WO2015034121A1 - 백금-로듐-산화물계 합금의 제조방법 - Google Patents

백금-로듐-산화물계 합금의 제조방법 Download PDF

Info

Publication number
WO2015034121A1
WO2015034121A1 PCT/KR2013/008245 KR2013008245W WO2015034121A1 WO 2015034121 A1 WO2015034121 A1 WO 2015034121A1 KR 2013008245 W KR2013008245 W KR 2013008245W WO 2015034121 A1 WO2015034121 A1 WO 2015034121A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
rhodium
platinum
oxide
producing
Prior art date
Application number
PCT/KR2013/008245
Other languages
English (en)
French (fr)
Inventor
윤원규
양승호
박재성
연병훈
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Publication of WO2015034121A1 publication Critical patent/WO2015034121A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/20Making alloys containing metallic or non-metallic fibres or filaments by subjecting to pressure and heat an assembly comprising at least one metal layer or sheet and one layer of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for producing a high density oxide dispersion enhanced platinum-rhodium-oxide based alloy.
  • Dispersion reinforcement is a method of reinforcing a metal material, in which dispersed particles composed of carbides, nitrides, and oxides of other metals are dispersed in a matrix metal and the mechanical properties of the matrix metal are improved by the action of the dispersed particles.
  • platinum Although expensive as a base metal, platinum is mainly used because platinum has a high melting point, easy processing at room temperature and high temperature, and excellent chemical resistance, corrosion resistance, and volatility.
  • a platinum material obtained by alloying elements such as gold (Au), rhodium (Rh) and the like with solid solution to platinum is mainly used.
  • alloying elements eg, gold, rhodium, etc.
  • oxides having high oxidizing powers are used. Formed and dispersed platinum alloy materials have been developed.
  • platinum alloy in which oxide particles of a metal such as zirconium are dispersed in platinum, which is a base metal.
  • the platinum alloy is known to have a high temperature creep strength because the grain growth is small and the deformation is small even when used for a long time at a high temperature of more than 1200 ° C, and the crystal grains are stretched while the recrystallization is prevented by the metal oxide. Is also cheaper.
  • Such dispersion-reinforced alloys are easily deformed by high temperature and high stress, It has excellent high temperature creep characteristics and is used as a material for LCD glass and materials.
  • a platinum alloy powder was prepared using plasma.
  • the manufacturing method has the advantage that it is easy to control the content of the oxide element, but the yield is slightly reduced due to the powder to be scattered, there is a disadvantage that the high cost by the increase of the manufacturing time.
  • a suitable example of the present invention includes (i) platinum, (ii) rhodium, and (iii) zirconium, samarium, yttrium and hafnium, at least one metal for oxide selected from the group Forming an alloy ingot; Melt spinning the alloy ingot to form an alloy thin plate; Thermally oxidizing the alloy sheet in an atmosphere; Laminating or pulverizing the internally oxidized alloy thin plate and hot pressing molding; Hot working the hot press-molded alloy sheet; Cold working the hot worked alloy sheet; And it provides a method for producing a platinum-rhodium-oxide alloy comprising the step of heat-treating the cold-processed alloy sheet.
  • the alloy ingot is based on the total 100% by weight, 5 to 20% by weight of 3 ⁇ 4 rhodium; 0.02 to 0.8% by weight of the metal for oxide; And a balance of platinum.
  • the step of forming the alloy sheet is the alloy ingot 10_ 4 ⁇ 10— Dissolving under high vacuum of 3 Torr to form a melt; 0.1 to l of inert gas to the melt. Pressing with OMPa may include spraying the melt onto a surface of a copper wheel rotating at 500 to 3000 rpm.
  • the internal oxidation may be performed by heat treatment for 1 to 5 hours at a temperature of 800 to KXXTC.
  • the hot press molding may be hot press or high temperature isotropic molding, and may be performed at a pressure of 10 to 50 MPa for 1 to 5 hours at a temperature of 1200 to 1400 ° C.
  • the hot working is preferably carried out at a temperature of 1000 to 1400 ° C.
  • the cold working is preferably carried out at a reduction ratio of 40 to 90%.
  • the heat treatment step may be performed for 1 to 5 hours at a temperature of 1200 to 140C C.
  • FIG. 1 is a process flowchart of a conventional platinum-rhodium-oxide alloy production method.
  • Figure 2 is a process flow diagram of the platinum-rhodium-oxide-based alloy manufacturing method of the present invention.
  • FIG. 3 is a transmission electron microscope (TEM) photograph of the alloy sheet prepared in Example 1.
  • TEM transmission electron microscope
  • Figure 4 is a graph showing the relative density results for each process of the platinum-rhodium-oxide-based alloy prepared in Example 1 and Comparative Example 1.
  • FIG. 5 is an EBSD analysis photograph of the platinum rhodium-oxide oxide alloy prepared in Example 1.
  • FIG. 5 is an EBSD analysis photograph of the platinum rhodium-oxide oxide alloy prepared in Example 1.
  • FIG. 6 is an EBSD analysis photograph of a platinum-rhodium-oxide based alloy prepared in Comparative Example 1.
  • the present invention comprises the steps of forming an alloy ingot comprising (i) platinum, ( ⁇ ) rhodium, and (iii) one or more oxide metals selected from the group consisting of zirconium, samarium, yttrium and hafnium; Melt spinning the alloy ingot to form an alloy thin plate; Thermally oxidizing the alloy sheet in an atmosphere; Laminating or pulverizing the internally oxidized alloy thin plate and hot pressing molding; Hot working the hot press-molded alloy sheet; Hot working the hot worked alloy sheet; And it provides a method for producing a platinum-rhodium-oxide-based alloy comprising the step of heat-treating the cold worked alloy sheet.
  • At least one metal selected from the group consisting of (0 platinum (Pt), ( ⁇ ) rhodium (Rh) and (iii) zirconium (Zr), samarium (Sm), yttrium ( ⁇ ) and hafnium (Hf)
  • Pt platinum
  • Rh rhodium
  • Zr zirconium
  • Sm samarium
  • yttrium
  • Hf hafnium
  • the step S100 is a mixture of platinum, rhodium, zirconium, samarium, yttrium and hafnium, at least one metal is mixed and dissolved, and then injected into a mold of a predetermined shape to form an alloy ingot.
  • the content of platinum is not particularly limited, but may be a residual amount such that the total weight of the alloy ingot is 100% by weight.
  • the rhodium is an element added for solid solution strengthening.
  • the content of the rhodium is not particularly limited, but when it is 5 to 20% by weight, an excellent solid solution strengthening effect may be obtained. If the content of rhodium is less than 5% by weight, the solid solution strengthening effect cannot be obtained by rhodium, but the strength is increased by solid solution strengthening by rhodium exceeding 20 weight 3 ⁇ 4, but cracks are generated during post-processing. High temperature strength improvement of the alloy may be lowered.
  • the alloy ingot includes one metal selected from the group consisting of zirconium, samarium, yttrium and hafnium.
  • the at least one metal does not reduce the corrosion resistance, it is easy to be converted into oxides because the degree of oxidation is greater than platinum and rhodium, and is stable even at a high temperature of 140CTC or more, thereby improving the dispersion strengthening effect.
  • the content of the one or more metals is not particularly limited, but when it is 0.02 to 0.8% by weight, an excellent dispersion strengthening effect of the alloy may be obtained.
  • the content of the alloying element for the oxide is less than 0.02% by weight, the dispersion strengthening effect of the platinum-rhodium-oxide-based alloy cannot be obtained, and when the content of the alloying element is more than 0.8% by weight, the creep strength of the alloy is improved, but the residual dispersed particles As a result, the dispersion strengthening effect may increase, and workability may decrease.
  • the content of the rhodium and at least one metal is preferably selected within the range capable of workability while maximizing the solid solution strengthening and dispersion strengthening effect.
