WO2015029635A1 - ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール - Google Patents

ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール Download PDF

Info

Publication number
WO2015029635A1
WO2015029635A1 PCT/JP2014/069010 JP2014069010W WO2015029635A1 WO 2015029635 A1 WO2015029635 A1 WO 2015029635A1 JP 2014069010 W JP2014069010 W JP 2014069010W WO 2015029635 A1 WO2015029635 A1 WO 2015029635A1
Authority
WO
WIPO (PCT)
Prior art keywords
band gap
wide band
semiconductor device
semiconductor chip
manufacturing
Prior art date
Application number
PCT/JP2014/069010
Other languages
English (en)
French (fr)
Inventor
光彦 酒井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/913,747 priority Critical patent/US9640619B2/en
Publication of WO2015029635A1 publication Critical patent/WO2015029635A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/129Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of components or parts made of semiconducting materials; of LV components or parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15717Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400 C and less than 950 C
    • H01L2924/15724Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent

Definitions

  • the present invention relates to a wide band gap semiconductor device and a method for manufacturing a semiconductor module, and a wide band gap semiconductor device and a semiconductor module.
  • withstand voltage is one of important characteristics. Therefore, in a method for manufacturing a semiconductor device or a semiconductor module, a breakdown voltage measurement may be performed on each semiconductor element after a plurality of semiconductor elements are formed on the semiconductor substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 59-3943
  • Patent Document 2 discloses a method of measuring a withstand voltage by immersing a semiconductor substrate on which a semiconductor element is formed in an insulating liquid.
  • Patent Document 3 discloses a method of measuring the breakdown voltage of a semiconductor element by potting an insulating liquid on the surface of a semiconductor substrate and then bringing the probe into contact with the electrode. ing.
  • withstand voltage measurement is performed on individual semiconductor elements in the state of the semiconductor substrate, and then the semiconductor substrate is separated into individual semiconductor elements by dicing. Then, the separated semiconductor element is mounted on the module substrate to manufacture a semiconductor module. That is, conventionally, since it is difficult to perform withstand voltage measurement on each separated semiconductor element, the withstand voltage measurement has been performed in the state of the semiconductor substrate before separation. In this case, even if no failure is confirmed by the breakdown voltage measurement before separation (semiconductor substrate state), a failure may be found in the inspection of the module on which the individual semiconductor elements are mounted. Thus, there is a problem that the yield of manufacturing the semiconductor module is lowered by mounting the defective chip on the module.
  • the present invention has been made in view of the above problems, and one object of the present invention is to provide a method for manufacturing a wide band gap semiconductor device capable of improving the manufacturing yield of a semiconductor module, and the wide band gap semiconductor device. It is providing the manufacturing method of the semiconductor module using a manufacturing method. Another object of the present invention is to provide a wide band gap semiconductor device capable of improving the manufacturing yield of the semiconductor module and a semiconductor module including the wide band gap semiconductor device.
  • a method of manufacturing a wide band gap semiconductor device includes a step of preparing a wide band gap semiconductor substrate having a pair of main surfaces facing each other and having electrodes formed on each of the pair of main surfaces.
  • the step of measuring the pressure resistance of the first semiconductor chip with at least the first semiconductor chip immersed in an inert liquid and the step of measuring the pressure resistance of the first semiconductor chip by cutting the fixing member, And a step of obtaining a plurality of second semiconductor chips in which the first semiconductor chips are fixed to the fixing member.
  • a wide band gap semiconductor device includes a first semiconductor chip having a pair of main surfaces opposed to each other, and electrodes formed on each of the pair of main surfaces, and a conductive fixing member. And a first joining member that is disposed on one surface of the fixing member and fixes the first semiconductor chip to the fixing member.
  • the fixing member has a width larger than that of the first semiconductor chip.
  • the present invention it is possible to provide a method for manufacturing a wide band gap semiconductor device capable of improving the manufacturing yield of a semiconductor module, and a method for manufacturing a semiconductor module using the method for manufacturing a wide band gap semiconductor device. it can. Further, according to the present invention, it is possible to provide a wide band gap semiconductor device capable of improving the manufacturing yield of the semiconductor module and a semiconductor module including the wide band gap semiconductor device.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a semiconductor module according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a wide band gap semiconductor device according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing a structure of a first semiconductor chip in the wide band gap semiconductor device according to the first embodiment.
  • 4 is a flowchart schematically showing a method for manufacturing the wide band gap semiconductor device according to the first embodiment.
  • 3 is a flowchart schematically showing a method for manufacturing the semiconductor module according to the first embodiment. It is the schematic for demonstrating process (S11) and (S12) in the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 1.
  • FIG. 11 schematic cross-sectional view showing a structure of a semiconductor module according to Embodiment 1.
  • S12 the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 1.
  • FIG. 13 It is the schematic for demonstrating the process (S13) and (S14) in the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 1.
  • FIG. 15 It is the schematic for demonstrating the process (S15) and (S16) in the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 1.
  • FIG. 17 It is the schematic for demonstrating the process (S17) in the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 1.
  • FIG. It is the schematic for demonstrating the process (S20) in the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 1.
  • FIG. It is the schematic for demonstrating the process (S30) in the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing a structure of a wide band gap semiconductor device according to a modification of the first embodiment. 6 is a schematic cross-sectional view showing a structure of a wide band gap semiconductor device according to Embodiment 2.
  • FIG. 10 is a flowchart schematically showing a method for manufacturing a wide band gap semiconductor device according to the second embodiment. It is the schematic for demonstrating the process (S300) in the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 2. FIG. It is the schematic for demonstrating the process (S410) in the manufacturing method of the wide band gap semiconductor device which concerns on Embodiment 2. FIG.
  • a method for manufacturing a wide band gap semiconductor device includes a wide band gap semiconductor substrate having a pair of main surfaces facing each other, and electrodes formed on each of the pair of main surfaces.
  • the fixing member is cut after at least the step of measuring the pressure resistance of the first semiconductor chip with the first semiconductor chip immersed in an inert liquid and the step of measuring the pressure resistance of the first semiconductor chip.
  • the present inventor has intensively studied the cause of the failure of the semiconductor element (chip) found in the module inspection even when the failure is not confirmed by the breakdown voltage measurement in the state of the semiconductor substrate. As a result, when separating into individual chips after measuring the breakdown voltage in the state of the semiconductor substrate, a defective chip may be generated due to a defect of dicing processing or the like, and the manufacturing yield may be reduced by mounting the defective chip on the module. I found out.
  • the breakdown voltage of the first semiconductor chip is measured in an inert liquid in a state where the separated first semiconductor chip is fixed to the fixing member. Therefore, withstand pressure can be easily measured in an inert liquid even in a chip state, and defects that may occur when separated into chips can be confirmed in advance before mounting the chip on a module. And only the chip
  • the “wide band gap semiconductor” is a semiconductor having a larger band gap than silicon (Si), and includes, for example, silicon carbide (SiC), gallium nitride (GaN) and diamond.
  • the step of fixing the first semiconductor chip includes a pair of surfaces facing each other, and a first bonding member and a second member are formed on each of the pair of surfaces.
  • a step of preparing a fixing member on which the bonding member is arranged and a step of fixing the first semiconductor chip to the fixing member via the first bonding member may be included.
  • the first semiconductor chip can be easily fixed to the fixing member using the first bonding member, and the second semiconductor chip can be separately prepared using the second bonding member. Can be easily fixed. Moreover, manufacturing efficiency can be improved more by using the fixing member by which the 1st joining member and the 2nd joining member are previously arrange
  • the constituent material of the first joining member may have a lower melting point than the constituent material of the second joining member.
  • the step of fixing the first semiconductor chip includes a step of preparing a fixing member in which the first bonding member is disposed on one surface, and And a step of fixing the first semiconductor chip via the first bonding member. Further, the method for manufacturing the wide band gap semiconductor device includes a step of measuring the first semiconductor chip on the other surface opposite to the one surface before the step of obtaining the second semiconductor chip after the step of measuring the breakdown voltage of the first semiconductor chip. The process of arrange
  • positioning 2 joining members may be further provided.
  • the first semiconductor chip can be easily fixed to the fixing member using the first bonding member, and the second semiconductor chip can be separately prepared using the second bonding member. Can be easily fixed.
  • the second semiconductor chip can be obtained without immersing the second bonding member in the inert liquid.
  • the constituent material of the first joining member may have a higher melting point than the constituent material of the second joining member.
  • the second bonding member can be melted under a lower temperature condition.
  • the first joining member and the second joining member may be made of one material selected from the group consisting of a material containing silver and a gold-tin alloy. Good.
  • the material Since the material has a low electrical resistance, the electrical characteristics of the semiconductor module on which the second semiconductor chip is mounted can be further improved by using the material. Moreover, since the said material has high heat conductivity, the heat dissipation of the semiconductor module in which the 2nd semiconductor chip was mounted can be improved more by using the said material.
  • the fixing member may be made of one material selected from the group consisting of copper, aluminum, silver, and a copper-tungsten alloy.
  • the material Since the material has a low electrical resistance, the electrical characteristics of the semiconductor module on which the second semiconductor chip is mounted can be further improved by using the material. Moreover, since the said material has high heat conductivity, the heat dissipation of the semiconductor module in which the 2nd semiconductor chip was mounted can further be improved by using the said material.
  • a method for manufacturing a semiconductor module includes a step of preparing the second semiconductor chip using a method of manufacturing the wide band gap semiconductor device, a step of preparing a module substrate, and the second semiconductor. And a step of mounting the chip on the module substrate.
  • the manufacturing yield of the semiconductor module can be improved.
