WO2015040665A1 - ノイズフィルタ - Google Patents

ノイズフィルタ Download PDF

Info

Publication number
WO2015040665A1
WO2015040665A1 PCT/JP2013/075004 JP2013075004W WO2015040665A1 WO 2015040665 A1 WO2015040665 A1 WO 2015040665A1 JP 2013075004 W JP2013075004 W JP 2013075004W WO 2015040665 A1 WO2015040665 A1 WO 2015040665A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
terminal
coil
wiring
noise filter
Prior art date
Application number
PCT/JP2013/075004
Other languages
English (en)
French (fr)
Inventor
友介 椿
真央 川村
瀧北 守
健二 廣瀬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015537440A priority Critical patent/JP6113292B2/ja
Priority to CN201380079626.XA priority patent/CN105556838A/zh
Priority to PCT/JP2013/075004 priority patent/WO2015040665A1/ja
Priority to EP13893859.2A priority patent/EP3048726A4/en
Priority to US14/889,523 priority patent/US10263589B2/en
Priority to CN201910937778.8A priority patent/CN110661504A/zh
Publication of WO2015040665A1 publication Critical patent/WO2015040665A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks
    • H03H7/427Common-mode filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/26Improving frequency characteristic by the use of loading coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0035Wound magnetic core