  • the alloy element for oxide is excellent in oxidizing property in comparison with platinum or rhodium. When dissolved in air, it is difficult to control the content of the alloy element for oxide by oxidation and vaporization. Do.
  • the dissolution temperature is not particularly limited, but is preferably performed at 1200 to 1400 ° C.
  • step S100 the alloy ingot obtained in step S100 is melt-spun to form an alloy thin plate (step S200).
  • the thin alloy sheet is formed through the step S200, even if the heat treatment in the air atmosphere in the following step S300 can be sufficiently oxidized in a short time.
  • the alloy ingot is charged to the nozzle installed in the melt spinning equipment
  • the sprayed melt After completely dissolving in a high vacuum of 10 to 4 to 10 to 3 Torr to form a melt, pressurizing and spraying an inert gas to 0.1 to 1.0 MPa in the melt, the sprayed melt is installed in the vertical lower space, the rotating copper In contact with the surface of the wheel (Cu wheel) it is rapidly quenched to form an alloy sheet.
  • the said inert gas is not specifically limited, It is preferable that it is argon gas (Ar gas).
  • the rotation speed of the copper wheel is not particularly limited, but in the case of 500 to 3000 rpm, the melt in contact with the surface of the copper wheel is rapidly angled, and the alloy thickness formed may be adjusted.
  • the thin metal sheet is thin, since the oxidation can be performed in a short time in the following step S300, it is possible to control the thickness of the thin plate, preferably about 50 to 200 ⁇ , and to control the gap of the melt in contact with the copper wheel. By doing this, the thickness of the metal thin plate can be controlled.
  • platinum has a high melting point as the nozzle
  • a higher melting point material such as quartz, graphite, or the like may be used.
  • step S300 the alloy sheet obtained in step S200 is heat-treated under an atmospheric atmosphere for internal oxidation.
  • an oxide of a metal selected from the group consisting of zirconium, samarium, yttrium and hafnium can be uniformly formed in a short time.
  • the temperature and time of the heat treatment is not particularly limited, but the temperature is preferably in the range of 800 to 1200 ° C, the time is preferably 1 to 12 hours. If the heat treatment temperature is less than 800 ° C, or if the time is less than 1 hour, the oxidation of the alloying element may not be performed sufficiently. If the temperature exceeds 120 CTC or the time exceeds 12 hours, coarsening of the alloy element Dispersing effect can be reduced by have.
  • step S300 the internally oxidized alloy thin plate obtained in step S300 is laminated or pulverized, and subjected to high temperature press molding (step S400).
  • the relative density of the internally oxidized alloy sheet may be adjusted to 80% or more.
  • high temperature press molding examples include a hot press (Hot Press, HP) or hot isostatic pressing (Hot Isostat ic Press, HIP) and the like, but is not limited thereto.
  • the temperature and time of the high temperature press molding are not particularly limited, but are preferably prepared at a pressure of 10 to 50 MPa for 1 to 5 hours at a temperature in the range of 1200 to 1400 ° C.
  • the temperature of the high temperature press forming is 1200 ° C
  • the time is 1 hour or the pressure is less than lOMPa
  • a high density sintered body cannot be obtained
  • the temperature is 1400 ° C or more than 5 hours
  • the coarsening of the oxide Due to this, the dispersion strengthening effect is likely to be lowered, and if the pressure exceeds 50 MPa, it may cause a danger of the applied mold and equipment.
  • step S500 is a process for obtaining a high-density alloy hot processing, through which the relative density of the alloy sheet obtained in step S400 can be adjusted to 98% or more.
  • Examples of the hot working include hot rolling, hot forging, and the like, but are not limited thereto.
  • the temperature of the hot working is not particularly limited, but is preferably performed in a temperature range of 1000 to 140CTC. If the temperature is below loocrc It is easy to generate cracks during hot working, and it is difficult to secure the high density of the alloy,
  • the dispersion strengthening effect of the alloy may be lowered by coarsening of the alloying element for the oxide.
  • step S600 it is possible to heat-treat the alloy sheet obtained in the step S500. This can prevent the occurrence of cracks during cold working.
  • step S600 After the hot working, cold working for thickness control is performed (step S600). '
  • Non-limiting examples of the above-described hot working include hot rolling, hot forging, and the like, and preferably cold rolling is performed.
  • the rolling reduction rate of cold rolling is not specifically limited, 40 to 90% is preferable. If the reduction ratio is less than 40%, the processing force is low, recrystallization may not occur even after the subsequent heat treatment, and if it exceeds 90%, the alloy may be damaged due to high processing stress.
  • step S700 the heat treatment for recrystallization of the microstructure
  • Conditions of the temperature and time of the heat treatment is not particularly limited, but it is preferable to heat treatment for 1 to 5 hours at a temperature in the range of 1200 to 1400 ° C. If the temperature is 1200 ° C or less than 1 hour, recrystallization of the microstructure can be suppressed, and if the temperature is more than 1400 ° C or more than 5 hours, the grains and oxides may coarsen and the hardness may be reduced. have.
  • the present invention will be described in detail with reference to Examples, but the following Examples and Experimental Examples are merely illustrative of one embodiment of the present invention, and the scope of the present invention is not limited by the following Examples and Experimental Examples. .
  • Example 1 Example 1
  • the internally oxidized alloy thin sheets were laminated or pulverized and pressure-sintered at 20 MPa pressure at 1400 ° C. for 2 hours. After pressure sintering, the relative density of the alloy sheet was measured as 86.5%. Then, hot forging at a temperature of 1200 ° C. After hot forging, the relative density of the alloy sheet was measured to be 98.0%. Thereafter, rolling was performed at a reduction ratio of 40%. After cold rolling, the relative density of the alloy sheet was measured to be 99.9%. Then, a platinum-rhodium-oxide-based alloy was prepared by heat treatment for 1 hour at a temperature of 120C C in air.
  • FIG. 3 A transmission electron microscope (TEM) photograph of the internally oxidized alloy thin film is shown in FIG. 3. It can be seen that the Zr metal oxide having a size of about 200 nm is uniformly dispersed along the grain boundary. Comparative Example 1
  • the internally oxidized molded body was sintered under pressure at 20 MPa at 1400 ° C. for 2 hours. After pressure sintering, the relative density of the molded body was measured to be 93.4%. Then, hot forging at a temperature of 1200 ° C. The relative density of the molded body after hot forging was measured to be 97.6%. Thereafter, rolling was performed at a reduction ratio of 40%. The relative density of the molded body after rolling was measured as 99.2%. Then, a platinum- rhodium ⁇ oxide-based alloy was prepared by heat treatment for 1 hour at a temperature of 1200 ° C. in the air.
  • the zirconium content which is an oxide alloy element, shows a 0.2156% increase in content similar to the target composition.
  • the content shows 0.2444 weight%.
  • the alloy of Comparative Example 1 was found to have a higher relative density than the alloy of Example 1, but the hot forging and hot rolling process In one case, the relative density of the alloy of Example 1 was found to be higher than that of Comparative Example 1.
  • Experimental Example 3. EBSD Analysis
  • a metal thin plate is manufactured using a melt spinning method, and then internally oxidized only by atmospheric heat treatment, thereby reducing the number of manufacturing processes and manufacturing time, and reducing the manufacturing cost and cost competitiveness. Can increase.

