WO2015037432A1 - 抵抗スポット溶接方法および溶接構造物 - Google Patents

抵抗スポット溶接方法および溶接構造物 Download PDF

Info

Publication number
WO2015037432A1
WO2015037432A1 PCT/JP2014/072280 JP2014072280W WO2015037432A1 WO 2015037432 A1 WO2015037432 A1 WO 2015037432A1 JP 2014072280 W JP2014072280 W JP 2014072280W WO 2015037432 A1 WO2015037432 A1 WO 2015037432A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
spot welding
welding
energization
resistance spot
Prior art date
Application number
PCT/JP2014/072280
Other languages
English (en)
French (fr)
Inventor
学 福本
ひとみ 西畑
泰山 正則
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015536517A priority Critical patent/JP6123904B2/ja
Priority to CN201480050348.XA priority patent/CN105531065B/zh
Priority to US14/917,281 priority patent/US10406626B2/en
Priority to KR1020167009523A priority patent/KR101871077B1/ko
Priority to MX2016003142A priority patent/MX369617B/es
Publication of WO2015037432A1 publication Critical patent/WO2015037432A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/14Projection welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/34Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Definitions

  • the present invention relates to a resistance spot welding method suitable for joining two steel plates and a welded structure obtained by the method.
  • automobile door openings include pillars and roof rails as structural members.
  • the pillar 20 (for example, refer FIG. 4) is comprised by the laminated body 21 which accumulated two steel plates, for example. Then, as shown in FIG. 4, the laminated body 21 is joined by forming welded portions 23 at predetermined intervals on the flange 22 by spot welding.
  • plate assembly As the above-mentioned laminated body, various combinations (hereinafter referred to as “plate assembly”) are assumed by selecting the material of the two steel plates. When performing resistance spot welding, an appropriate pressure (pressing force) and energization amount are set for each plate assembly.
  • a welding current hereinafter referred to as an appropriate current
  • dust a welding current that can obtain a healthy nugget without causing fusing damage (also called spattering, explosion, etc.) called dust. It may be difficult to ensure a sufficient range (hereinafter referred to as an appropriate current range).
  • the healthy nugget is a nugget that has a sufficiently large melted portion and is capable of obtaining a sufficient joint strength in a tensile test of a joined body (joint).
  • the sufficiently large melted part is, for example, a melted part having a diameter larger than 4 ⁇ t (mm) (t is the minimum thickness (mm) of the two steel plates constituting the plate assembly).
  • the appropriate current range is determined for each condition (a condition that combines pressure and energization time) determined by equipment constraints, production constraints, etc., and the upper limit value of the appropriate current (hereinafter referred to as the upper limit current) and the appropriate current. It can be determined as the difference from the lower limit value (hereinafter referred to as the lower limit current). In general, it is desirable that the appropriate current range is wider because stable welding quality can be ensured even when disturbances (current fluctuations, electrode tip wear, etc.) occur during welding.
  • Patent Documents 1, 2, 3, and 4 improve the conformity (contact state) of the contact surfaces between the steel plates, and reduce the generation of dust while suppressing the generation of dust by ensuring a sufficient contact area during energization. Expanding techniques are disclosed. These techniques can be interpreted as techniques capable of expanding the upper limit current.
  • Patent Document 5 corona bond (solid-phase welded ring-shaped portion generated around the nugget: JIS Z 3001 is formed by pressing the periphery of the contact portion between the spot welding electrode and the material to be welded with an insulator indenter. -6 (see 2013)) technology for expanding the area is disclosed.
  • Patent Document 5 describes that an effect similar to that obtained by enlarging the nugget diameter by enlarging the area of the corona bond can be obtained. This technique can be interpreted as a technique capable of preventing the generation of dust by keeping the welding current low.
  • a shunt current of the welding current is generated during welding, formation of the melted portion is delayed and a healthy nugget cannot be obtained.
  • the shunt is called a reactive current or the like, and many studies have been made on how to limit the influence.
  • Patent Document 6 discloses an invention in which a reactive current is calculated and a current increased by the reactive current is set as a welding current.
  • Patent Document 7 discloses a method of obtaining a healthy nugget by reducing the influence of reactive current by providing a slit.
  • Patent Documents 1 to 4 it is considered that the applied pressure and / or energization amount during welding is changed in two or more stages during welding, and it is necessary to set and manage an appropriate current range. There is a problem of becoming complicated.
  • Patent Document 5 an insulator indenter is required in addition to the spot welding electrode, and there is a problem that the structure of the welding machine becomes complicated.
  • TS1 is the tensile strength (MPa) of the first steel plate
  • t1 is the thickness (mm) of the first steel plate
  • TS2 is the tensile strength (MPa) of the second steel plate
  • t2 indicates the thickness (mm) of the second steel plate.
  • Patent Documents 6 and 7 describe a method for eliminating the reactive current. However, there is no description about conditions for securing a sufficient appropriate current range when spot welding is performed by sandwiching a plate set satisfying the above formula (i) with a pair of electrodes.
  • Table 1 of Patent Document 7 describes an example in which SPCC and 60 k precipitated steel are spot welded
  • Table 2 describes an example in which 60 k precipitated steel is spot welded.
  • the example in Table 1 above is not an example in which a plate assembly satisfying the above-described formula (i) is welded.
  • the example in Table 2 is an example in which the plate assembly is welded by one-side spot welding, and is not an example in which the plate assembly is sandwiched by a pair of electrodes and spot welding is performed.
  • the present invention has been made to solve such problems. That is, the present invention does not require changing the applied pressure and / or energization amount during welding in two or more stages during welding, does not complicate the structure of the welding machine, and generates dust when welding steel plates. It is an object of the present invention to provide a resistance spot welding method capable of forming a sufficiently large melted part while suppressing the above, and a welded structure obtained by the method.
  • the gist of the present invention is the following resistance spot welding method and welded structure.
  • a resistance spot welding method for joining steel plates The laminate is sandwiched between the pair of electrodes, and while pressing, a preliminary step of energizing to form an energization point at the steel sheet interface;
  • a resistance spot welding method comprising a welding step of performing spot welding so that a molten portion is formed in a range in which a horizontal distance from the energization point is within 20 mm.
  • TS1 is the tensile strength (MPa) of the first steel plate
  • t1 is the thickness (mm) of the first steel plate
  • TS2 is the tensile strength (MPa) of the second steel plate
  • t2 indicates the thickness (mm) of the second steel plate.
  • the energization point may be an energization point where the interface is melt-joined as long as the resistance is small enough to obtain a sufficient diversion, or an energization point where the interface does not melt.
  • Pressure welding does not mean “pressure welding”, but means a state where the steel plates are in contact with each other while being pressed against each other.
  • the welding pressure of the welding machine can be changed without changing the applied pressure and / or energization amount during welding in two or more stages during welding.
  • a sufficiently large molten part can be formed without complicating the structure and suppressing generation of dust at the steel plate interface.
  • a high strength structural member can be obtained by continuously forming the welded portion in the longitudinal direction.
  • the resistance spot welding method of the present invention is used when spot-welding a laminate comprising the first steel plate and the second steel plate and satisfying the following formula (i).
  • TS1 is the tensile strength (MPa) of the first steel plate
  • t1 is the thickness (mm) of the first steel plate
  • TS2 is the tensile strength (MPa) of the second steel plate
  • t2 indicates the thickness (mm) of the second steel plate.
  • FIG. 1 is a diagram for explaining a resistance spot welding method according to an embodiment of the present invention, wherein (a) is a conceptual diagram illustrating a preliminary process, and (b) is a conceptual illustrating a welding process.
  • FIG. 1A in the preliminary process of the resistance spot welding method according to the present embodiment, first, a first steel plate 1a having a thickness t1 (hereinafter referred to as a steel plate 1a) and a second having a thickness t2.
  • a laminate 10 composed of a steel plate 1b (hereinafter referred to as a steel plate 1b) is sandwiched between a pair of electrodes 2a and 2b of a welding machine.
  • the electrodes 2a and 2b are disposed so as to face each other.
  • energization point 4a is formed at the interface 4 between the steel plates 1a and 1b (hereinafter referred to as the steel plate interface 4).
  • a melting part is formed as the energization point 4a.
  • a DR type electrode (DR40) having a tip diameter of 6 mm can be used.
  • energization (open arrows) is made between the electrodes 2a and 2b so that the fusion zone 4b is formed at a distance W in the horizontal direction from the energization point 4a.
  • C spot welding is performed.
  • a current C1 directed directly from the electrode 2a to the electrode 2b and a current C2 directed from the electrode 2a through the energization point 4a to the electrode 2b flow between the electrodes 2a and 2b.
  • the melted portion 4b is formed at the steel plate interface 4 between the electrodes 2a and 2b by the current C1, and the steel plates 1a and 1b are joined.