Definitions

  • This invention relates to a noise filter.
  • Non-Patent Document 1 a technique disclosed in Non-Patent Document 1 is known.
  • This conventional noise filter is composed of two coils and two across the line capacitors (hereinafter referred to as X capacitors), each having a coil between one terminal and the other terminal of the two X capacitors.
  • One of the two X capacitors is connected, and has a structure in which a current path in the direction opposite to the current flowing through the X capacitor is provided.
  • a current in the reverse direction flows through the other path, so that magnetic fluxes generated by the currents flowing through the respective paths cancel each other.
  • the magnetic coupling with the other X capacitor is suppressed. Thereby, the attenuation amount of the noise filter in the normal mode is greatly improved.
  • Patent Document 1 discloses a method of suppressing magnetic coupling between capacitors depending on how the capacitors are arranged. In this method, among a plurality of capacitors connected in parallel, each of the capacitors is arranged so that the vector of the current flowing in one capacitor is not parallel to the vector of the current flowing in the other capacitor, and the magnetic coupling between the capacitors is established. Suppressed.
  • Non-Patent Document 1 has a problem that a general X capacitor cannot be used and an X capacitor having a special structure needs to be used. Further, in the circuit technology that can be used for the filter described in Patent Document 1 described above, circuit component placement and wiring are restricted by capacitor placement, and the circuit area increases as the number of capacitors increases. There is a problem that it ends up.
  • the present invention has been made to solve the above-described problems in conventional noise filters and the like.
  • a general capacitor can be used. It is an object of the present invention to provide a noise filter that can suppress magnetic coupling.
  • the noise filter according to the present invention is: A noise filter including a first capacitor and a second capacitor,
  • the first capacitor and the second capacitor are: A first wiring connecting one terminal of the first capacitor and one terminal of the second capacitor, and connecting the other terminal of the first capacitor and the other terminal of the second capacitor. Connected in parallel by the second wiring, The first wiring and the second wiring are arranged to intersect an odd number of times, It is characterized by that.
  • the noise filter according to the present invention is A noise filter including a first capacitor, a second capacitor, a first coil, and a second coil, A first wiring connecting one terminal of the first capacitor and one terminal of the second coil; A second wiring connecting the other terminal of the first capacitor and one terminal of the first coil; With One terminal of the second capacitor is connected to the other terminal of the second coil; The other terminal of the second capacitor is connected to the other terminal of the first coil; The first wiring and the second wiring are arranged to intersect an odd number of times, It is characterized by that.
  • the noise filter according to the present invention is: A noise filter comprising three or more capacitors including a first capacitor and a second capacitor,
  • the first capacitor and the second capacitor are: A first wiring connecting one terminal of the first capacitor and one terminal of the second capacitor, and connecting the other terminal of the first capacitor and the other terminal of the second capacitor.
  • Capacitors other than the first capacitor and the second capacitor are connected in parallel to the first capacitor and the second capacitor, respectively.
  • the first wiring and the second wiring are arranged to intersect an odd number of times, It is characterized by that.
  • the noise filter according to the present invention is A noise filter comprising three or more capacitors including a first capacitor and a second capacitor, a first coil, and a second coil, A first wiring connecting one terminal of the first capacitor and one terminal of the second coil; A second wiring connecting the other terminal of the first capacitor and one terminal of the first coil; With One terminal of the second capacitor is connected to the other terminal of the second coil; The other terminal of the second capacitor is connected to the other terminal of the first coil; Capacitors other than the first capacitor and the second capacitor are connected in parallel to the first capacitor and the second capacitor, respectively.
  • the first wiring, the second wiring, and the wiring for connecting capacitors in parallel at least one wiring crosses an odd number of times. It is characterized by that.
  • the noise filter according to the present invention is: A noise filter including a first capacitor, a second capacitor, a third capacitor, a first coil, a second coil, a third coil, and a fourth coil, A first wiring connecting one terminal of the first capacitor and one terminal of the first coil; A second wiring connecting the other terminal of the first capacitor and one terminal of the second coil; A third wiring connecting one terminal of the third capacitor and the other terminal of the first coil; A fourth wiring connecting the other terminal of the third capacitor and the other terminal of the second coil; A fifth wiring connecting one terminal of the third capacitor and one terminal of the third coil; A sixth wiring connecting the other terminal of the third capacitor and one terminal of the fourth coil; A seventh wiring connecting one terminal of the second capacitor and the other terminal of the third coil; An eighth wiring connecting the other terminal of the second capacitor and the other terminal of the fourth coil; A wiring location between the first wiring and the second wiring; a wiring location between the third wiring and the fourth wiring; a wiring location between the fifth wiring and the sixth wiring; Wirings in at least one of the wiring locations of the first
  • the magnetic coupling between capacitors can be suppressed, and the attenuation characteristic of the noise filter in the normal mode can be improved.
  • the noise filter by Embodiment 2 of this invention it is a perspective view which shows typically the magnetic path which the normal mode noise electric current bypasses X capacitor
  • the noise filter by Embodiment 3 of this invention it is a perspective view which shows typically the magnetic path which the normal mode noise electric current bypasses X capacitor
  • the noise filter by Embodiment 4 of this invention it is a perspective view which shows typically the magnetic path which the normal mode noise current bypasses X capacitor
  • FIG. 1 is a circuit diagram for explaining a noise filter according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view schematically showing the noise filter according to Embodiment 1 of the present invention.
  • the noise filter according to the first embodiment of the present invention includes a first X capacitor C1 as a first capacitor and a second X capacitor C2 as a second capacitor.
  • the first X capacitor C1 and the second X capacitor C2 are connected in parallel to form a filter circuit.
  • the noise filter configured as described above is inserted between the power source side and the electric device side or between the electric device and the load side of the electric device, and attenuates noise generated by the electric device by the filter circuit.
  • One terminal 1 of the first X capacitor C1 is connected to one terminal 2 of the second X capacitor C2 by a first wiring 3, and the other terminal 4 of the first X capacitor C1 is
  • the second wiring 6 is connected to the other terminal 5 of the second X capacitor C2.
  • the first wiring 3 and the second wiring 6 are arranged so as to intersect once.
  • the noise filter configured as described above is connected between the power supply side and the electric device side as described above, or between the electric device and the load side of the electric device, and attenuates noise of the electric device.
  • the first and second X capacitors C1 and C2 usually represent metallized film capacitors used for noise filters, and are arranged in parallel.
  • the intersection of the first wiring 3 and the second wiring 6 is not limited to one time, and may be an odd number.
  • the first and second wirings 3 and 6 connecting the first and second X capacitors C1 and C2 are crossed once so that the normal mode is obtained.
  • a mechanism for improving the attenuation characteristic of the noise filter in the above will be described.
  • FIG. 3 is a circuit diagram for explaining a conventional noise filter.
  • the first X capacitor C1 and the first X capacitor C1 having the same component structure as those of the noise filter according to the first embodiment of the invention shown in FIG. 2 X capacitors C2 are provided, but are different from the noise filter according to the first embodiment of the present invention in that these connecting wires do not intersect.
  • FIG. 4 is a perspective view schematically showing a conventional noise filter. 3 and 4, a noise filter is connected between the power source and the electric device, the first X capacitor C1 side is the power source side, and the second X capacitor C2 side is the electric device side. Assume that a noise source V1 exists on the electric equipment side.
  • FIG. 5 is an explanatory diagram showing a current path in which the normal mode noise current bypasses the X capacitor in the conventional noise filter, and the normal mode noise current generated from the noise source V1 is the first and second X A current path that bypasses the capacitors C1 and C2 is shown.
  • FIG. 6 is a perspective view schematically showing a current path through which a normal mode noise current bypasses the X capacitor and a magnetic flux generated by the current in a conventional noise filter.
  • i1 represents a normal mode noise current bypassed by the first X capacitor C1
  • i2 represents a normal mode noise current bypassed by the second X capacitor C2.
  • ⁇ 1 represents a magnetic flux generated from the X capacitor C1
  • ⁇ 2 represents a magnetic flux generated from the X capacitor C2
  • ⁇ 1 ′ represents a magnetic flux interlinked with the X capacitor C2 in ⁇ 1
  • ⁇ 2 ′ represents ⁇ 2.
  • the magnetic flux interlinking with the X capacitor C1 is shown.
  • FIG. 7 is an explanatory diagram showing a current path through which the normal mode noise current bypasses the X capacitor in the noise filter according to the first embodiment of the present invention.
  • FIG. 8 shows the noise filter according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a current path through which normal mode noise current bypasses the X capacitor and a magnetic flux generated by the current.
  • the wirings connecting the first X capacitor C1 and the second X capacitor C2 are crossed once.
  • the normal mode noise current in the reverse direction flows through the first X capacitor C1 and the second X capacitor C2, and the directions of the magnetic flux ⁇ 1 ′ and the magnetic flux ⁇ 2 ′ are also in the reverse directions (directions canceled).
  • the wiring connecting the first X capacitor C1 and the second X capacitor C2 intersects once.
  • the present invention is not limited to this. You may cross above. If it is an odd number of times, normal mode noise current in the reverse direction flows through the first X capacitor C1 and the second X capacitor C2, so that the attenuation characteristic of the noise filter can be improved.
  • the first X capacitor C1 side is the power supply side. However, the present invention is not limited to this, and the first X capacitor C1 side is also the load side of the electric equipment. The attenuation characteristic of the filter can be improved.
  • FIG. 9 is a circuit diagram for explaining a noise filter according to the second embodiment of the present invention
  • FIG. 10 is a perspective view schematically showing the noise filter according to the second embodiment of the present invention.
  • the noise filter according to the second embodiment of the present invention includes a first X capacitor C1 as a first capacitor, a second X capacitor C2 as a second capacitor, And a third X capacitor C3 as a third capacitor.
  • the first to third X capacitors C1, C2, and C3 are connected in parallel to constitute a filter circuit.
  • the noise filter configured in this way is inserted between the power source side and the electric device side or between the electric device and the load side of the electric device, and attenuates noise generated by the electric device.
  • One terminal 1 of the first X capacitor C1 is connected to one terminal 2 of the second X capacitor C2 by a first wiring 3, and the other terminal 4 of the first X capacitor C1 is
  • the second wiring 6 is connected to the other terminal 5 of the second X capacitor C2.
  • the first wiring 3 and the second wiring 6 are arranged so as to intersect once.
  • the noise filter configured as described above is connected between the power source side and the electric device side as described above, or between the electric device and the load side of the electric device, and attenuates noise generated by the electric device.
  • the first and second X capacitors C1 and C2 usually represent metallized film capacitors used for noise filters, and are arranged in parallel.
  • the first wiring 3 and the second wiring 6 are arranged so as to intersect once.
  • the first to third X capacitors C1, C2, and C3 usually represent metallized film capacitors used for noise filters, and are arranged in parallel. Other configurations are the same as those of the first embodiment. Further, it is assumed that there is a noise source V1 on the electric equipment side as shown in FIGS.
  • intersection of the first wiring 3 and the second wiring 6 is not limited to one time, but may be an odd number of times.
  • an X capacitor as another capacitor connected in parallel to each of the first to third X capacitors C1, C2, and C3 may be provided.
  • FIG. 11 is an explanatory diagram showing a current path through which the normal mode noise current bypasses the X capacitor in the noise filter according to the second embodiment of the present invention.
  • the normal mode noise current generated from the noise source V1 is the first. 1 to 3 show current paths that bypass the third X capacitors C1, C2, and C3.
  • FIG. 12 is a perspective view schematically showing a current path through which the normal mode noise current bypasses the X capacitor and a magnetic flux generated by the current in the noise filter according to the second embodiment of the present invention.
  • i1 is a normal mode noise current bypassed by the first X capacitor C1
  • i2 is a normal mode noise current bypassed by the second X capacitor C2
  • i3 is a third mode noise current. It represents the normal mode noise current bypassed by the X capacitor C3.
  • ⁇ 1 represents a magnetic flux generated from the first X capacitor C1
  • ⁇ 2 represents a magnetic flux generated from the second X capacitor C2
  • ⁇ 3 represents a magnetic flux generated from the third X capacitor C3.
  • ⁇ 13 ′ is a magnetic flux obtained by synthesizing the magnetic flux linked to the second X capacitor C2 among the magnetic fluxes ⁇ 1 and ⁇ 3, and ⁇ 2 ′ is a magnetic flux linked to the first and second X capacitors C1 and C2 of the magnetic flux ⁇ 2. Represents.
  • normal mode noise currents i1 and i3 in the same direction flow through the first and third X capacitors C1 and C3, respectively, so that the directions of the magnetic flux ⁇ 1 and the magnetic flux ⁇ 3 are also in the same direction (intensify).
  • the second X capacitor C2 crosses the wiring connecting the first X capacitor C1 and the second X capacitor C2 once so that the first and third X capacitors C1, C3
  • the normal mode noise current flows in the opposite direction, the directions of the magnetic flux ⁇ 13 ′ and the magnetic flux ⁇ 2 ′ are also opposite directions (canceled directions).
  • the noise filter according to the second embodiment of the present invention Due to the above operation principle, similarly to the noise filter according to the first embodiment, in the noise filter according to the second embodiment of the present invention, it is possible to suppress the magnetic coupling between the X capacitors. The attenuation effect of the noise filter in the normal mode can be improved.
  • the third X capacitor C3 side is the power source side, and the second X capacitor C2 side is the electrical equipment side.
  • the present invention is not limited to this, and the second X capacitor C2 side is Similarly, the attenuation characteristic of the noise filter can be improved by setting the power supply side and the third X capacitor C3 side to the electrical equipment side.
  • the third X capacitor C3 side is the power source side
  • the second X capacitor C2 side is the electrical device side.
  • the present invention is not limited to this, and the second X capacitor C2 Similarly, the attenuation characteristic of the noise filter can be improved by setting the side to the load side and the third X capacitor C3 side to the electrical equipment side.
  • the third X capacitor C3 is on the power supply side, and the second X capacitor C2 side is on the electric equipment side, but this is not a limitation, and the second X capacitor C2 side Similarly, the attenuation characteristic of the noise filter can be improved by setting the third X capacitor C3 side as the load side.
  • FIG. 13 is a circuit diagram for explaining a noise filter according to Embodiment 3 of the present invention
  • FIG. 14 is a perspective view schematically showing a noise filter according to Embodiment 3 of the present invention.
  • the noise filter according to the third embodiment of the present invention includes a first X capacitor C1 as a first capacitor, a second X capacitor C2 as a second capacitor, A filter circuit including a first coil L1 and a second coil L2 is provided.