  • the wide band gap semiconductor device includes a first semiconductor chip having a pair of principal surfaces facing each other, and electrodes formed on each of the pair of principal surfaces, and a conductive property. And a first bonding member that is disposed on one surface of the fixing member and fixes the first semiconductor chip to the fixing member.
  • the fixing member has a width larger than that of the first semiconductor chip.
  • the wide band gap semiconductor device has the above configuration in which the width of the fixing member is larger than that of the first semiconductor chip by being manufactured using the method of manufacturing the wide band gap semiconductor device. Therefore, according to the said wide band gap semiconductor device, the wide band gap semiconductor device which can improve the manufacture yield of a semiconductor module can be provided.
  • the first semiconductor chip may be made of silicon carbide or gallium nitride.
  • Typical wide band gap semiconductors such as silicon carbide and gallium nitride are suitable as the constituent material of the first semiconductor chip.
  • a second bonding member may be disposed on the other surface of the fixing member facing the one surface.
  • the wide band gap semiconductor device can be easily fixed to a separately prepared module substrate via the second bonding member.
  • the constituent material of the first joining member may have a lower melting point than the constituent material of the second joining member.
  • the second bonding member can be prevented from melting.
  • the constituent material of the first joining member may have a higher melting point than the constituent material of the second joining member.
  • the second bonding member when the second bonding member is melted and the wide band gap semiconductor device is fixed to the module substrate, the second bonding member can be melted under a lower temperature condition.
  • the first joining member and the second joining member may be made of one material selected from the group consisting of a material containing silver and a gold-tin alloy.
  • the fixing member may be made of one material selected from the group consisting of copper, aluminum, silver, and a copper-tungsten alloy.
  • a semiconductor module according to the present embodiment includes the wide band gap semiconductor device and a module substrate on which the wide band gap semiconductor device is mounted.
  • the semiconductor module includes the wide band gap semiconductor device capable of improving the manufacturing yield of the semiconductor module. Therefore, according to the semiconductor module, a semiconductor module with improved manufacturing yield can be provided.
  • a semiconductor module 1 (Structure of semiconductor module) First, Embodiment 1 which is one embodiment of the present invention will be described.
  • a semiconductor module 1 mainly includes a plurality of silicon carbide semiconductor devices 10, a module substrate 2 on which the silicon carbide semiconductor devices 10 are mounted, terminals 3, and wirings 4.
  • Silicon carbide semiconductor device 10 is a wide bandgap semiconductor device according to an embodiment described later.
  • the module substrate 2 includes an insulating substrate (not shown), a heat sink (not shown) as a heat sink made of metal, and the like.
  • Silicon carbide semiconductor device 10 is arranged on surface 2 ⁇ / b> A of module substrate 2 and connected to each other by wiring 4.
  • Terminal 3 is connected to silicon carbide semiconductor device 10 by wiring 4.
  • the semiconductor module 1 may be sealed with a resin (not shown) or the like.
  • silicon carbide semiconductor device 10 includes a first semiconductor chip 80, a fixing member 70, a first die bonding material 71 (first bonding member), and a second die bonding material 72 (second bonding member). And mainly.
  • the fixing member 70 is made of one material selected from the group consisting of copper (Cu), aluminum (Al), silver (Ag), and copper-tungsten (CuW). Thus, since the fixing member 70 is comprised from the metal material, it has electroconductivity.
  • the fixing member 70 is wider than the first semiconductor chip 80 as shown in FIG. 2 (W1> W2).
  • the width W1 of the fixing member 70 is 1 mm or more and 10 mm or less, and preferably 2 mm or more and 9 mm or less.
  • the first die bond material 71 is disposed on one surface 70A of the fixing member 70.
  • the second die bonding material 72 is disposed on the other surface 70B facing the surface 70A.
  • a first semiconductor chip 80 is disposed on the first die bond material 71 (on the side opposite to the fixing member 70 side). That is, the first semiconductor chip 80 is fixed to the fixing member 70 by the first die bond material 71.
  • the first and second die bonding materials 71 and 72 are made of one material selected from the group consisting of a material containing silver (Ag) such as a silver paste and a gold-tin (AuSn) alloy. Therefore, the first and second die bond materials 71 and 72 have conductivity.
  • the first and second die bond materials 71 and 72 are made of materials having different melting points. In the present embodiment, the constituent material of the first die bond material 71 has a lower melting point than the constituent material of the second die bond material.
  • first semiconductor chip 80 includes base substrate 12, epitaxial growth layer 13, gate oxide film 20, gate electrode 30, source electrode 40, drain electrode 50, and back surface pad electrode 60. Is mainly included.
  • Epitaxial growth layer 13 mainly has a drift region 14, a body region 15, a source region 16, and a contact region 17. A plurality of the above structures are formed in the first semiconductor chip 80.
  • the first semiconductor chip 80 may be in contact with the first die bond material 71 (see FIG.
  • the back surface pad electrode 60 (electrode disposed on the main surface 11B), or the back surface pad electrode 60 and the The base substrate 12 that is not covered with the back surface pad electrode 60 may be in contact with the first die bonding material 71 (see FIG. 2).
  • Base substrate 12 and epitaxial growth layer 13 are made of, for example, silicon carbide.
  • the drift region 14 includes an n-type impurity such as nitrogen (N) and is formed on one main surface of the base substrate 12.
  • the body region 15 includes a p-type impurity such as aluminum (Al) or boron (B), and is formed in the epitaxial growth layer 13 so as to include the main surface 11A.
  • Source region 16 includes an n-type impurity such as phosphorus (P) and is formed in body region 15 to include main surface 11A.
  • the contact region 17 contains a p-type impurity like the body region 15 and is formed in the body region 15 so as to be adjacent to the source region 16.
  • Gate oxide film 20 is made of, for example, silicon dioxide (SiO 2 ) and is formed to cover main surface 11A.
  • the gate electrode 30 is made of a conductor such as polysilicon or aluminum to which an impurity is added, and is formed on the gate oxide film 20.
  • Source electrode 40 is formed in contact with source region 16 and contact region 17 on main surface 11A.
  • the source electrode 40 is made of a material capable of making ohmic contact with the source region 16, for example, Ni x Si y (nickel silicide), Ti x Si y (titanium silicide), Al x Si y (aluminum silicide), and Ti x Al. It is made of y Si z (titanium aluminum silicide) or the like and is electrically connected to the source region 16 (x> 0, y> 0, z> 0).
  • the drain electrode 50 is formed on the other main surface 11B facing the main surface 11A.
  • the drain electrode 50 is made of the same material as that of the source electrode 40, for example.
  • the back pad electrode 60 is made of, for example, gold (Au), aluminum (Al), or the like, and is formed on the drain electrode 50.
  • the thickness of the back surface pad electrode 60 is, for example, 1 ⁇ m.
  • silicon carbide semiconductor device 10 (Operation of silicon carbide semiconductor device and semiconductor module) Next, the operation of silicon carbide semiconductor device 10 according to the present embodiment will be described. Referring to FIG. 3, first, in the state where the voltage applied to gate electrode 30 is less than the threshold voltage, that is, in the off state, body region 15 can be applied even if a voltage is applied between source electrode 40 and drain electrode 50. And the drift region 14 are reversely biased and become non-conductive. On the other hand, when a voltage equal to or higher than the threshold voltage is applied to the gate electrode 30, an inversion layer is formed in the channel region of the body region 15 (the body region 15 below the gate electrode 30). As a result, the source region 16 and the drift region 14 are electrically connected, and a current flows between the source electrode 40 and the drain electrode 50. As described above, silicon carbide semiconductor device 10 operates. Semiconductor module 1 operates by a combination of the above operations of individual silicon carbide semiconductor devices 10.
  • the silicon carbide semiconductor device 10 according to the present embodiment has the above-described configuration, and is manufactured using a method for manufacturing a wide band gap semiconductor device according to the present embodiment, which will be described later. Therefore, the silicon carbide semiconductor device 10 can improve the manufacturing yield of the semiconductor module. Moreover, since the semiconductor module 1 according to the present embodiment includes the silicon carbide semiconductor device 10, the manufacturing yield is improved.
  • the first semiconductor chip 80 may be made of silicon carbide, but is not limited thereto.
  • the first semiconductor chip 80 may be composed of another wide band gap semiconductor such as gallium nitride or diamond.
  • the second die-bonding material 72 may be disposed on the other surface 70B facing the one surface 70A of the fixing member 70 as shown in FIG. Thereby, as shown in FIG. 1, silicon carbide semiconductor device 10 can be easily fixed to module substrate 2 via the second die bond material.
  • the constituent material of the first die bond material 71 may have a lower melting point than the constituent material of the second die bond material 72 as described above. Thereby, when the first die bond material 71 is melted and the first semiconductor chip 80 is fixed to the fixing member 70, the second die bond material 72 can be prevented from melting.
  • the first and second die bond materials 71 and 72 may be made of one material selected from the group consisting of a material containing silver and a gold-tin alloy as described above.
  • the fixing member 70 may be made of one material selected from the group consisting of copper, aluminum, silver, and copper-tungsten. Since the material is a material having low electrical resistance and high thermal conductivity, the use of the material further improves the electrical characteristics and heat dissipation of the semiconductor module 1 (see FIG. 1) on which the silicon carbide semiconductor device 10 is mounted. Can be made.
  • silicon carbide semiconductor device 10 is manufactured by performing steps (S10) to (S50) (see FIG. 4).
  • the semiconductor module 1 according to the present embodiment is manufactured by performing steps (S60) to (S80) (see FIG. 5).
  • a semiconductor substrate preparation step is performed.
  • steps (S11) to (S17) described below are performed to prepare silicon carbide substrate 11 (wide band gap semiconductor substrate).
  • a base substrate preparation step is performed.
  • base substrate 12 made of 4H—SiC and having n-type conductivity is prepared.
  • step (S12) an epitaxial growth layer forming step is performed.
  • epitaxial growth layer 13 having an n conductivity type is formed on surface 12A of base substrate 12.
  • an ion implantation step is performed.
  • this step (S13) referring to FIG. 7, for example, aluminum (Al) ions are first implanted into epitaxial growth layer 13 to form body region 15.
  • phosphorus (P) ions are implanted into the epitaxial growth layer 13 to form the source region 16.
  • aluminum (Al) ions are implanted into epitaxial growth layer 13 to form contact region 17.
  • a region where none of the body region 15, the source region 16, and the contact region 17 is formed becomes the drift region 14.
  • an activation annealing step is performed as a step (S14).
  • the introduced impurity is activated by heating base substrate 12, and as a result, desired carriers are generated in the region where the impurity is introduced.
  • a gate oxide film forming step is performed.
  • gate oxide film 20 made of silicon dioxide (SiO 2 ) is formed by heating base substrate 12 in an atmosphere containing, for example, oxygen (O 2 ). .
  • a gate electrode forming step is performed.
  • a gate electrode 30 made of polysilicon is formed in contact with gate oxide film 20 by, for example, LPCVD (Low Pressure Chemical Vapor Deposition).
  • an ohmic electrode forming step is performed.
  • source electrode 40 is formed on main surface 11A.
  • the A drain electrode 50 is formed on the other main surface 11B opposite to the main surface 11A.
  • a backside pad electrode 60 is further formed on the drain electrode 50.
