のカメラ310を駆動させることで、他の実施形態と同様の第1のカメラ310と、第2のカメラ311と、第3のカメラ800とを用いた認識処理を実施することができる。
 さらに、本実施形態4の部品実装装置は、第1のカメラ310を駆動させることで、実施形態3と同様に、ノズル300と部品320の大きさの関係に合わせて、認識処理に用いる撮像画像を切り替え可能な構成である。
 図13は図12に示す部品実装装置のカメラ駆動機構の構成の一例を示す部分斜視図である。
 図13に示すカメラ駆動機構1100は、第1のカメラ310と接続され、かつ第1のカメラ310を上下に駆動させるためのリンク機構1200が設けられている。さらに、カメラ駆動機構1100には、リンク機構1200と接続され、かつリンク機構1200により駆動される第1のカメラ310を、水平面に対して所定の角度に止めるために、部品実装部111に設けたストッパー部1203(図12参照)に押し当てるための押し当て部材1201が設けられている。
 また、カメラ駆動機構1100には、リンク機構1200と接続され、かつリンク機構1200を回転駆動させる駆動軸1202が設けられている。
 本構成のカメラ駆動機構1100は、駆動軸1202を制御することにより、第1のカメラ310で、実施形態3における第2のカメラ311と第3のカメラ800の画像撮像を実現することができる。
 また、図13に示すカメラ駆動機構1100を、図12に示す部品実装部111に適用することも可能である。例えば、図12の部品実装部111に形成されたスリット1204に図13の押し当て部材1201をはめ込み、このスリット1204を案内としてスリット1204内で押し当て部材1201が往復移動するように駆動させることで、第1のカメラ310を上下動させることができる。その際、押し当て部材1201をストッパー部1203に押し当てることで第1のカメラ310を位置決めすることができる。
 本実施形態4の部品実装装置によっても実施形態1の効果と同様の効果を得ることができるため、その重複説明は省略する。
 以上、本発明者によってなされた発明を発明の実施の形態に基づき具体的に説明したが、本発明は前記発明の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる。
 なお、部品実装部111に設けられた複数のノズル300は、一列に並んで設けられていてもよい。また、複数のノズル300の先端面300bの大きさは、1種類であってもよいし、複数種類であってもよい。
 さらに、部品320の位置を認識する処理部と、部品320の位置を補正する処理部とは、1つの制御部に設けられていてもよいし、または、異なった別々の制御部に設けられていてもよい。
 また、上記実施形態では、部品が電子部品、被実装部材が基板の場合を説明したが、上記部品は電子部品以外の部品であってもよく、また上記被実装部材も基板以外の被実装部材であってもよい。例えば、マウント装置等を用いて、電子部品以外の部品を、基板以外の被実装部材に搭載(マウント)する場合等に、本発明を適用することも可能である。
 100 本体
 101 基板(被実装部材)
 110 ビーム部
 111 部品実装部
 112 部品供給部
 113 本体カメラ
 114 基板搬送部
 200 制御部(処理部)
 300 ノズル(保持部)
300a 先端部
300b 先端面
300c 基端部
 301 ノズル回転機構
 302 基準マーク
 310 第1のカメラ(第1の撮像部)
310a 光軸
 311 第2のカメラ(第2の撮像部)
311a 光軸
 320 部品
 330 第2のカメラ取付角度
 340 上方(第1方向)
 350 下方(第2方向)
 360 基準線
 400 XY駆動部
 401 Zθ駆動部
 410 シーケンス処理部
 411 画像処理部
 412 制御処理部
 600 本体カメラ画像
 610 基準座標
 700 第1のカメラ画像
 701 第2のカメラ画像
 710 部品高さ
 711 部品厚み
 712 第1の部品角度
 713 第1辺
 714 第2辺
 715 第3辺
 716 基準線
 717 上面
 718 下面
 719 対角線
 720 ノズル中心座標
 721 部品中心座標
 722 第2の部品角度
 800 第3のカメラ(第3の撮像部)
800a 光軸
 900 第2のカメラ画像
1100 カメラ駆動機構
1200 リンク機構
1201 押し当て部材
1202 駆動軸
1203 ストッパー部
1204 スリット