  • a part of the welding current C passes between the electrodes 2a and 2b through the energization point 4a, so that heat generation in the vicinity of the melting part 4b can be promoted, and the steel plates 1a and 1b are softened in the vicinity of the melting part 4b Can be made.
  • the steel plates 1a and 1b are high-strength steel plates, the hardness of the steel plates 1a and 1b can be set to the same level as that of the mild steel in the vicinity of the molten portion 4b during welding. Thereby, the steel plate interface 4 can be softened in the vicinity of the melting part 4b.
  • the familiarity of the steel plate interface 4 can be improved (the contact area can be enlarged) in the vicinity of the melting part 4b. Therefore, generation
  • the energization point 4a can be formed by spot welding with the electrodes 2a and 2b. Therefore, it is not necessary to provide a separate member (for example, an indenter) in order to form the energization point 4a.
  • the pressure and / or energization amount during welding is not changed in two or more stages during welding, the structure of the welding machine is not complicated, and the steel plate A sufficiently large melting portion 4b can be formed while suppressing the generation of dust during welding.
  • the upper limit current maximum value of the welding current that can obtain a healthy nugget without causing dust
  • the lower limit current minimum value of the above welding current
  • the melting portion 4b is formed in a range where the horizontal distance W from the energizing point 4a (the distance between the energizing point center and the melting portion center) is within 20 mm.
  • the melting part 4b In order to soften the steel plates 1a and 1b more efficiently in the vicinity of the melting part 4b, it is preferable to form the melting part 4b in a range where the horizontal distance W from the energization point 4a is within 15 mm. However, if the distance W is too small, the current C2 flowing through the energization point 4a becomes excessive and the melted portion 4b becomes small. Therefore, the horizontal distance W is preferably 10 mm or more.
  • the welding conditions are appropriately adjusted according to the thickness and strength of the steel plates 1a and 1b.
  • the pressing force (pressing force) of the electrodes 2a and 2b is set to 3.5 kN
  • the welding current C flowing between 2a and 2b is set to 3.0 kA to 4.0 kA
  • the energization time is set to 16 cycles (267 msec)
  • the holding time after energization is set to 10 cycles (167 msec).
  • the pressing force (pressing force) of the electrodes 2a and 2b is set to 3.5 kN
  • the welding current C flowing between the electrodes 2a and 2b is set to 5.9 kA to 9.4 kA
  • the energization time is set. It is set to 16 cycles (267 msec), and the holding time is set to 10 cycles (167 msec).
  • the diameter of the energization point 4a is designed to be smaller than the diameter required for the melting portion 4b (for example, 4 ⁇ t, where t is the minimum thickness (mm) of the two steel plates constituting the plate assembly). It may be large. However, if the energization point 4a becomes too small, the influence of so-called “constriction resistance” becomes large, and there is a possibility that the diversion flowing to the energization point 4a cannot be obtained sufficiently. Therefore, the diameter of the energization point 4a is preferably 1 mm or more.
  • the already formed melted part 4b is used as the energization point without newly forming the energization point.
  • Spot welding can be performed.
  • the electrodes 2a and 2b are arranged so that a new melted part 4c is formed in a range where the horizontal distance W from the melted part 4b is within 20 mm (preferably within 10 mm or more and 15 mm or less), Energize.
  • a new melted part (not shown) is further used within the range where the horizontal distance W from the melted part 4c is within 20 mm (preferably within 10 mm to 15 mm) using the melted part 4c as an energization point.
  • Spot welding can be performed so that is formed.
  • a plurality of melting portions can be formed continuously.
  • the automobile structural member of FIG. 4 can be manufactured by repeating resistance spot welding within a range of 20 mm or less of the previously formed melted part.
  • the energization point 4a in which the interface is melt-bonded is described.
  • an energization point in a press-contact state in which the interface does not melt may be formed.
  • the diameter of the energization point is 1 mm or more, similarly to the energization point 4a described above.
  • the size of the press-contact portion between the steel plate 1a and the steel plate 1b is not less than a circle having a diameter of 1 mm.
  • FIG. 3 is a diagram for explaining a resistance spot welding method according to a reference example.
  • a pair of protrusions 6a and 6b are provided on the lower surface of the steel plate 1a, and the protrusions 6a and 6b are stacked in contact with the upper surface of the steel plate 1b.
  • the body 10 is sandwiched between the electrodes 2a and 2b.
  • the laminate 10 is pressed with a pair of electrodes 2a and 2b as a preliminary process, and the electrodes 2a and 2b are energized (see the white arrow C) as a welding process.
  • a molten portion 4d is formed at the steel plate interface 4. In this way, the steel plates 1a and 1b can be joined.
  • the energization points 5a and 5b are formed at the contact portions between the projections 6a and 6b and the steel plate 1b.
  • the welding current C is divided between the electrodes 2a and 2b, and a part thereof flows through the energization points 5a and 5b (see white arrows C2 and C3).
  • a current C1 directly from the electrode 2a to the electrode 2b a current C2 from the electrode 2a through the energization point 5a to the electrode 2b, and an energization point 5b from the electrode 2a.
  • a current C3 flows through the electrode 2b.
  • the currents C2 and C3 flow through the energization points 5a and 5b, heat generation in the vicinity of the melting portion 4d can be promoted, and the steel plates 1a and 1b can be softened in the vicinity of the melting portion 4d.
  • the contact resistance in the steel plate interface 4 can be made small in the vicinity of the melting part 4d, and the heat generation in the melting part 4d can be prevented from becoming excessive.
  • spot welding can be continuously performed on the portions where the protrusions 6a and 6b are not formed by executing the above-described continuous process.
  • the horizontal distance W between the energization points 5a and 5b and the fusion part 4d (the distance between the energization point center and the fusion part center) is , Set within 20 mm.
  • the horizontal distance between the axis of the electrodes 2a, 2b and the tip of the projection 6a (contact portion with the steel plate 1b), and the axis of the electrodes 2a, 2b and the tip of the projection 6b (The distance in the horizontal direction from the contact portion with the steel plate 1b is set within 20 mm. It is preferable that the fusion
  • the protruding portions 6a and 6b are provided on the steel plate 1a.
  • the protruding portion may be provided on at least one steel plate. Therefore, the protrusion may be provided on the steel plate 1b instead of the steel plate 1a.
  • the steel plates 1a and 1b may be provided with protrusions, respectively.
  • the number of protrusions is not limited to the above example, and only one protrusion may be provided, or three or more protrusions may be provided.
  • the press contact portions of the protrusions 6a and 6b and the steel plate 1b may change from the press contact state to the melt joint state during welding, and in this case, the functions of the energization points 5a and 5b are maintained.
  • a spacer having the same size as that of the protrusions 6a and 6b may be arranged, and the energization point may be formed by press-contacting the spacer and the steel plates 1a and 1b.
  • the resistance spot welding method of the present invention can be suitably used for welding a laminate composed of two high-tensile steel plates and satisfying the above-mentioned formula (i), and is composed of a mild steel plate and a high-tensile steel plate. And it can utilize suitably also for the welding of the laminated body (for example, steel plate for motor vehicles) which satisfy
  • the laminated body for example, steel plate for motor vehicles
  • a laminate having various configurations is prepared, and resistance spot welding is performed by the method described with reference to FIG. 1 to form a sufficiently large melted portion without generating dust.
  • the range of possible current values (appropriate current range) was measured.
  • As the electrodes 2a and 2b DR type electrodes (DR40) each having a tip diameter of 6 mm were used.
  • a sufficiently large molten part means a molten part having a nugget diameter of 4 ⁇ t (mm) or more (t is the thickness of the first steel plate and the second steel plate). It means the minimum value (mm) of the plate thickness.
  • the appropriate current range could be expanded by 20% or more than single point welding. From this, it can be seen that according to the present invention characterized in that the distance between the energization point and the melted portion is set within 20 mm, the appropriate current range can be sufficiently expanded as compared with single point welding. That is, according to the present invention, it can be seen that a sufficiently large melting portion can be easily formed while suppressing generation of dust.
  • the single-stage energization method is used as the energization condition.
  • the energization conditions of the resistance spot welding method according to the present invention are not limited to the single-stage energization method.
  • the board set (laminated body) to which the present invention is applied is not limited to a board set made only of high-tensile steel plates. That is, according to the present invention, it is possible to obtain an effect of expanding the appropriate current range for an arbitrary plate set satisfying the above-described formula (i).
  • the welding pressure of the welding machine can be changed without changing the applied pressure and / or energization amount during welding in two or more stages during welding. A sufficient current range can be secured without complicating the structure. Therefore, this invention is most suitable for resistance spot welding when manufacturing a plate assembly in which two steel plates are laminated, in particular, an automobile structural member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