  • the first coil L1 and the second coil L2 constitute a common mode choke coil.
  • the common mode choke coil including the first and second X capacitors C1 and C2 and the first and second L1 and L2 constitutes a filter circuit.
  • the noise filter configured in this way is inserted between the power source side and the electric device side or between the electric device and the load side of the electric device, and attenuates noise generated by the electric device. As shown in FIGS. 13 and 14, it is assumed that a noise source V1 exists on the electric equipment side.
  • One terminal 1 of the first X capacitor C1 and one terminal 7 of the second coil L1 are connected by a first wiring 8, and the other terminal 2 of the first X capacitor C1 and the first terminal 2
  • One terminal 9 of the coil L1 is connected by a second wiring 10.
  • the first wiring 8 and the second wiring 10 are arranged so as to intersect once.
  • One terminal 2 of the second X capacitor C2 is connected to the other terminal 12 of the second coil L2, and the other terminal 5 of the second X capacitor C2 is connected to the other terminal 12 of the first coil L1. It is connected to the terminal 11.
  • intersection of the first wiring 8 and the second wiring 10 is not limited to one time, but may be an odd number of times.
  • FIG. 15 is an explanatory diagram showing a current path through which the normal mode noise current bypasses the X capacitor in the noise filter according to the third embodiment of the present invention.
  • FIG. 16 is a perspective view schematically showing a current path through which the normal mode noise current bypasses the X capacitor and a magnetic flux generated by the current in the noise filter according to the third embodiment of the present invention.
  • i1 represents a normal mode noise current bypassed by the first X capacitor C1
  • i2 represents a normal mode noise current bypassed by the second X capacitor C2.
  • ⁇ 1 represents the magnetic flux generated from the first X capacitor C1
  • ⁇ 2 represents the magnetic flux generated from the second X capacitor C2
  • ⁇ 1 ′ is chained to the second X capacitor C2 of ⁇ 1.
  • An intersecting magnetic flux, ⁇ 2 ′ represents a magnetic flux interlinking with the first X capacitor C1 in ⁇ 2.
  • the first X capacitor C1 and the wiring for connecting the common mode choke coil composed of the first and second coils L1 and L2 are crossed once, whereby the above-described embodiment is performed.
  • a normal mode noise current in the reverse direction flows through the first X capacitor C 1 and the second X capacitor C 2.
  • the directions of the magnetic flux ⁇ 1 ′ and the magnetic flux ⁇ 2 ′ are also opposite directions (cancelled directions). Thereby, the magnetic coupling between the first X capacitor C1 and the second X capacitor C2 can be suppressed.
  • FIG. 17 is a characteristic diagram showing the noise attenuation characteristics of the noise filter according to the third embodiment of the present invention, in which the horizontal axis represents frequency and the vertical axis represents Gain (noise attenuation amount). As the value of Gain is smaller, the amount of noise attenuation is larger.
  • a wavy line A represents a noise filter (conventional noise) when the wiring connecting the first X capacitor C1 and the common mode choke coil composed of the first and second coils L1 and L2 does not cross an odd number of times. Shows the noise attenuation characteristics of the filter.
  • a solid line B indicates a noise attenuation characteristic when the noise filter according to the third embodiment of the present invention is used. As can be seen from FIG. 17, it can be confirmed that the noise filter according to the third embodiment of the present invention has improved noise attenuation characteristics as compared with the conventional noise filter.
  • the first X capacitor is also provided.
  • the wiring connecting C1 and the common mode choke coil intersect once, the magnetic coupling between the X capacitors can be suppressed, and the attenuation characteristic of the noise filter in the normal mode can be improved.
  • the configuration in which the first X capacitor C1 and the common mode choke coil including the first and second coils L1 and L2 are crossed once is illustrated. It is not limited, and it may cross one or more times if it is an odd number of times. Further, the wiring connecting the second X capacitor C2 and the common mode choke coil composed of the first and second coils L1 and L2 may be crossed an odd number of times. Can be improved.
  • the configuration using the common mode choke coil including the first and second coils L1 and L2 is illustrated.
  • the configuration is not limited to this, and the first and second coils are not limited thereto.
  • the choke coils may be configured by normal mode choke coils, respectively. Since the normal mode inductance value of the common mode choke coil is generally low, a damping effect can be obtained in a low frequency range by using two normal mode choke coils.
  • the first X capacitor C1 side is the power source side
  • the second X capacitor C2 side is the electric device side
  • the attenuation characteristic of the noise filter can be improved by setting the C2 side as the power source side and the first X capacitor C1 side as the electric device side.
  • the first X capacitor C1 side is the power source side
  • the second X capacitor C2 side is the electrical device side.
  • the present invention is not limited to this, and the second X capacitor C2 Similarly, the attenuation characteristic of the noise filter can be improved even when the side is the load side and the first X capacitor C1 side is the electric equipment side. Furthermore, in the noise filter according to the third embodiment, the first X capacitor C1 side is the power source side, and the second X capacitor C2 side is the electric device side. However, the present invention is not limited to this, and the second second capacitor Similarly, the attenuation characteristic of the noise filter can be improved by setting the X capacitor C2 side as the electric equipment side and the first X capacitor C1 side as the load side.
  • FIG. 18 is a circuit diagram for explaining a noise filter according to Embodiment 4 of the present invention
  • FIG. 19 is a perspective view schematically showing a noise filter according to Embodiment 4 of the present invention.
  • the noise filter according to the fourth embodiment of the present invention includes a first X capacitor C1 as a first capacitor, a second X capacitor C2 as a second capacitor, A filter circuit including a third X capacitor C3, which is a third capacitor, and a common mode choke coil including a first coil L1 and a second coil L2 is provided.
  • the noise filter configured as described above is inserted between the power supply side and the electric equipment side, or between the electric equipment and the load side of the electric equipment, and attenuates the noise of the main circuit by the filter circuit. As shown in FIGS. 18 and 19, it is assumed that a noise source V1 exists on the electric equipment side.
  • One terminal 1 of the first X capacitor C1 and one terminal 7 of the second coil L1 are connected by a first wiring 8, and the other terminal 2 of the first X capacitor C1 and the first terminal 2
  • One terminal 9 of the coil L1 is connected by a second wiring 10.
  • the first wiring 8 and the second wiring 10 are arranged so as to intersect once.
  • One terminal 2 of the second X capacitor C2 is connected to the other terminal 12 of the second coil L2, and the other terminal 5 of the second X capacitor C2 is connected to the other terminal 12 of the first coil L1. It is connected to the terminal 11.
  • the third X capacitor C3 is connected in parallel to the second X capacitor C2.
  • intersection of the first wiring 8 and the second wiring 10 is not limited to one time, but may be an odd number of times.
  • FIG. 20 is an explanatory diagram showing a current path through which the normal mode noise current bypasses the X capacitor in the noise filter according to the fourth embodiment of the present invention.
  • FIG. 21 shows the noise filter according to the fourth embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a current path through which normal mode noise current bypasses the X capacitor and a magnetic flux generated by the current.
  • i1 is a normal mode noise current bypassed by the first X capacitor C1
  • i2 is a normal mode noise current bypassed by the second X capacitor C2
  • i3 is a third X capacitor. It represents the normal mode noise current bypassed by C3.
  • ⁇ 1 represents a magnetic flux generated from the first X capacitor C1
  • ⁇ 2 represents a magnetic flux generated from the second X capacitor C2
  • ⁇ 3 represents a magnetic flux generated from the third X capacitor C3.
  • ⁇ 13 ′ is a magnetic flux obtained by synthesizing the magnetic flux linked to the second X capacitor C2 among the magnetic fluxes ⁇ 1 and ⁇ 3, and ⁇ 2 ′ is a magnetic flux linked to the first and second X capacitors C1 and C2 of the magnetic flux ⁇ 2. Represents.
  • normal mode noise currents i1 and i3 in the same direction flow in the first and third X capacitors C1 and C3, respectively, so that the directions of the magnetic flux ⁇ 1 and the magnetic flux ⁇ 3 are also in the same direction (intensify each other).
  • the second X capacitor C2 crosses the wiring connecting the first X capacitor C1 and the common mode choke coil including the first and second choke coils L1 and L2 once, thereby Since the normal mode noise current flows in the reverse direction with respect to the first and third X capacitors C1 and C3, the directions of the magnetic flux ⁇ 13 ′ and the magnetic flux ⁇ 2 ′ are also opposite directions (canceled directions). Thereby, the mutual magnetic coupling in the first to third X capacitors C1, C2, and C3 can be suppressed.
  • the wiring connecting the first X capacitor C1 and the common mode choke coil including the first and second coils L1 and L2 is crossed once.
  • the present invention is not limited to this, and if it is an odd number of times, it may cross one or more times. Further, even when the wiring connecting the second X capacitor C2 and the common mode choke coil including the first and second coils L1 and L2 intersects an odd number of times, the attenuation effect of the noise filter can be improved. .
  • FIG. 22 is a circuit diagram for explaining a noise filter according to Embodiment 5 of the present invention
  • FIG. 23 is a perspective view schematically showing a noise filter according to Embodiment 5 of the present invention.
  • the noise filter according to the fifth embodiment of the present invention includes a first X capacitor C1 as a first capacitor, a second capacitor as shown in FIG. A filter comprising a second X capacitor C2 as a capacitor, a third X capacitor C3 as a third capacitor, and a common mode choke coil constituted by a first coil L1 and a second coil L2. It has a circuit. And the wiring which connects the 1st and 3rd X capacitor
  • the wiring connecting the first X capacitor C1 and the third X capacitor C3 is crossed once.
  • the present invention is not limited to this. For example, you may cross one or more times.
  • one common mode choke coil is configured by the first and second coils L1 and L2.
  • the present invention is not limited to this, and a common mode choke coil having a similar configuration is used. Two or more may be provided.
  • FIG. 24 shows a noise filter according to a modification of the fifth embodiment of the present invention, and is a circuit diagram showing a case where two common mode choke coils are used.
  • FIG. 25 is a modification of the fifth embodiment of the present invention. It is a perspective view which shows a noise filter typically.
  • the first and second coils L1 and L2 may be configured by normal mode choke coils, respectively. Since the normal mode inductance value of the common mode choke coil is generally low, a damping effect can be obtained in a low frequency range by using two common mode choke coils or two normal mode choke coils.
  • the third X capacitor C3 side is the power source side and the second X capacitor C2 side is the electric equipment side, but the present invention is not limited to this.
  • the attenuation characteristic of the noise filter can be improved by setting the C2 side to the power source side and the third X capacitor C3 side to the electric equipment side.
  • the third X capacitor C3 side is the power source side and the second X capacitor C2 side is the electric equipment side, but the present invention is not limited to this.
  • the attenuation characteristic of the noise filter can be improved by setting the C2 side as the load side and the third X capacitor C3 side as the electric device side.
  • the third X capacitor C3 side is the power source side and the second X capacitor C2 side is the electric equipment side, but the present invention is not limited to this.
  • the attenuation characteristic of the noise filter can be improved even if the C2 side is the electrical device side and the third X capacitor C3 side is the load side.
  • the noise filter components are connected by wiring.
  • the present invention is not limited to this, and the components are mounted on a substrate and the wiring is configured by a substrate pattern. Also good.
  • the noise filter components are connected by wiring.
  • the present invention is not limited to this, and the noise filter components may be connected by a conductor such as a bus bar or a lead wire. Good.
  • the noise filter according to each embodiment of the present invention described above embodies at least one of the following inventions.
  • a noise filter including a first capacitor and a second capacitor, wherein the first capacitor and the second capacitor are one terminal of the first capacitor and one of the second capacitor.
  • the noise filter, wherein the second wiring is arranged to intersect an odd number of times.
  • a noise filter including a first capacitor, a second capacitor, a first coil, and a second coil, wherein one terminal of the first capacitor and one terminal of the second coil are connected to each other.
  • a noise filter characterized by being arranged so as to intersect with each other.
  • each of the first coil and the second coil includes a normal mode choke coil.
  • a noise filter including three or more capacitors including a first capacitor and a second capacitor, wherein the first capacitor and the second capacitor are one terminal of the first capacitor. And a first wiring that connects one terminal of the second capacitor, and a second wiring that connects the other terminal of the first capacitor and the other terminal of the second capacitor.
  • the capacitors other than the first capacitor and the second capacitor are connected in parallel to the first capacitor and the second capacitor, respectively, and the first wiring and the second wiring cross each other an odd number of times.
  • a noise filter characterized by being arranged to be.
  • a noise filter including three or more capacitors including a first capacitor and a second capacitor, a first coil, and a second coil, wherein one terminal of the first capacitor and the first capacitor A first wiring that connects one terminal of the second coil; a second wiring that connects the other terminal of the first capacitor and one terminal of the first coil; One terminal of the capacitor is connected to the other terminal of the second coil, the other terminal of the second capacitor is connected to the other terminal of the first coil, and the first capacitor Capacitors other than the second capacitor are connected in parallel to the first capacitor and the second capacitor, respectively, and the first wiring, the second wiring, and the wiring for connecting the capacitors in parallel, At least one Noise filter characterized in that the wirings place intersect an odd number of times.
  • each of the first coil and the second coil is configured by a normal mode choke coil.
  • a noise filter including a first capacitor, a second capacitor, a third capacitor, a first coil, a second coil, a third coil, and a fourth coil, wherein the first filter A first wiring connecting one terminal of the capacitor and one terminal of the first coil; a second wiring connecting the other terminal of the first capacitor and one terminal of the second coil; A third wiring for connecting one terminal of the third capacitor and the other terminal of the first coil, a second terminal of the third capacitor, and a second terminal of the second coil.
  • each of the first coil, the second coil, the third coil, and the fourth coil includes a normal mode choke coil. filter.
  • One terminal and the other terminal of the first capacitor are connected to the power supply side, and one terminal and the other terminal of the second capacitor are connected to the electric equipment side.
  • the noise filter according to any one of (2) to (11).
  • One terminal and the other terminal of the first capacitor are connected to the electric device side, and one terminal and the other terminal of the second capacitor are connected to the power source side.
  • the noise filter according to any one of (2) to (11).
  • One terminal and the other terminal of the first capacitor are connected to an electric device side, and one terminal and the other terminal of the second capacitor are connected to a load side of the electric device.
  • the noise filter according to any one of (2) to (11).
  • One terminal and the other terminal of the first capacitor are connected to a load side of the electric device, and one terminal and the other terminal of the second capacitor are connected to the electric device side.
  • the noise filter according to any one of (2) to (11).
  • the filter circuit is mounted on a substrate, and at least the first and second wirings are configured by a substrate pattern.
  • the present invention can be used in the field of electric devices such as AC / DC converters and inverters, and in the field of vehicles such as automobiles equipped with these electric devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters And Equalizers (AREA)