Claims (11)

  1.  部品を保持し、かつ被実装部材に前記部品を搭載する保持部と、
     前記保持部の先端部に対して水平方向に沿った方向に設けられ、かつ前記保持部により保持された前記部品を撮像する第1の撮像部と、
     前記第1の撮像部より前記保持部の基端部方向である第1方向またはその反対方向である第2方向に設けられ、かつ前記保持部により保持された前記部品に対して光軸を傾けて前記部品を撮像する第2の撮像部と、
     前記第1および前記第2の撮像部が撮像した画像を用いて、前記保持部により保持された前記部品の前記水平方向に沿った平面上の直交座標系の位置ずれと、前記平面上の回転系の位置ずれとを認識する処理部と、
     を有し、
     前記処理部の認識結果に基づいて、前記保持部により保持された前記部品の前記直交座標系と前記回転系の位置を補正して前記部品を前記被実装部材に実装する、部品実装装置。
  2.  請求項1に記載の部品実装装置において、
     前記第2の撮像部は、前記第1の撮像部より前記第1方向に設けられ、前記保持部により保持された前記部品を前記第1方向の位置から前記光軸を傾けて撮像する、部品実装装置。
  3.  請求項2に記載の部品実装装置において、
     前記第1の撮像部より前記第2方向に設けられ、かつ前記保持部により保持された前記部品を前記第2方向の位置から前記光軸を傾けて撮像する第3の撮像部を有する、部品実装装置。
  4.  請求項3に記載の部品実装装置において、
     前記部品の前記直交座標系および前記回転系の前記位置ずれの認識を、前記第1および前記第2の撮像部のそれぞれの撮像画像を用いて実行するか、もしくは、前記第1および前記第3の撮像部のそれぞれの撮像画像を用いて実行するかを、前記保持部の前記先端部と前記部品との大きさの関係に応じて切り替える、部品実装装置。
  5.  請求項3に記載の部品実装装置において、
     前記第1の撮像部の撮像画像を用いて、
     前記保持部の前記先端部から、前記保持部により保持された前記部品の最下点までの距離である部品高さと、
     前記保持部により保持された前記部品の上面側の辺のうちの平均高さが最も大きい第1辺から、前記部品の下面側の辺のうちの平均高さが最も小さい第2辺までの距離である部
    品厚みと、
     前記保持部により保持された前記部品の最下点を通る前記水平方向の基準線と、前記部品の前記第2辺とが成す角の角度である第1の部品角度と、
     を認識し、
     前記第2の撮像部または前記第3の撮像部の撮像画像を用いて、
     前記保持部の先端面の中心である保持部中心座標と、
     前記保持部により保持された部品の上面の対角線の交点である部品中心座標と、
     前記保持部により保持された前記部品の最下点を通る前記水平方向の基準線と、前記部品の下面側の辺のうちの平均高さが最も小さい第3辺とが成す角の角度である第2の部品角度と、
     を認識し、
     前記保持部中心座標と前記部品中心座標とから前記部品の前記直交座標系の前記位置ずれを算出し、
     前記第1の部品角度と前記第2の部品角度とから前記部品の前記回転系の前記位置ずれを算出する、部品実装装置。
  6.  請求項1に記載の部品実装装置において、
     前記第2の撮像部は、前記第1の撮像部より前記第2方向に設けられ、前記保持部により保持された前記部品を前記第2方向の位置から前記光軸を傾けて撮像する、部品実装装置。
  7.  請求項1に記載の部品実装装置において、
     前記第1の撮像部の前記光軸の中心は前記保持部の前記先端部を通り、かつ前記第2の撮像部の前記光軸の中心は前記保持部の前記先端部を通る、部品実装装置。
  8.  請求項1に記載の部品実装装置において、
     前記第1の撮像部は、前記保持部の前記先端部に対して前記水平方向に設けられている、部品実装装置。
  9.  請求項1に記載の部品実装装置において、
     前記保持部により保持された前記部品の前記直交座標系と前記回転系の位置を補正する際に、前記保持部を備えた部品実装部の位置ずれを補正する、部品実装装置。
  10.  請求項1に記載の部品実装装置において、
     前記保持部により保持された前記部品の前記直交座標系と前記回転系の位置の補正は、前記部品を搬送して前記被実装部材の所定箇所上で前記保持部を停止させた後、前記部品を前記被実装部材に搭載する前に行う、部品実装装置。
  11.  請求項1に記載の部品実装装置において、
     前記被実装部材は、配線基板であり、かつ前記部品は、電子部品である、部品実装装置。
PCT/JP2014/071120 2013-09-30 2014-08-08 部品実装装置 WO2015045649A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-204588 2013-09-30
JP2013204588A JP6190229B2 (ja) 2013-09-30 2013-09-30 部品実装装置