 鋼板1a,1bによって構成されかつ下記の(i)式を満たす積層体10を、一対の電極2a,2bで挟持し、押圧しつつ、通電して鋼板界面4に溶融部4bを形成することによって鋼板1a,1bを接合する。具体的には、鋼板界面4に通電ポイント4aを形成し、該通電ポイント4aからの水平方向の距離Wが20mm以内の範囲に溶融部4bが形成されるようにスポット溶接を行う。 (TS1×t1+TS2×t2)/(t1+t2)≧440 ・・・(i) ただし、TS1は鋼板1aの引張強度(MPa)、t1は鋼板1aの板厚(mm)、TS2は鋼板1bの引張強度(MPa)、t2は鋼板1bの板厚(mm)をそれぞれ示す。

Description

抵抗スポット溶接方法および溶接構造物
 本発明は、2枚の鋼板を接合するのに適した抵抗スポット溶接方法および該方法によって得られる溶接構造物に関する。
 近年、自動車部品等の溶接工程においては、2枚の鋼板を積層した後、これを一対の電極で挟持し、押圧しつつ、通電して鋼板界面に溶融部(通常、「ナゲット」と呼ばれる。)を形成することによって鋼板を接合する抵抗スポット溶接方法が広く採用されている。
 例えば、自動車ドア開口部には構造部材としてピラーおよびルーフレールがある。ピラー20(例えば、図4参照)は、例えば、2枚の鋼板を重ねた積層体21で構成されている。そして、図4に示すように、この積層体21は、そのフランジ22においてスポット溶接により所定間隔で溶接部23が形成されて、接合される。
 上記の積層体としては、2枚の鋼板の材質の選択により種々の組み合わせ(以下、「板組」と称する。)が想定される。抵抗スポット溶接を行う際には、それぞれの板組に対して適切な加圧力(押圧力)および通電量が設定される。ところで、一部の板組では、チリと呼ばれる溶損(スパッタ、爆飛などとも呼ばれる。)を生じさせることなく、健全なナゲットを得ることができる溶接電流(以下、適正電流と呼ぶ。)の範囲(以下、適正電流範囲と呼ぶ。)を十分確保することが困難な場合がある。ここで、健全なナゲットとは、溶融部が十分に大きく、接合体(継ぎ手)の引張試験等で十分な継手強度が得られるとされるナゲットである。十分大きな溶融部とは、例えば、4√t(mm)(tは板組を構成する2枚の鋼板の最小板厚(mm))より大きな直径を有する溶融部である。適正電流範囲は、設備制約や生産制約等で決められた条件(加圧力および通電時間を組み合わせた条件)ごとに求められ、適正電流の上限値(以下、上限電流と呼ぶ。)と適正電流の下限値(以下、下限電流と呼ぶ。)との差として求めることができる。一般に、適正電流範囲が広いほど、溶接中に外乱(電流変動および電極先端の損耗など)が生じた場合にも、安定した溶接品質が確保できるため、望ましいとされる。
 なお、溶接時にチリが生じると、作業環境を悪化させるとともに、製品表面への該スパッタの付着により製品品質の低下の原因にもなる。さらに、チリの発生量が過度の場合には、溶融接合部の体積が減少し、接合部における継手としての強度を著しく低下させる。これらのことから、可能な限りチリの発生を抑えることが望ましいとされる。
 そこで、特許文献1、2、3、4では、鋼板同士の接触面のなじみ(接触状態)を改善し、通電中に十分な接触面積を確保することでチリの発生を抑制しつつナゲット径を拡大する技術が開示されている。これらの技術は、上限電流を拡大することが可能な技術と解釈できる。
 また、特許文献5では、スポット溶接電極と被溶接材料との接触部分の周囲を絶縁体圧子によって押さえつけることによって、コロナボンド(ナゲットの周辺に生じる固相溶接されたリング状の部分:JIS Z 3001-6 2013参照)の面積を拡大する技術が開示されている。特許文献5には、コロナボンドの面積を拡大することによってナゲット直径を拡大したのと同様の効果が得られることが記載されている。この技術は、溶接電流を低く抑えることによって、チリの発生を防止することが可能な技術と解釈できる。
 ところで、抵抗スポット溶接による自動車部品等の溶接工程では、設計上必要な個所に連続的に複数の溶接点を配置することが一般的である。したがって、ある部位を抵抗溶接するに際し、既に該部位の近傍に溶接点(以下、「既溶接点」とも称する。)が存在する場合には、既溶接点を通電経路として流れる分岐電流(以下、「分流」ともいう。)が生じる。このほか、部材の幾何学的な形状や他部材との空間配置の状況により、既溶接点以外にも通電経路が形成され、分流が生じるような場合も想定される。このように、溶接時に溶接電流の分流が生じると、溶融部の形成を遅延させ、健全なナゲットを得ることができなくなる。分流は、無効電流などと呼ばれ、その影響を制限する方法について多くの検討がなされてきた。
 例えば、特許文献6には、無効電流を算出し、無効電流の分だけ増加させた電流を溶接電流として設定する発明が開示されている。また、特許文献7には、スリットを設けることにより無効電流の影響を低減して、健全なナゲットを得る方法が開示されている。
特開平11-104849号公報 特開2003-236674号公報 特開2010-207909号公報 特開2010-247215号公報 特開平7-178563号公報 特開平9-99379号公報 特開2009-279597号公報
 特許文献1~4に開示された技術では、いずれも溶接中の加圧力および/または通電量を溶接途中で2段階以上変更することが構成要件とされており、適正電流範囲の設定および管理が複雑になるという課題がある。特許文献5に開示された技術では、スポット溶接電極とは別に絶縁体圧子が必要になり、溶接機の構造が複雑になるという課題がある。
 ところで、2枚の軟鋼板からなる板組をスポット溶接する場合には、特別な対策を施さなくても、鋼板同士の接触面積を十分に確保できる。そのため、上述のようなチリの発生は生じにくい。これに対して、高張力鋼板を含む板組をスポット溶接する場合には、チリが発生する確率が高くなる。このような現象が起きる原因について、本発明者らは以下のように考えた。すなわち、高張力鋼板を含む板組では、溶接中に鋼板同士の接触界面で十分な接触面積を確保できない場合がある。この場合、鋼板同士の接触界面において抵抗発熱が過度になり、チリが発生しやすくなる。このような現象のため、高張力鋼板を含む板組では、チリが発生する電流(上限電流)を下限電流に対して十分に大きくすることが困難になる場合がある。すなわち、十分な適正電流範囲を確保することが困難になる場合がある。この場合、チリの発生を抑制しつつ十分な大きさの溶融部を形成することが困難になる。この点について本発明者らがさらに詳細に検討した結果、2枚の鋼板(以下、第1鋼板および第2鋼板と称する。)からなりかつ下記の(i)式を満たす板組を、一対の電極で狭持してスポット溶接する際に、十分な適正電流範囲を確保することが困難になることがわかった。