Abstract

 第1のコンデンサと第2のコンデンサからなるフィルタ回路を備え、第1及び第2のコンデンサは、第1のコンデンサの一方の端子と第2のコンデンサの一方の端子を接続する第1の配線と、第1のコンデンサの他方の端子と第2のコンデンサの他方の端子を接続する第2の配線とにより並列接続され、第1の配線と第2の配線は奇数回交差するように配置されている。

Description

ノイズフィルタ
 この発明は、ノイズフィルタに関するものである。
 従来のノイズフィルタとしては、非特許文献1に開示されている技術が知られている。この従来のノイズフィルタは、2つのコイル、2つのアクロスザラインコンデンサ(Across the Line Condenser;以下、Xコンデンサと称する)によって構成され、2つのXコンデンサの一端子間と他端子間にコイルが各々接続されており、2つのXコンデンサのうち一方は、Xコンデンサに流れる電流と逆方向の電流経路が設けられた構造となっている。このように構成された従来のノイズフィルタに於いて、一方のXコンデンサに電流が流れるとき、他の経路にて逆方向の電流が流れるので、各経路を流れる電流によって発生する磁束は互いに相殺され、前記他方のXコンデンサとの磁気的な結合を抑制している。これにより、ノーマルモードに於けるノイズフィルタの減衰量を大幅に改善している。
 又、フィルタに利用可能な回路技術として、コンデンサ同士の磁気的な結合を各コンデンサの配置の仕方によって抑制する方法が特許文献1に示されている。この方法では、並列接続された複数のコンデンサのうち、一方のコンデンサに流れる電流のベクトルが、他方のコンデンサに流れる電流のベクトルと平行にならないように各々配置してコンデンサ同士の磁気的な結合を抑制している。
特開2001-23849号公報
Improvement of EMI Filter Performance With parasitic Coupling Cancellation( IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 20, NO. 5, SEPTEMBER 2005)
 しかしながら、前述の非特許文献1に記載された従来のノイズフィルタに於いては、一般的なXコンデンサが使用できず、特殊な構造を有したXコンデンサを使用する必要があるという課題がある。又、前述の特許文献1に記載されたフィルタに利用可能な回路技術に於いては、回路の部品配置や配線がコンデンサの配置によって制約されてしまい、コンデンサの数が多いほど回路面積が大型化してしまうという課題がある。
 この発明は、従来のノイズフィルタ等における前述のような課題を解決するために成されたものであって、一般的なコンデンサが使用可能で、且つ、コンデンサの配置方法によらず、コンデンサ同士の磁気的な結合を抑制することができるノイズフィルタを提供することを目的とする。
 この発明によるノイズフィルタは、
 第1のコンデンサと第2のコンデンサを含むノイズフィルタであって、
 前記第1のコンデンサと前記第2のコンデンサは、
 前記第1のコンデンサの一方の端子と前記第2のコンデンサの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第2のコンデンサの他方の端子を接続する第2の配線と、により並列接続され、
 前記第1の配線と前記第2の配線は、奇数回交差するように配置されている、
ことを特徴とする。
 又、この発明によるノイズフィルタは、
 第1のコンデンサと第2のコンデンサと第1のコイルと第2のコイルを含むノイズフィルタであって、
 前記第1のコンデンサの一方の端子と前記第2のコイルの一方の端子を接続する第1の配線と、
 前記第1のコンデンサの他方の端子と前記第1のコイルの一方の端子を接続する第2の配線と、
を備え、
 前記第2のコンデンサの一方の端子は、前記第2のコイルの他方の端子に接続され、
 前記第2のコンデンサの他方の端子は、前記第1のコイルの他方の端子を接続され、
 前記第1の配線と前記第2の配線は、奇数回交差するように配置されている、
ことを特徴とする。
 更に、この発明によるノイズフィルタは、
 第1のコンデンサと第2のコンデンサを含む3つ以上のコンデンサを備えたノイズフィルタであって、
 前記第1のコンデンサと前記第2のコンデンサは、
 前記第1のコンデンサの一方の端子と前記第2のコンデンサの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第2のコンデンサの他方の端子を接続する第2の配線と、により並列接続され、
 前記第1のコンデンサと第2のコンデンサ以外のコンデンサは、前記第1のコンデンサと前記第2のコンデンサに夫々並列接続され、
 前記第1の配線と前記第2の配線は、奇数回交差するように配置されている、
ことを特徴とする。
 又、この発明によるノイズフィルタは、
 第1のコンデンサと第2のコンデンサを含む3つ以上のコンデンサと第1のコイルと第2のコイルを備えたノイズフィルタであって、
 前記第1のコンデンサの一方の端子と前記第2のコイルの一方の端子を接続する第1の配線と、
 前記第1のコンデンサの他方の端子と前記第1のコイルの一方の端子を接続する第2の配線と、
を備え、
 前記第2のコンデンサの一方の端子は、前記第2のコイルの他方の端子に接続され、
 前記第2のコンデンサの他方の端子は、前記第1のコイルの他方の端子を接続され、
 前記第1のコンデンサと第2のコンデンサ以外のコンデンサは、前記第1のコンデンサと前記第2のコンデンサに夫々並列接続され、
 前記第1の配線と前記第2の配線、及び、コンデンサ同士を並列接続する配線のうち、少なくとも一箇所の配線同士が奇数回交差する、
ことを特徴とする。
 更にこの発明によるノイズフィルタは、
 第1のコンデンサと第2のコンデンサと第3のコンデンサと、第1のコイルと第2のコイルと第3のコイルと第4のコイルを含むノイズフィルタであって、
 前記第1のコンデンサの一方の端子と前記第1のコイルの一方の端子を接続する第1の配線と、
 前記第1のコンデンサの他方の端子と前記第2のコイルの一方の端子を接続する第2の配線と、
 前記第3のコンデンサの一方の端子と前記第1のコイルの他方の端子を接続する第3の配線と、
 前記第3のコンデンサの他方の端子と前記第2のコイルの他方の端子を接続する第4の配線と、
 前記第3のコンデンサの一方の端子と前記第3のコイルの一方の端子を接続する第5の配線と、
 前記第3のコンデンサの他方の端子と前記第4のコイルの一方の端子を接続する第6の配線と、
 前記第2のコンデンサの一方の端子と前記第3のコイルの他方の端子を接続する第7の配線と、
 前記第2のコンデンサの他方の端子と前記第4のコイルの他方の端子を接続する第8の配線を備え、
 前記第1の配線と前記第2の配線との配線箇所、前記第3の配線と前記第4の配線との配線箇所、前記第5の配線と前記第6の配線との配線箇所、前記第7の配線と前記第8の配線との配線箇所、のうち少なくとも一箇所の配線箇所に於ける配線同士が奇数回交差する、
ことを特徴とする。
 この発明によるノイズフィルタによれば、コンデンサ同士の磁気的な結合を抑制し、ノーマルモードに於けるノイズフィルタの減衰特性を向上させることができる。
この発明の実施の形態1によるノイズフィルタを説明するための回路図である。 この発明の実施の形態1によるノイズフィルタを模式的に示す斜視図である。 従来のノイズフィルタを説明するための回路図である。 従来のノイズフィルタを模式的に示す斜視図である。 従来のノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図である。 従来のノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。 この発明の実施の形態1によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図である。 この発明の実施の形態1によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。 この発明の実施の形態2によるノイズフィルタを説明するための回路図である。 この発明の実施の形態2によるノイズフィルタを模式的に示す斜視図である。 この発明の実施の形態2によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図である。 この発明の実施の形態2によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。 この発明の実施の形態3によるノイズフィルタを説明するための回路図である。 この発明の実施の形態3によるノイズフィルタを模式的に示す斜視図である。 この発明の実施の形態3によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図である。 この発明の実施の形態3によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。 この発明の実施の形態3によるノイズフィルタのノイズ減衰特性を示す特性図である。 この発明の実施の形態4によるノイズフィルタを説明するための回路図である。 この発明の実施の形態4によるノイズフィルタを模式的に示す斜視図である。 この発明の実施の形態4によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図である。 この発明の実施の形態4によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。 この発明の実施の形態5によるノイズフィルタを説明するための回路図である。 この発明の実施の形態5によるノイズフィルタを模式的に示す斜視図である。 この発明の実施の形態5の変形例によるノイズフィルタを示し、コモンモードチョークコイルを2つ使用した場合を示す回路図である。 この発明の実施の形態5の変形例によるノイズフィルタを模式的に示す斜視図である。
実施の形態1.
 以下、この発明の実施の形態1によるノイズフィルタについて説明する。図1は、この発明の実施の形態1によるノイズフィルタを説明するための回路図、図2は、この発明の実施の形態1によるノイズフィルタを模式的に示す斜視図である。図1、図2に示すように、この発明の実施の形態1によるノイズフィルタは、第1のコンデンサとしての第1のXコンデンサC1と、第2のコンデンサとしての第2のXコンデンサC2を備え、第1のXコンデンサC1と第2のXコンデンサC2は並列接続されてフィルタ回路を構成している。
 このように構成されたノイズフィルタは、電源側と電気機器側との間、又は、電気機器と電気機器の負荷側との間に挿入され、フィルタ回路により電気機器が発生するノイズを減衰させる。
 前述の第1のXコンデンサC1の一方の端子1は、第2のXコンデンサC2の一方の端子2に第1の配線3により接続され、第1のXコンデンサC1の他方の端子4は、第2のXコンデンサC2の他方の端子5に第2の配線6により接続される。そして、第1の配線3と第2の配線6は、1回交差するように配置されている。このように構成されたノイズフィルタは、前述のように電源側と電気機器側との間、又は、電気機器と電気機器の負荷側との間に接続され、電気機器のノイズを減衰させる。図2に示すように、第1及び第2のXコンデンサC1、C2は、通常、ノイズフィルタに使用されるメタライズドフィルムコンデンサを表しており、夫々平行に配置されている。尚、第1の配線3と第2の配線6の交差は、1回に限られるものではなく、奇数回であればよい。
 以下、この発明の実施の形態1によるノイズフィルタに於いて、第1及び第2のXコンデンサC1、C2を接続する第1及び第2の配線3、6を一回交差することにより、ノーマルモードに於けるノイズフィルタの減衰特性が改善するメカニズムを説明する。
 先ず、この発明の実施の形態1によるノイズフィルタを理解するために、従来のノイズフィルタについて説明する。図3は、従来のノイズフィルタを説明するための回路図であって、図1に示すこの発明の実施の形態1によるノイズフィルタの場合と同様の部品構成である第1のXコンデンサC1と第2のXコンデンサC2を備えているが、これ等の接続する配線が交差していない点で、この発明の実施の形態1によるノイズフィルタとは異なる。又、図4は、従来のノイズフィルタを模式的に示す斜視図である。図3、図4に於いて、ノイズフィルタが電源と電気機器との間に接続され、更に、第1のXコンデンサC1側を電源側、第2のXコンデンサC2側を電気機器器側とし、電気機器側にノイズ源V1が存在すると仮定する。
 先ず、ノーマルモードノイズ電流の電流経路について説明する。図5は、従来のノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図であって、ノイズ源V1から発生したノーマルモードノイズ電流が第1及び第2のXコンデンサC1、C2をバイパスする電流経路を示しいている。又、図6は、従来のノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。
 図5、図6に於いて、i1は第1のXコンデンサC1によってバイパスされるノーマルモードノイズ電流、i2は第2のXコンデンサC2によってバイパスされるノーマルモードノイズ電流を表している。又、図6に於いて、Φ1はXコンデンサC1から発生する磁束、Φ2はXコンデンサC2から発生する磁束を表し、Φ1'はΦ1のうちXコンデンサC2に鎖交する磁束、Φ2'はΦ2のうちXコンデンサC1に鎖交する磁束を表している。
 図6に於いて、第1のXコンデンサC1と第2のXコンデンサC2には同方向のノーマルモードノイズ電流i1、i2が夫々流れるため、磁束Φ1'と磁束Φ2'の向きも同方向(強めあう方向)になる。これにより、第1のXコンデンサC1と第2のXコンデンサC2が強く結合し、ノーマルモードに於けるノイズフィルタの減衰特性が悪化する。
 次に、この発明の実施の形態1によるノイズフィルタについて説明する。図7は、この発明の実施の形態1によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図、図8は、この発明の実施の形態1によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。図7、図8に示すように、この発明の実施の形態1によるノイズフィルタに於いては、第1のXコンデンサC1と第2のXコンデンサC2を接続する配線を1回交差させているため、第1のXコンデンサC1と第2のXコンデンサC2には逆方向のノーマルモードノイズ電流が流れ、磁束Φ1'と磁束Φ2'の向きも逆方向(相殺される方向)になる。