Abstract

본 발명은 고밀도의 산화물 분산 강화형 백금-로듐-산화물계의 제조방법을 제공한다.

Description

【명세서】
[발명의 명칭】
백금-로듐-산화물계 합금의 제조방법
【기술분야】
본 발명은 고밀도의 산화물 분산 강화형 백금-로듐-산화물계 합금의 제조방법에 관한 것이다.
[배경기술】
분산 강화는 금속재료의 강화법으로서, 모상 (母相)의 금속에 다른 금속의 탄화물, 질화물, 산화물로 이루어지는 분산 입자를 분산시켜, 분산입자의 작용에 의해 모상 금속의 기계적 성질을 향상시키는 것이다.
모상 금속으로는 고가임에도 불구하고, 백금이 주로 사용되고 있는데, 이는 백금이 융점이 높고, 실온 및 고온에서 가공이 용이하며, 내화학성, 내식성 및 휘발성이 우수하기 때문이다.
종래에는 백금의 강도를 향상시키기 위해, 백금에 금 (Au) , 로듐 (Rh) 등의 원소 등을 합금화하여 고용 강화시킨 백금 소재가 주로 사용되어 왔다. 그러나, 최근 강화 원소로 사용된 합금 원소 (예들 들어, 금, 로듐 등)의 가격 상승으로 인해서, Pt-Au, Pt-Rh 등의 합금 소재를 대체하기 위해서, 산화력이 뛰어난 원소들을 이용하여 산화물을 형성 및 분산시킨 백금 합금 재료가 개발되고 있다.
예를 들어, 모상 금속인 백금 중에 지르코늄 등과 같은 금속의 산화물 입자가 분산된 백금 합금이 있다. 상기 백금 합금은 1200°C 이상의 고온에서 장시간 사용해도 결정립의 성장이 미미하고 변형이 작으며, 금속 산화물에 의해 재결정이 방해되면서 연신된 결정립을 갖게 되어 보다 높은 고온 크립 강도를 갖는 것으로 알려져 있으며, 가격도 저렴하다.
이러한 분산 강화형 합금은 고온 및 높은 응력에 의해 변형되기 쉽고, 고온 크립 특성이 우수하여 LCD용 고품질 글라스 (Glass) 제조용 소재 및 장치의 재료로서 이용되고 있다.
종래의 산화물 분산 강화형 합금의 제조방법으로는, 목적 조성의 합금 잉곳을 제조한 후, 플라즈마를 이용하여 백금합금 분말을 제조하였다. 상기 제조방법은 산화물 원소의 함량 제어가 용이하다는 장점이 있으나, 비산되는 분말로 인해 수율이 다소 저하되며, 제조 시간의 증가에 의해 높은 비용이 소보되는 단점이 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명은 우수한 고온 크리프 강도 (Creep strength)를 갖는 고밀도의 산화물 분산 강화형 백금-로듐-산화물계 합금을 제조하는 방법을 제공하는 것을 목적으로 한다.
【기술적 해결방법]
상기한 목적을 달성하기 위하여, 본 발명의 적절한 일 예는, ( i )백금, ( i i )로듐과, ( i i i )지르코늄, 사마륨, 이트륨 및 하프늄으로 이루어진 군에서 선택된 1종 이상의 산화물용 금속을 포함하는 합금 잉곳을 형성하는 단계; 상기 합금 잉곳을 용융 방사하여 합금 박판을 형성하는 단계 ; 상기 합금 박판을 대기 분위기 하에서 열처리하여 내부산화시키는 단계; 내부산화된 합금 박판을 적층 또는 분쇄하고, 고온 가압 성형하는 단계; 고온 가압 성형된 합금 박판을 열간가공하는 단계; 열간가공된 합금 박판을 냉간가공하는 단계; 및 냉간가공된 합금 박판을 열처리하는 단계를 포함하는 백금-로듐—산화물계 합금의 제조방법을 제공한다.
여기서, 상기 합금 잉곳은 전체 100중량 %를 기준으로, 5~20중량 ¾의 로듐; 0.02~0.8중량 %의 산화물용 금속; 및 잔량의 백금을 포함할 수 있다.
또한, 상기 합금 박판을 형성하는 단계는 상기 합금 잉곳을 10_4~10— 3Torr의 고진공 하에서 용해하여 용융물을 형성하는 단계; 상기 용융물에 불활성 가스를 0. 1내지 l . OMPa로 가압하여 상기 용융물을 500내지 3000rpm으로 회전하는 구리 휠 표면에 분사시키는 단계를 포함할 수 있다.
또한, 상기 내부산화시키는 단계는 800 내지 KXXTC의 온도에서 1 내지 5시간 동안 열처리하여 수행될 수 있다.
상기 고온 가압 성형은 핫프레스 또는 고온 등방향 성형일 수 있으며, 1200 내지 1400 °C의 온도에서 1 내지 5시간 동안 10 내지 50MPa의 압력으로 수행될 수 있다.
또한, 상기 열간가공은 1000 내지 1400 °C의 온도에서 수행되는 것이 바람직하다.
상기 냉간가공은 압하율 40 내지 90%로 수행되는 것이 바람직하다. 또한, 상기 열처리 단계는 1200 내지 140C C의 온도에서 1 내지 5시간 동안 수행될 수 있다.
【도면의 간단한 설명】
도 1은 종래의 백금-로듐-산화물계 합금 제조방법의 공정 순서도이다. 도 2는 본 발명의 백금-로듐-산화물계 합금 제조방법의 공정 순서도아다.
도 3은 실시예 1에서 제조된 합금 박판의 투과전자현미경 (Transmi ssion electron microscope , TEM) 사진이다.
도 4는 실시예 1 및 비교예 1에서 제조된 백금—로듐-산화물계 합금의 각 공정별 상대밀도 결과를 나타낸 그래프이다.
5는 실시예 1에서 제조된 백금 _로듐ᅳ산화물계 합금의 EBSD 분석 사진이다.