 (TS1×t1+TS2×t2)/(t1+t2)≧440  ・・・(i)
 ただし、(i)式において、
 TS1は第1鋼板の引張強度(MPa)を、
 t1は第1鋼板の板厚(mm)を、
 TS2は第2鋼板の引張強度(MPa)を、
 t2は第2鋼板の板厚(mm)をそれぞれ示す。
 特許文献6および7には、無効電流を解消するための方法が記載されている。しかしながら、上記(i)式を満たす板組を一対の電極で狭持してスポット溶接を行うに際し、十分な適正電流範囲を確保するための条件については記載されていない。なお、特許文献7の表1には、SPCCと60k析出鋼とをスポット溶接した例が記載され、表2には、60k析出鋼同士をスポット溶接した例が記載されている。しかしながら、上記の表1の例は、上記式(i)を満たす板組を溶接した例ではない。また、上記の表2の例は、片側スポット溶接によって板組を溶接した例であり、一対の電極で板組を狭持してスポット溶接を行った例ではない。
 本発明は、このような問題を解決するためになされたものである。すなわち、本発明は、溶接中の加圧力および/または通電量を溶接途中で2段階以上変更することを必要とせず、溶接機の構造を複雑にすることなく、かつ鋼板溶接時のチリの発生を抑制しつつ十分な大きさの溶融部を形成することができる抵抗スポット溶接方法および該方法によって得られる溶接構造物を提供することを目的としている。
 本発明は、下記の抵抗スポット溶接方法および溶接構造物を要旨としている。
 (1)第1鋼板および第2鋼板によって構成されかつ下記の(i)式を満たす積層体を、一対の電極で挟持し、押圧しつつ、通電して鋼板界面に溶融部を形成することによって鋼板を接合する抵抗スポット溶接方法であって、
 前記積層体を、前記一対の電極で挟持し、押圧しつつ、通電して鋼板界面に通電ポイントを形成する予備工程と、
 該通電ポイントからの水平方向の距離が20mm以内の範囲に溶融部が形成されるようにスポット溶接を行う溶接工程を備える、抵抗スポット溶接方法。
 (TS1×t1+TS2×t2)/(t1+t2)≧440  ・・・(i)
 ただし、(i)式において、
 TS1は第1鋼板の引張強度(MPa)を、
 t1は第1鋼板の板厚(mm)を、
 TS2は第2鋼板の引張強度(MPa)を、
 t2は第2鋼板の板厚(mm)をそれぞれ示す。
 なお、通電ポイントは十分な分流が得られる程度に抵抗が小さければよく、界面が溶融接合した通電ポイントでもよいし、界面が溶融しない圧接状態の通電ポイントでもよい。「圧接」とは、「加圧溶接(pressure welding)」を意味するのではなく、鋼板同士が互いを圧しつつ接触している状態を意味する。
 (2)前記通電ポイントまたは前記溶融部からの水平方向の距離が20mm以内の範囲に新たな溶融部が形成されるようにスポット溶接を繰り返し行う連続工程をさらに備える、上記(1)の抵抗スポット溶接方法。
 (3)上記(1)または(2)の方法によって得られた溶接構造物。
 本発明によれば、2枚の鋼板で構成される積層体に抵抗スポット溶接を行う際に、溶接中の加圧力および/または通電量を溶接途中で2段階以上変更することなく、溶接機の構造を複雑にすることなく、かつ鋼板界面におけるチリの発生を抑制しつつ十分な大きさの溶融部を形成できる。また、このような積層体が例えば長尺の自動車構造部材である場合には、本発明により、溶接部を長手方向に連続的に形成することで、高強度の構造部材を得ることができる。
本発明の一実施形態に係る抵抗スポット溶接方法を説明するための図 本発明の一実施形態に係る抵抗スポット溶接方法を説明するための図 参考例に係る抵抗スポット溶接方法を説明するための図 自動車ドア開口部の構造部材を示す図
 以下、本発明の抵抗スポット溶接方法を説明する。本発明の抵抗スポット溶接方法は、第1鋼板および第2鋼板からなりかつ下記の(i)式を満たす積層体をスポット溶接する際に利用される。
 (TS1×t1+TS2×t2)/(t1+t2)≧440  ・・・(i)
 ただし、(i)式において、
 TS1は第1鋼板の引張強度(MPa)を、
 t1は第1鋼板の板厚(mm)を、
 TS2は第2鋼板の引張強度(MPa)を、
 t2は第2鋼板の板厚(mm)をそれぞれ示す。
 図1は、本発明の一実施形態に係る抵抗スポット溶接方法を説明するための図であり、(a)は、予備工程を例示する概念図であり、(b)は溶接工程を例示する概念図である。図1(a)に示すように、本実施形態に係る抵抗スポット溶接方法の予備工程では、まず、板厚t1の第1鋼板1a(以下、鋼板1aと称する。)および板厚t2の第2鋼板1b(以下、鋼板1bと称する。)で構成された積層体10を、溶接機の一対の電極2a,2bで挟持する。電極2a,2bは、互いに対向するように配置される。そして、電極2a,2b間に通電(白抜き矢印C参照)して抵抗スポット溶接を行う。この予備工程によって、鋼板1a,1bの界面4(以下、鋼板界面4と称する。)に通電ポイント4aが形成される。本実施形態では、通電ポイント4aとして溶融部が形成される。電極2a,2bとしてはそれぞれ、例えば、先端径が6mmのDR型電極(DR40)を用いることができる。
 次に、図1(b)に示すように、溶接工程として、通電ポイント4aから水平方向に距離Wの位置に溶融部4bが形成されるように、電極2a,2b間に通電(白抜き矢印C参照)し、スポット溶接を行う。このとき、電極2a,2b間において溶接電流Cが分流し、その一部が通電ポイント4aを流れる(白抜き矢印C2参照、C2=C-C1)。具体的には、電極2a,2b間には、電極2aから直接的に電極2bに向かう電流C1と、電極2aから通電ポイント4aを通って電極2bに向かう電流C2とが流れる。このとき、電流C1によって、電極2a,2b間の鋼板界面4に溶融部4bが形成され、鋼板1a,1bが接合される。