Publications (1)

Publication Number Publication Date
WO2015045649A1 true WO2015045649A1 (ja) 2015-04-02

Family

ID=52742805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071120 WO2015045649A1 (ja) 2013-09-30 2014-08-08 部品実装装置

Country Status (2)

Country Link
JP (1) JP6190229B2 (ja)
WO (1) WO2015045649A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448551B2 (en) * 2015-05-25 2019-10-15 Fuji Corporation Component mounter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3328180B1 (en) * 2015-07-23 2020-08-26 FUJI Corporation Component-mounting machine
CN110199588B (zh) 2017-02-07 2020-12-29 雅马哈发动机株式会社 元件安装装置
CN112292923B (zh) * 2018-06-25 2021-12-10 株式会社富士 电子元件安装装置及控制方法
JP7339346B2 (ja) * 2019-09-02 2023-09-05 株式会社Fuji 部品保持装置
CN116306764B (zh) * 2023-03-22 2023-11-14 北京京瀚禹电子工程技术有限公司 一种基于机器视觉的电子元器件计数系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130771A (ja) * 2006-11-20 2008-06-05 Matsushita Electric Ind Co Ltd 部品認識方法
JP2013024773A (ja) * 2011-07-22 2013-02-04 Canon Inc 3次元計測方法
JP2013172062A (ja) * 2012-02-22 2013-09-02 Sony Corp 実装装置、電子部品の良否判定方法、プログラム及び基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130771A (ja) * 2006-11-20 2008-06-05 Matsushita Electric Ind Co Ltd 部品認識方法
JP2013024773A (ja) * 2011-07-22 2013-02-04 Canon Inc 3次元計測方法
JP2013172062A (ja) * 2012-02-22 2013-09-02 Sony Corp 実装装置、電子部品の良否判定方法、プログラム及び基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10448551B2 (en) * 2015-05-25 2019-10-15 Fuji Corporation Component mounter

Also Published As

Publication number Publication date
JP2015070176A (ja) 2015-04-13
JP6190229B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6190229B2 (ja) 部品実装装置
JP2009044044A (ja) 電子部品実装方法及び装置
JP6524250B2 (ja) 部品実装装置
WO2014174598A1 (ja) 部品実装装置、実装ヘッド、および制御装置
JP4801558B2 (ja) 実装機およびその部品撮像方法
JP3744251B2 (ja) 電子部品実装方法
WO2013084383A1 (ja) 基板作業装置
JP6411663B2 (ja) 部品実装装置
JP6849815B2 (ja) 部品実装装置、撮影方法、実装順序の決定方法
WO2019064413A1 (ja) 部品実装装置
JP2018041802A (ja) 電子部品の実装方法及び実装装置
JP2004281958A (ja) 部品実装方法及び装置
JP4122170B2 (ja) 部品実装方法及び部品実装装置
JP4927776B2 (ja) 部品実装方法
JP6403434B2 (ja) 部品実装方法および部品実装装置
JP2007281312A (ja) 部品搭載方法
JP2007042766A (ja) 電子部品の実装装置および実装方法
JP2013236011A (ja) 部品実装装置
WO2016092673A1 (ja) 部品実装機
JP4401193B2 (ja) 電子部品実装装置
JP4860366B2 (ja) 表面実装装置
JP5181383B2 (ja) ボンディング装置
US11266050B2 (en) Component mounting device
JP2017045913A (ja) 部品実装装置および部品実装方法
JP7182156B2 (ja) 実装システム、実装方法、及び実装用プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14847795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14847795

Country of ref document: EP

Kind code of ref document: A1