  • an interlayer insulating film (not shown), a gate pad electrode electrically connected to the gate electrode 30, a source wiring electrically connected to the source electrode 40, and the like are then formed.
  • silicon carbide substrate 11 (wide band gap) having source electrode 40 and drain electrode 50 formed on each of a pair of main surfaces 11A and 11B facing each other.
  • Semiconductor substrate is prepared.
  • silicon carbide substrate 11 includes a plurality of regions that become first semiconductor chips 80 after cutting.
  • a dicing step is performed as a step (S20).
  • a silicon carbide substrate 11 including a plurality of gate pad electrodes 31 and source wirings 41 and having a plurality of regions to be first semiconductor chips 80 formed therein is illustrated. Dicing is performed as indicated by the broken line. Thereby, silicon carbide substrate 11 is separated into a plurality of first semiconductor chips 80.
  • a semiconductor chip fixing step is performed.
  • the steps (S31) and (S32) described below are performed, whereby the plurality of first semiconductor chips 80 are fixed to the fixing member 70.
  • a fixing member preparation step is performed.
  • a pair of surfaces 70A and 70B facing each other is provided, and first die bond material 71 and second die bond material 72 are disposed on each of surfaces 70A and 70B.
  • the fixed member 70 thus prepared is prepared.
  • the first and second die bond materials 71 and 72 may be disposed at a plurality of positions on the surfaces 70A and 70B, respectively, or may be disposed on the entire surfaces 70A and 70B.
  • the fixing member 70 is made of one material selected from the group consisting of copper (Cu), aluminum (Al), silver (Ag), and copper-tungsten (CuW). Therefore, the fixing member 70 has conductivity.
  • the first and second die bond materials 71 and 72 are made of one material selected from the group consisting of a material containing silver (Ag) such as a silver paste and a gold-tin alloy (AuSn). In the present embodiment, the constituent material of the first die bond material 71 has a lower melting point than the constituent material of the second die bond material 72.
  • a chip fixing step is performed.
  • fixing member 70 is heated at a temperature equal to or higher than the melting point of first die bond material 71, whereby first die bond material 71 is melted.
  • the first semiconductor chip 80 is disposed on the molten first die bond material 71 (the first semiconductor chip 80 contacts the first die bond material 71 from the direction indicated by the arrow in FIG. 11).
  • the fixing member 70 and the first semiconductor chip 80 are cooled.
  • the plurality of first semiconductor chips 80 are fixed to the fixing member 70 via the first die bonding material 71 as shown in FIGS. 11 and 12.
  • a pressure resistance measuring step is performed.
  • a tray 90 in which an inert liquid 91 such as florinate is placed is prepared.
  • the fixing member 70 to which the first semiconductor chip 80 is fixed is disposed in the tray 90.
  • the entire first semiconductor chip 80 and the fixing member 70 are immersed in the fluorinate.
  • the needles 101 and 102 of the probe 100 are brought into contact with the gate pad electrode and the source wiring of the first semiconductor chip 80, and a voltage is supplied between the probe 100 and the stage 110. Thereby, the breakdown voltage of the first semiconductor chip 80 is measured.
  • the fixing member 70 is taken out from the tray 90.
  • a cutting step is performed as a step (S50).
  • the fixing member 70 is diced as shown by a broken line in the drawing, and the fixing member 70 is cut.
  • second semiconductor chips 81 silicon carbide semiconductor device 10 in which first semiconductor chip 80 is fixed to fixing member 70 are obtained (see FIG. 2).
  • a second semiconductor chip 81 in which one first semiconductor chip 80 is fixed to one fixing member 70 may be obtained, but the present invention is not limited to this. It is not a thing.
  • the fixing member 70 may be cut so that a second semiconductor chip 81 ⁇ / b> A in which a plurality of first semiconductor chips 80 are fixed side by side with respect to one fixing member 70 is obtained.
  • a semiconductor chip preparation step is performed as a step (S ⁇ b> 60).
  • a second semiconductor chip 81 is prepared using the method for manufacturing a wide band gap semiconductor device according to the present embodiment.
  • step (S70) is performed, and module substrate 2 is separately prepared (see FIG. 1).
  • a mounting step is performed as a step (S80).
  • a plurality of second semiconductor chips 81 (silicon carbide semiconductor device 10) are arranged on surface 2A of module substrate 2.
  • the second semiconductor chips 81 and the second semiconductor chip 81 and the terminal 3 are electrically connected by the wiring 4. In this way, the semiconductor module 1 in which the second semiconductor chip 81 is mounted on the module substrate 2 is obtained.
  • the first semiconductor chip 80 that is separated is fixed to the fixing member 70 in the inert liquid 91.
  • the breakdown voltage of the semiconductor chip 80 is measured. Therefore, the pressure resistance can be easily measured in the inert liquid 91 even in a chip state, and chip defects that may occur due to the dicing process in the step (S20) are confirmed in advance before mounting on the module in the step (S80). be able to. And only the chip
  • the semiconductor chip fixing step (S30) includes the pair of surfaces 70A and 70B facing each other as described above, and the first step is performed on each of the pair of surfaces 70A and 70B.
  • a step of preparing a fixing member 70 on which the first and second die bond materials 71 and 72 are arranged (S31), and a step of fixing the first semiconductor chip 80 to the fixing member 70 via the first die bond material 71 (S32). ) May be included.
  • the constituent material of the first die bond material 71 may have a lower melting point than the constituent material of the second die bond material 72.
  • the first semiconductor chip 80 can be easily fixed to the fixing member 70 using the first die bond material 71, and the second semiconductor chip 81 is separately prepared using the second die bond material 72. It can be easily fixed to the module substrate 2. Further, by using the fixing member 70 in which the first and second die bond materials 71 and 72 are arranged in advance, the manufacturing efficiency can be further improved.
  • the first die bond material 71 is made of a material having a melting point lower than that of the second die bond material 72, so that the second die bond material 72 is fixed when the first die bond material 71 is melted to fix the first semiconductor chip 80. Can be prevented from melting.
  • the first and second die bond materials 71 and 72 are one material selected from the group consisting of a material containing silver (Ag) and a gold-tin (Au—Sn) alloy. You may be comprised from.
  • the fixing member 70 may be made of one material selected from the group consisting of copper (Cu), aluminum (Al), silver (Ag), and copper-tungsten (CuW) alloy. Since the material has low electrical resistance and high thermal conductivity, the use of the material can further improve the electrical characteristics and heat dissipation of the semiconductor module 1 on which the second semiconductor chip 81 is mounted.
  • the wide band gap semiconductor device and the semiconductor module according to the second embodiment basically have the same configuration as the wide band gap semiconductor device and the semiconductor module according to the first embodiment, operate in the same manner, and have the same effects. Play.
  • the method for manufacturing the wide bandgap semiconductor device and the semiconductor module according to the second embodiment is basically the same as the method for manufacturing the wide bandgap semiconductor device and the semiconductor module according to the first embodiment, and the same. There is an effect.
  • the wide band gap semiconductor device according to the second embodiment differs from the first embodiment in the melting point of the die bond material.
  • the method for manufacturing the wide band gap semiconductor device according to the second embodiment differs from the first embodiment in the order in which the die bond material is arranged with respect to the fixing member.
  • silicon carbide semiconductor device 10B as the wide band gap semiconductor device has a first semiconductor chip 80 and a fixed surface having surfaces 70A and 70B, as in the first embodiment.
  • a member 70 and first and second die bond materials 71 and 72 are mainly provided.
  • the constituent material of the first die bond material 71 has a higher melting point than the constituent material of the second die bond material 72.
  • steps (S100) and (S200) are performed by the same procedure as steps (S10) and (S20) of the first embodiment. Thereby, a plurality of first semiconductor chips 80 are obtained (see FIG. 18).
  • a semiconductor chip fixing step is performed.
  • steps (S310) and (S320) described below are performed, whereby the first semiconductor chip 80 is fixed to the fixing member 70.
  • a fixing member preparation step is performed.
  • fixing member 70 in which first die bonding material 71 is arranged on one surface 70A is prepared.
  • a chip fixing step is performed as a step (S320).
  • the first semiconductor chip 80 is fixed to the fixing member 70 via the first die bonding material 71 by the same procedure as in the step (S32) of the first embodiment. Is done.
  • a pressure resistance measuring step is performed.
  • the breakdown voltage of the first semiconductor chip 80 is measured by the same procedure as in the step (S40) of the first embodiment.
  • a die bonding material arranging step is performed.
  • second die bond material 72 is arranged on the other surface 70B opposite to surface 70A on which first die bond material 71 is arranged.
  • the second die bond material 72 may be formed by any film forming method.
  • the constituent material of the first die bond material 71 has a higher melting point than the constituent material of the second die bond material 72 (the second die bond material 72 has a lower melting point than the first die bond material 71).
  • step (S500) a cutting step is performed as a step (S500).
  • fixing member 70 is cut by the same procedure as in step (S50) of the first embodiment to obtain second semiconductor chip 81B (silicon carbide semiconductor device 10B) (see FIG. 16).
  • the constituent material of the first die bond material 71 has a higher melting point than the constituent material of the second die bond material 72. That is, the second die bond material 72 is made of a material having a lower melting point than the first die bond material 71. Therefore, when the second die bond material 72 is melted and the silicon carbide semiconductor device 10B is fixed to the module substrate, the second die bond material 72 can be melted under a lower temperature condition.
  • the semiconductor chip fixing step (S300) is a step of preparing the fixing member 70 in which the first die bond material 71 is disposed on one surface 70A (S310). And a step (S320) of fixing the first semiconductor chip 80 to the fixing member 70 via the first die-bonding material 71.
  • the second die bond material 72 is formed on the other surface 70B facing the one surface 70A. The process of arrange
  • positioning is further provided.
  • the constituent material of the first die bond material 71 has a higher melting point than the constituent material of the second die bond material 72.
  • the first semiconductor chip 80 can be easily fixed to the fixing member 70 using the first die bond material 71 and the second die bond material 72 is used for the second.
  • the semiconductor chip 81B can be easily fixed to a separately prepared module substrate.
  • the second semiconductor chip 81B can be obtained without immersing the second die bond material 72 in the inert liquid 91.
  • the second die bond material 72 is melted under a lower temperature condition when the second semiconductor chip 81B is fixed to the module substrate. Can be made.
  • a wide band gap semiconductor device and a method for manufacturing a semiconductor module, and a wide band gap semiconductor device and a semiconductor module according to the present invention include a wide band gap semiconductor device and a method for manufacturing a semiconductor module, which are required to improve the manufacturing yield of the semiconductor module, and The present invention can be applied particularly advantageously in wide band gap semiconductor devices and semiconductor modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Die Bonding (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 ワイドバンドギャップ半導体装置の製造方法は、ワイドバンドギャップ半導体基板を準備する工程と、ワイドバンドギャップ半導体基板を複数の第1半導体チップ(80)に分離する工程と、固定部材(70)に対して複数の第1半導体チップ(80)を固定する工程と、少なくとも第1半導体チップ(80)が不活性液体(91)に浸漬された状態で第1半導体チップ(80)の耐圧を測定する工程と、第1半導体チップ(80)の耐圧を測定する工程の後、固定部材(70)を切断することにより、固定部材(70)に対して第1半導体チップ(80)が固定された複数の第2半導体チップを得る工程とを備えている。