 上記のように電極2a,2b間において溶接電流Cの一部(電流C2)が通電ポイント4aを通ることによって、溶融部4b近傍の発熱を促進でき、溶融部4b近傍において鋼板1a,1bを軟化させることができる。例えば、鋼板1a,1bが高強度鋼板である場合でも、溶接時には、溶融部4b近傍において鋼板1a,1bの硬さを軟鋼と同程度の硬さにできる。これにより、溶融部4b近傍において鋼板界面4を軟化させることができる。言い換えると、溶融部4b近傍において鋼板界面4のなじみを改善(接触面積を拡大)することができる。したがって、十分な大きさの溶融部4bを形成しつつ、鋼板溶接時のチリの発生を抑制することができる。また、本実施形態によれば、電極2a,2bによるスポット溶接によって通電ポイント4aを形成できる。したがって、通電ポイント4aを形成するために別個の部材(例えば、圧子等)を設けなくてよい。すなわち、本実施形態に係る抵抗スポット溶接方法によれば、溶接中の加圧力および/または通電量を溶接途中で2段階以上変更することなく、溶接機の構造を複雑にすることなく、かつ鋼板溶接時のチリの発生を抑制しつつ十分な大きさの溶融部4bを形成することができる。また、溶接時のチリの発生が抑制されるので、上限電流(チリを生じさせることなく健全なナゲットを得ることができる溶接電流の最大値)を下限電流(上記溶接電流の最小値)に対して十分に大きくできる。すなわち、適正電流範囲を十分に確保できる。
 なお、本実施形態では、通電ポイント4aからの水平方向の距離W(通電ポイント中心と溶融部中心との距離)が20mm以内の範囲に溶融部4bを形成する。このように距離Wを設定することによって、溶融部4b近傍の発熱を十分に促進でき、溶融部4b近傍において鋼板1a,1bを効率よく軟化させることができる。
 溶融部4b近傍において鋼板1a,1bをより効率よく軟化させるためには、通電ポイント4aからの水平方向の距離Wが15mm以内の範囲に溶融部4bを形成することが好ましい。ただし、距離Wをあまりに狭くすると、通電ポイント4aを流れる電流C2が過大となり、溶融部4bが小さくなるので、水平方向の距離Wは、10mm以上とするのが好ましい。
 溶接条件は、鋼板1a,1bの厚みおよび強度等に応じて適宜調整される。鋼板1a,1bがそれぞれ厚さ1.4mmの590MPa級の高張力鋼板である場合には、例えば、予備工程において、電極2a,2bの押圧力(加圧力)が3.5kNに設定され、電極2a,2b間を流れる溶接電流Cが3.0kA~4.0kAに設定され、通電時間が16サイクル(267msec)に設定され、通電後の保持時間が10サイクル(167msec)に設定される。また、溶接工程において、電極2a,2bの押圧力(加圧力)が3.5kNに設定され、電極2a,2b間を流れる溶接電流Cが5.9kA~9.4kAに設定され、通電時間が16サイクル(267msec)に設定され、保持時間が10サイクル(167msec)に設定される。
 なお、通電ポイント4aの直径は、設計上、溶融部4bに求められる直径(例えば、4√t。ただし、tは板組を構成する2枚の鋼板の最小板厚(mm))よりも小さくてもよく、大きくてもよい。ただし、通電ポイント4aが小さくなり過ぎると、いわゆる「くびれ抵抗:constriction resistance」の影響が大きくなり、通電ポイント4aに流れる分流を十分に得られないおそれがある。そのため、通電ポイント4aの直径は、1mm以上とすることが好ましい。
 抵抗スポット溶接を繰り返していく場合には、上記溶接工程に続く連続工程として、図2に示すように、通電ポイントを新たに形成することなく、既に形成されている溶融部4bを通電ポイントとして用いてスポット溶接を行うことができる。具体的には、溶融部4bからの水平方向の距離Wが20mm以内(好ましくは、10mm以上15mm以内)の範囲に新たな溶融部4cが形成されるように、電極2a,2bを配置し、通電する。この場合、電極2a,2b間において溶接電流Cの一部(電流C2)が溶融部4bに流れるので、溶融部4c近傍の発熱を促進でき、溶融部4c近傍において鋼板1a,1bを軟化させることができる。これにより、溶融部4c近傍において鋼板界面4における接触抵抗を小さくでき、溶融部4cにおいて発熱が過大になることを防止できる。その結果、鋼板溶接時のチリの発生を防止できる。連続工程では、さらに、溶融部4cを通電ポイントとして用いて、溶融部4cからの水平方向の距離Wが20mm以内(好ましくは、10mm以上15mm以内)の範囲に新たな溶融部(図示せず)が形成されるようにスポット溶接を行うことができる。以上のようにして、複数の溶融部を連続的に形成することができる。例えば、図4の自動車構造部材では、先に形成された溶融部の20mm以内の範囲での抵抗スポット溶接を繰り返すことで製造することができる。なお、上記連続工程において、既に形成されている通電ポイント4aを用いて、該通電ポイント4aの周りに新たな溶融部を連続して形成してもよい。また、上記連続工程を実行せずに、新たな通電ポイント4aを形成しつつ抵抗スポット溶接を繰り返してもよい。
 上述の実施形態では、界面が溶融接合した通電ポイント4aを形成する場合について説明したが、界面が溶融しない圧接状態の通電ポイントを形成してもよい。圧接状態の通電ポイントを形成する場合にも、上述の通電ポイント4aと同様に、通電ポイントの直径を1mm以上にすることが好ましい。言い換えると、鋼板1aと鋼板1bとの圧接部(鋼板界面のうち通電ポイントとなる部分)の大きさが、直径1mmの円以上の大きさであることが好ましい。
 <参考例>
 以下、本発明の実施形態とは異なるが、通電ポイントを形成して板組を接合する抵抗スポット溶接方法の他の一例を参考例として説明する。図3は、参考例に係る抵抗スポット溶接方法を説明するための図である。本参考例では、例えば、図3(a)に示すように、鋼板1aの下面に一対の突起部6a,6bを設け、突起部6a,6bを鋼板1bの上面に接触させた状態で、積層体10を、電極2a,2bで挟持する。次に、図3(b)に示すように、予備工程として一対の電極2a,2bで積層体10を押圧しつつ、溶接工程として電極2a,2b間に通電(白抜き矢印C参照)して鋼板界面4に溶融部4dを形成する。このようにして、鋼板1a,1bを接合することができる。
 本参考例では、突起部6a,6bが鋼板1bに圧接されるので、突起部6a,6bと鋼板1bとの接触部に通電ポイント5a,5bが形成される。これにより、電極2a,2b間において溶接電流Cが分流し、その一部が通電ポイント5a,5bを流れる(白抜き矢印C2,C3参照)。具体的には、電極2a,2b間には、電極2aから直接的に電極2bに向かう電流C1と、電極2aから通電ポイント5aを通って電極2bに向かう電流C2と、電極2aから通電ポイント5bを通って電極2bに向かう電流C3とが流れる。このように電流C2,C3が通電ポイント5a,5bを流れるので、溶融部4d近傍の発熱を促進でき、溶融部4d近傍において鋼板1a,1bを軟化させることができる。これにより、溶融部4d近傍において鋼板界面4における接触抵抗を小さくでき、溶融部4dにおいて発熱が過大になることを防止できる。その結果、鋼板溶接時のチリの発生を抑制しつつ十分な大きさの溶融部4dを形成することができる。なお、本参考例においても上述の連続工程を実行することによって、突起部6a,6bが形成されていない部分について連続的にスポット溶接を行うことができる。
 本参考例においても、図1,2で説明した抵抗スポット溶接方法と同様に、通電ポイント5a,5bと溶融部4dとの水平方向の距離W(通電ポイント中心と溶融部中心との距離)は、20mm以内に設定される。このように距離Wを設定することによって、溶融部4d近傍の発熱を十分に促進でき、溶融部4d近傍において鋼板1a,1bを効率よく軟化させることができる。本参考例では、電極2a,2bの軸心と突起部6aの先端部(鋼板1bとの接触部)との水平方向の距離、および電極2a,2bの軸心と突起部6bの先端部(鋼板1bとの接触部)との水平方向の距離がそれぞれ20mm以内に設定される。溶融部4dは、通電ポイント5a,5bからの水平方向の距離Wが10mm以上15mm以内の範囲に形成されることが好ましい。
 上述の参考例では、鋼板1aに突起部6a,6bが設けられる場合について説明したが、突起部は少なくとも一つの鋼板に設けられていればよい。したがって、鋼板1aではなく鋼板1bに突起部が設けられてもよい。また、鋼板1a,1bにそれぞれ突起部が設けられてもよい。また、突起部の数は上述の例に限定されず、1つの突起部のみが設けられてもよく、3つ以上の突起部が設けられてもよい。
 なお、突起部6a、6bと鋼板1bの圧接部が、溶接中に圧接状態から溶融接合状態に変化してもよく、この場合においても通電ポイント5a、5bの機能が維持される。また、突起部6a、6bの代わりに、突起部6a、6bと同様の大きさのスペーサーを配置して、当該スペーサーと鋼板1a,1bとを圧接させることによって通電ポイントを形成してもよい。
 本発明の抵抗スポット溶接方法は、2枚の高張力鋼板からなりかつ上述の(i)式を満たす積層体の溶接に好適に利用することができるし、軟鋼板と高張力鋼板とで構成されかつ上述の(i)式を満たす積層体(例えば、自動車用鋼板)の溶接にも好適に利用できる。
 本発明の効果を確認するべく、種々の構成の積層体を用意して、図1を用いて説明した方法で抵抗スポット溶接を行い、チリを発生させることなく十分な大きさの溶融部を形成できる電流値の範囲(適正電流範囲)を測定した。電極2a,2bとしてはそれぞれ、先端径が6mmのDR型電極(DR40)を用いた。なお、以下の説明において、十分な大きさの溶融部とは、ナゲット径が4√t(mm)以上の溶融部のことを意味する(tは、第1鋼板の板厚および第2鋼板の板厚のうちの最小値(mm)を意味する。)。
 本実施例では、下記の表1に示すように、上記(i)式の左辺の値が異なる4種類の積層体(積層体No.1~4)を用意した。そして、各積層体において、距離W(図1(b)参照)を15mm、20mm、25mmおよび30mmに設定して抵抗スポット溶接を行い、適正電流範囲を測定した。また、各積層体において単点溶接(予備溶接を行わない従来の抵抗スポット溶接)を行った場合の適正電流範囲も測定した。下記の表1に、各積層体の構成、溶接条件、および適正電流範囲の測定結果を示す。なお、表1では、単点溶接における適正電流範囲を1.00として、各条件での適正電流範囲を正規化して示している。本実施例では、適正電流範囲を単点溶接よりも20%以上拡大することができた場合に、十分な適正電流範囲を確保できたと判断した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各積層体において、通電ポイントと溶融部との距離Wを20mm以内に設定することによって適正電流範囲を単点溶接よりも20%以上拡大できた。このことから、通電ポイントと溶融部との距離が20mm以内に設定されることを一つの特徴とする本発明によれば、単点溶接に比べて適正電流範囲を十分に拡大できることがわかる。すなわち、本発明によれば、チリの発生を抑制しつつ十分な大きさの溶融部を容易に形成できることがわかる。
 なお、前記の実施例では、いずれも通電条件として一段通電法を用いているが、本発明に係る抵抗スポット溶接方法の通電条件は、一段通電法に限定されるものではない。また、本発明を適用する板組(積層体)は、高張力鋼板のみからなる板組に限定されるものではない。すなわち、本発明によれば、上記(i)式を満たす任意の板組に対して適正電流範囲を拡大する効果を得ることができる。
 本発明によれば、2枚の鋼板で構成される積層体に抵抗スポット溶接を行う際に、溶接中の加圧力および/または通電量を溶接途中で2段階以上変更することなく、溶接機の構造を複雑にすることなく、かつ適正電流範囲を十分確保することができる。よって、この発明は、2枚の鋼板を積層した板組、特に、自動車構造部材を製造する際の抵抗スポット溶接に最適である。
1a,1b 鋼板
2a,2b 電極
4 鋼板界面
4a,5a,5b 通電ポイント
4b,4c,4d 溶融部
6a,6b 突起部
10 積層体
20 ピラー
21 積層体
22 フランジ
23 溶接部
C 溶接電流
C1,C2,C3 電流
W 通電ポイントと溶融部との距離
t1,t2 鋼板の厚み