 以上述べたように、Xコンデンサ同士を接続する配線を一回交差することにより、Xコンデンサ同士の磁気的な結合を抑圧ことが可能となり、ノーマルモードに於けるノイズフィルタの減衰効果を改善することができる。
 尚、この実施の形態1では、第1のXコンデンサC1と第2のXコンデンサC2を接続する配線が1回交差した構成としたが、これに限るものではなく、奇数回であれば1回以上交差してもよい。奇数回であれば、第1のXコンデンサC1と第2のXコンデンサC2には逆方向のノーマルモードノイズ電流が流れるので、ノイズフィルタの減衰特性を改善することができる。又、実施の形態1によるノイズフィルタでは、第1のXコンデンサC1側を電源側としたが、これに限るものではなく、第1のXコンデンサC1側を電気機器の負荷側としても同様にノイズフィルタの減衰特性を改善することができる。
実施の形態2.
 次に、この発明の実施の形態2によるノイズフィルタについて説明する。図9は、この発明の実施の形態2によるノイズフィルタを説明するための回路図、図10は、この発明の実施の形態2によるノイズフィルタを模式的に示す斜視図である。図9、図10に於いて、この発明の実施の形態2によるノイズフィルタは、第1のコンデンサとしての第1のXコンデンサC1と、第2のコンデンサとしての第2のXコンデンサC2と、第3のコンデンサとしての第3のXコンデンサC3とを備えている。第1乃至第3のXコンデンサC1、C2、C3は夫々並列接続されてフィルタ回路を構成している。
 このように構成されたノイズフィルタは、電源側と電気機器側との間、又は、電気機器と電気機器の負荷側との間に挿入され、電気機器が発生するノイズを減衰させる。
 前述の第1のXコンデンサC1の一方の端子1は、第2のXコンデンサC2の一方の端子2に第1の配線3により接続され、第1のXコンデンサC1の他方の端子4は、第2のXコンデンサC2の他方の端子5に第2の配線6により接続される。そして、第1の配線3と第2の配線6は、1回交差するように配置されている。このように構成されたノイズフィルタは、前述のように電源側と電気機器側との間、又は、電気機器と電気機器の負荷側との間に接続され、電気機器が発生するノイズを減衰させる。図2に示すように、第1及び第2のXコンデンサC1、C2は、通常、ノイズフィルタに使用されるメタライズドフィルムコンデンサを表しており、夫々平行に配置されている。
 第1のXコンデンサC1と第2のXコンデンサC2以外のコンデンサである第3のXコンデンサC3は、前記第1のコンデンサと前記第2のコンデンサに夫々並列接続されている。そして、第1の配線3と第2の配線6は、1回交差するように配置されている。図10に示すように、第1乃至第3のXコンデンサC1、C2、C3は、通常、ノイズフィルタに使用されるメタライズドフィルムコンデンサを表しており、夫々平行に配置されている。その他の構成は前述の実施の形態1と同様である。又、図9、図10に示すように電気機器側にノイズ源V1があると仮定する。
 尚、第1の配線3と第2の配線6の交差は、1回に限られるものではなく、奇数回であればよい。又、第1乃至第3のXコンデンサC1、C2、C3に夫々並列接続される更に別のコンデンサとしてのXコンデンサを備えていても良い。
 この発明の実施の形態2によるノイズフィルタに於いて、ノイズフィルタの減衰特性が改善するメカニズムは、基本的には前述の実施の形態1の場合と同様である。図11は、この発明の実施の形態2によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図であり、ノイズ源V1から発生したノーマルモードノイズ電流が第1乃至第3のXコンデンサC1、C2、C3をバイパスする電流経路を示している。図12は、この発明の実施の形態2によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。
 図11、図12に於いて、i1は第1のXコンデンサC1によってバイパスされるノーマルモードノイズ電流、i2は第2のXコンデンサC2によってバイパスされるノーマルモードノイズ電流、更に、i3は第3のXコンデンサC3によってバイパスされるノーマルモードノイズ電流を表している。又、図12に於いて、Φ1は第1のXコンデンサC1から発生する磁束、Φ2は第2のXコンデンサC2から発生する磁束、更に、Φ3は第3のXコンデンサC3から発生する磁束を表している。又、Φ13'は磁束Φ1、Φ3のうち第2のXコンデンサC2に鎖交する磁束を合成した磁束、Φ2'は磁束Φ2のうち第1及び第2のXコンデンサC1、C2に鎖交する磁束を表している。
 図11、図12に於いて、第1及び第3のXコンデンサC1、C3には同方向のノーマルモードノイズ電流i1、i3が夫々流れるため、磁束Φ1と磁束Φ3の向きも同方向(強めあう方向)になる。一方、第2のXコンデンサC2には、第1のXコンデンサC1と第2のXコンデンサC2を接続する配線を1回交差していることにより、第1及び第3のXコンデンサC1、C3に対して逆方向にノーマルモードノイズ電流が流れるため、磁束Φ13'と磁束Φ2'の方向も逆方向(相殺される方向)になる。
 これにより、第1乃至第3のXコンデンサC1、C2、C3に於ける相互の磁気的な結合を抑制することができる。従って、並列接続された3つ以上のXコンデンサによって構成されるノイズフィルタに於いては、少なくとも、1つのXコンデンサのノーマルモードノイズ電流の方向をその他のXコンデンサと逆方向にすれば、Xコンデンサ同士の磁気的な結合を抑制できる。
 以上の動作原理により、前述の実施の形態1によるノイズフィルタと同様、この発明の実施の形態2によるノイズフィルタに於いても、Xコンデンサ同士の磁気的な結合を抑制ことが可能となるため、ノーマルモードにおけるノイズフィルタの減衰効果を改善することができる。
 尚、この実施の形態2では、第3のXコンデンサC3側を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2のXコンデンサC2側を電源側、第3のXコンデンサC3側を電気機器側としても同様にノイズフィルタの減衰特性を改善することができる。又、実施の形態2によるノイズフィルタでは、第3のXコンデンサC3側を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2のXコンデンサC2側を負荷側、第3のXコンデンサC3側を電気機器側としても同様にノイズフィルタの減衰特性を改善することができる。更に、実施の形態2によるノイズフィルタでは、第3のXコンデンサC3を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2のXコンデンサC2側を電気機器側、第3のXコンデンサC3側を負荷側としても同様にノイズフィルタの減衰特性を改善することができる。
実施の形態3.
 次に、この発明の実施の形態3によるノイズフィルタについて説明する。図13は、この発明の実施の形態3によるノイズフィルタを説明するための回路図で、図14は、この発明の実施の形態3によるノイズフィルタを模式的に示す斜視図である。図13、図14に示すように、この発明の実施の形態3によるノイズフィルタは、第1のコンデンサとしての第1のXコンデンサC1と、第2のコンデンサである第2のXコンデンサC2と、第1のコイルL1と、第2のコイルL2と、から成るフィルタ回路を備えている。第1のコイルL1と第2のコイルL2は、コモンモードチョークコイルを構成している。第1及び第2のXコンデンサC1、C2と、第1及び第2のL1、L2から成るコモンモードチョークコイルは、フィルタ回路を構成している。
 このように構成されたノイズフィルタは、電源側と電気機器側との間、又は、電気機器と電気機器の負荷側との間に挿入され、電気機器が発生するノイズを減衰させる。図13、図14に示すように、電気機器側にノイズ源V1が存在すると仮定する。
 前述の第1のXコンデンサC1の一方の端子1と第2のコイルL1の一方の端子7は、第1の配線8により接続され、第1のXコンデンサC1の他方の端子2と第1のコイルL1の一方の端子9は、第2の配線10により接続されている。そして、第1の配線8と第2の配線10は、1回交差するように配置されている。又、第2のXコンデンサC2の一方の端子2は、第2のコイルL2の他方の端子12に接続され、第2のXコンデンサC2の他方の端子5は、第1のコイルL1の他方の端子11に接続されている。
 尚、第1の配線8と第2の配線10の交差は、1回に限られるものではなく、奇数回であればよい。
 この発明の実施の形態3によるノイズフィルタに於いて、ノイズフィルタの減衰特性が改善するメカニズムは前述の実施の形態1によるノイズフィルタと同様である。図15は、この発明の実施の形態3によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図である。図16は、この発明の実施の形態3によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。
 図15、図16に於いて、i1は第1のXコンデンサC1によってバイパスされるノーマルモードノイズ電流、i2は第2のXコンデンサC2によってバイパスされるノーマルモードノイズ電流を表している。又、図16に於いて、Φ1は第1のXコンデンサC1から発生する磁束、Φ2は第2のXコンデンサC2から発生する磁束を表し、Φ1'はΦ1のうち第2のXコンデンサC2に鎖交する磁束、Φ2'はΦ2のうち第1のXコンデンサC1に鎖交する磁束を表している。
 図15、図16に於いて、第1のXコンデンサC1と、第1及び第2のコイルL1、L2からなるコモンモードチョークコイルを接続する配線を1回交差することにより、前述の実施の形態1によるノイズフィルタと同様、第1のXコンデンサC1と第2のXコンデンサC2には逆方向のノーマルモードノイズ電流が流れる。磁束Φ1'と磁束Φ2'の向きも逆方向(相殺される方向)になる。これにより、第1のXコンデンサC1と第2のXコンデンサC2との磁気的な結合を抑制することができる。
 図17は、この発明の実施の形態3によるノイズフィルタのノイズ減衰特性を示す特性図であって、横軸は周波数、縦軸はGain(ノイズ減衰量)を示している。Gainは値が小さいほどノイズ減衰量が大きい。図17に於いて、波線Aは、第1のXコンデンサ
C1と第1及び第2のコイルL1、L2からなるコモンモードチョークコイルを接続する配線を奇数回交差しない場合のノイズフィルタ(従来のノイズフィルタ)に於けるノイズ減衰特性を示す。実線Bは、この発明の実施の形態3によるノイズフィルタを用いた場合のノイズ減衰特性を示す。図17から明らかなように、従来のノイズフィルタと比較して、この発明の実施の形態3によるノイズフィルタの方がノイズ減衰特性が向上していることが確認できる。
 以上のように、第1及び第2のXコンデンサC1、C2の間に第1及び第2のコイルL1、L2からなるコモンモードチョークコイルが接続される構成に於いても、第1のXコンデンサC1とコモンモードチョークコイルを接続する配線を一回交差させることによって、Xコンデンサ同士の磁気的な結合を抑制ことが可能となり、ノーマルモードに於けるノイズフィルタの減衰特性を改善することができる。
 尚、この発明の実施の形態3によるノイズフィルタでは、第1のXコンデンサC1と第1及び第2のコイルL1、L2からなるコモンモードチョークコイルを1回交差した構成を図示したが、これに限るものではなく、奇数回であれば1回以上交差してもよい。又、第2のXコンデンサC2と第1及び第2のコイルL1、L2からなるコモンモードチョークコイルを接続する配線を奇数回交差するようにしてもよく、この場合でも、ノイズフィルタの減衰効果を改善することができる。
 又、この実施の形態3によるノイズフィルタでは、第1及び第2のコイルL1、L2からなるコモンモードチョークコイルを使用した構成を図示したが、これに限るものではなく、第1及び第2のチョークコイルを夫々ノーマルモードチョークコイルにより構成するようにしてもよい。コモンモードチョークコイルのノーマルモードインダクタンス値は一般的に低い値であるので、2つのノーマルモードチョークコイルを使用することにより低域に於いて減衰効果を得ることができる。
 更に、この実施の形態3によるノイズフィルタでは、第1のXコンデンサC1側を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2のXコンデンサC2側を電源側、第1のXコンデンサC1側を電気機器側としても同様にノイズフィルタの減衰特性を改善することができる。又、実施の形態3によるノイズフィルタでは、第1のXコンデンサC1側を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2のXコンデンサC2側を負荷側、第1のXコンデンサC1側を電気機器側としても同様にノイズフィルタの減衰特性を改善することができる。更に、実施の形態3によるノイズフィルタでは、第1のXコンデンサC1側を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2の第2のXコンデンサC2側を電気機器側、第1のXコンデンサC1側を負荷側としても同様にノイズフィルタの減衰特性を改善することができる。
実施の形態4.
 次に、この発明の実施の形態4によるノイズフィルタについて説明する。図18は、この発明の実施の形態4によるノイズフィルタを説明するための回路図で、図19は、この発明の実施の形態4によるノイズフィルタを模式的に示す斜視図である。図18、図19に示すように、この発明の実施の形態4によるノイズフィルタは、第1のコンデンサとしての第1のXコンデンサC1と、第2のコンデンサである第2のXコンデンサC2と、第3のコンデンサである第3のXコンデンサC3と、第1のコイルL1と第2のコイルL2とにより構成されたコモンモードチョークコイル、から成るフィルタ回路を備えている。
 このように構成されたノイズフィルタは電源側と電気機器側との間、又は、電気機器と電気機器の負荷側との間に挿入され、フィルタ回路により主回路のノイズを減衰させる。図18、図19に示すように、電気機器側にノイズ源V1が存在すると仮定する。