Description

ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール
 本発明は、ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュールに関する。
 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体装置において、耐圧は重要な特性のひとつである。そのため、半導体装置や半導体モジュールの製造方法においては、半導体基板上に複数の半導体素子を形成した後に個々の半導体素子に対して耐圧測定が実施される場合がある。
 たとえば特開昭59-3943号公報(以下、特許文献1という)では、半導体素子が形成された半導体基板の表面上に絶縁膜を形成し、当該絶縁膜を突き破るようにプローバーを電極に接触させてプローブテストを行う方法が開示されている。また、特開2003-100819号公報(以下、特許文献2という)では、半導体素子が形成された半導体基板を絶縁性の液体中に浸して耐圧測定する方法が開示されている。また、国際公開第2010/021070号(以下、特許文献3という)では、絶縁性の液体を半導体基板の表面にポッティングした後にプローブを電極に接触させて半導体素子の耐圧を測定する方法が開示されている。
特開昭59-3943号公報 特開2003-100819号公報 国際公開第2010/021070号
 上記特許文献1~3のように従来では半導体基板の状態において個々の半導体素子に対して耐圧測定が行われ、その後ダイシング加工により当該半導体基板が個々の半導体素子に分離される。そして、分離された半導体素子がモジュール基板上に実装されて半導体モジュールが製造される。すなわち、従来では分離された個々の半導体素子に対して耐圧測定を行うことが困難であるため、分離前の半導体基板の状態において耐圧測定が行われていた。この場合、分離前(半導体基板の状態)の耐圧測定では不良が確認されなくても、個々の半導体素子が実装されたモジュールの検査において不良が発見される場合がある。このように不良チップがモジュールに実装されることにより、半導体モジュールの製造歩留まりが低下するという問題がある。
 本発明は、上記課題に鑑みてなされたものであり、その一の目的は、半導体モジュールの製造歩留まりを向上させることが可能なワイドバンドギャップ半導体装置の製造方法、および当該ワイドバンドギャップ半導体装置の製造方法を用いた半導体モジュールの製造方法を提供することである。また、本発明の他の目的は、半導体モジュールの製造歩留まりを向上させることが可能なワイドバンドギャップ半導体装置、および当該ワイドバンドギャップ半導体装置を備えた半導体モジュールを提供することである。
 本発明に従ったワイドバンドギャップ半導体装置の製造方法は、互いに対向する一対の主面を有し、上記一対の主面の各々の上に電極が形成されたワイドバンドギャップ半導体基板を準備する工程と、ワイドバンドギャップ半導体基板を複数の第1半導体チップに分離する工程と、導電性を有する固定部材に対して複数の第1半導体チップを固定する工程と、第1半導体チップを固定する工程の後、少なくとも第1半導体チップが不活性液体に浸漬された状態で第1半導体チップの耐圧を測定する工程と、第1半導体チップの耐圧を測定する工程の後、固定部材を切断することにより、固定部材に対して第1半導体チップが固定された複数の第2半導体チップを得る工程とを備えている。
 本発明に従ったワイドバンドギャップ半導体装置は、互いに対向する一対の主面を有し、上記一対の主面の各々の上に電極が形成された第1半導体チップと、導電性を有する固定部材と、固定部材の一方の表面上に配置され、固定部材に対して第1半導体チップを固定する第1接合部材とを備えている。固定部材は、第1半導体チップよりも幅が大きくなっている。
 本発明によれば、半導体モジュールの製造歩留まりを向上させることが可能なワイドバンドギャップ半導体装置の製造方法、および当該ワイドバンドギャップ半導体装置の製造方法を用いた半導体モジュールの製造方法を提供することができる。また、本発明によれば、半導体モジュールの製造歩留まりを向上させることが可能なワイドバンドギャップ半導体装置、および当該ワイドバンドギャップ半導体装置を備えた半導体モジュールを提供することができる。
実施形態1に係る半導体モジュールの構造を示す概略断面図である。 実施形態1に係るワイドバンドギャップ半導体装置の構造を示す概略断面図である。 実施形態1に係るワイドバンドギャップ半導体装置における第1半導体チップの構造を示す概略断面図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法を概略的に示すフローチャートである。 実施形態1に係る半導体モジュールの製造方法を概略的に示すフローチャートである。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S11)および(S12)を説明するための概略図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S13)および(S14)を説明するための概略図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S15)および(S16)を説明するための概略図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S17)を説明するための概略図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S20)を説明するための概略図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S30)を説明するための概略図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S30)を説明するための概略平面図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S40)を説明するための概略図である。 実施形態1に係るワイドバンドギャップ半導体装置の製造方法における工程(S50)を説明するための概略図である。 実施形態1の変形例に係るワイドバンドギャップ半導体装置の構造を示す概略断面図である。 実施形態2に係るワイドバンドギャップ半導体装置の構造を示す概略断面図である。 実施形態2に係るワイドバンドギャップ半導体装置の製造方法を概略的に示すフローチャートである。 実施形態2に係るワイドバンドギャップ半導体装置の製造方法における工程(S300)を説明するための概略図である。 実施形態2に係るワイドバンドギャップ半導体装置の製造方法における工程(S410)を説明するための概略図である。
 [本願発明の実施形態の説明]
 まず、本発明の実施形態の内容を列記して説明する。
 (1) 本実施形態に係るワイドバンドギャップ半導体装置の製造方法は、互いに対向する一対の主面を有し、上記一対の主面の各々の上に電極が形成されたワイドバンドギャップ半導体基板を準備する工程と、ワイドバンドギャップ半導体基板を複数の第1半導体チップに分離する工程と、導電性を有する固定部材に対して複数の第1半導体チップを固定する工程と、第1半導体チップを固定する工程の後、少なくとも第1半導体チップが不活性液体に浸漬された状態で第1半導体チップの耐圧を測定する工程と、第1半導体チップの耐圧を測定する工程の後、固定部材を切断することにより、固定部材に対して第1半導体チップが固定された複数の第2半導体チップを得る工程とを備えている。
 本発明者は、半導体基板の状態での耐圧測定では不良が確認されなかった場合でもモジュール検査において半導体素子(チップ)の不良が発見される原因について鋭意検討を行った。その結果、半導体基板の状態での耐圧測定後に個々のチップに分離する際にダイシング加工の不具合などにより不良チップが発生し、当該不良チップをモジュールに実装することで製造歩留まりが低下する場合があることを見出した。
 上記ワイドバンドギャップ半導体装置の製造方法では、分離された第1半導体チップが固定部材に固定された状態で、不活性液体中において当該第1半導体チップの耐圧が測定される。そのため、チップ状態でも不活性液体中で容易に耐圧測定することができるとともに、チップに分離する際に発生し得る不良をモジュールへの当該チップの実装前に予め確認することができる。そして、良品であることが確認されたチップのみをモジュールに実装することにより、半導体モジュールの製造歩留まりを向上させることができる。したがって、上記ワイドバンドギャップ半導体装置の製造方法によれば、半導体モジュールの製造歩留まりを向上させることができる。
 ここで、「ワイドバンドギャップ半導体」とは、シリコン(Si)よりもバンドギャップが大きい半導体であり、たとえば炭化珪素(SiC)、窒化ガリウム(GaN)およびダイヤモンドなどが含まれる。
 (2) 上記ワイドバンドギャップ半導体装置の製造方法において、第1半導体チップを固定する工程は、互いに対向する一対の表面を有し、上記一対の表面の各々の上に第1接合部材および第2接合部材が配置された固定部材を準備する工程と、固定部材に対して第1接合部材を介して第1半導体チップを固定する工程とを含んでいてもよい。
 これにより、第1接合部材を用いて第1半導体チップを固定部材に対して容易に固定することができるとともに、第2接合部材を用いて第2半導体チップを別途準備されたモジュール基板に対して容易に固定することができる。また、第1接合部材および第2接合部材が予め配置された固定部材を用いることにより、製造効率をより向上させることができる。
 (3) 上記ワイドバンドギャップ半導体装置の製造方法において、第1接合部材の構成材料は、第2接合部材の構成材料よりも融点が低くてもよい。
 これにより、第1接合部材を溶融させて第1半導体チップを固定する際に第2接合部材が溶融することを抑制することができる。
 (4) 上記ワイドバンドギャップ半導体装置の製造方法において、第1半導体チップを固定する工程は、一方の表面上に第1接合部材が配置された固定部材を準備する工程と、固定部材に対して第1接合部材を介して第1半導体チップを固定する工程とを含んでいてもよい。また、上記ワイドバンドギャップ半導体装置の製造方法は、第1半導体チップの耐圧を測定する工程の後、第2半導体チップを得る工程の前に、上記一方の表面に対向する他方の表面上に第2接合部材を配置する工程をさらに備えていてもよい。
 これにより、第1接合部材を用いて第1半導体チップを固定部材に対して容易に固定することができるとともに、第2接合部材を用いて第2半導体チップを別途準備されたモジュール基板に対して容易に固定することができる。また、耐圧測定工程の後に第2接合部材を配置することにより、当該第2接合部材を不活性液体中に浸漬させずに第2半導体チップを得ることができる。
 (5) 上記ワイドバンドギャップ半導体装置の製造方法において、第1接合部材の構成材料は、第2接合部材の構成材料よりも融点が高くてもよい。
 これにより、第2接合部材を用いて第2半導体チップをモジュール基板に固定する際に、より低温条件で第2接合部材を溶融させることができる。
 (6) 上記ワイドバンドギャップ半導体装置の製造方法において、第1接合部材および第2接合部材は、銀を含む材料および金-錫合金からなる群より選択される一の材料から構成されていてもよい。
 上記材料は電気抵抗が低いため、上記材料を用いることで第2半導体チップが実装される半導体モジュールの電気特性をより向上させることができる。また、上記材料は熱伝導率が高いため、上記材料を用いることで第2半導体チップが実装された半導体モジュールの放熱性をより向上させることができる。
 (7) 上記ワイドバンドギャップ半導体装置の製造方法において、固定部材は、銅、アルミニウム、銀および銅-タングステン合金からなる群より選択される一の材料から構成されていてもよい。
 上記材料は電気抵抗が低いため、上記材料を用いることで第2半導体チップが実装される半導体モジュールの電気特性をさらに向上させることができる。また、上記材料は熱伝導率が高いため、上記材料を用いることで第2半導体チップが実装された半導体モジュールの放熱性をさらに向上させることができる。
 (8) 本実施形態に係る半導体モジュールの製造方法は、上記ワイドバンドギャップ半導体装置の製造方法を用いて上記第2半導体チップを準備する工程と、モジュール基板を準備する工程と、上記第2半導体チップをモジュール基板上に実装する工程とを備えている。
 上記半導体モジュールの製造方法では、上記ワイドバンドギャップ半導体装置の製造方法を用いて第2半導体チップが準備されるため、不良チップがモジュールに実装されることを抑制することができる。したがって、上記半導体モジュールの製造方法によれば、半導体モジュールの製造歩留まりを向上させることができる。
 (9) 本実施形態に係るワイドバンドギャップ半導体装置は、互いに対向する一対の主面を有し、上記一対の主面の各々の上に電極が形成された第1半導体チップと、導電性を有する固定部材と、固定部材の一方の表面上に配置され、固定部材に対して第1半導体チップを固定する第1接合部材とを備えている。固定部材は、第1半導体チップよりも幅が大きくなっている。
 上記ワイドバンドギャップ半導体装置は、上記ワイドバンドギャップ半導体装置の製造方法を用いて製造されることにより、第1半導体チップよりも固定部材の幅が大きいという上記構成を有している。したがって、上記ワイドバンドギャップ半導体装置によれば、半導体モジュールの製造歩留まりを向上させることが可能なワイドバンドギャップ半導体装置を提供することができる。
 (10) 上記ワイドバンドギャップ半導体装置において、第1半導体チップは、炭化珪素または窒化ガリウムから構成されていてもよい。
 代表的なワイドバンドギャップ半導体である炭化珪素や窒化ガリウムは、上記第1半導体チップの構成材料として好適である。
 (11) 上記ワイドバンドギャップ半導体装置において、固定部材の上記一方の表面に対向する他方の表面上には第2接合部材が配置されていてもよい。
 これにより、上記ワイドバンドギャップ半導体装置を第2接合部材を介して別途準備されたモジュール基板に対して容易に固定することができる。
 (12) 上記ワイドバンドギャップ半導体装置において、第1接合部材の構成材料は、第2接合部材の構成材料よりも融点が低くなっていてもよい。
 これにより、第1接合部材を溶融させて第1半導体チップを固定部材に対して固定する際に、第2接合部材が溶融することを抑制することができる。
 (13) 上記ワイドバンドギャップ半導体装置において、第1接合部材の構成材料は、第2接合部材の構成材料よりも融点が高くなっていてもよい。
 これにより、第2接合部材を溶融させて上記ワイドバンドギャップ半導体装置をモジュール基板に固定する際に、より低温条件で第2接合部材を溶融させることができる。
 (14) 上記ワイドバンドギャップ半導体装置において、第1接合部材および第2接合部材は、銀を含む材料および金-錫合金からなる群より選択される一の材料から構成されていてもよい。
 これにより、上記ワイドバンドギャップ半導体装置が実装された半導体モジュールの電気特性および放熱性をより向上させることができる。
 (15) 上記ワイドバンドギャップ半導体装置において、固定部材は、銅、アルミニウム、銀および銅-タングステン合金からなる群より選択される一の材料から構成されていてもよい。
 これにより、上記ワイドバンドギャップ半導体装置が実装された半導体モジュールの電気特性および放熱性をさらに向上させることができる。
 (16) 本実施形態に係る半導体モジュールは、上記ワイドバンドギャップ半導体装置と、上記ワイドバンドギャップ半導体装置が実装されるモジュール基板とを備えている。
 上記半導体モジュールは、半導体モジュールの製造歩留まりを向上させることが可能な上記ワイドバンドギャップ半導体装置を備えている。したがって、上記半導体モジュールによれば、製造歩留まりが向上した半導体モジュールを提供することができる。
 [本願発明の実施形態の詳細]
 次に、本発明の実施形態の具体例を図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 (実施形態1)
 (半導体モジュールの構造)
 まず、本発明の一実施形態である実施形態1について説明する。図1を参照して、本実施形態に係る半導体モジュール1は、複数の炭化珪素半導体装置10と、当該炭化珪素半導体装置10が実装されるモジュール基板2と、端子3と、配線4とを主に備えている。炭化珪素半導体装置10は、後述する本実施形態に係るワイドバンドギャップ半導体装置である。
 モジュール基板2は、絶縁基板(図示しない)や金属からなるヒートシンクとしての放熱板(図示しない)などを含んでいる。炭化珪素半導体装置10は、モジュール基板2の表面2A上に配置されており、配線4により互いに接続されている。端子3は、配線4により炭化珪素半導体装置10と接続されている。なお、半導体モジュール1は、樹脂(図示しない)などにより封止されていてもよい。
 (炭化珪素半導体装置の構造)
 次に、本実施形態に係るワイドバンドギャップ半導体装置としての炭化珪素半導体装置10の構造について説明する。図2を参照して、炭化珪素半導体装置10は、第1半導体チップ80と、固定部材70と、第1ダイボンド材71(第1接合部材)と、第2ダイボンド材72(第2接合部材)とを主に備えている。
 固定部材70は、銅(Cu)、アルミニウム(Al)、銀(Ag)および銅-タングステン(CuW)からなる群より選択される一の材料から構成されている。このように固定部材70は金属材料から構成されているため、導電性を有している。
 固定部材70は、図2に示すように第1半導体チップ80よりも幅が大きくなっている(W1>W2)。固定部材70の幅W1は1mm以上10mm以下であり、2mm以上9mm以下であることが好ましい。
 第1ダイボンド材71は、固定部材70の一方の表面70A上に配置されている。第2ダイボンド材72は、当該表面70Aに対向する他方の表面70B上に配置されている。第1ダイボンド材71の上(固定部材70側とは反対側)には、第1半導体チップ80が配置されている。すなわち、第1半導体チップ80は、第1ダイボンド材71により固定部材70に対して固定されている。
 第1および第2ダイボンド材71,72は、たとえば銀ペーストなどの銀(Ag)を含む材料および金-錫(AuSn)合金からなる群より選択される一の材料から構成されている。そのため、第1および第2ダイボンド材71,72は、導電性を有している。また、第1および第2ダイボンド材71,72は、それぞれ融点が異なる材料から構成されている。本実施形態では、第1ダイボンド材71の構成材料は、第2ダイボンド材の構成材料よりも融点が低くなっている。
 (第1半導体チップの構造)
 次に、第1半導体チップ80の構造について詳細に説明する。図3を参照して、第1半導体チップ80は、ベース基板12と、エピタキシャル成長層13と、ゲート酸化膜20と、ゲート電極30と、ソース電極40と、ドレイン電極50と、裏面パッド電極60とを主に含んでいる。エピタキシャル成長層13は、ドリフト領域14と、ボディ領域15と、ソース領域16と、コンタクト領域17とを主に有している。第1半導体チップ80には、上記構造が複数形成されている。また、第1半導体チップ80は、裏面パッド電極60(主面11B上に配置された電極)において第1ダイボンド材71(図2参照)と接触していてもよいし、裏面パッド電極60および当該裏面パッド電極60により覆われていないベース基板12において第1ダイボンド材71(図2参照)と接触していてもよい。
 ベース基板12およびエピタキシャル成長層13は、たとえば炭化珪素から構成されている。ドリフト領域14は、窒素(N)などのn型不純物を含み、ベース基板12の一方の主面上に形成されている。
 ボディ領域15は、アルミニウム(Al)や硼素(B)などのp型不純物を含み、主面11Aを含むようにエピタキシャル成長層13内に形成されている。ソース領域16は、リン(P)などのn型不純物を含み、主面11Aを含むようにボディ領域15内に形成されている。コンタクト領域17は、ボディ領域15と同様にp型不純物を含み、ソース領域16と隣接するようにボディ領域15内に形成されている。
 ゲート酸化膜20は、たとえば二酸化珪素(SiO)からなり、主面11Aを覆うように形成されている。ゲート電極30は、たとえば不純物が添加されたポリシリコンやアルミニウムなどの導電体からなり、ゲート酸化膜20上に形成されている。
 ソース電極40は、主面11A上においてソース領域16およびコンタクト領域17に接触するように形成されている。ソース電極40は、ソース領域16に対してオーミック接触することができる材料、たとえばNiSi(ニッケルシリサイド)、TiSi(チタンシリサイド)、AlSi(アルミシリサイド)およびTiAlSi(チタンアルミシリサイド)などからなり、ソース領域16に対して電気的に接続されている(x>0,y>0,z>0)。
 ドレイン電極50は、主面11Aに対向する他方の主面11B上に形成されている。ドレイン電極50は、たとえばソース電極40と同様の材料からなっている。裏面パッド電極60は、たとえば金(Au)やアルミニウム(Al)などからなり、ドレイン電極50上に形成されている。裏面パッド電極60の厚みは、たとえば1μmである。
 (炭化珪素半導体装置および半導体モジュールの動作)
 次に、本実施形態に係る炭化珪素半導体装置10の動作について説明する。図3を参照して、まず、ゲート電極30に印加された電圧が閾値電圧未満の状態、すなわちオフ状態では、ソース電極40とドレイン電極50との間に電圧が印加されても、ボディ領域15とドリフト領域14との間に形成されるpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極30に閾値電圧以上の電圧が印加されると、ボディ領域15のチャネル領域(ゲート電極30下のボディ領域15)に反転層が形成される。その結果、ソース領域16とドリフト領域14とが電気的に接続され、ソース電極40とドレイン電極50との間に電流が流れる。以上のようにして、炭化珪素半導体装置10は動作する。また、半導体モジュール1は、個々の炭化珪素半導体装置10の上記動作の組合わせにより動作する。
 本実施形態に係る炭化珪素半導体装置10は、上述のような構成を有しており、また後述する本実施形態に係るワイドバンドギャップ半導体装置の製造方法を用いて製造される。そのため、上記炭化珪素半導体装置10は半導体モジュールの製造歩留まりを向上させることが可能なものとなっている。また、本実施形態に係る半導体モジュール1は上記炭化珪素半導体装置10を備えているため、製造歩留まりが向上したものとなっている。
 上記本実施形態に係るワイドバンドギャップ半導体装置では、第1半導体チップ80が炭化珪素から構成されていてもよいが、これに限定されるものではない。第1半導体チップ80は、たとえば窒化ガリウムまたはダイヤモンドなどの他のワイドバンドギャップ半導体から構成されていてもよい。
 上記炭化珪素半導体装置10では、図2に示すように固定部材70の一方の表面70Aに対向する他方の表面70B上に第2ダイボンド材72が配置されていてもよい。これにより、図1に示すように当該第2ダイボンド材を介して炭化珪素半導体装置10をモジュール基板2に対して容易に固定することができる。
 上記炭化珪素半導体装置10では、上述のように第1ダイボンド材71の構成材料が第2ダイボンド材72の構成材料よりも融点が低くなっていてもよい。これにより、当該第1ダイボンド材71を溶融させて第1半導体チップ80を固定部材70に対して固定する際に、第2ダイボンド材72が溶融することを抑制することができる。
 上記炭化珪素半導体装置10において、第1および第2ダイボンド材71,72は、上述のように銀を含む材料および金-錫合金からなる群より選択される一の材料から構成されていてもよい。また、固定部材70は、銅、アルミニウム、銀および銅-タングステンからなる群より選択される一の材料から構成されていてもよい。上記材料は電気抵抗が低く熱伝導率が高い材料であるため、上記材料を用いることにより上記炭化珪素半導体装置10が実装された半導体モジュール1(図1参照)の電気特性および放熱性をより向上させることができる。
 (炭化珪素半導体装置の製造方法)
 次に、本実施形態に係る半導体モジュールおよびワイドバンドギャップ半導体装置(炭化珪素半導体装置)の製造方法について説明する。本実施形態に係るワイドバンドギャップ半導体装置の製造方法では、工程(S10)~(S50)が実施されることにより上記本実施形態に係る炭化珪素半導体装置10が製造される(図4参照)。また、本実施形態に係る半導体モジュールの製造方法では、工程(S60)~(S80)が実施されることにより上記本実施形態に係る半導体モジュール1が製造される(図5参照)。
 図4を参照して、本実施形態に係るワイドバンドギャップ半導体装置の製造方法では、まず、工程(S10)として、半導体基板準備工程が実施される。この工程(S10)では、以下に説明する工程(S11)~(S17)が実施されることにより炭化珪素基板11(ワイドバンドギャップ半導体基板)が準備される。
 まず、工程(S11)として、ベース基板準備工程が実施される。この工程(S11)では、図6を参照して、4H-SiCからなり導電型がn型であるベース基板12が準備される。
 次に、工程(S12)として、エピタキシャル成長層形成工程が実施される。この工程(S12)では、図6を参照して、ベース基板12の表面12A上に導電型がn型であるエピタキシャル成長層13が形成される。
 次に、工程(S13)として、イオン注入工程が実施される。この工程(S13)では、図7を参照して、まず、たとえばアルミニウム(Al)イオンがエピタキシャル成長層13内に注入され、ボディ領域15が形成される。次に、たとえばリン(P)イオンがエピタキシャル成長層13内に注入され、ソース領域16が形成される。次に、たとえばアルミニウム(Al)イオンがエピタキシャル成長層13内に注入され、コンタクト領域17が形成される。そして、エピタキシャル成長層13においてボディ領域15、ソース領域16およびコンタクト領域17のいずれも形成されない領域がドリフト領域14となる。
 次に、工程(S14)として、活性化アニール工程が実施される。この工程(S14)では、図7を参照して、ベース基板12を加熱することにより導入された不純物が活性化され、その結果不純物が導入された領域において所望のキャリアが生成する。
 次に、工程(S15)として、ゲート酸化膜形成工程が実施される。この工程(S15)では、図8を参照して、たとえば酸素(O)を含む雰囲気中においてベース基板12を加熱することにより、二酸化珪素(SiO)からなるゲート酸化膜20が形成される。
 次に、工程(S16)として、ゲート電極形成工程が実施される。この工程(S16)では、図8を参照して、たとえばLPCVD(Low Pressure Chemical Vapor Deposition)法により、ゲート酸化膜20上に接触し、ポリシリコンからなるゲート電極30が形成される。
 次に、工程(S17)として、オーミック電極形成工程が実施される。この工程(S17)では、図9を参照して、ゲート酸化膜20の一部(ソース領域16およびコンタクト領域17上)がエッチングにより除去された後、主面11A上にソース電極40が形成される。また、当該主面11Aに対向する他方の主面11B上にドレイン電極50が形成される。また、ドレイン電極50上に裏面パッド電極60がさらに形成される。さらに、その後層間絶縁膜(図示しない)やゲート電極30と電気的に接続されたゲートパッド電極、およびソース電極40と電気的に接続されたソース配線などが形成される。上記工程(S11)~(S17)が実施されることにより、互いに対向する一対の主面11A,11Bの各々の上にソース電極40およびドレイン電極50が形成された炭化珪素基板11(ワイドバンドギャップ半導体基板)が準備される。図10に示すように、炭化珪素基板11は、切断後に第1半導体チップ80となる領域を複数含んでいる。
 次に、工程(S20)として、ダイシング工程が実施される。この工程(S20)では、図10を参照して、複数のゲートパッド電極31およびソース配線41を含み、第1半導体チップ80となる領域が複数形成された炭化珪素基板11に対して、図中破線に示すようにダイシング加工が施される。これにより、炭化珪素基板11が複数の第1半導体チップ80に分離される。
 次に、工程(S30)として、半導体チップ固定工程が実施される。この工程(S30)では、以下に説明する工程(S31)および(S32)が実施されることにより、複数の第1半導体チップ80が固定部材70に対して固定される。
 まず、工程(S31)として、固定部材準備工程が実施される。この工程(S31)では、図11を参照して、互いに対向する一対の表面70A,70Bを有し、当該表面70A,70Bの各々の上に第1ダイボンド材71および第2ダイボンド材72が配置された固定部材70が準備される。第1および第2ダイボンド材71,72は、表面70A,70Bのそれぞれに複数箇所配置されていてもよいし、当該表面70A,70Bの全面に配置されていてもよい。
 固定部材70は、銅(Cu)、アルミニウム(Al)、銀(Ag)および銅-タングステン(CuW)からなる群より選択される一の材料から構成されている。そのため、固定部材70は導電性を有している。第1および第2ダイボンド材71,72は、たとえば銀ペーストなどの銀(Ag)を含む材料および金-錫合金(AuSn)からなる群より選択される一の材料から構成されている。また、本実施形態においては第1ダイボンド材71の構成材料は、第2ダイボンド材72の構成材料よりも融点が低くなっている。
 次に、工程(S32)として、チップ固定工程が実施される。この工程(S32)では、図11を参照して、まず、第1ダイボンド材71の融点以上の温度で固定部材70が加熱されることにより、当該第1ダイボンド材71が溶融する。次に、溶融状態である第1ダイボンド材71の上に第1半導体チップ80が配置される(図11中矢印に示す方向から第1半導体チップ80が第1ダイボンド材71に接触する)。その後、固定部材70および第1半導体チップ80が冷却される。これにより、図11および図12に示すように複数の第1半導体チップ80が第1ダイボンド材71を介して固定部材70に対して固定される。
 次に、工程(S40)として、耐圧測定工程が実施される。この工程(S40)では、図13を参照して、まずフロリナートなどの不活性液体91が入れられたトレー90が準備される。次に、第1半導体チップ80が固定された固定部材70がトレー90内に配置される。これにより、図13に示すように第1半導体チップ80および固定部材70の全体がフロリナート中に浸漬された状態とされる。次に、図13に示すようにプローブ100の針101,102を第1半導体チップ80のゲートパッド電極およびソース配線の各々に接触させ、プローブ100とステージ110との間に電圧が供給される。これにより、第1半導体チップ80の耐圧が測定される。そして、上記耐圧測定が完了した後、固定部材70がトレー90から取り出される。
 次に、工程(S50)として、切断工程が実施される。この工程(S50)では、図14を参照して、図中破線に示すように固定部材70に対してダイシング加工が施され、当該固定部材70が切断される。これにより、固定部材70に対して第1半導体チップ80が固定された複数の第2半導体チップ81(炭化珪素半導体装置10)が得られる(図2参照)。
 この工程(S50)では、図2に示すように一つの固定部材70に対して一つの第1半導体チップ80が固定された第2半導体チップ81が得られてもよいが、これに限定されるものではない。図15に示すように、一つの固定部材70に対して複数の第1半導体チップ80が並んで固定された第2半導体チップ81Aが得られるように、固定部材70が切断されてもよい。
 (半導体モジュールの製造方法)
 次に、本実施形態に係る半導体モジュールの製造方法について説明する。図5を参照して、本実施形態に係る半導体モジュールの製造方法では、まず、工程(S60)として、半導体チップ準備工程が実施される。この工程(S60)では、図2を参照して、上記本実施形態に係るワイドバンドギャップ半導体装置の製造方法を用いて第2半導体チップ81が準備される。また、この工程(S60)と並んで工程(S70)が実施され、モジュール基板2が別途準備される(図1参照)。
 工程(S60)および(S70)が完了した後、工程(S80)として、実装工程が実施される。この工程(S80)では、図1を参照して、モジュール基板2の表面2A上に複数の第2半導体チップ81(炭化珪素半導体装置10)が配置される。そして、当該第2半導体チップ81同士、および第2半導体チップ81と端子3とが配線4により電気的に接続される。このようにして、モジュール基板2上に第2半導体チップ81が実装された半導体モジュール1が得られる。
 以上のように、本実施形態に係るワイドバンドギャップ半導体装置および半導体モジュールの製造方法では、分離された第1半導体チップ80が固定部材70に固定された状態において不活性液体91中で当該第1半導体チップ80の耐圧が測定される。そのため、チップ状態でも不活性液体91中において容易に耐圧測定することができるとともに、工程(S20)のダイシング加工により発生し得るチップ不良を工程(S80)のモジュールへの実装の前に予め確認することができる。そして、良品であることが確認されたチップのみを工程(S80)においてモジュールに実装することにより、半導体モジュールの製造歩留まりを向上させることができる。したがって、本実施形態に係るワイドバンドギャップ半導体および半導体モジュールの製造方法によれば、半導体モジュールの製造歩留まりを向上させることができる。
 上記ワイドバンドギャップ半導体装置の製造方法において、半導体チップ固定工程(S30)は、上述のように互いに対向する一対の表面70A,70Bを有し、当該一対の表面70A,70Bの各々の上に第1および第2ダイボンド材71,72が配置された固定部材70を準備する工程(S31)と、固定部材70に対して第1ダイボンド材71を介して第1半導体チップ80を固定する工程(S32)とを含んでいてもよい。この場合、第1ダイボンド材71の構成材料は、第2ダイボンド材72の構成材料よりも融点が低くなっていてもよい。
 これにより、第1ダイボンド材71を用いて第1半導体チップ80を固定部材70に対して容易に固定することができるとともに、第2ダイボンド材72を用いて第2半導体チップ81を別途準備されたモジュール基板2に対して容易に固定することができる。また、第1および第2ダイボンド材71,72が予め配置された固定部材70を用いることで、製造効率をより向上させることができる。また、第1ダイボンド材71を第2ダイボンド材72よりも低融点の材料で構成することにより、第1ダイボンド材71を溶融させて第1半導体チップ80を固定する際に、第2ダイボンド材72が溶融することを抑制することができる。
 上記ワイドバンドギャップ半導体装置の製造方法において、第1および第2ダイボンド材71,72は、銀(Ag)を含む材料および金-錫(Au-Sn)合金からなる群より選択される一の材料から構成されていてもよい。また、固定部材70は、銅(Cu)、アルミニウム(Al)、銀(Ag)および銅-タングステン(CuW)合金からなる群より選択される一の材料から構成されていてもよい。上記材料は電気抵抗が低く熱伝導率が高いため、上記材料を用いることにより第2半導体チップ81が実装された半導体モジュール1の電気特性および放熱性をより向上させることができる。
 (実施形態2)
 次に、本発明の他の実施形態である実施形態2について説明する。実施形態2に係るワイドバンドギャップ半導体装置および半導体モジュールは、基本的には上記実施形態1に係るワイドバンドギャップ半導体装置および半導体モジュールと同様の構成を備え、同様に動作し、かつ同様の効果を奏する。また、実施形態2に係るワイドバンドギャップ半導体装置および半導体モジュールの製造方法は、基本的には上記実施形態1に係るワイドバンドギャップ半導体装置および半導体モジュールの製造方法と同様に実施され、かつ同様の効果を奏する。しかし、実施形態2に係るワイドバンドギャップ半導体装置は、ダイボンド材の融点において上記実施形態1とは異なっている。また、実施形態2に係るワイドバンドギャップ半導体装置の製造方法は、固定部材に対してダイボンド材を配置する順序において上記実施形態1とは異なっている。
 (炭化珪素半導体装置の構造)
 図16を参照して、本実施形態に係るワイドバンドギャップ半導体装置としての炭化珪素半導体装置10Bは、上記実施形態1の場合と同様に、第1半導体チップ80と、表面70A,70Bを有する固定部材70と、第1および第2ダイボンド材71,72とを主に備えている。本実施形態では、第1ダイボンド材71の構成材料が第2ダイボンド材72の構成材料よりも融点が高くなっている。
 (炭化珪素半導体装置の製造方法)
 次に、本実施形態に係るワイドバンドギャップ半導体装置(炭化珪素半導体装置)の製造方法について説明する。図17を参照して、まず、上記実施形態1の工程(S10)および(S20)と同様の手順により工程(S100)および(S200)が実施される。これにより複数の第1半導体チップ80が得られる(図18参照)。
 次に、工程(S300)として、半導体チップ固定工程が実施される。この工程(S300)では、以下に説明する工程(S310)および(S320)が実施されることにより、第1半導体チップ80が固定部材70に対して固定される。
 まず、工程(S310)として、固定部材準備工程が実施される。この工程(S310)では、図18を参照して、一方の表面70A上に第1ダイボンド材71が配置された固定部材70が準備される。次に、工程(S320)として、チップ固定工程が実施される。この工程(S320)では、図18を参照して、上記実施形態1の工程(S32)と同様の手順により、第1半導体チップ80が第1ダイボンド材71を介して固定部材70に対して固定される。
 次に、工程(S400)として、耐圧測定工程が実施される。この工程(S400)では、上記実施形態1の工程(S40)と同様の手順により第1半導体チップ80の耐圧が測定される。
 次に、工程(S410)として、ダイボンド材配置工程が実施される。この工程(S410)では、図19を参照して、第1ダイボンド材71が配置された表面70Aに対向する他方の表面70B上に第2ダイボンド材72が配置される。第2ダイボンド材72は、任意の成膜方法により形成されてもよい。本実施形態では、第1ダイボンド材71の構成材料は、第2ダイボンド材72の構成材料よりも融点が高くなっている(第2ダイボンド材72の方が第1ダイボンド材71よりも融点が低くなっている)。
 次に、工程(S500)として、切断工程が実施される。この工程(S500)では、上記実施形態1の工程(S50)と同様の手順により固定部材70が切断されて第2半導体チップ81B(炭化珪素半導体装置10B)が得られる(図16参照)。
 以上のように、本実施形態に係る炭化珪素半導体装置10Bでは、第1ダイボンド材71の構成材料が第2ダイボンド材72の構成材料よりも融点が高くなっている。すなわち、第2ダイボンド材72は、第1ダイボンド材71に比べてより低融点の材料から構成されている。そのため、第2ダイボンド材72を溶融させて炭化珪素半導体装置10Bをモジュール基板に固定する際に、より低温条件で第2ダイボンド材72を溶融させることができる。
 また、本実施形態に係るワイドバンドギャップ半導体装置の製造方法において、半導体チップ固定工程(S300)は、一方の表面70A上に第1ダイボンド材71が配置された固定部材70を準備する工程(S310)と、固定部材70に対して第1ダイボンド材71を介して第1半導体チップ80を固定する工程(S320)とを含んでいる。また、上記ワイドバンドギャップ半導体装置の製造方法は、耐圧測定工程(S400)の後、切断工程(S500)の前に、上記一方の表面70Aに対向する他方の表面70B上に第2ダイボンド材72を配置する工程をさらに備えている。そして、第1ダイボンド材71の構成材料は、第2ダイボンド材72の構成材料よりも融点が高くなっている。
 これにより、上記実施形態1と同様に、第1ダイボンド材71を用いて第1半導体チップ80を固定部材70に対して容易に固定することができるとともに、第2ダイボンド材72を用いて第2半導体チップ81Bを別途準備されたモジュール基板に対して容易に固定することができる。また、耐圧測定工程(S400)の後に第2ダイボンド材72を配置することで、当該第2ダイボンド材72を不活性液体91中に浸漬させずに第2半導体チップ81Bを得ることができる。また、第2ダイボンド材72を第1ダイボンド材71よりも低融点の材料で構成することにより、第2半導体チップ81Bをモジュール基板に固定する際に、より低温条件で第2ダイボンド材72を溶融させることができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明のワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュールは、半導体モジュールの製造歩留まりの向上が要求されるワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュールにおいて、特に有利に適用され得る。
 1 半導体モジュール、10,10B 炭化珪素半導体装置、2 モジュール基板、2A,12A,70A,70B 表面、3 端子、4 配線、11 炭化珪素基板、11A,11B 主面、12 ベース基板、13 エピタキシャル成長層、14 ドリフト領域、15 ボディ領域、16 ソース領域、17 コンタクト領域、20 ゲート酸化膜、30 ゲート電極、31 ゲートパッド電極、40 ソース電極、41 ソース配線、50 ドレイン電極、60 裏面パッド電極、70 固定部材、71 第1ダイボンド材、72 第2ダイボンド材、80 第1半導体チップ、81,81A,81B 第2半導体チップ、90 トレー、91 不活性液体、100 プローブ、101,102 針、110 ステージ、W1,W2 幅。

Claims (16)

  1.  互いに対向する一対の主面を有し、前記一対の主面の各々の上に電極が形成されたワイドバンドギャップ半導体基板を準備する工程と、
     前記ワイドバンドギャップ半導体基板を複数の第1半導体チップに分離する工程と、
     導電性を有する固定部材に対して複数の前記第1半導体チップを固定する工程と、
     前記第1半導体チップを固定する工程の後、少なくとも前記第1半導体チップが不活性液体に浸漬された状態で前記第1半導体チップの耐圧を測定する工程と、
     前記第1半導体チップの耐圧を測定する工程の後、前記固定部材を切断することにより、前記固定部材に対して前記第1半導体チップが固定された複数の第2半導体チップを得る工程とを備える、ワイドバンドギャップ半導体装置の製造方法。
  2.  前記第1半導体チップを固定する工程は、
     互いに対向する一対の表面を有し、前記一対の表面の各々の上に第1接合部材および第2接合部材が配置された前記固定部材を準備する工程と、
     前記固定部材に対して前記第1接合部材を介して前記第1半導体チップを固定する工程とを含む、請求項1に記載のワイドバンドギャップ半導体装置の製造方法。
  3.  前記第1接合部材の構成材料は、前記第2接合部材の構成材料よりも融点が低い、請求項2に記載のワイドバンドギャップ半導体装置の製造方法。
  4.  前記第1半導体チップを固定する工程は、
     一方の表面上に第1接合部材が配置された前記固定部材を準備する工程と、
     前記固定部材に対して前記第1接合部材を介して前記第1半導体チップを固定する工程とを含み、
     前記第1半導体チップの耐圧を測定する工程の後、前記第2半導体チップを得る工程の前に、前記一方の表面に対向する他方の表面上に第2接合部材を配置する工程をさらに備える、請求項1に記載のワイドバンドギャップ半導体装置の製造方法。
  5.  前記第1接合部材の構成材料は、前記第2接合部材の構成材料よりも融点が高い、請求項4に記載のワイドバンドギャップ半導体装置の製造方法。
  6.  前記第1接合部材および前記第2接合部材は、銀を含む材料および金-錫合金からなる群より選択される一の材料から構成される、請求項2~請求項5のいずれか1項に記載のワイドバンドギャップ半導体装置の製造方法。
  7.  前記固定部材は、銅、アルミニウム、銀および銅-タングステン合金からなる群より選択される一の材料から構成される、請求項1~請求項6のいずれか1項に記載のワイドバンドギャップ半導体装置の製造方法。
  8.  請求項1~請求項7のいずれか1項に記載のワイドバンドギャップ半導体装置の製造方法を用いて前記第2半導体チップを準備する工程と、
     モジュール基板を準備する工程と、
     前記第2半導体チップを前記モジュール基板上に実装する工程とを備える、半導体モジュールの製造方法。
  9.  互いに対向する一対の主面を有し、前記一対の主面の各々の上に電極が形成された第1半導体チップと、
     導電性を有する固定部材と、
     前記固定部材の一方の表面上に配置され、前記固定部材に対して前記第1半導体チップを固定する第1接合部材とを備え、
     前記固定部材は、前記第1半導体チップよりも幅が大きい、ワイドバンドギャップ半導体装置。
  10.  前記第1半導体チップは、炭化珪素または窒化ガリウムから構成される、請求項9に記載のワイドバンドギャップ半導体装置。
  11.  前記固定部材の前記一方の表面に対向する他方の表面上には第2接合部材が配置されている、請求項9または請求項10に記載のワイドバンドギャップ半導体装置。
  12.  前記第1接合部材の構成材料は、前記第2接合部材の構成材料よりも融点が低い、請求項11に記載のワイドバンドギャップ半導体装置。
  13.  前記第1接合部材の構成材料は、前記第2接合部材の構成材料よりも融点が高い、請求項11に記載のワイドバンドギャップ半導体装置。
  14.  前記第1接合部材および前記第2接合部材は、銀を含む材料および金-錫合金からなる群より選択される一の材料から構成される、請求項11~請求項13のいずれか1項に記載のワイドバンドギャップ半導体装置。
  15.  前記固定部材は、銅、アルミニウム、銀および銅-タングステン合金からなる群より選択される一の材料から構成される、請求項9~請求項14のいずれか1項に記載のワイドバンドギャップ半導体装置。
  16.  請求項9~請求項15のいずれか1項に記載のワイドバンドギャップ半導体装置と、
     前記ワイドバンドギャップ半導体装置が実装されるモジュール基板とを備える、半導体モジュール。
PCT/JP2014/069010 2013-08-28 2014-07-17 ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール WO2015029635A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/913,747 US9640619B2 (en) 2013-08-28 2014-07-17 Methods of manufacturing wide band gap semiconductor device and semiconductor module, and wide band gap semiconductor device and semiconductor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013176884A JP2015046491A (ja) 2013-08-28 2013-08-28 ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール
JP2013-176884 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015029635A1 true WO2015029635A1 (ja) 2015-03-05

Family

ID=52586210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069010 WO2015029635A1 (ja) 2013-08-28 2014-07-17 ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール

Country Status (3)

Country Link
US (1) US9640619B2 (ja)
JP (1) JP2015046491A (ja)
WO (1) WO2015029635A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017643A (ja) * 2016-07-29 2018-02-01 三菱電機株式会社 通電検査装置および通電検査方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147529A1 (ja) * 2015-03-16 2016-09-22 富士電機株式会社 半導体装置の製造方法
JP6988219B2 (ja) * 2017-07-14 2022-01-05 富士電機株式会社 半導体装置、半導体モジュール及び半導体装置の試験方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105480A (ja) * 1973-02-07 1974-10-05
JPH0567697A (ja) * 1991-09-10 1993-03-19 Toshiba Corp 樹脂封止型半導体装置
JP2008004599A (ja) * 2006-06-20 2008-01-10 Mitsubishi Materials Corp パワー素子搭載用ユニットおよびパワー素子搭載用ユニットの製造方法並びにパワーモジュール
JP2008103558A (ja) * 2006-10-19 2008-05-01 Furukawa Electric Co Ltd:The 半導体パワーモジュール
JP2008117841A (ja) * 2006-11-01 2008-05-22 Furukawa Electric Co Ltd:The 半導体パワーモジュール及びその製造方法
JP2011216764A (ja) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp 半導体装置の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593943A (ja) 1982-06-29 1984-01-10 Fujitsu Ltd 半導体装置の製造方法
JPH06120315A (ja) * 1992-10-06 1994-04-28 Fujitsu Ltd 半導体装置の試験方法
JP2979964B2 (ja) * 1994-07-25 1999-11-22 株式会社日立製作所 半導体装置及びそれを用いたインバータ装置
US5617036A (en) * 1995-02-24 1997-04-01 The Whitaker Corporation Laser/pin assembly with integrated burn-in assembly
JP2001034983A (ja) * 1999-07-14 2001-02-09 Sankyo Seiki Mfg Co Ltd 光ピックアップ装置用受発光素子
JP3408246B2 (ja) * 2001-02-09 2003-05-19 三洋電機株式会社 混成集積回路装置の製造方法
JP2003100819A (ja) * 2001-09-26 2003-04-04 Toshiba Corp 耐圧検査方法及びその装置
WO2005098942A1 (ja) * 2004-04-05 2005-10-20 Mitsubishi Materials Corporation Ai/ain接合体、パワーモジュール用基板及びパワーモジュール並びにai/ain接合体の製造方法
EP1774599B1 (de) * 2004-07-30 2015-11-04 OSRAM Opto Semiconductors GmbH Verfahren zur herstellung von halbleiterchips in dünnfilmtechnik und halbleiterchip in dünnfilmtechnik
JP2006261569A (ja) * 2005-03-18 2006-09-28 Dowa Mining Co Ltd サブマウントおよびその製造方法
TWI514522B (zh) 2005-03-18 2015-12-21 Dowa Electronics Materials Co 副載置片及其製造方法
US8198540B2 (en) 2006-06-06 2012-06-12 Mitsubishi Materials Corporation Power element mounting substrate, method of manufacturing the same, power element mounting unit, method of manufacturing the same, and power module
JP4482061B2 (ja) * 2008-08-19 2010-06-16 パナソニック株式会社 半導体素子の耐圧測定装置および耐圧測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49105480A (ja) * 1973-02-07 1974-10-05
JPH0567697A (ja) * 1991-09-10 1993-03-19 Toshiba Corp 樹脂封止型半導体装置
JP2008004599A (ja) * 2006-06-20 2008-01-10 Mitsubishi Materials Corp パワー素子搭載用ユニットおよびパワー素子搭載用ユニットの製造方法並びにパワーモジュール
JP2008103558A (ja) * 2006-10-19 2008-05-01 Furukawa Electric Co Ltd:The 半導体パワーモジュール
JP2008117841A (ja) * 2006-11-01 2008-05-22 Furukawa Electric Co Ltd:The 半導体パワーモジュール及びその製造方法
JP2011216764A (ja) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp 半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017643A (ja) * 2016-07-29 2018-02-01 三菱電機株式会社 通電検査装置および通電検査方法

Also Published As

Publication number Publication date
JP2015046491A (ja) 2015-03-12
US9640619B2 (en) 2017-05-02
US20160204086A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
US8399962B2 (en) Semiconductor chip and process for production thereof
CN100403537C (zh) 半导体器件及其制造方法
JP5560538B2 (ja) 半導体装置の製造方法
US8916871B2 (en) Bondable top metal contacts for gallium nitride power devices
JP2004289103A (ja) 半導体デバイス及びその製造方法
US20170309496A1 (en) Semiconductor device manufacturing method
JP2010016103A (ja) 半導体装置
JP2005509290A (ja) 大型炭化ケイ素デバイスおよびその製造方法
JP2008004739A (ja) 半導体装置
CN111326479A (zh) 半导体器件和用于制造半导体器件的方法
WO2015029635A1 (ja) ワイドバンドギャップ半導体装置および半導体モジュールの製造方法、ならびにワイドバンドギャップ半導体装置および半導体モジュール
US11410892B2 (en) Semiconductor device and method of inspecting semiconductor device
US20210296448A1 (en) SiC SEMICONDUCTOR DEVICE
JP7243173B2 (ja) 半導体装置および半導体装置の製造方法
JP7116640B2 (ja) 半導体装置
WO2014185192A1 (ja) 炭化珪素半導体装置および半導体モジュールの製造方法、ならびに炭化珪素半導体装置および半導体モジュール
JP4724355B2 (ja) 半導体装置
WO2021132145A1 (ja) 半導体素子及びその製造方法、並びに半導体装置及びその製造方法
JP7172327B2 (ja) 炭化珪素半導体装置の製造方法
CN113451155A (zh) 加工半导体晶片的方法、半导体晶片、夹和半导体器件
EP4040484A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP2015026669A (ja) 窒化物半導体装置
US20230082976A1 (en) Semiconductor device
JP2012129537A (ja) 半導体装置
US20220310539A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14913747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839683

Country of ref document: EP

Kind code of ref document: A1