Claims (3)

  1.  第1鋼板および第2鋼板によって構成されかつ下記の(i)式を満たす積層体を、一対の電極で挟持し、押圧しつつ、通電して鋼板界面に溶融部を形成することによって鋼板を接合する抵抗スポット溶接方法であって、
     前記積層体を、前記一対の電極で挟持し、押圧しつつ、通電して鋼板界面に通電ポイントを形成する予備工程と、
     該通電ポイントからの水平方向の距離が20mm以内の範囲に溶融部が形成されるようにスポット溶接を行う溶接工程を備える、抵抗スポット溶接方法。
     (TS1×t1+TS2×t2)/(t1+t2)≧440  ・・・(i)
     ただし、(i)式において、
     TS1は第1鋼板の引張強度(MPa)を、
     t1は第1鋼板の板厚(mm)を、
     TS2は第2鋼板の引張強度(MPa)を、
     t2は第2鋼板の板厚(mm)をそれぞれ示す。
  2.  前記通電ポイントまたは前記溶融部からの水平方向の距離が20mm以内の範囲に新たな溶融部が形成されるようにスポット溶接を繰り返し行う連続工程をさらに備える、請求項1に記載の抵抗スポット溶接方法。
  3.  請求項1または2に記載の方法によって得られた溶接構造物。
PCT/JP2014/072280 2013-09-12 2014-08-26 抵抗スポット溶接方法および溶接構造物 WO2015037432A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015536517A JP6123904B2 (ja) 2013-09-12 2014-08-26 抵抗スポット溶接方法および溶接構造物の製造方法
CN201480050348.XA CN105531065B (zh) 2013-09-12 2014-08-26 电阻点焊方法以及焊接构造物
US14/917,281 US10406626B2 (en) 2013-09-12 2014-08-26 Resistance spot welding method and welded structure
KR1020167009523A KR101871077B1 (ko) 2013-09-12 2014-08-26 저항 스폿 용접 방법 및 용접 구조물
MX2016003142A MX369617B (es) 2013-09-12 2014-08-26 Metodo de soldadura por resistencia por puntos y estructura soldada.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-189305 2013-09-12
JP2013189305 2013-09-12

Publications (1)

Publication Number Publication Date
WO2015037432A1 true WO2015037432A1 (ja) 2015-03-19

Family

ID=52665545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072280 WO2015037432A1 (ja) 2013-09-12 2014-08-26 抵抗スポット溶接方法および溶接構造物

Country Status (6)

Country Link
US (1) US10406626B2 (ja)
JP (1) JP6123904B2 (ja)
KR (1) KR101871077B1 (ja)
CN (1) CN105531065B (ja)
MX (1) MX369617B (ja)
WO (1) WO2015037432A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573836B (zh) * 2019-03-14 2023-07-14 日本制铁株式会社 焊接接头的制造方法、焊接接头、回火装置以及焊接装置
DE102020204667B4 (de) * 2020-04-14 2024-06-20 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Widerstandsschweißen, Steuereinheit, Schweißgerät und Computerprogramm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999379A (ja) * 1995-10-02 1997-04-15 Nas Toa Co Ltd 抵抗溶接機の溶接電流制御装置
JP2000141054A (ja) * 1998-11-02 2000-05-23 Toyota Motor Corp シーム溶接方法
JP2009279597A (ja) * 2008-05-20 2009-12-03 Sumitomo Metal Ind Ltd 抵抗溶接方法および抵抗溶接接合体
JP2012076125A (ja) * 2010-10-01 2012-04-19 Honda Motor Co Ltd スポット溶接装置
JP2013035063A (ja) * 2011-07-14 2013-02-21 Jfe Steel Corp 抵抗スポット溶接方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1933484A (en) * 1932-04-14 1933-10-31 Budd Edward G Mfg Co Method of welding
US5304769A (en) * 1991-06-27 1994-04-19 Honda Giken Kogyo Kabushiki Kaisha Electrode for resistance welding
JPH07178563A (ja) 1993-12-24 1995-07-18 Nippon Steel Corp 圧接を併用したスポット溶接による接合方法および接合構造体
JP3603564B2 (ja) 1997-10-02 2004-12-22 日産自動車株式会社 スポット溶接装置の溶接制御装置
JP2003236674A (ja) 2002-02-15 2003-08-26 Mazda Motor Corp 高張力鋼板のスポット溶接方法およびその装置
US8058584B2 (en) * 2007-03-30 2011-11-15 Nissan Motor Co., Ltd. Bonding method of dissimilar materials made from metals and bonding structure thereof
US8654898B2 (en) * 2008-05-08 2014-02-18 Altera Corporation Digital equalizer for high-speed serial communications
JP5206448B2 (ja) * 2009-01-30 2013-06-12 Jfeスチール株式会社 高強度薄鋼板の抵抗スポット溶接方法
JP5359571B2 (ja) * 2009-02-12 2013-12-04 新日鐵住金株式会社 高張力鋼板の抵抗溶接方法および抵抗溶接継手の製造方法
JP5332857B2 (ja) 2009-04-20 2013-11-06 新日鐵住金株式会社 高張力鋼板の抵抗溶接方法
EP2474381B8 (en) * 2009-08-31 2019-07-24 Nippon Steel Corporation Spot-welded joint and spot welding method
JP5052586B2 (ja) * 2009-11-18 2012-10-17 株式会社豊田中央研究所 抵抗溶接方法、抵抗溶接部材、抵抗溶接機とその制御装置、抵抗溶接機の制御方法とその制御プログラム、抵抗溶接の評価方法とその評価プログラムおよび抵抗溶接の溶融開始時の検出方法
JP2011194453A (ja) * 2010-03-23 2011-10-06 Honda Motor Co Ltd シーム溶接方法及びその装置
JP5739204B2 (ja) * 2010-09-08 2015-06-24 富士重工業株式会社 アース電極装置
JP5209749B2 (ja) * 2011-03-04 2013-06-12 株式会社豊田中央研究所 抵抗溶接方法、抵抗溶接部材、抵抗溶接機とその制御装置、抵抗溶接機の制御方法とその制御プログラムおよび抵抗溶接の評価方法とその評価プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999379A (ja) * 1995-10-02 1997-04-15 Nas Toa Co Ltd 抵抗溶接機の溶接電流制御装置
JP2000141054A (ja) * 1998-11-02 2000-05-23 Toyota Motor Corp シーム溶接方法
JP2009279597A (ja) * 2008-05-20 2009-12-03 Sumitomo Metal Ind Ltd 抵抗溶接方法および抵抗溶接接合体
JP2012076125A (ja) * 2010-10-01 2012-04-19 Honda Motor Co Ltd スポット溶接装置
JP2013035063A (ja) * 2011-07-14 2013-02-21 Jfe Steel Corp 抵抗スポット溶接方法

Also Published As

Publication number Publication date
MX2016003142A (es) 2016-11-14
JP6123904B2 (ja) 2017-05-10
JPWO2015037432A1 (ja) 2017-03-02
MX369617B (es) 2019-11-13
US10406626B2 (en) 2019-09-10
US20160214202A1 (en) 2016-07-28
CN105531065B (zh) 2018-08-31
CN105531065A (zh) 2016-04-27
KR20160054594A (ko) 2016-05-16
KR101871077B1 (ko) 2018-06-25

Similar Documents

Publication Publication Date Title
JP6108030B2 (ja) 抵抗スポット溶接方法
CN109562474B (zh) 接合结构
JP5999293B1 (ja) 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
WO2015159503A1 (ja) 異材金属接合体
JP5960655B2 (ja) スポット・レーザ複合溶接継手
US10611125B2 (en) Method for joining dissimilar metals and articles comprising the same
JP6112209B2 (ja) 抵抗スポット溶接方法および溶接構造物の製造方法
TWI599433B (zh) 填角焊接方法及填角焊接接頭
JPWO2014167772A1 (ja) インダイレクトスポット溶接方法
WO2015133099A1 (ja) 抵抗スポット溶接方法
JP2012091203A (ja) インダイレクトスポット溶接方法
JP6123904B2 (ja) 抵抗スポット溶接方法および溶接構造物の製造方法
JP6160581B2 (ja) 抵抗スポット溶接方法
JP2012187616A (ja) 抵抗溶接装置、および抵抗溶接方法
JP6037018B2 (ja) 抵抗スポット溶接方法
JP6969649B2 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP2014200797A (ja) 抵抗スポット溶接方法及び装置
JP6811063B2 (ja) 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
JP2023040930A (ja) 溶接継手およびその製造方法
JP2016030291A (ja) 板状部材の接合方法
CN118720375A (zh) 用于制造焊接结构的方法及焊接装置
JP2017060995A (ja) 抵抗スポット溶接継手、抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050348.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536517

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14917281

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/003142

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601911

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167009523

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14843488

Country of ref document: EP

Kind code of ref document: A1