도 6은 비교예 1에서 제조된 백금-로듐-산화물계 합금의 EBSD 분석 사진이다. 【발명의 실시를 위한 형태】
이하, 본 발명에 대해 도 2를 참조하여 설명한다.
본 발명은 (i)백금, (Π)로듐과, (iii)지르코늄, 사마륨, 이트륨 및 하프늄으로 이루어진 군에서 선택된 1종 이상의 산화물용 금속을 포함하는 합금 잉곳을 형성하는 단계; 상기 합금 잉곳을 용융 방사하여 합금 박판을 형성하는 단계; 상기 합금 박판을 대기 분위기 하에서 열처리하여 내부산화시키는 단계; 내부산화된 합금 박판을 적층 또는 분쇄하고, 고온 가압 성형하는 단계; 고온 가압 성형된 합금 박판을 열간가공하는 단계; 열간가공된 합금 박판을 넁간가공하는 단계; 및 냉간가공된 합금 박판을 열처리하는 단계를 포함하는 백금-로듐-산화물계 합금의 제조방법을 제공한다.
이하, 본 발명에 따른 제조방법의 각 단계에 대해 설명한다. 먼저, (0백금 (Pt), (Π)로듐 (Rh)과, (iii)지르코늄 (Zr), 사마륨 (Sm), 이트륨 (γ) 및 하프늄 (Hf)으로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는 합금 잉곳을 형성한다 (S100 단계).
일례로, 상기 S100 단계는 백금, 로듐과, 지르코늄, 사마륨, 이트륨 및하프늄으로 이루어진 군에서 선택된 1종 이상의 금속을 흔합하고 용해시킨 다음, 일정 형상의 몰드에 주입하여 합금 잉곳을 형성한다.
백금의 함량은 특별히 한정되지 않으나, 합금 잉곳의 전체 중량이 100중량 %가 되도록 하는 잔량일 수 있다.
상기 로듐은 고용강화를 위해 첨가하는 원소이다.
상기 로듐의 함량은 특별히 한정되지 않으나, 5 내지 20중량 %일 경우 우수한 고용강화 효과를 얻을 수 있다. 로듐의 함량이 5중량 % 미만일 경우에는 로듐에 의한 고용강화 효과를 얻을 수 없으며, 20중량 ¾를 초과하만로듐에 의한 고용강화에 의해 강도가 증가하나, 후가공시 크랙이 발생하여 백금-로듐-산화물계 합금의 고온 강도 향상이 저하될 수 있다. 상기 합금 잉곳은 지르코늄, 사마륨 , 이트륨 및 하프늄으로 이루어진 군에서 선택된 1종의 금속을 포함한다.
상기 1종 이상의 금속은 내식성을 저하시키지 않으며, 백금 및 로듐에 비해 산화도가 커서 산화물로 용이하게 전환될 수 있고, 140CTC 이상의 고온에서도 안정적이기 때문에, 분산 강화 효과를 향상시킬 수 있다.
이러한 1종 이상의 금속의 함량은 특별히 한정되지 않으나, 0.02 내지 0.8중량%일 경우 합금의 우수한 분산강화 효과를 얻을 수 있다. 상기 산화물용 합금원소의 함량이 0.02 중량 % 미만일 경우에는 백금-로듐-산화물계 합금의 분산강화 효과를 얻을 수 없으며, 0.8중량¾를 초과할 경우에는 합금의 크리프 강도는 향상되지만, 잔류 분산 입자에 의해 분산 강화효과가 증가하여 가공성이 저하될 수 있다.
따라서, 상기의 로듐 및 1종 이상의 금속의 함량은 고용강화 및 분산강화 효과를 극대화하면서 가공성이 가능한 범위 내에서 선택하는 것이 바람직하다.
또한, 상기 S100 단계에서 상기 산화물용 합금원소는 백금이나 로듐에 바해 산화성이 우수하예 대기 중에서 용해할 경우 산화 및 기화에 의해 산화물용 합금원소의 함량 제어가 어려우므로 진공 또는 불활성 분위기에서 용해시키는 것이 바람직하다.
상기 용해 온도는 특별히 한정되지 않으나, 1200내지 1400°C에서 수행되는것이 바람직하다.
이후,상기 S100단계에서 얻은 합금 잉곳을 용융 방사하여 합금 박판올 형성한다 (S200 단계) .
상기 S200 단계를 통해 두께가 얇은 합금 박판이 형성됨으로써, 하기 S300 단계에서 대기 분위기 하에서 열처리를 하더라도 단시간 내에 산화가 층분히 이루어질 수 있다. 상기 합금 잉공을 용융 방사 장비에 설치된 노즐에 장입하여
10一4~10— 3Torr의 고진공에서 완전히 용해시켜 용융물을 형성한후, 상기 용융물에 불활성 가스를 0.1~1.0MPa로 가압하여 분사시키면, 분사된 용융물이 수직 하부에 이격 설치되고, 회전하는 구리 휠 (Cu wheel ) 표면에 접촉하여 급속 넁각되어 합금 박판이 형성된다.
상기 불활성 가스는 특별히 한정되지 않으나, 아르곤 가스 (Ar gas )인 것이 바람직하다. 또한, 상기 구리 휠의 회전 속도는 특별히 한정되지 않으나, 500 내지 3000rpm일 경우, 구리 휠의 표면과 접촉하는 용융물이 급속 넁각됨과 동시에, 형성되는 합금 두께가 조절될 수 있다. 그러나, 상기 금속 박판은 두께가 얇기 때문에, 하기 S300 단계에서 단시간에 산화가 층분히 이루어질 수 있으므로 박판의 두께를 조절하는 것이 가능하며 약 50~200μιπ 바람직하며, 구리 휠과 접촉하는 용융물의 간격을 조절함으로써 금속 박판의 두께를 제어할 수 있다.
또한, 상기 노즐로는 백금이 높은 융점을 갖기 때문에, 이보다 고융점 재료인 석영 (Quartz) , 그라파이트 등이 사용될 수 있다.
이후, 상기 S200 단계에서 얻은 합금 박판을 대기 분위기 하에서 열처리하여 내부산화시킨다 (S300 단계) .