 前述の第1のXコンデンサC1の一方の端子1と第2のコイルL1の一方の端子7は、第1の配線8により接続され、第1のXコンデンサC1の他方の端子2と第1のコイルL1の一方の端子9は、第2の配線10により接続されている。そして、第1の配線8と第2の配線10は、1回交差するように配置されている。又、第2のXコンデンサC2の一方の端子2は、第2のコイルL2の他方の端子12に接続され、第2のXコンデンサC2の他方の端子5は、第1のコイルL1の他方の端子11に接続されている。第3のXコンデンサC3は、第2のXコンデンサC2に並列接続されている。
 尚、第1の配線8と第2の配線10の交差は、1回に限られるものではなく、奇数回であればよい。
 先ず、ノーマルモードノイズ電流の電流経路について説明する。図20は、この発明の実施の形態4によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路を示す説明図、図21は、この発明の実施の形態4によるノイズフィルタに於いて、ノーマルモードノイズ電流がXコンデンサをバイパスする電流経路と、その電流によって発生する磁束を模式的に示す斜視図である。
 図20、図21に於いて、i1は第1のXコンデンサC1によってバイパスされるノーマルモードノイズ電流、i2は第2のXコンデンサC2によってバイパスされるノーマルモードノイズ電流、i3は第3のXコンデンサC3によってバイパスされるノーマルモードノイズ電流を表している。又、図21に於いて、Φ1は第1のXコンデンサC1から発生する磁束、Φ2は第2のXコンデンサC2から発生する磁束、更に、Φ3は第3のXコンデンサC3から発生する磁束を表している。又、Φ13'は磁束Φ1、Φ3のうち第2のXコンデンサC2に鎖交する磁束を合成した磁束、Φ2'は磁束Φ2のうち第1及び第2のXコンデンサC1、C2に鎖交する磁束を表している。
 図20、図21に於いて、第1及び第3のXコンデンサC1、C3には同方向のノーマルモードノイズ電流i1、i3が夫々流れるため、磁束Φ1と磁束Φ3の向きも同方向(強めあう方向)になる。一方、第2のXコンデンサC2には、第1のXコンデンサC1と第1及び第2のチョークコイルL1、L2からなるコモンモードチョークコイルを接続する配線を1回交差していることにより、第1及び第3のXコンデンサC1、C3に対して逆方向にノーマルモードノイズ電流が流れるため、磁束Φ13'と磁束Φ2'の方向も逆方向(相殺される方向)になる。これにより、第1乃至第3のXコンデンサC1、C2、C3に於ける相互の磁気的な結合を抑制することができる。
 尚、この実施の形態4によるノイズフィルタでは、第1のXコンデンサC1と、第1及び第2のコイルL1、L2からなるコモンモードチョークコイルとを接続する配線を1回交差した構成としたが、これに限るものではなく、奇数回であれば1回以上交差してもよい。又、第2のXコンデンサC2と、第1及び第2のコイルL1、L2からなるコモンモードチョークコイルとを接続する配線が奇数回交差した構成でも、ノイズフィルタの減衰効果を改善することができる。
実施の形態5.
 次に、この発明の実施の形態5によるノイズフィルタについて説明する。図22は、この発明の実施の形態5によるノイズフィルタを説明するための回路図、図23は、この発明の実施の形態5によるノイズフィルタを模式的に示す斜視図である。この発明の実施の形態5によるノイズフィルタは、図22、図23に示すように、この発明の実施の形態5によるノイズフィルタは、第1のコンデンサとしての第1のXコンデンサC1と、第2のコンデンサである第2のXコンデンサC2と、第3のコンデンサである第3のXコンデンサC3と、第1のコイルL1と第2のコイルL2とにより構成されたコモンモードチョークコイル、から成るフィルタ回路を備えている。そして、並列接続された第1及び第3のXコンデンサC1、C3同士を接続する配線を、奇数回交差されせる構成としたものである。
 図22、図23に於いて、第1及び第3のXコンデンサC1、C3を接続する配線を1回交差させているので、第1及び第3のXコンデンサC1、C3には逆方向のノーマルモードノイズが夫々流れる。従って、それ等のノーマルモードノイズ電流による磁束の向きも逆方向(相殺される方向)になる。これにより、第1乃至第3のXコンデンサC1、C2、C3に於ける相互の磁気的な結合を抑制することができる。又、第2及び第3のXコンデンサC2、C3に対して、更にXコンデンサが並列接続される場合は、そのXコンデンサと第2及び第3のXコンデンサC2、C3とを接続する配線を奇数回交差することでも磁気的な結合を抑制することができる。
 尚、この実施の形態5によるノイズフィルタでは、第1のXコンデンサC1と第3のXコンデンサC3を接続する配線を1回交差した構成としたが、これに限るものではなく、奇数回であれば1回以上交差してもよい。
 前述の実施の形態4、5では、第1及び第2のコイルL1、L2により1つのコモンモードチョークコイルを構成するようにしたが、これに限るものではなく、同様の構成のコモンモードチョークコイルを2つ以上設けても良い。図24は、この発明の実施の形態5の変形例によるノイズフィルタを示し、コモンモードチョークコイルを2つ使用した場合を示す回路図、図25は、この発明の実施の形態5の変形例によるノイズフィルタを模式的に示す斜視図である。或いは、第1及び第2のコイルL1、L2を夫々ノーマルモードチョークコイルにより構成するようにしても良い。コモンモードチョークコイルのノーマルモードインダクタンス値は一般的に低い値であるので、2つのコモンモードチョークコイル又は2つのノーマルモードチョークコイルを使用することにより低域に於いて減衰効果を得ることができる。
 更に、前述の実施の形態4、5では、第3のXコンデンサC3側を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2のXコンデンサC2側を電源側、第3のXコンデンサC3側を電気機器側としても同様にノイズフィルタの減衰特性を改善することができる。又、前述の実施の形態4、5では、第3のXコンデンサC3側を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2のXコンデンサC2側を負荷側、第3のXコンデンサC3側を電気機器側としても同様にノイズフィルタの減衰特性を改善することができる。更に、前述の実施の形態4、5では、第3のXコンデンサC3側を電源側、第2のXコンデンサC2側を電気機器側としたが、これに限るものではなく、第2のXコンデンサC2側を電気機器側、第3のXコンデンサC3側を負荷側としても同様にノイズフィルタの減衰特性を改善することができる。
 尚、前述の実施の形態1乃至5では、ノイズフィルタの構成部品を配線により接続する構成としてが、これに限るものではなく、構成部品を基板上に実装し、配線を基板パターンにより構成してもよい。
 更に、実施の形態1乃至5では、ノイズフィルタの構成部品を配線により接続する構成としたが、これに限るものではなく、ノイズフィルタの構成部品をバスバー若しくはリード線等の導線で接続する構成でもよい。
 尚、この発明は、その発明の範囲内に於いて、実施の形態を適宜、変形、省略することが可能である。
 以上述べたこの発明の各実施の形態によるノイズフィルタは、下記の発明の少なくとも何れかを具体化したものである。
(1)第1のコンデンサと第2のコンデンサを含むノイズフィルタであって、前記第1のコンデンサと前記第2のコンデンサは、前記第1のコンデンサの一方の端子と前記第2のコンデンサの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第2のコンデンサの他方の端子を接続する第2の配線と、により並列接続され、前記第1の配線と前記第2の配線は、奇数回交差するように配置されていることを特徴とするノイズフィルタ。
(2)第1のコンデンサと第2のコンデンサと第1のコイルと第2のコイルを含むノイズフィルタであって、前記第1のコンデンサの一方の端子と前記第2のコイルの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第1のコイルの一方の端子を接続する第2の配線とを備え、前記第2のコンデンサの一方の端子は、前記第2のコイルの他方の端子に接続され、前記第2のコンデンサの他方の端子は、前記第1のコイルの他方の端子を接続され、前記第1の配線と前記第2の配線は、奇数回交差するように配置されていることを特徴とするノイズフィルタ。
(3)前記第1のコイルと前記第2のコイルは、夫々ノーマルモードチョークコイルにより構成されていることを特徴とする前記(2)に記載のノイズフィルタ。
(4)前記第1のコイルと前記第2のコイルによりコモンモードチョークコイルを構成していることを特徴とする前記(2)に記載のノイズフィルタ。
(5)第1のコンデンサと第2のコンデンサを含む3つ以上のコンデンサを備えたノイズフィルタであって、前記第1のコンデンサと前記第2のコンデンサは、前記第1のコンデンサの一方の端子と前記第2のコンデンサの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第2のコンデンサの他方の端子を接続する第2の配線と、により並列接続され、前記第1のコンデンサと第2のコンデンサ以外のコンデンサは、前記第1のコンデンサと前記第2のコンデンサに夫々並列接続され、前記第1の配線と前記第2の配線は、奇数回交差するように配置されていることを特徴とするノイズフィルタ。
(6)第1のコンデンサと第2のコンデンサを含む3つ以上のコンデンサと第1のコイルと第2のコイルを備えたノイズフィルタであって、前記第1のコンデンサの一方の端子と前記第2のコイルの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第1のコイルの一方の端子を接続する第2の配線とを備え、前記第2のコンデンサの一方の端子は、前記第2のコイルの他方の端子に接続され、前記第2のコンデンサの他方の端子は、前記第1のコイルの他方の端子を接続され、前記第1のコンデンサと第2のコンデンサ以外のコンデンサは、前記第1のコンデンサと前記第2のコンデンサに夫々並列接続され、前記第1の配線と前記第2の配線、及び、コンデンサ同士を並列接続する配線のうち、少なくとも一箇所の配線同士が奇数回交差することを特徴とするノイズフィルタ。
(7)前記第1のコイルと前記第2のコイルは、夫々ノーマルモードチョークコイルにより構成されていることを特徴とする前記(6)に記載のノイズフィルタ。
(8)前記第1のコイルと前記第2のコイルによりコモンモードチョークコイルを構成していることを特徴とする前記(6)に記載のノイズフィルタ。
(9)第1のコンデンサと第2のコンデンサと第3のコンデンサと、第1のコイルと第2のコイルと第3のコイルと第4のコイルを含むノイズフィルタであって、前記第1のコンデンサの一方の端子と前記第1のコイルの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第2のコイルの一方の端子を接続する第2の配線と、前記第3のコンデンサの一方の端子と前記第1のコイルの他方の端子を接続する第3の配線と、前記第3のコンデンサの他方の端子と前記第2のコイルの他方の端子を接続する第4の配線と、前記第3のコンデンサの一方の端子と前記第3のコイルの一方の端子を接続する第5の配線と、前記第3のコンデンサの他方の端子と前記第4のコイルの一方の端子を接続する第6の配線と、前記第2のコンデンサの一方の端子と前記第3のコイルの他方の端子を接続する第7の配線と、前記第2のコンデンサの他方の端子と前記第4のコイルの他方の端子を接続する第8の配線を備え、前記第1の配線と前記第2の配線との配線箇所、前記第3の配線と前記第4の配線との配線箇所、前記第5の配線と前記第6の配線との配線箇所、前記第7の配線と前記第8の配線との配線箇所、のうち少なくとも一箇所の配線箇所に於ける配線同士が奇数回交差することを特徴とするノイズフィルタ。
(10)前記第1のコイルと前記第2のコイルと前記第3のコイルと前記第4のコイルは、夫々ノーマルモードチョークコイルにより構成されることを特徴とする前記(9)に記載のノイズフィルタ。
(11)前記第1のコイルと前記第2のコイル、及び、前記第3のコイルと前記第4のコイルによりコモンモードチョークコイルを構成していることを特徴とする前記(9)に記載のノイズフィルタ。
(12)前記第1のコンデンサの一方の端子と他方の端子が前記電源側に接続され、前記第2のコンデンサの一方の端子と他方の端子が前記電気機器側に接続されることを特徴とする前記(2)乃至(11)のうちの何れかに記載のノイズフィルタ。
(13)前記第1のコンデンサの一方の端子と他方の端子が前記電気機器側に接続され、前記第2のコンデンサの一方の端子と他方の端子が前記電源側に接続されることを特徴とする前記(2)乃至(11)のうちの何れかに記載のノイズフィルタ。
(14)前記第1のコンデンサの一方の端子と他方の端子が電気機器側に接続され、前記第2のコンデンサの一方の端子と他方の端子が電気機器の負荷側に接続されることを特徴とする前記(2)乃至(11)のうちの何れかに記載のノイズフィルタ。
(15)前記第1のコンデンサの一方の端子と他方の端子が電気機器の負荷側に接続され、前記第2のコンデンサの一方の端子と他方の端子が電気機器側に接続されることを特徴とする前記(2)乃至(11)のうちの何れかに記載のノイズフィルタ。
(16)前記フィルタ回路が基板上に実装され、少なくとも前記第1及び第2の配線は、 基板パターンにより構成されていることを特徴とする前記(1)乃至(15)のうちの 何れかに記載のノイズフィルタ。
(17)少なくとも前記第1及び第2の配線は、バスバーにより構成されていることを特 徴とする前記(1)乃至(15)のうちの何れかに記載のノイズフィルタ。
(18)少なくとも前記第1及び第2の配線は、リード線等の導線により構成されている ことを特徴とする前記(1)乃至(15)のうちの何れかに記載のノイズフィルタ。
 この発明は、AC/DCコンバータやインバータ等の電気機器の分野、引いてはこれ等の電気機器を搭載する自動車等の車両の分野に利用することができる。
C1 第1のアクロスザラインコンデンサ(第1のXコンデンサ)、
C2 第2のアクロスザラインコンデンサ(第2のXコンデンサ)、
C3 第3のアクロスザラインコンデンサ(第3のXコンデンサ)、
L1 第1のコイル、L2 第2のコイル、V1 ノイズ源