대기 분위기 하에서 열처리를 함으로써,짧은 시간에 지르코늄,사마륨, 이트륨 및 하프늄으로 이루어진 군에서 선택된 금속의 산화물을 균일하게 형성할 수 있다.
상기 열처리의 온도 및 시간은 특별히 한정되지 않으나, 온도는 800 내지 1200°C 범위인 것이 바람직하며, 시간은 1내지 12시간인 것이 바람직하다. 열처리 온도가 800°C 미만이거나, 시간이 1시간 미만일 경우에는 합금원소의 산화가 층분히 이루어지지 않을 수 있으며, 온도가 120CTC를 초과하거나, 시간이 12시간을 초과할 경우에는 합금원소의 조대화에 의해 분산 효과가 저하될 수 있다.
이후, 상기 S300 단계에서 얻은 내부산화된 합금 박판을 적층 또는 분쇄하고, 고온 가압 성형한다 (S400 단계) .
상기 S400 단계를 통해 내부산화된 합금 박판의 상대 밀도가 80% 이상으로조절될 수 있다.
상기 고온 가압 성형의 예로는 핫 프레스 (Hot Press , HP) 또는 열간 등방압 성형 (Hot Isostat ic Press , HIP) 등이 있는데, 이에 한정되지 않는다.
상기 고온 가압 성형의 온도 및 시간은 특별히 한정되지 않으나, 1200 내지 1400°C 범위의 온도에서 1 내지 5시간 동안 10 내지 50MPa 압력으로 제조하는 것이 바람직하다. 상기 고온 가압 성형의 온도가 1200 °C , 시간이 1시간 또는 압력이 lOMPa 미만일 경우에는 고밀도의 소결체를 얻을 수 없으며, 온도가 1400 °C 또는 시간이 5시간을 초과할 경우, 산화물의 조대화로 인해 분산 강화 효과가 저하될 가능성이 높으며, 압력이 50MPa를 초과할 경우에는 적용 몰드 및 장비의 위험을 초래할 수 있다.
이후, 상기 S400 단계에서 얻은 합금 박판을 열간가공한다 (S500 단계) . 상기 S500 단계는 열간가공은 고밀도의 합금을 얻기 위한 공정으로, 이를 통해 S400 단계에서 얻은 합금 박판의 상대밀도가 98% 이상으로 조절될 수 있다. 상기 열간가공의 예를 들면 열간 압연, 열간 단조 등이 있는데, 이에 한정되지 않는다.
만약, 상대밀도가 98% 미만일 경우에는 후속의 넁간가공으로 인해 99% 이상의 상대밀도를 갖더라도, 열간가공시 잔존한 포어 (Pore)가 제거되지 않아, 후속의 열처리에 의해 합금의 표면에 블리스터 (Bl i ster )가 발생하거나, 내부 결합 등이 발생할 가능성이 높기 때문이다.
상기 열간가공의 온도는 특별히 한정되지 않으나, 1000 내지 140CTC의 온도 범위에서 수행되는 것이 바람직하다. 온도가 loocrc 미만일 경우에는 열간가공 중에 크랙이 발생되기 쉽고, 합금의 고밀도를 확보하기 어려우며,
1400 °C를 초과할 경우에는 산화물용 합금원소의 조대화에 의해 합금의 분산 강화 효과가 저하될 수 있다.
한편, 하기 S600 단계 이전에, 상기 S500 단계에서 얻은 합금 박판을 열처리할 수 있다. 이를 통해 냉간가공 중 균열의 발생을 방지할 수 있다.
상기 열간 가공 후에 두께 제어를 위한 냉간가공을 실시한다 (S600 단계) . '
상기 넁간가공의 비제한적인 예를 들면, 넁간압연, 넁간단조 등이 있는데, 냉간압연을 실시하는 것이 바람직하다.
냉간압연의 압하율은 특별히 한정되지 않으나, 40 내지 90%가 바람직하다. 압하율이 40% 미만일 경우에는 가공 웅력이 낮아, 후속의 열처리 후에도 재결정이 일어나지 않을 수 있으며, 90%를 초과할 경우에는 높은 가공 응력으로 인해 합금이 파손될 가능성이 있다.
상기 넁간 가공 후에는 미세조직의 재결정을 위해 열처리한다 (S700 단계) .
상기 열처리의 온도 및 시간의 조건은 특별히 한정되지 않으나, 1200 내지 1400 °C 범위의 온도에서 1 내지 5시간 동안 열처리하는 것이 바람직하다. 온도가 1200°C 또는 시간이 1시간 미만일 경우에 미세조직의 재결정이 억제될 수 있으며, 온도가 1400°C 또는 시간이 5시간을 초과할 경우에는 결정립 및 산화물이 조대화되어 경도가 저하될 수 있다. 이하, 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다. 실시예 1
순도 3N5의 PtRhlO 99.7 중량 %, 순도 3N의 Zr 0.3 중량 %를 진공 고주파 유도 용해로 안에 장입하여 용해한 후, 응고시켜 합금 잉곳을 얻었다. 이후, 용융 방사 장비의 노즐에 상기 합금 잉곳을 장입한 후, Ar 가스를 0.3~0.5MPa로 가압하여 용융물을 구리 휠 표면에 분사시켜 합금 박판을 얻었다. 이때, 구리 휠의 회전 속도는 500~3000rpm으로 하였다. 얻어진 합금 박판을 대기 분위기에서 800~1000°C에서 1~5시간 동안 열처리하여, 내부산화된 합금 박판을 제조하였다.
이후, 내부산화된 합금 박판을 적층 또는 분쇄하고, 1400°C에서 2시간 동안 20MPa 압력으로 가압 소결하였다. 가압 소결 후 합금 박판의 상대밀도는 86.5%로 측정되었다. 이어서, 1200°C의 온도에서 열간 단조하였다. 열간 단조 후 합금 박판의 상대밀도는 98.0%로 측정되었다. 이후, 압하율 40%로 넁간 압연하였다. 냉간 압연 후 합금 박판의 상대밀도는 99.9%로 측정되었다. 그런 다음, 대기 중에서 120C C의 온도에서 1시간 동안 열처리하여 백금-로듐-산화물계 합금을 제조하였다.
상기 내부산화된 합금 박판의 투과전자현미경 (Transmi ssion electron microscope , TEM) 사진을 도 3에 나타내었다. 약 200nm크기의 Zr 금속 산화물이 결정립계를 따라 균일하게 분산되어 형성되어 있음을 알 수 있었다. 비교예 1
순도 3N5의 PtRhlO 99.7 중량 %ᅳ 순도 3N의 Zr 0.3 중량 %를 진공 고주파 유도 용해로 안에 장입하여 용해한 후, 웅고시켜 합금 잉곳을 얻었다. 이후, 플라즈마 장비에 부착된 진공펌프를 이용하여 10_3Torr까지 감압 후, Ar 가스를 반응가스로 하여 플라즈마를 형성시켜, 합금 잉곳을 용융시키고 플라즈마 전력을 상승시켜 분말을 제조하였다. 얻어진 분말을 사각 성형체 카본 몰드 내부에 투입하고, Ar분위기 하에서 1300°C에서 2시간 동안 열처리하여 성형체를 제조하였고, 대기 중에서 1400°C에서 2시간 동안 열처리하여, 내부산화된 성형체를 제조하였다. 이후,내부산화된 성형체를 1400°C에서 2시간 동안 20MPa압력으로 가압 소결하였다. 가압 소결 후 성형체의 상대밀도는 93.4%로 측정되었다. 이어서, 1200°C의 온도에서 열간 단조하였다. 열간 단조 후 성형체의 상대밀도는 97.6%로 측정되었다. 이후, 압하율 40%로 넁간 압연하였다. 넁간 압연 후 성형체의 상대밀도는 99.2%로 측정되었다. 그런 다음, 대기 중에서 1200°C의 온도에서 1시간 동안 열처리하여 백금-로듐ᅳ산화물계 합금을 제조하였다.
실험예 1. 합금원소의 함량 확인 실시예 1의 잉곳 및 합금 박판의 원소 함량을 ICP 분석법으로 확인하였다. 그 결과를 각각 하기 표 1 및 2에 나타내었다.
【표 1】 <실시예 1의 잉곳의 원소 함량 > 함량 함량 함량 원소 원소 원소
(중량 %) (중량 %) (중량 %)
Ag 0.0002 Fe 0.0027 Ru 0.0016
A1 0.0015 Ir 0.0026 Sb 0
As 0 Mg 0.0002 Si 0.0043
B 0 Mn 0.0001 Sn 0.0029
Bi 0 Mo 0 Te 0
Ca 0.0009 Ni 0.0002 Ti 0
Cd 0 0s 0 W 0.0070 Co 0.0013 Pb 0 Zn 0.0001
Cr 0.0003 Cu 0.0011 Zr 0.2156
【표 2】 <실시예 1의 합금 박판의 원소 함량 > 함량 함량 함량 원소 원소 원소
(중량 %) (중량 (중량 %)
Ag 0.0001 Fe 0.0028 Ru 0.0006
A1 0.0018 Ir 0.0082 Sb 0
As 0 Mg 0.0002 Si 0.0017
B 0 Mn 0.0005 Sn 0.0047
Bi 0 Mo 0.0010 Te 0
Ca 0.0022 Ni 0.0017 Ti 0.0002
Cd 0.0001 0s 0 W 0
Co 0.0001 Pb 0 Zn 0.0031
Cr 0.0009 Cu 0.221 Zr 0.2444
표 1에서 보는 바와 같이, 백금-로듐-산화물계 잉곳의 경우, 산화물 합금원소인 지르코늄 함량이 목적 조성에 유사한 0.2156증량 %를 나타내고 있으며, 표 2의 백금-로듐-산화물계 합금 박판에 있어서도, 지르코늄 함량이 0.2444중량%를 나타내고 있다.
실험예 2. 상대밀도 측정 실시예 1 및 비교예 1에서 제조한 백금-로듐-산화물계 합금의 상대밀도를 가압 소결, 열간 단조, 냉간 압연을 실시한 후, 각각 측정하였으며, 결과는 도 4에 나타내었다.
도 4에 도시된 바와 같이, 가압 소결한 백금-로듐-산화물계 합금의 경우, 실시예 1의 합금보다 비교예 1의 합금이 상대밀도가 더 높은 것으로 나타났으나, 열간단조 및 넁간압연 공정을 한 경우에는, 비교예 1의 합금보다 실시예 1의 합금의 상대밀도가 더 높은 것으로 나타났다. 냉간압연한 실시예 1의 합금은 아르키메스법을 이용하여 상대밀도를 측정하였으며 99.9%로 상당히 높게 나타났다. 실험예 3. EBSD 분석
실시예 1 및 비교예 1에서 제조한 백금—로듐-산화물계 합금의 단면에 대해 EBSD 분석을 실시하였으며, 그 결과를 각각 도 5 및 6에 나타내었다.
도 5에 나타난 바와 같이, 넁간 압연 후의 합금 (실시예 1)의 조직을 관찰하면, 압연 방향에 따라 결정립이 배열됨을 알 수 있다. 또한, 1500°C의 고온 열처리 후에도, 미세한 Zr¾산화물의 분포에 의해 결정립 성장이 억제되며: 등축정의 결정립이 유지됨을 알 수 있다. 그러나, 비교예 1의 합금의 경우, 고온 열처리 후, 조직의 재결정에 의해 결정립이 조대화된 것을 알 수 있다.
【산업상 이용가능성】
본 발명에 따른 백금-로듐-산화물계 합금의 제조방법은 용융 방사법을 이용하여 금속 박판을 제조한 후, 대기 열처리만으로 내부 산화시킴으로써, 공정수 및 제조시간이 단축되고, 제조비용이 절감되어 원가경쟁력을 높일 수 있다.
또한, 백금-로듐-산화물계 합금의 밀도를 높일 수 있고, 고온 크립 강도를 향상시킬 수 있다.

Claims

【청구의 범위】
【청구항 1]
( i )백금, ( i i )로듐과, ( i i i )지르코늄, 사마륨, 이트륨 및 하프늄으로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는 합금 잉곳을 형성하는 단계;
상기 합금 잉곳을 용융 방사하여 합금 박판을 형성하는 단계 ; 상기 합금 박판을 대기 분위기 하에서 열처리하여 내부산화시키는 단계;
내부산화된 합금 박판을 적층 또는 분쇄하고, 고은 가압 성형하는 단계; .
고온 가압 성형된 합금 박판을 열간가공하는 단계;
열간가공된 합금 박판올 냉간가공하는 단계; 및
냉간가공된 합금 박판을 열처리하는 단계
를 포함하는 백금-로듐-산화물계 합금의 제조방법 .
【청구항 2】
제 1항에 있어서,
상기 합금 잉곳은 전체 100중량 %를 기준으로,
5~20중량 %의 로듐;
0.02~0.8중량%의 1종 이상의 금속; 및
잔량의 백금을 포함하는 백금-로듐-산화물계 합금의 제조방법 . 【청구항 3】
제 1항에 있어서,
상기 합금 박판을 형성하는 단계는
상기 합금 잉곳을 10—4~10— 3Torr의 고진공 하에서 용해하여 용융물을 형성하는 단계 ;
상기 용융물에 불활성 가스를 0 : 1 내지 l . OMPa로 가압하여 상기 용융물을 500 내지 3000rpm으로 회전하는 구리 휠 표면에 분사시키는 단계
를 포함하는 백금-로듐-산화물계 합금의 제조방법 .
【청구항 5】
제 1항에 있어서,
상기 내부산화시키는 단계는 800 내지 100CTC의 온도에서 1 내지 5시간 - 동안 수행되는 백금-로듐-산화물계 합금의 제조방법.
【청구항 6】
게 1항에 있어서,
상기 고온 가압 성형은 핫프레스 또는 고온 등방향 성형인 백금-로듐-산화물계 합금의 제조방법 .
【청구항 7】
제 1항에 있어서,
상기 고온 가압 성형은 1200내지 1400°C의 온도에서 1내지 5시간 동안
10 내지 50MPa의 압력으로 수행되는 백금-로듐-산화물계 합금의 제조방법 . 【청구항 8】
제 1항에 있어서,
상기 열간가공은 1000 내지 1400 °C의 온도에서 수행되는 백금-로듐-산화물계 합금의 제조방법 .
【청구항 9】
게 1항에 있어서,
상기 냉간가공은 압하율 40 내지 90%로 수행되는 백금-로듐-산화물계 합금의 제조방법 .
【청구항 10】 제 1항에 있어서,
상기 열처리 하는 단계는 1200 내지 1400 °C의 온도에서 1 내지 5시간 되는 백금-로듐-산화물계 합금의 제조방법 .
PCT/KR2013/008245 2013-09-05 2013-09-12 백금-로듐-산화물계 합금의 제조방법 WO2015034121A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0106628 2013-09-05
KR20130106628A KR20150028037A (ko) 2013-09-05 2013-09-05 백금-로듐-산화물계 합금의 제조방법

Publications (1)

Publication Number Publication Date
WO2015034121A1 true WO2015034121A1 (ko) 2015-03-12

Family

ID=52628573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008245 WO2015034121A1 (ko) 2013-09-05 2013-09-12 백금-로듐-산화물계 합금의 제조방법

Country Status (3)

Country Link
KR (1) KR20150028037A (ko)
TW (1) TW201510244A (ko)
WO (1) WO2015034121A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218895A (zh) * 2019-06-26 2019-09-10 泰安恒成复合材料工程技术有限公司 一种弥散强化铂铑合金板材的制备工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004317B (zh) * 2019-05-08 2020-11-24 昆明贵金属研究所 一种氧化物强化铂铑基复合材料的电弧熔炼制备方法
KR102370831B1 (ko) 2020-10-26 2022-03-07 한국생산기술연구원 균일도가 향상된 나노입자 분산강화 타이타늄 분말 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020021996A (ko) * 2000-09-18 2002-03-23 안드레아스 바우만/ 게하르트 리체르트 비금속 산화물의 작고 미세하게 분산된 입자에 의해 분산강화된 금 미함유 백금 재료
JP2005163069A (ja) * 2003-11-28 2005-06-23 Tanaka Kikinzoku Kogyo Kk 強化白金材料の製造方法
KR20060122914A (ko) * 2004-10-08 2006-11-30 다나까 기낀조꾸 고교 가부시끼가이샤 산화물 분산강화형 백금재료
KR20080051833A (ko) * 2006-12-07 2008-06-11 희성금속 주식회사 용사법을 이용한 산화물 분산강화형 백금재료의 제조방법
KR20080076759A (ko) * 2007-02-14 2008-08-20 베.체.헤레우스게엠베하 산화물 분산에 의해 강화되고 내부산화법에 의해 제조되며고비율의 산화물과 우수한 연성을 구비하는, 플래티넘재료, 플래티넘-로듐 재료 또는 플래티넘-금 재료

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020021996A (ko) * 2000-09-18 2002-03-23 안드레아스 바우만/ 게하르트 리체르트 비금속 산화물의 작고 미세하게 분산된 입자에 의해 분산강화된 금 미함유 백금 재료
JP2005163069A (ja) * 2003-11-28 2005-06-23 Tanaka Kikinzoku Kogyo Kk 強化白金材料の製造方法
KR20060122914A (ko) * 2004-10-08 2006-11-30 다나까 기낀조꾸 고교 가부시끼가이샤 산화물 분산강화형 백금재료
KR20080051833A (ko) * 2006-12-07 2008-06-11 희성금속 주식회사 용사법을 이용한 산화물 분산강화형 백금재료의 제조방법
KR20080076759A (ko) * 2007-02-14 2008-08-20 베.체.헤레우스게엠베하 산화물 분산에 의해 강화되고 내부산화법에 의해 제조되며고비율의 산화물과 우수한 연성을 구비하는, 플래티넘재료, 플래티넘-로듐 재료 또는 플래티넘-금 재료

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218895A (zh) * 2019-06-26 2019-09-10 泰安恒成复合材料工程技术有限公司 一种弥散强化铂铑合金板材的制备工艺

Also Published As

Publication number Publication date
TW201510244A (zh) 2015-03-16
KR20150028037A (ko) 2015-03-13

Similar Documents

Publication Publication Date Title
JP3813311B2 (ja) 元素状粉末の熱化学処理による鉄アルミナイドの製造方法
CA2362302C (en) Method of manufacturing metallic products such as sheet by cold working and flash annealing
JP4249899B2 (ja) アルミニド粉末の熱機械的加工によるアルミニドシートの製造方法
JP5972548B2 (ja) 高温強度に優れたFe基粉末緻密固化成形体の製造方法
KR100851064B1 (ko) 용사법을 이용한 산화물 분산강화형 백금재료의 제조방법
KR101288592B1 (ko) 산화물 분산강화형 백금-로듐 합금의 제조방법
CN113122763A (zh) 一种高强韧性高熵合金制备方法
WO2015034121A1 (ko) 백금-로듐-산화물계 합금의 제조방법
JPH0832934B2 (ja) 金属間化合物の製法
KR101560455B1 (ko) 방전 플라즈마 소결을 이용한 LCD Glass 제조용 산화물 분산 강화형 백금­로듐 합금의 제조 방법
TWI387497B (zh) Manufacturing method of nickel alloy target
KR101419443B1 (ko) 산화물 분산 강화형 백금-금 합금의 제조방법
JP4094959B2 (ja) 強化白金材料の製造方法
WO2023025251A1 (zh) 轻质钢及其制备方法、钢结构件和电子设备
WO2023157438A1 (ja) Fe-Ni-Cr系合金製造物
KR101279553B1 (ko) 플라즈마를 이용한 산화물 분산강화형 백금재료의 제조방법
CN117867311A (zh) 一种基于晶界黏合及原位反应的常规合金高低温力学及腐蚀性能的提升方法
JPS62188735A (ja) TiNi系合金線材又は板材の製造法
KR100885698B1 (ko) 단상구조를 갖는 고온재료용 Ru계 금속간화합물의제조방법
JPH05287406A (ja) 高密度粉末焼結チタン合金の製造方法
JPS62133004A (ja) TiNi系合金線材の製造法
JP2016166423A (ja) 高温強度に優れたFe基粉末緻密固化成形体
JPH08127813A (ja) 加熱炉における被加熱体支持部材用材料
JPH08277431A (ja) 高温特性に優れたTiAl金属間化合物基合金材料とその製造方法
JPH0941032A (ja) 加熱炉用スキッドライダー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893045

Country of ref document: EP

Kind code of ref document: A1