Claims (18)

  1.  第1のコンデンサと第2のコンデンサを含むノイズフィルタであって、
     前記第1のコンデンサと前記第2のコンデンサは、
     前記第1のコンデンサの一方の端子と前記第2のコンデンサの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第2のコンデンサの他方の端子を接続する第2の配線と、により並列接続され、
     前記第1の配線と前記第2の配線は、奇数回交差するように配置されている、
    ことを特徴とするノイズフィルタ。
  2.  第1のコンデンサと第2のコンデンサと第1のコイルと第2のコイルを含むノイズフィルタであって、
     前記第1のコンデンサの一方の端子と前記第2のコイルの一方の端子を接続する第1の配線と、
     前記第1のコンデンサの他方の端子と前記第1のコイルの一方の端子を接続する第2の配線と、
    を備え、
     前記第2のコンデンサの一方の端子は、前記第2のコイルの他方の端子に接続され、
     前記第2のコンデンサの他方の端子は、前記第1のコイルの他方の端子を接続され、
     前記第1の配線と前記第2の配線は、奇数回交差するように配置されている、
    ことを特徴とするノイズフィルタ。
  3.  前記第1のコイルと前記第2のコイルは、夫々ノーマルモードチョークコイルにより構成されていることを特徴とする請求項2に記載のノイズフィルタ。
  4.  前記第1のコイルと前記第2のコイルによりコモンモードチョークコイルを構成していることを特徴とする請求項2に記載のノイズフィルタ。
  5.  第1のコンデンサと第2のコンデンサを含む3つ以上のコンデンサを備えたノイズフィルタであって、
     前記第1のコンデンサと前記第2のコンデンサは、
     前記第1のコンデンサの一方の端子と前記第2のコンデンサの一方の端子を接続する第1の配線と、前記第1のコンデンサの他方の端子と前記第2のコンデンサの他方の端子を接続する第2の配線と、により並列接続され、
     前記第1のコンデンサと第2のコンデンサ以外のコンデンサは、前記第1のコンデンサと前記第2のコンデンサに夫々並列接続され、
     前記第1の配線と前記第2の配線は、奇数回交差するように配置されている、
    ことを特徴とするノイズフィルタ。
  6.  第1のコンデンサと第2のコンデンサを含む3つ以上のコンデンサと第1のコイルと第2のコイルを備えたノイズフィルタであって、
     前記第1のコンデンサの一方の端子と前記第2のコイルの一方の端子を接続する第1の配線と、
     前記第1のコンデンサの他方の端子と前記第1のコイルの一方の端子を接続する第2の配線と、
    を備え、
     前記第2のコンデンサの一方の端子は、前記第2のコイルの他方の端子に接続され、
     前記第2のコンデンサの他方の端子は、前記第1のコイルの他方の端子を接続され、
     前記第1のコンデンサと第2のコンデンサ以外のコンデンサは、前記第1のコンデンサと前記第2のコンデンサに夫々並列接続され、
     前記第1の配線と前記第2の配線、及び、コンデンサ同士を並列接続する配線のうち、少なくとも一箇所の配線同士が奇数回交差する、
    ことを特徴とするノイズフィルタ。
  7.  前記第1のコイルと前記第2のコイルは、夫々ノーマルモードチョークコイルにより構成されている、
    ことを特徴とする請求項6に記載のノイズフィルタ。
  8.  前記第1のコイルと前記第2のコイルによりコモンモードチョークコイルを構成している、
    ことを特徴とする請求項6に記載のノイズフィルタ。
  9.  第1のコンデンサと第2のコンデンサと第3のコンデンサと、第1のコイルと第2のコイルと第3のコイルと第4のコイルを含むノイズフィルタであって、
     前記第1のコンデンサの一方の端子と前記第1のコイルの一方の端子を接続する第1の配線と、
     前記第1のコンデンサの他方の端子と前記第2のコイルの一方の端子を接続する第2の配線と、
     前記第3のコンデンサの一方の端子と前記第1のコイルの他方の端子を接続する第3の配線と、
     前記第3のコンデンサの他方の端子と前記第2のコイルの他方の端子を接続する第4の配線と、
     前記第3のコンデンサの一方の端子と前記第3のコイルの一方の端子を接続する第5の配線と、
     前記第3のコンデンサの他方の端子と前記第4のコイルの一方の端子を接続する第6の配線と、
     前記第2のコンデンサの一方の端子と前記第3のコイルの他方の端子を接続する第7の配線と、
     前記第2のコンデンサの他方の端子と前記第4のコイルの他方の端子を接続する第8の配線を備え、
     前記第1の配線と前記第2の配線との配線箇所、前記第3の配線と前記第4の配線との配線箇所、前記第5の配線と前記第6の配線との配線箇所、前記第7の配線と前記第8の配線との配線箇所、のうち少なくとも一箇所の配線箇所に於ける配線同士が奇数回交差する、
    ことを特徴とするノイズフィルタ。
  10.  前記第1のコイルと前記第2のコイルと前記第3のコイルと前記第4のコイルは、夫々ノーマルモードチョークコイルにより構成される、
    ことを特徴とする請求項9に記載のノイズフィルタ。
  11.  前記第1のコイルと前記第2のコイル、及び、前記第3のコイルと前記第4のコイルによりコモンモードチョークコイルを構成している、
    ことを特徴とする請求項9に記載のノイズフィルタ。
  12.  前記第1のコンデンサの一方の端子と他方の端子が電源側に接続され、
     前記第2のコンデンサの一方の端子と他方の端子が電気機器側に接続される、
    ことを特徴とする請求項2乃至11のうちの何れか一項に記載のノイズフィルタ。
  13.  前記第1のコンデンサの一方の端子と他方の端子が電気機器側に接続され、
     前記第2のコンデンサの一方の端子と他方の端子が電源側に接続される、
    ことを特徴とする請求項2乃至11のうちの何れか一項に記載のノイズフィルタ。
  14.  前記第1のコンデンサの一方の端子と他方の端子が電気機器側に接続され、前記第2のコンデンサの一方の端子と他方の端子が電気機器の負荷側に接続される、
    ことを特徴とする請求項2乃至11のうちの何れか一項に記載のノイズフィルタ。
  15.  前記第1のコンデンサの一方の端子と他方の端子が電気機器の負荷側に接続され、前記第2のコンデンサの一方の端子と他方の端子が電気機器側に接続される、
    ことを特徴とする請求項2乃至11のうちの何れか一項に記載のノイズフィルタ。
  16.  少なくとも前記第1及び第2の配線は、基板パターンにより構成されている、
    ことを特徴とする請求項1乃至15のうちの何れか一項に記載のノイズフィルタ。
  17.  少なくとも前記第1及び第2の配線は、バスバーにより構成されている、
    ことを特徴とする請求項1乃至15のうちの何れか一項に記載のノイズフィルタ。
  18.  少なくとも前記第1及び第2の配線は、リード線等の導線により構成されている、
    ことを特徴とする請求項1乃至15のうちの何れか一項に記載のノイズフィルタ。
PCT/JP2013/075004 2013-09-17 2013-09-17 ノイズフィルタ WO2015040665A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015537440A JP6113292B2 (ja) 2013-09-17 2013-09-17 ノイズフィルタ
CN201380079626.XA CN105556838A (zh) 2013-09-17 2013-09-17 噪声滤波器
PCT/JP2013/075004 WO2015040665A1 (ja) 2013-09-17 2013-09-17 ノイズフィルタ
EP13893859.2A EP3048726A4 (en) 2013-09-17 2013-09-17 Noise filter
US14/889,523 US10263589B2 (en) 2013-09-17 2013-09-17 Noise filter
CN201910937778.8A CN110661504A (zh) 2013-09-17 2013-09-17 噪声滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/075004 WO2015040665A1 (ja) 2013-09-17 2013-09-17 ノイズフィルタ

Publications (1)

Publication Number Publication Date
WO2015040665A1 true WO2015040665A1 (ja) 2015-03-26

Family

ID=52688353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075004 WO2015040665A1 (ja) 2013-09-17 2013-09-17 ノイズフィルタ

Country Status (5)

Country Link
US (1) US10263589B2 (ja)
EP (1) EP3048726A4 (ja)
JP (1) JP6113292B2 (ja)
CN (2) CN110661504A (ja)
WO (1) WO2015040665A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447789B1 (ja) * 2018-05-18 2019-01-09 三菱電機株式会社 ノイズフィルタ
JP2020088888A (ja) * 2018-11-15 2020-06-04 株式会社日立製作所 電圧フィルタおよび電力変換装置
JP6765553B1 (ja) * 2019-05-22 2020-10-07 三菱電機株式会社 ノイズフィルタ
JP6873339B1 (ja) * 2020-04-09 2021-05-19 三菱電機株式会社 ノイズフィルタ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6238257B1 (ja) * 2016-06-28 2017-11-29 三菱電機株式会社 電力変換装置
US11128276B2 (en) * 2018-07-04 2021-09-21 Yazaki Corporation Noise filter and wire harness
CN110798246B (zh) * 2019-09-29 2022-02-25 华为数字能源技术有限公司 一种应用于电力线通信的接口电路、组串及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677756A (ja) * 1992-07-09 1994-03-18 Mitsubishi Electric Corp ノイズフィルタ
JPH07226331A (ja) * 1994-02-15 1995-08-22 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサー
JP2000259048A (ja) * 1999-03-10 2000-09-22 Minolta Co Ltd 画像形成装置
JP2000299615A (ja) * 1999-04-13 2000-10-24 Nippon Telegraph & Telephone East Corp 低周波電源ノイズ防護装置
JP2000315930A (ja) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd フィルタ
JP2001023849A (ja) 1999-07-13 2001-01-26 Hitachi Ltd コンデンサを備える回路および配線基板
JP2002164245A (ja) * 2000-11-24 2002-06-07 Tdk Corp 電子部品の実装構造
JP2011223314A (ja) * 2010-04-09 2011-11-04 Denso Corp ノイズフィルタ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553320U (ja) 1991-12-12 1993-07-13 株式会社トーキン ノイズフィルタ
JP3546904B2 (ja) * 1996-03-27 2004-07-28 東芝ライテック株式会社 放電灯点灯装置
US6546100B1 (en) 1998-12-03 2003-04-08 Nortel Networks Limited Load coil device
CN2466839Y (zh) * 2001-02-03 2001-12-19 周熙文 家庭影院专用电源共模串模噪声滤波器
JP4111377B2 (ja) * 2002-06-03 2008-07-02 Kddi株式会社 インピーダンス整合器およびそれを実装した雑音除去フィルタ
JP4742305B2 (ja) * 2005-10-26 2011-08-10 富士電機株式会社 ノイズフィルタ
JP2009135815A (ja) * 2007-11-30 2009-06-18 Seiko Epson Corp ノイズフィルタおよび半導体デバイス
CN201656765U (zh) * 2010-02-12 2010-11-24 Emif科技有限公司 一种emi滤波器
KR101768693B1 (ko) * 2010-11-01 2017-08-16 페어차일드코리아반도체 주식회사 전력 공급 장치의 입력 필터의 커패시터를 방전하는 장치 및 방법, 그리고 방전 장치를 포함하는 전력 공급 장치
JP5686090B2 (ja) * 2011-11-21 2015-03-18 株式会社デンソー ノイズフィルタが搭載された電子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677756A (ja) * 1992-07-09 1994-03-18 Mitsubishi Electric Corp ノイズフィルタ
JPH07226331A (ja) * 1994-02-15 1995-08-22 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサー
JP2000259048A (ja) * 1999-03-10 2000-09-22 Minolta Co Ltd 画像形成装置
JP2000299615A (ja) * 1999-04-13 2000-10-24 Nippon Telegraph & Telephone East Corp 低周波電源ノイズ防護装置
JP2000315930A (ja) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd フィルタ
JP2001023849A (ja) 1999-07-13 2001-01-26 Hitachi Ltd コンデンサを備える回路および配線基板
JP2002164245A (ja) * 2000-11-24 2002-06-07 Tdk Corp 電子部品の実装構造
JP2011223314A (ja) * 2010-04-09 2011-11-04 Denso Corp ノイズフィルタ装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Improvement of EMI Filter Performance With parasitic Coupling Cancellation", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 20, no. 5, September 2005 (2005-09-01)
See also references of EP3048726A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447789B1 (ja) * 2018-05-18 2019-01-09 三菱電機株式会社 ノイズフィルタ
JP2020088888A (ja) * 2018-11-15 2020-06-04 株式会社日立製作所 電圧フィルタおよび電力変換装置
US10979014B2 (en) 2018-11-15 2021-04-13 Hitachi, Ltd. Voltage filter and power conversion device
JP6765553B1 (ja) * 2019-05-22 2020-10-07 三菱電機株式会社 ノイズフィルタ
WO2020235046A1 (ja) * 2019-05-22 2020-11-26 三菱電機株式会社 ノイズフィルタ
JP6873339B1 (ja) * 2020-04-09 2021-05-19 三菱電機株式会社 ノイズフィルタ
WO2021205595A1 (ja) * 2020-04-09 2021-10-14 三菱電機株式会社 ノイズフィルタ

Also Published As

Publication number Publication date
EP3048726A4 (en) 2017-07-12
CN105556838A (zh) 2016-05-04
US10263589B2 (en) 2019-04-16
EP3048726A1 (en) 2016-07-27
JP6113292B2 (ja) 2017-04-12
US20160126919A1 (en) 2016-05-05
JPWO2015040665A1 (ja) 2017-03-02
CN110661504A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
JP6113292B2 (ja) ノイズフィルタ
US8115582B2 (en) Inductor topologies with substantial common-mode and differential-mode inductance
JP6461437B2 (ja) ノイズフィルタ回路
WO2015056321A1 (ja) ノイズフィルタ
US20160300658A1 (en) Power converter and device integrating inductors in parallel of the same
JP2019198033A (ja) ノイズフィルタ
JP6210464B2 (ja) 電気回路
JP2006287577A (ja) ノイズ抑制回路
JP6639755B2 (ja) ノイズフィルタ回路
JP6765553B1 (ja) ノイズフィルタ
JP7126567B2 (ja) チョークコイルおよびそれを用いたノイズフィルタ
JP2017212496A (ja) フィルタ回路
JP2019186709A (ja) 複合フィルタ部品、及び、電力重畳回路
JP6873339B1 (ja) ノイズフィルタ
WO2019017003A1 (ja) ノイズフィルタおよび電力変換装置
JP6385630B1 (ja) ノイズフィルタおよび電力変換装置
US11373799B2 (en) Choke coil
JP2021141499A (ja) コモンモードノイズフィルタ
JP2020155875A (ja) ノイズフィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380079626.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537440

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013893859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14889523

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE