WO2015025882A1 - 電解液、及びリチウムイオン二次電池 - Google Patents

電解液、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015025882A1
WO2015025882A1 PCT/JP2014/071762 JP2014071762W WO2015025882A1 WO 2015025882 A1 WO2015025882 A1 WO 2015025882A1 JP 2014071762 W JP2014071762 W JP 2014071762W WO 2015025882 A1 WO2015025882 A1 WO 2015025882A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
fluorine
alkyl group
secondary battery
solution according
Prior art date
Application number
PCT/JP2014/071762
Other languages
English (en)
French (fr)
Inventor
克 瓶子
豊川 卓也
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015532878A priority Critical patent/JP6360831B2/ja
Priority to CN201480018952.4A priority patent/CN105074995B/zh
Priority to EP14837902.7A priority patent/EP3038200B1/en
Priority to US14/771,387 priority patent/US9728810B2/en
Publication of WO2015025882A1 publication Critical patent/WO2015025882A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrolytic solution that can be used for a lithium ion secondary battery and a lithium ion secondary battery.
  • Patent Document 1 discloses a method of adding an aliphatic compound having a 1-propenyloxy group to the electrolytic solution.
  • Patent Document 2 discloses that a specific fluorinated chain ether is added to the electrolytic solution, and describes that the fluidity of the electrolytic solution is imparted.
  • Patent Document 3 discloses a nonaqueous electrolytic solution containing a vinylboronic acid compound represented by a specific chemical formula in the electrolytic solution, and describes that the discharge capacity at low temperature charge / discharge is good.
  • JP 2013-26180 A WO2012-141301 gazette JP 2011-210651A
  • Patent Document 1 when the aliphatic compound disclosed in Patent Document 1 is used as an additive for the electrolyte solution of a lithium ion secondary battery, there is a problem that the capacity reduction accompanying the charge / discharge cycle of the secondary battery is severe. Further, there is a demand for an improvement in capacity maintenance rate accompanying a charge / discharge cycle of a secondary battery using the electrolytic solution disclosed in Patent Documents 2 to 3.
  • the present invention has been made in view of the above circumstances, and even when the operating voltage of the lithium ion secondary battery is set to 4.5 V or higher, which is higher than the conventional 3.5 to 4.2 V, the charge / discharge cycle thereof is achieved. It is an object of the present invention to provide an electrolytic solution in which the capacity reduction associated with the above is reduced as compared with the prior art, and a lithium ion secondary battery including the electrolytic solution.
  • the inventors of the present invention focused on adding a fluorine-containing ether compound to the electrolytic solution.
  • a fluorine-containing ether compound see, for example, JP-A-11-26015
  • solubility and harsher use conditions 45 ° C., 1.5 V
  • the present inventors have conducted intensive studies, and of the two alkyl groups bonded to the oxygen atom of the fluorine-containing ether compound, one alkyl group has one carbon atom and the other alkyl group has 3 carbon atoms.
  • it is ⁇ 8
  • the solubility in a non-aqueous solvent is excellent, and further, the capacity accompanying the charge / discharge cycle of the lithium ion secondary battery is adjusted by adjusting the number of fluorine atoms substituting the hydrogen atoms of both alkyl groups.
  • the inventors have found that the reduction can be reduced, and have completed the present invention. That is, the present invention provides the following means.
  • R 1 represents an alkyl group having 3 to 8 carbon atoms
  • R 2 represents an alkyl group having 1 carbon atom
  • at least 6 of the hydrogen atoms bonded to the alkyl group of R 1 are substituted with fluorine atoms.
  • at least one of the hydrogen atoms bonded to the alkyl group of R 2 is substituted with a fluorine atom.
  • [2] The electrolytic solution according to [1], wherein the content of the fluorine-containing ether compound is 1 to 60% by volume with respect to the total amount of the electrolytic solution.
  • R 3 represents an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 4 carbon atoms
  • R 4 represents an alkyl group having 1 to 4 carbon atoms.
  • [7] The electrolytic solution according to [6], wherein the content of the boron compound with respect to the total amount of the electrolytic solution is 0.01 to 5% by mass.
  • [8] The electrolyte solution according to [6] or [7], wherein a content of the boron compound with respect to 100 parts by mass of the fluorine-containing ether compound is 5 parts by mass or less.
  • the capacity reduction accompanying the charge / discharge cycle can be reduced as compared with the conventional case.
  • the lithium ion secondary battery of the present invention since the capacity reduction accompanying the charge / discharge cycle when used at a high potential of 4.5 V or more is reduced as compared with the prior art, the secondary battery with high energy density It can be used repeatedly over a longer period than in the past.
  • FIG. 3 is a schematic cross-sectional view showing a structure of an electrode element included in a laminated laminate type lithium ion secondary battery.
  • FIG. 5 is a plot diagram of Comparative Example 1 and Examples 1 to 4 showing the relationship between the capacity retention rate% (vertical axis) and the number of charge / discharge cycles (horizontal axis) of the fabricated secondary battery.
  • FIG. 4 is a plot diagram of Comparative Examples 1 and 2 and Reference Example 1 showing the relationship between the capacity retention rate% (vertical axis) and the number of charge / discharge cycles (horizontal axis) of the fabricated secondary battery.
  • the first embodiment of the electrolytic solution of the present invention includes a non-aqueous solvent, a lithium salt as a supporting salt, and a fluorine-containing ether compound represented by the following general formula (I).
  • R 1 represents an alkyl group having 3 to 8 carbon atoms
  • R 2 represents an alkyl group having 1 carbon atom
  • at least 6 of the hydrogen atoms bonded to the alkyl group of R 1 are substituted with fluorine atoms.
  • at least one of the hydrogen atoms bonded to the alkyl group of R 2 is substituted with a fluorine atom.
  • R 1 in the general formula (I) is a linear, branched or cyclic alkyl group, and is a linear or branched alkyl group from the viewpoint of enhancing the solubility in a non-aqueous solvent. Is more preferable, and a linear alkyl group is more preferable.
  • the number of carbon atoms constituting the alkyl group represented by R 1 is preferably 3 to 6 and more preferably 3 to 5 from the viewpoint of enhancing the solubility in a non-aqueous solvent.
  • the hydrogen atoms constituting the alkyl group represented by R 1 at least 6 are replaced with fluorine atoms. All of the hydrogen atoms constituting the alkyl group represented by R 1 may be substituted with a fluorine atom, but R 1 preferably has at least one hydrogen atom.
  • At least one of the hydrogen atoms constituting the alkyl group represented by R 2 is substituted with a fluorine atom.
  • R 2 preferably has at least one hydrogen atom. That is, the following general formula (I ′) is preferable.
  • R 1 represents an alkyl group having 3 to 8 carbon atoms, and at least 6 of the hydrogen atoms bonded to the alkyl group of R 1 are substituted with fluorine atoms.
  • fluorine-containing ether compound group represented by the general formula (I) more preferred compounds include compounds represented by the following general formula (Ia).
  • X 1 to X 10 represent a hydrogen atom or a fluorine atom, and at least 6 of X 1 to X 7 are fluorine atoms, and at least one of X 8 to X 10 is a fluorine atom.
  • any one of X 4 to X 7 is preferably a hydrogen atom, and more preferably X 4 or X 5 is a hydrogen atom.
  • it is preferably either one or two hydrogen atoms of X 8 ⁇ X 10, which is any one of hydrogen atoms of X 8 ⁇ X 10 Is more preferable.
  • More preferable fluorine-containing ether compounds in the electrolytic solution of the present embodiment are compounds represented by the following formulas (Ia-1) to (Ia-6), and among these, the following formulas (Ia 1,1,2,3,3,3-hexafluoropropyldifluoromethyl ether represented by -1) is particularly preferred.
  • preferable compounds include compounds represented by the following general formula (I ′′) and general formula (I ′′ ′).
  • R 1 ′ represents an alkyl group having 3 to 7 carbon atoms, at least 6 hydrogen atoms bonded to the alkyl group of R 1 ′ are substituted with fluorine atoms, and R 2 represents an alkyl group having 1 carbon atom. And at least one hydrogen atom bonded to the alkyl group of R 2 is substituted with a fluorine atom.
  • fluorine-containing ether compound group represented by the general formula (I) more preferred compounds include compounds represented by the following general formula (Ib).
  • X 1 to X 14 represent a hydrogen atom or a fluorine atom, at least 6 of X 1 to X 7 and X 11 to X 14 are fluorine atoms, and at least one of X 8 to X 10 Is a fluorine atom.
  • At least one of X 11 to X 14 is preferably a hydrogen atom, more preferably at least one of X 13 to X 14 is a hydrogen atom, More preferably, two of 13 and X 14 are hydrogen atoms.
  • it is preferably either one or two hydrogen atoms of X 8 ⁇ X 10, which is any one of hydrogen atoms of X 8 ⁇ X 10 Is more preferable.
  • More preferable fluorine-containing ether compounds in the electrolytic solution of the present embodiment are compounds represented by the following formulas (Ib-1) to (Ib-6), and among these, the following formula (Ib) 2,2,3,3,4,4,5,5,5-nonafluoropentyl difluoromethyl ether represented by -1) is particularly preferred.
  • the fluorine-containing ether compound contained in the electrolytic solution of the present embodiment may be one type or two or more types.
  • the content of the fluorine-containing ether compound with respect to the total amount (total volume) of the electrolytic solution of the present embodiment is preferably 1 to 60% by volume, more preferably 3 to 30% by volume, and further preferably 5 to 20% by volume.
  • the non-aqueous solvent in the electrolytic solution of the present embodiment is preferably an organic solvent capable of stably dissolving the fluorine-containing ether compound and further capable of dissolving the lithium salt as the supporting salt.
  • organic solvent examples include carbonate compounds such as ethylene carbonate (EC), propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate (DEC), and vinylene carbonate; Fluorine-containing carbonate compounds in which at least one of hydrogen atoms is substituted with fluorine atoms; Lactone compounds such as ⁇ -butyrolactone; Carboxylic acid ester compounds such as methyl formate, methyl acetate, and methyl propionate; Tetrahydrofuran, dimethoxyethane, etc. Examples include ether compounds; nitrile compounds such as acetonitrile; and sulfone compounds such as sulfolane.
  • the said organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • the organic solvent is preferably a mixed solvent in which two or more selected from the group consisting of the carbonate ester compound and the fluorine-containing carbonate ester compound are combined.
  • the mixing ratio of each solvent in the mixed solvent can be determined in consideration of the solubility and stability of the fluorine-containing ether compound and the lithium salt.
  • a preferable example of the mixed solvent is a mixed solvent of ethylene carbonate (EC) and diethylene carbonate (DEC).
  • EC: DEC volume ratio
  • EC: DEC volume ratio
  • volume ratio is preferably 10:90 to 90:10, more preferably 20:80 to 50:50, and further preferably 30:70 to 40:60.
  • a preferable example of the mixed solvent is a mixed solvent of monofluoroethylene carbonate (FEC) and diethylene carbonate (DEC).
  • FEC: DEC volume ratio
  • FEC: DEC volume ratio
  • the content of FEC with respect to the total amount (total volume) of the non-aqueous solvent is preferably 30 to 70% by volume from the viewpoint of reducing the capacity drop associated with the charge / discharge cycle of the lithium ion secondary battery.
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroboron
  • LiFSI lithium bisfluorosulfonylimide
  • LiN (SO 2) CF 3) 2 lithiumTFSI
  • a lithium salt may be used individually by 1 type, and may use 2 or more types together.
  • the content of the lithium salt relative to the total amount of the electrolytic solution of the present embodiment is not particularly limited.
  • the concentration of lithium atoms (Li) is preferably 0.2 to 3.0 mol / liter, more preferably 0.8.
  • the content can be adjusted to 4 to 2.0 mol / liter.
  • ⁇ Optional component> In the electrolytic solution of the present embodiment, optional components may be blended in addition to the non-aqueous solvent, the lithium salt, and the fluorine-containing ether compound as long as the effects of the present invention are not impaired.
  • the arbitrary component may be appropriately selected according to the purpose and is not particularly limited.
  • the electrolytic solution of the present embodiment may contain a boron compound represented by the following general formula (B-1) as the optional component.
  • R 3 represents an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 4 carbon atoms
  • R 4 represents an alkyl group having 1 to 4 carbon atoms.
  • R 3 in the general formula (B-1) is an alkyl group
  • the alkyl group is linear or branched from the viewpoint of reducing capacity reduction associated with charge / discharge of the lithium ion secondary battery. It is preferable that it is linear.
  • the alkyl group preferably has 1 to 3 carbon atoms, more preferably 1 or 2.
  • R 3 in the general formula (B-1) is an alkenyl group, a vinyl group, a 1-propenyl group, or a 2-propenyl group (allyl) is used from the viewpoint of reducing capacity reduction accompanying charging / discharging of the lithium ion secondary battery. Group), more preferably a vinyl group or an allyl group, and even more preferably a vinyl group.
  • R 4 in the general formula (B-1) is a linear, branched or cyclic alkyl group, and is a linear or branched alkyl group from the viewpoint of enhancing the solubility in a non-aqueous solvent. It is preferable that it is a linear alkyl group.
  • the number of carbon atoms constituting the alkyl group represented by R 4 is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1 from the viewpoint of enhancing solubility in a non-aqueous solvent.
  • Examples of suitable compounds represented by the general formula (B-1) include boron-containing esters such as boron-containing methyl esters and boron-containing ethyl esters.
  • Examples of the boron-containing methyl ester include vinyl boronic acid (N-methyliminodiacetic acid) methyl ester and allyl boronic acid (N-methyliminodiacetic acid) methyl ester.
  • Examples of the boron-containing ethyl ester include vinyl boronic acid (N-methyliminodiacetic acid) ethyl ester and allyl boronic acid (N-methyliminodiacetic acid) ethyl ester.
  • the use of vinyl boronic acid (N-methyliminodiacetic acid) methyl ester represented by the following formula (B-1-s) can further reduce the capacity reduction of the lithium ion secondary battery.
  • the boron-based compound represented by the general formula (B-1) contained in the electrolytic solution of the present embodiment may be one type or two or more types.
  • the content of the boron compound with respect to the total amount of the electrolytic solution of the present embodiment is preferably 0.01 to 5% by mass, more preferably 0.03 to 1% by mass, and 0.06 to 0.5% by mass. % Is more preferable.
  • the content of the boron compound with respect to 100 parts by mass of the fluorine-containing ether compound is preferably 5 parts by mass or less, and more preferably 1 part by mass or less.
  • the electrolytic solution preparation method of the present embodiment is a method in which the non-aqueous solvent, the lithium salt, the fluorine-containing ether compound, and the optional component to be added as necessary are mixed, and each component can be uniformly dissolved or dispersed. What is necessary is just to be able to prepare like a well-known electrolyte solution.
  • the lithium ion secondary battery of the present invention includes the above-described electrolytic solution of the present invention.
  • the configuration of a conventionally known lithium ion secondary battery is applicable.
  • an embodiment having an applicable configuration will be described.
  • the lithium ion secondary battery of the present embodiment for example, a configuration in which an electrode element in which a positive electrode and a negative electrode are opposed to each other and an electrolytic solution are included in an exterior body can be given.
  • the shape of the secondary battery is not particularly limited, and may be any of, for example, a cylindrical type, a flat wound square type, a laminated square type, a coin type, a flat wound laminate type, and a laminated laminate type. Among these, a laminated laminate type is preferable.
  • a laminated laminate type secondary battery will be described below as an example of this embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a battery element (electrode element) included in a laminated laminate type secondary battery.
  • This electrode element is formed by laminating a plurality of positive electrodes 1 and a plurality of negative electrodes 2 with a separator 3 interposed therebetween.
  • the positive electrode current collector 1A included in each positive electrode 1 is welded and electrically connected to each other at an end portion not covered with the positive electrode active material, and the positive electrode lead tab 1B is welded to the welded portion.
  • the negative electrode current collector 2A included in each negative electrode 2 is welded and electrically connected to each other at an end portion not covered with the negative electrode active material, and the negative electrode lead tab 2B is welded to the welded portion.
  • the negative electrode is formed by binding a negative electrode active material so as to cover the negative electrode current collector with a negative electrode binder.
  • a negative electrode active material for example, one or more of a carbon material (a), a metal (b), and a metal oxide (c) can be used. Examples of combinations of these materials include carbon material (a) and metal (b), carbon material (a) and metal oxide (c), metal (b) and metal oxide (c), and carbon material (a). And a combination of metal (b) and metal oxide (c).
  • a combination of (b) and a metal oxide (c) capable of inserting and extracting lithium ions is preferred.
  • the carbon material (a) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite thereof can be used.
  • Graphite with high crystallinity is preferable because it has high electrical conductivity, excellent adhesion to a positive electrode current collector made of a metal such as copper, and voltage flatness.
  • amorphous carbon with low crystallinity has a relatively small volume expansion, so it has a high effect of reducing the volume expansion of the entire negative electrode, and deterioration due to nonuniformity such as crystal grain boundaries and crystal defects occurs. It is preferable because it is difficult.
  • metal (b) Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy containing two or more of these metals is used. be able to.
  • silicon (Si) is preferably included as the metal (b).
  • metal oxide (c) silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof can be used.
  • silicon oxide that is relatively stable and hardly causes a reaction with another compound.
  • a metal oxide (c) is an oxide of the metal which comprises a metal (b).
  • one or more elements selected from nitrogen, boron and sulfur are added to the metal oxide (c), for example, 0.1 to You may add 5 mass%.
  • the metal oxide (c) has an amorphous structure.
  • the amorphous metal oxide (c) can suppress the volume expansion of the carbon material (a) and the metal (b), which are other negative electrode active materials, and suppress the decomposition of the electrolytic solution containing the fluorine-containing ether compound. You can also Although the mechanism of this decomposition suppression is not clear, it is presumed that the metal oxide (c) has an amorphous structure, which affects the film formation at the interface between the carbon material (a) and the electrolytic solution.
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and crystal defects.
  • the metal (b) is preferably all or part of the metal (b) dispersed in the metal oxide (c).
  • the metal (b) is preferably all or part of the metal (b) dispersed in the metal oxide (c).
  • the metal oxide (c) By dispersing at least a part of the metal (b) in the metal oxide (c), volume expansion of the whole negative electrode can be further suppressed, and decomposition of the electrolytic solution can also be suppressed.
  • all or part of the metal (b) is dispersed in the metal oxide (c) because it is observed with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement.
  • the cross section of the sample containing the metal particles (b) is observed, the oxygen concentration of the metal particles (b) dispersed in the metal oxide (c) is measured, and the metal particles (b) are configured. It can be confirmed that the metal is not an oxide.
  • a carbon material (a), a metal (b), and a metal oxide (c) are included, and all or part of the metal oxide (c) has an amorphous structure, and all or part of the metal (b) is oxidized by metal.
  • the negative electrode active material dispersed in the product (c) can be produced by a known method. That is, the metal oxide (c) is subjected to CVD treatment in an atmosphere containing an organic gas such as methane gas, so that the metal (b) in the metal oxide (c) forms nanoclusters and the surface is a carbon material. A composite coated with (a) can be obtained.
  • the said negative electrode active material is producible also by mixing a carbon material (a), a metal (b), and a metal oxide (c) by mechanical milling.
  • the individual content ratios of the carbon material (a), the metal (b), and the metal oxide (c) with respect to the total amount of the negative electrode active material are not particularly limited.
  • the carbon material (a) is preferably contained in an amount of 2 to 50% by mass with respect to the total of the carbon material (a), the metal (b) and the metal oxide (c). It is preferable.
  • the metal (b) is preferably contained in an amount of 5 to 90% by mass, and 20 to 50% by mass with respect to the total of the carbon material (a), the metal (b) and the metal oxide (c). It is preferable.
  • the metal oxide (c) is preferably contained in an amount of 5 to 90% by mass, preferably 40 to 70% by mass, based on the total of the carbon material (a), the metal (b) and the metal oxide (c). It is preferred that
  • the content ratio of the carbon material (a) with respect to the total amount of the negative electrode active material may be 0%.
  • the total mass of the metal (b) and the metal oxide (c) may be 100% by mass with respect to the total amount of the negative electrode material.
  • a negative electrode material made only of metal (b) or metal oxide (c) may be used instead of the negative electrode active material.
  • the shape of the carbon material (a), the metal (b), and the metal oxide (c) is not particularly limited, and may be, for example, particulate.
  • the average particle diameter of the metal (b) may be smaller than the average particle diameter of the carbon material (a) and the average particle diameter of the metal oxide (c).
  • the metal (b) having a small volume change during charging and discharging has a relatively small particle size
  • the carbon material (a) and the metal oxide (c) having a large volume change have a relatively large particle size. Therefore, dendrite formation and alloy pulverization are more effectively suppressed.
  • lithium is occluded and released in the order of large-diameter particles, small-diameter particles, and large-diameter particles during the charge / discharge process. This also suppresses the occurrence of residual stress and residual strain. Is done.
  • the average particle size of the metal oxide (c) is preferably 1 ⁇ 2 or less of the average particle size of the carbon material (a), and the average particle size of the metal (b) is the average particle size of the metal oxide (c). It is preferable that it is 1/2 or less. More preferably, the average particle diameter of the metal oxide (c) is 1 ⁇ 2 or less of the average particle diameter of the carbon material (a), and the average particle diameter of the metal (b) is an average of the metal oxide (c). It is 1/2 or less of the particle diameter.
  • the average particle diameter of silicon oxide (c) is 1 ⁇ 2 or less of the average particle diameter of graphite (a), and the average particle diameter of silicon (b) is the average of silicon oxide (c). It is preferable that it is 1/2 or less of a particle diameter. More specifically, the average particle diameter of silicon (b) is, for example, 20 ⁇ m or less, and preferably 15 ⁇ m or less.
  • binder for the negative electrode examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene.
  • Polyimide, polyamideimide and the like can be used. Among these, polyimide or polyamideimide is preferable because of its high binding property.
  • the amount of the binder for the negative electrode to be used is 5 to 100 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoint of balancing “sufficient binding force” and “high energy” which are in a trade-off relationship. 25 parts by mass is preferred.
  • the negative electrode current collector for example, aluminum, nickel, copper, silver, and alloys containing these metals are preferable from the viewpoint of electrochemical stability.
  • the shape in particular is not restrict
  • Examples of the method for producing the negative electrode include a method of forming a negative electrode active material layer containing the negative electrode active material and the negative electrode binder on the negative electrode current collector.
  • the negative electrode active material layer can be formed by, for example, a doctor blade method or a die coater method. After forming a negative electrode active material layer on an arbitrary support in advance, a thin film of aluminum, nickel, or an alloy containing aluminum or nickel is formed on the negative electrode active material layer by a method such as vapor deposition or sputtering, A thin film may be used as the negative electrode current collector.
  • the thin film can be formed by, for example, a CVD method or a sputtering method.
  • the positive electrode is formed by binding a positive electrode active material so as to cover a positive electrode current collector with a positive electrode binder.
  • the positive electrode active material lithium manganate having a layered structure such as LiMnO 2 , Li X Mn 2 O 4 (0 ⁇ x ⁇ 2) or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2 or a transition metal thereof A material in which a part of the metal is replaced with another metal; a lithium transition metal oxide in which a specific transition metal such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 does not exceed half; these lithium transition metal oxides And a substance in which Li is excessive in comparison with the stoichiometric composition.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode binder the same binder as the negative electrode binder can be used. From the viewpoint of versatility and low cost, polyvinylidene fluoride is preferred.
  • the amount of the positive electrode binder used is 2 to 10 with respect to 100 parts by mass of the positive electrode active material from the viewpoint of balancing “sufficient binding force” and “higher energy” which are in a trade-off relationship. Part by mass is preferred.
  • a current collector similar to the negative electrode current collector can be used.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • a porous film such as polypropylene or polyethylene, a nonwoven fabric, or a laminate obtained by laminating them can be used.
  • the exterior body should just be an exterior body which is stable to electrolyte solution, and has sufficient water vapor
  • a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
  • an aluminum laminate film from the viewpoint of suppressing volume expansion.
  • Example 1 ⁇ Positive electrode> A slurry containing 92% by mass of spinel type LiNi 0.5 Mn 1.5 O 4 , 4 % by mass of ketjen black and 4% by mass of polyvinylidene fluoride is applied and dried on a positive electrode current collector 1A made of aluminum foil (thickness 20 ⁇ m). A positive electrode 1 having a thickness of 175 ⁇ m was produced. A double-sided electrode in which the positive electrode 1 was applied to both sides of the positive electrode current collector 1A and dried was produced in the same manner.
  • ⁇ Negative electrode> A slurry containing 85% by mass of SiO having an average particle size of 15 ⁇ m and 15% by mass of polyamic acid was applied and dried on a negative electrode current collector 2A made of copper foil (thickness: 10 ⁇ m) to prepare a negative electrode 2 having a thickness of 46 ⁇ m. The produced negative electrode was annealed at 350 ° C. for 3 hours in a nitrogen atmosphere to cure the binder.
  • Electrolytic solution a solvent containing ethylene carbonate (EC) and diethylene carbonate (DEC), which are non-aqueous solvents, at a volume ratio of 30:70, and 1,1,2,3,3,3-hexafluoropropylene difluoro as an additive.
  • Methyl ether was added to a final concentration of 10% by volume, and an electrolytic solution in which lithium hexafluorophosphate was dissolved as a supporting salt to a final concentration of 1.2 mol / liter was prepared.
  • a battery element was produced by laminating a porous film separator and welding a positive electrode lead tab 1B made of an Al plate and a negative electrode lead tab 2B made of an Ni plate, respectively. (See FIG. 1).
  • This battery element was wrapped in an outer package 4 made of an aluminum laminate film, and three sides (three sides) were sealed by heat fusion, and then the electrolyte was impregnated at an appropriate degree of vacuum. Thereafter, the remaining one (one side) was heat-sealed and sealed under reduced pressure to prepare a lithium ion secondary battery before activation treatment.
  • Example 2 The same procedure as in Example 1 was performed except that vinyl boronic acid (N-methyliminodiacetic acid) methyl ester was further added as a boron compound to a final concentration of 0.09% by mass when preparing the electrolytic solution.
  • vinyl boronic acid N-methyliminodiacetic acid
  • Example 3 It carried out similarly to Example 1 except having used the solvent which contains fluoroethylene carbonate (FEC) and diethylene carbonate (DEC) which are non-aqueous solvents by the volume ratio of 50:50 at the time of preparation of electrolyte solution.
  • FEC fluoroethylene carbonate
  • DEC diethylene carbonate
  • Example 4 The final concentration of 2,2,3,3,4,4,5,5,5-nonafluoropentyldifluoromethyl ether as an additive in a solvent containing EC and DEC as non-aqueous solvents in a volume ratio of 30:70
  • An electrolytic solution in which lithium hexafluorophosphate was dissolved as a supporting salt to a final concentration of 1.2 mol / liter was prepared in the same manner as in Example 1 except that 5% by volume was added.
  • 1,2,2,3,3,3-hexafluoropropylene difluoromethyl ether is added as a second additive in addition to the above additives so that the final concentration becomes 10% by volume.
  • An added electrolytic solution may be prepared.
  • the present invention can be used in the field of lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

非水系溶媒と、リチウム塩と、下記一般式(I)で表されるフッ素含有エーテル化合物と、を含むことを特徴とする電解液。下記式中、Rは炭素数3~8のアルキル基を表し、Rは炭素数1のアルキル基を表し、Rのアルキル基に結合する水素原子のうち少なくとも6個はフッ素原子で置換され、Rのアルキル基に結合する水素原子のうち少なくとも1個はフッ素原子で置換されている。

Description

電解液、及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池に利用可能な電解液、及びリチウムイオン二次電池に関する。本願は、2013年8月21日に、日本に出願された特願2013-171605号に基づき優先権を主張し、その内容をここに援用する。
 ノート型パソコン、携帯電話、電気自動車などの急速な市場拡大に伴い、高エネルギー密度の二次電池が求められている。高エネルギー密度の二次電池を得る手段として、容量の大きな負極材料を用いる方法や、高電位の正極を用いる方法などが開発されてきている。従来の一般的なリチウムイオン二次電池の電圧は、3.5~4.2Vであることが多い。しかし、高電位の正極を用いたリチウムイオン二次電池は、4.5V以上の電位を有しており、エネルギー密度の向上が期待されている。さらに容量の大きな負極と合わせることで、更なる高容量化を達成する可能性がある。
 ただし、高電位の正極を用いると、電解液の分解により電池性能の低下が起こることが問題となる。この電解液の分解を抑制する方法として、例えば、特許文献1においては、電解液に1-プロペニルオキシ基を有する脂肪族化合物等を添加する方法が開示されている。特許文献2には、電解液に特定のフッ化鎖状エーテルを加えることが開示されており、電解液の流動性が付与されることが記載されている。特許文献3には、電解液に特定の化学式で表されるビニルボロン酸化合物を含有する非水電解液が開示されており、低温充放電時の放電容量が良好であることが記載されている。
特開2013-26180号公報 WO2012-141301号公報 特開2011-210651号公報
 しかしながら、特許文献1に開示された脂肪族化合物をリチウムイオン二次電池の電解液の添加剤として用いた場合、二次電池の充放電サイクルに伴う容量低下が激しいという問題が生じる。また、特許文献2~3に開示された電解液を使用した二次電池の充放電サイクルに伴う容量維持率の向上が求められている。
 本発明は上記事情に鑑みてなされたものであり、リチウムイオン二次電池の使用電圧を従来の3.5~4.2Vよりも高い4.5V 以上に設定した場合においても、その充放電サイクルに伴う容量低下が従来よりも低減された電解液、及びその電解液を備えたリチウムイオン二次電池の提供を課題とする。
 本発明者らは、フッ素含有エーテル化合物を電解液に添加することに着目した。従来のリチウムイオン二次電池に使用されたフッ素含有エーテル化合物(例えば、特開平11-26015号公報を参照)を用いて、溶解性および、従来よりも過酷な使用条件(45℃、1.5V-4.5Vの充放電サイクル)における電池特性を評価したところ、満足できる結果は得られなかった。
 本発明者らは鋭意検討を進めて、フッ素含有エーテル化合物の酸素原子に結合する2つのアルキル基のうち、一方のアルキル基の炭素数が1個であり、他方のアルキル基の炭素数が3~8であると、非水溶媒中における溶解性が優れ、更に、両方のアルキル基の水素原子を置換するフッ素原子の数を調整することにより、リチウムイオン二次電池の充放電サイクルに伴う容量低下を低減できることを見出し、本発明を完成するに至った。すなわち、本発明は以下の手段を提供する。
[1] 非水系溶媒と、リチウム塩と、下記一般式(I)で表されるフッ素含有エーテル化合物と、を含むことを特徴とする電解液。
Figure JPOXMLDOC01-appb-C000003
 
[式中、Rは炭素数3~8のアルキル基を表し、Rは炭素数1のアルキル基を表し、Rのアルキル基に結合する水素原子のうち少なくとも6個はフッ素原子で置換され、Rのアルキル基に結合する水素原子のうち少なくとも1個はフッ素原子で置換されている。]
[2] 前記電解液の総量に対する前記フッ素含有エーテル化合物の含有量が、1~60体積%であることを特徴とする前記[1]に記載の電解液。
[3] 前記非水系溶媒が、エチレンカーボネート(EC)とジエチレンカーボネート(DEC)との混合溶媒であることを特徴とする前記[1]又は[2]に記載の電解液。
[4] 前記非水系溶媒が、フッ化エチレンカーボネート(FEC)とジエチレンカーボネート(DEC)との混合溶媒であることを特徴とする前記[1]又は[2]に記載の電解液。
[5] 前記非水系溶媒の総量に対するFECの含有量が、30~70体積%であることを特徴とする前記[4]に記載の電解液。
[6] 下記一般式(B-1)で表されるホウ素系化合物を含有することを特徴とする前記[1]~[5]の何れか一項に記載の電解液。
Figure JPOXMLDOC01-appb-C000004
 
[式中、Rは炭素数1~4のアルキル基又は炭素数2~4アルケニル基を表し、Rは炭素数1~4のアルキル基を表す。]
[7] 前記電解液の総量に対する前記ホウ素系化合物の含有量が、0.01~5質量%であることを特徴とする前記[6]に記載の電解液。
[8] 前記フッ素含有エーテル化合物100質量部に対する前記ホウ素系化合物の含有量が、5質量部以下であることを特徴とする前記[6]又は[7]に記載の電解液。
[9] 前記フッ素含有エーテル化合物が、1,1,2,3,3,3-ヘキサフルオロプロピルジフルオロメチルエーテルであることを特徴とする前記[1]~[8]の何れか一項に記載の電解液。
[10] 前記フッ素含有エーテル化合物が、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルジフルオロメチルエーテルであることを特徴とする前記[1]~[8]の何れか一項に記載の電解液。
[11] 前記[1]~[10]の何れか一項に記載の電解液を備えたことを特徴とするリチウムイオン二次電池。
 本発明の電解液によれば、二次電池を4.5V 以上の高電位で使用した場合においても、その充放電サイクルに伴う容量低下を従来よりも低減することができる。また、本発明のリチウムイオン二次電池によれば、4.5V 以上の高電位で使用した場合の充放電サイクルに伴う容量低下が従来よりも低減されているため、高エネルギー密度の二次電池として従来よりも長期間に亘って繰り返し使用することができる。
積層ラミネート型のリチウムイオン二次電池が有する電極素子の構造を示す模式的断面図である。 作製した二次電池の容量維持率%(縦軸)と充放電サイクル数(横軸)の関係を示す、比較例1及び実施例1~4のプロット図である。 作製した二次電池の容量維持率%(縦軸)と充放電サイクル数(横軸)の関係を示す、比較例1~2及び参考例1のプロット図である。
《電解液》
 本発明の電解液の第一実施形態は、非水系溶媒と、支持塩としてのリチウム塩と、下記一般式(I)で表されるフッ素含有エーテル化合物と、を含む。
Figure JPOXMLDOC01-appb-C000005
 
[式中、Rは炭素数3~8のアルキル基を表し、Rは炭素数1のアルキル基を表し、Rのアルキル基に結合する水素原子のうち少なくとも6個はフッ素原子で置換され、Rのアルキル基に結合する水素原子のうち少なくとも1個はフッ素原子で置換されている。]
<フッ素含有エーテル化合物>
 前記一般式(I)のRは直鎖状、分岐鎖状又は環状のアルキル基であり、非水系溶媒中における溶解性を高める観点から、直鎖状又は分岐鎖状のアルキル基であることが好ましく、直鎖状アルキル基であることがより好ましい。
 Rで表されるアルキル基を構成する炭素数は、非水系溶媒中における溶解性を高める観点から、3~6が好ましく、3~5がより好ましい。
 Rで表されるアルキル基を構成する水素原子のうち、少なくとも6個はフッ素原子で置換されている。Rで表されるアルキル基を構成する水素原子の全てがフッ素原子で置換されていても良いが、Rは少なくとも1個の水素原子を有することが好ましい。
 Rで表されるアルキル基、即ちメチル基を構成する水素原子のうち、少なくとも1個はフッ素原子で置換されている。Rで表されるメチル基を構成する水素原子の全てがフッ素原子で置換されていても良いが、Rは少なくとも1個の水素原子を有することが好ましい。即ち、下記一般式(I’)が好ましい。
Figure JPOXMLDOC01-appb-C000006
 
[式中、Rは炭素数3~8のアルキル基を表し、Rのアルキル基に結合する水素原子のうち少なくとも6個はフッ素原子で置換されている。]
 前記一般式(I)で表されるフッ素含有エーテル化合物群のうち、より好ましい化合物として、以下の一般式(I-a)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 
[式中、X~X10は水素原子又はフッ素原子を表し、X~Xのうち少なくとも6個がフッ素原子であり、X~X10のうち少なくとも1個がフッ素原子である。]
 前記一般式(I-a)中、X~Xのうち何れか1個が水素原子であることが好ましく、X又はXが水素原子であることがより好ましい。
 前記一般式(I-a)中、X~X10のうち何れか1個又は2個が水素原子であることが好ましく、X~X10のうち何れか1個が水素原子であることがより好ましい。
 本実施形態の電解液における更に好ましいフッ素含有エーテル化合物は、下記式(I-a-1)~(I-a-6)で表される化合物であり、これらの中でも、下記式(I-a-1)で表される1,1,2,3,3,3-ヘキサフルオロプロピルジフルオロメチルエーテルが特に好ましい。
Figure JPOXMLDOC01-appb-C000008
 
 前記一般式(I)で表されるフッ素含有エーテル化合物群のうち、好ましい化合物として、以下の一般式(I’’)及び一般式(I’’’)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 
[式中、R’は炭素数3~7のアルキル基を表し、R’のアルキル基に結合する水素原子のうち少なくとも6個はフッ素原子で置換され、Rは炭素数1のアルキル基を表し、Rのアルキル基に結合する水素原子のうち少なくとも1個はフッ素原子で置換されている。]
 前記一般式(I)で表されるフッ素含有エーテル化合物群のうち、より好ましい化合物として、以下の一般式(I-b)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 
[式中、X~X14は水素原子又はフッ素原子を表し、X~X及びX11~X14のうち少なくとも6個がフッ素原子であり、X~X10のうち少なくとも1個がフッ素原子である。]
 前記一般式(I-b)中、X11~X14のうち少なくとも1個が水素原子であることが好ましく、X13~X14のうち少なくとも1個が水素原子であることがより好ましく、X13及びX14の2個が水素原子であることが更に好ましい。
 前記一般式(I-b)中、X~X10のうち何れか1個又は2個が水素原子であることが好ましく、X~X10のうち何れか1個が水素原子であることがより好ましい。
 本実施形態の電解液における更に好ましいフッ素含有エーテル化合物は、下記式(I-b-1)~(I-b-6)で表される化合物であり、これらの中でも、下記式(I-b-1)で表される2,2,3,3,4,4,5,5,5-ノナフルオロペンチルジフルオロメチルエーテルが特に好ましい。
Figure JPOXMLDOC01-appb-C000011
 
 本実施形態の電解液に含まれる前記フッ素含有エーテル化合物は、1種であってもよいし、2種以上であってもよい。
 本実施形態の電解液の総量(総体積)に対する前記フッ素含有エーテル化合物の含有量は、1~60体積%が好ましく、3~30体積%がより好ましく、5~20体積%がさらに好ましい。
<非水系有機溶媒>
 本実施形態の電解液における非水系溶媒は、フッ素含有エーテル化合物を安定に溶解可能であり、さらに前記支持塩としてのリチウム塩を溶解可能な有機溶媒であることが好ましい。このような有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート(DEC)、ビニレンカーボネート等の炭酸エステル化合物;前記炭酸エステル化合物の任意の水素原子のうち少なくとも1個がフッ素原子で置換されたフッ素含有炭酸エステル化合物;γ-ブチロラクトン等のラクトン化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物が挙げられる。前記有機溶媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 前記有機溶媒は、前記炭酸エステル化合物及び前記フッ素含有炭酸エステル化合物からなる群から選択される2種以上を組み合わせた混合溶媒であることが好ましい。混合溶媒における各溶媒の混合比は、前記フッ素含有エーテル化合物及びリチウム塩の溶解性及び安定性を考慮して決定することができる。
 前記混合溶媒の好ましい例として、エチレンカーボネート(EC)とジエチレンカーボネート(DEC)との混合溶媒が挙げられる。EC:DEC(体積比)は10:90~90:10が好ましく、20:80~50:50がより好ましく、30:70~40:60がさらに好ましい。
 前記混合溶媒の好ましい例として、モノフルオロエチレンカーボネート(FEC)とジエチレンカーボネート(DEC)との混合溶媒が挙げられる。FEC:DEC(体積比)は35:65~65:35が好ましく、40:60~60:40がより好ましく、45:55~55:45がさらに好ましい。
 前記非水系溶媒の総量(総体積)に対するFECの含有量は、リチウムイオン二次電池の充放電サイクルに伴う容量低下を低減する観点から、30~70体積%が好ましい。
<リチウム塩>
 本実施形態の電解液を構成するリチウム塩としては、公知のリチウムイオン二次電池で使用されているリチウム塩が適用できる。具体的には、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、リチウムビスフルオロスルホニルイミド(LiFSI)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(SOCF、LiTFSI)等が挙げられる。リチウム塩は、1種を単独で用いてもよいし、2種以上を併用してもよい。
  本実施形態の電解液の総量に対する前記リチウム塩の含有量は特に限定されず、例えば、リチウム原子(Li)の濃度が、好ましくは0.2~3.0モル/リットル、より好ましくは0.4~2.0モル/リットルとなるように、前記含有量を調節することができる。
<任意成分>
 本実施形態の電解液は、前記非水系溶媒、リチウム塩、及び前記フッ素含有エーテル化合物以外に、本発明の効果を損なわない範囲内において、任意成分が配合されていてもよい。前記任意成分は、目的に応じて適宜選択すればよく、特に限定されない。
<ホウ素系化合物>
 本実施形態の電解液には、前記任意成分として、下記一般式(B-1)で表されるホウ素系化合物を含有してもよい。
Figure JPOXMLDOC01-appb-C000012
 
[式中、Rは炭素数1~4のアルキル基又は炭素数2~4アルケニル基を表し、Rは炭素数1~4のアルキル基を表す。]
 前記一般式(B-1)のRがアルキル基である場合、このアルキル基は、リチウムイオン二次電池の充放電に伴う容量低下を低減する観点から、直鎖状又は分岐鎖状であることが好ましく、直鎖状であることがより好ましい。前記アルキル基の炭素数は、1~3が好ましく、1又は2がより好ましい。
 前記一般式(B-1)のRがアルケニル基である場合、リチウムイオン二次電池の充放電に伴う容量低下を低減する観点から、ビニル基、1-プロペニル基又は2-プロペニル基(アリル基)であることが好ましく、ビニル基又はアリル基であることがより好ましく、ビニル基であることがさらに好ましい。
 前記一般式(B-1)のRは直鎖状、分岐鎖状又は環状のアルキル基であり、非水系溶媒中における溶解性を高める観点から、直鎖状又は分岐鎖状のアルキル基であることが好ましく、直鎖状アルキル基であることがより好ましい。
 Rで表されるアルキル基を構成する炭素数は、非水系溶媒中における溶解性を高める観点から、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
 前記一般式(B-1)で表される好適な化合物として、ホウ素含有メチルエステルやホウ素含有エチルエステルなどのホウ素含有エステルが例示できる。前記ホウ素含有メチルエステルとしては、例えば、ビニルボロン酸(N-メチルイミノジ酢酸)メチルエステル、アリルボロン酸(N-メチルイミノジ酢酸)メチルエステルなどが挙げられる。前記ホウ素含有エチルエステルとしては、例えば、ビニルボロン酸(N-メチルイミノジ酢酸)エチルエステル、アリルボロン酸(N-メチルイミノジ酢酸)エチルエステルなどが挙げられる。これらの中でも、特に、下記式(B-1-s)で表されるビニルボロン酸(N-メチルイミノジ酢酸)メチルエステルを用いることにより、リチウムイオン二次電池の前記容量低下を一層低減させることができる。
 本実施形態の電解液に含まれる前記一般式(B-1)で表されるホウ素系化合物は1種であってもよいし、2種以上であってもよい。
Figure JPOXMLDOC01-appb-C000013
 
 本実施形態の電解液の総量に対する前記ホウ素系化合物の含有量は、0.01~5質量%であることが好ましく、0.03~1質量%がより好ましく、0.06~0.5質量%が更に好ましい。
 本実施形態の電解液において、前記フッ素含有エーテル化合物100質量部に対する前記ホウ素系化合物の含有量は、5質量部以下であることが好ましく、1質量部以下であることがより好ましい。
<電解液の調製方法>
 本実施形態の電解液の調製方法は、前記非水系溶媒、リチウム塩及び前記フッ素含有エーテル化合物、並びに必要に応じて添加する前記任意成分を混合し、各成分を均一に溶解又は分散できる方法であればよく、公知の電解液と同様に調製することができる。
《リチウムイオン二次電池》
 本発明のリチウムイオン二次電池は、前述した本発明の電解液を備えている。電解液以外の構成については、従来公知のリチウムイオン二次電池の構成が適用できる。
 以下、適用可能な構成を有する実施形態について説明する。
 本実施形態のリチウムイオン二次電池の構成として、例えば、正極および負極が対向配置された電極素子と、電解液とが外装体に内包されている構成が挙げられる。二次電池の形状は特に制限されず、例えば、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型および積層ラミネート型のいずれであってもよい。これらの中でも、積層ラミネート型が好ましい。以下、積層ラミネート型の二次電池について、本実施形態の一例として説明する。
 図1は、積層ラミネート型の二次電池が有する電池要素(電極素子)の構造を示す模式的断面図である。この電極素子は、複数の正極1および複数の負極2が、セパレータ3を挟んで積層されることにより形成されている。各正極1が有する正極集電体1Aは、正極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極リードタブ1Bが溶接されている。各負極2が有する負極集電体2Aは、負極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に負極リードタブ2Bが溶接されている。
<負極>
 前記負極は、負極活物質が負極用結着剤によって負極集電体を覆うように結着されてなる。前記負極活物質として、例えば、炭素材料(a)、金属(b)、及び金属酸化物(c)のうち何れか一以上を用いることができる。これらの材料の組み合わせとして、例えば、炭素材料(a)と金属(b)、炭素材料(a)と金属酸化物(c)、金属(b)と金属酸化物(c)、炭素材料(a)と金属(b)と金属酸化物(c)、の組み合わせが挙げられる。こられの組み合わせのうち、炭素材料(a)と金属酸化物(c)の組み合わせ、或いは、リチウムイオンを吸蔵、放出し得る炭素材料(a)と、リチウムとともに合金を形成することが可能な金属(b)と、リチウムイオンを吸蔵及び放出し得る金属酸化物(c)との組み合わせが好ましい。
 前記炭素材料(a)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、又はこれらの複合物を用いることができる。結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れているため、好ましい。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界及び結晶欠陥などの不均一性に起因する劣化が起きにくいため、好ましい。
 金属(b)としては、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、又はこれらの2種以上の金属を含む合金を用いることができる。特に、金属(b)としてシリコン(Si)を含むことが好ましい。
 金属酸化物(c)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物を用いることができる。特に、比較的安定で他の化合物との反応を引き起こしにくい酸化シリコンを含むことが好ましい。
 また、金属酸化物(c)は、金属(b)を構成する金属の酸化物であることが好ましい。また、金属酸化物(c)の電気伝導性を向上させる観点から、金属酸化物(c)に、窒素、ホウ素およびイオウの中から選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加してもよい。
 金属酸化物(c)は、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(c)は、他の負極活物質である炭素材料(a)及び金属(b)の体積膨張を抑制することができ、フッ素含有エーテル化合物を含む電解液の分解を抑制することもできる。この分解抑制のメカニズムは明確ではないが、金属酸化物(c)がアモルファス構造であることにより、炭素材料(a)と電解液の界面への皮膜形成に影響があると推定される。また、アモルファス構造は、結晶粒界及び結晶欠陥などの不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(c)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)によって確認することができる。具体的には、金属酸化物(c)がアモルファス構造を有しない場合には、金属酸化物(c)に固有のシャープなピーク(鋭いピーク)が観測されるが、金属酸化物(c)の全部または一部がアモルファス構造を有する場合には、金属酸化物(c)に固有のピークがブロードブロードなピーク(幅広いピーク)として観測される。
 金属(b)は、金属(b)の全部または一部が金属酸化物(c)中に分散していることが好ましい。金属(b)の少なくとも一部を金属酸化物(c)中に分散させることによって、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、金属(b)の全部または一部が金属酸化物(c)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属粒子(b)を含むサンプルの断面を観察し、金属酸化物(c)中に分散している金属粒子(b)の酸素濃度を測定し、金属粒子(b)を構成している金属が酸化物ではないことを確認することができる。
 炭素材料(a)と金属(b)と金属酸化物(c)とを含み、金属酸化物(c)の全部または一部がアモルファス構造であり、金属(b)の全部または一部が金属酸化物(c)中に分散しているような負極活物質は、公知方法で作製することができる。すなわち、金属酸化物(c)をメタンガスなどの有機物ガスを含む雰囲気下でCVD処理を行うことで、金属酸化物(c)中の金属(b)がナノクラスターを形成し、かつ表面が炭素材料(a)で被覆された複合体を得ることができる。また、炭素材料(a)と金属(b)と金属酸化物(c)とをメカニカルミリングで混合することでも、上記負極活物質を作製することができる。
 前記負極活物質の総量に対する、炭素材料(a)、金属(b)および金属酸化物(c)の個々の含有割合は特に制限されない。炭素材料(a)は、炭素材料(a)、金属(b)および金属酸化物(c)の合計に対し、2~50質量%で含有されることが好ましく、2~30質量%で含有されることが好ましい。金属(b)は、炭素材料(a)、金属(b)および金属酸化物(c)の合計に対し、5~90質量%で含有されることが好ましく、20~50質量%で含有されることが好ましい。金属酸化物(c)は、炭素材料(a)、金属(b)および金属酸化物(c)の合計に対し、5~90質量%で含有されることが好ましく、40~70質量%で含有されることが好ましい。
 また、前記負極活物質の総量に対する、炭素材料(a)の含有割合が0%であってもよい。この場合、前記負極物質の総量に対する、金属(b)及び金属酸化物(c)の合計の質量が100質量%であってもよい。さらに、前記負極活物質に代えて、金属(b)又は金属酸化物(c)のみからなる負極材を用いてもよい。
 炭素材料(a)、金属(b)および金属酸化物(c)の形状は、特に制限されず、例えば、それぞれ粒子状であってもよい。例えば、金属(b)の平均粒子径は、炭素材料(a)の平均粒子径および金属酸化物(c)の平均粒子径よりも小さい構成であってもよい。このようにすれば、充放電時に伴う体積変化の小さい金属(b)が相対的に小粒径となり、体積変化の大きい炭素材料(a)や金属酸化物(c)が相対的に大粒径となるため、デンドライト(dendrite)生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒子、小粒径の粒子、大粒径の粒子の順にリチウムが吸蔵及び放出されることとなり、この点からも、残留応力、残留歪みの発生が抑制される。金属(b)の平均粒子径としては、例えば20μm以下が挙げられ、15μm以下であることが好ましい。
 金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であることが好ましく、金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下であることが好ましい。より好ましくは、金属酸化物(c)の平均粒子径が炭素材料(a)の平均粒子径の1/2以下であり、かつ金属(b)の平均粒子径が金属酸化物(c)の平均粒子径の1/2以下である。平均粒子径をこのような範囲に制御すれば、金属および合金相の体積膨脹の緩和効果をより有効に得ることができ、エネルギー密度、サイクル寿命と効率のバランスに優れた二次電池を得ることができる。より具体的には、シリコン酸化物(c)の平均粒子径が黒鉛(a)の平均粒子径の1/2以下であり、シリコン(b)の平均粒子径がシリコン酸化物(c)の平均粒子径の1/2以下であることが好ましい。さらに具体的には、シリコン(b)の平均粒子径としては、例えば20μm以下が挙げられ、15μm以下であることが好ましい。
 前記負極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。これらの中でも、ポリイミド又はポリアミドイミドが、結着性が強いため、好ましい。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」とのバランスを取る観点から、前記負極活物質100質量部に対して、5~25質量部が好ましい。
 負極集電体としては、電気化学的な安定性から、例えば、アルミニウム、ニッケル、銅、銀、及びそれらの金属を含む合金が好ましい。その形状は特に制限されず、例えば、箔、平板状、メッシュ状が挙げられる。
 負極の作製方法としては、例えば、前記負極集電体上に、前記負極活物質と前記負極用結着剤を含む負極活物質層を形成する方法が挙げられる。負極活物質層は、例えば、ドクターブレード法、ダイコーター法などによって形成することができる。予め負極活物質層を任意の支持体上に形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケル、又はアルミニウム若しくはニッケルを含む合金の薄膜を前記負極活物質層の上に形成して、前記薄膜を負極集電体として使用してもよい。前記薄膜は、例えば、CVD法、スパッタリング法などによって形成することができる。
<正極>
 前記正極は、例えば、正極活物質が正極用結着剤によって正極集電体を覆うように結着されてなる。
 正極活物質としては、LiMnO、LiMn(0<x<2)等の層状構造を持つマンガン酸リチウム又はスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiO又はこれらの遷移金属の一部を他の金属で置き換えた物質;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にした物質等が挙げられる。特に、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)またはLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。
 前記正極用結着剤としては、前記負極用結着剤と同様の結着剤を用いることができる。汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」とのバランスを取る観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 前記正極集電体としては、負極集電体と同様の集電体を用いることができる。
 前記正極活物質を含む前記正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。
<セパレータ>
 前記セパレータとしては、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布、又はそれらを積層した積層体を用いることができる。
<外装体>
 前記外装体は、電解液に安定で、かつ十分な水蒸気バリア性を持つ外装体であればよい。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
 以下、実施例を示して本発明についてさらに詳しく説明する。ただし、本発明は以下に示す実施例に何ら限定されない。
[実施例1]
 <正極>
 スピネル型LiNi0.5Mn1.5O4を92質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%含むスラリーを、アルミニウム箔(厚み20μm)からなる正極集電体1A上に塗布・乾燥し、厚み175μmからなる正極1を作製した。正極集電体1Aの両面に正極1を塗布し乾燥させた両面電極も同様に作製した。
 <負極>
 平均粒径15μmのSiOを85質量%、ポリアミック酸を15質量%含むスラリーを、銅箔(厚み10μm)からなる負極集電体2A上に塗布・乾燥し、厚み46μmの負極2を作製した。作製した負極は窒素雰囲気下350℃で3時間アニールし、バインダを硬化させた。
 <電解液>
 表1に示す各成分を括弧内の最終濃度となるように混合し、電解液を調製した。すなわち、非水系溶媒であるエチレンカーボネート(EC)及びジエチレンカーボネート(DEC)を30:70の体積比で含む溶媒に、添加剤として、1,1,2,3,3,3-ヘキサフルオロプロピレンジフルオロメチルエーテルを最終濃度10体積%となるように添加し、支持塩として、ヘキサフルオロリン酸リチウムを最終濃度1.2モル/リットルとなるように溶解した電解液を調製した。
 <リチウムイオン二次電池の作製>
 上記方法で作製した正極および負極を成形した後、多孔質のフィルムセパレータを挟んで積層し、Al板からなる正極リードタブ1BおよびNi板からなる負極リードタブ2Bを各々溶接することで電池要素を作製した(図1参照)。この電池要素をアルミラミネートフィルムからなる外装体4で包み、三方(三辺)を熱融着により封止した後、上記電解液を適度な真空度にて含浸させた。その後、減圧下にて残りの一方(一辺)を熱融着封止し、活性化処理前のリチウムイオン二次電池を作製した。
 <活性化処理工程>
 作製した活性化処理前のリチウムイオン二次電池について、正極活物質1gあたり20 mAの電流で4.5Vまで充電し、同じく正極活物質1gあたり20 mAの電流で1.5Vまで放電するサイクルを2回繰り返した。その後、一旦封口部(封止)を破り、減圧することで電池内部のガスを抜き、再び封止することにより、本発明にかかる実施例1のリチウムイオン二次電池を作製した。
[実施例2]
 電解液の調製時に、ホウ素系化合物として、ビニルボロン酸(N-メチルイミノジ酢酸)メチルエステルを最終濃度0.09質量%となるように更に添加した以外は、実施例1と同様に実施した。
[実施例3]
 電解液の調製時に、非水系溶媒であるフルオロエチレンカーボネート(FEC)及びジエチレンカーボネート(DEC)を50:50の体積比で含む溶媒を使用した以外は、実施例1と同様に実施した。
[実施例4]
 非水系溶媒であるEC及びDECを30:70の体積比で含む溶媒に、添加剤として2,2,3,3,4,4,5,5,5-ノナフルオロペンチルジフルオロメチルエーテルを最終濃度5体積%となるように添加した以外は、実施例1と同様に、支持塩としてヘキサフルオロリン酸リチウムを最終濃度1.2モル/リットルとなるように溶解した電解液を調製した。
本実施例の変形例として、上記添加剤に加えて更に第二の添加剤として、1,1,2,3,3,3-ヘキサフルオロプロピレンジフルオロメチルエーテルを最終濃度10体積%となるように添加した電解液を調製してもよい。
[比較例1]
 電解液の調製時に、前記添加剤(1,1,2,3,3,3-ヘキサフルオロプロピレンジフルオロメチルエーテル)を添加しない以外は、実施例1と同様に電解液を調製し、実施例1と同様に試験した。
[比較例2]
 電解液の調製時に、添加剤として、実施例1で使用した添加剤に代えて、ヘプタフルオロプロピル-1,2,2,2-テトラフルオロエチルエーテルを最終濃度10体積%となるように添加した以外は、実施例1と同様に試験した。
 ここで使用した比較例2のフッ素化鎖状エーテル化合物は、前述の特開平11-26015号公報に開示された化合物と同様に、エーテル結合の酸素原子に炭素数3のフッ化アルキル基と炭素数2のフッ化アルキル基とが結合してなる化合物である。
[参考例1]
 電解液の調製時に、ホウ素系化合物として、実施例2で使用したホウ素系化合物に代えて、2-アリル-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン(allylboronic acid pinacol ester)を最終濃度0.09wt%となるように添加した以外は、実施例1と同様に試験した。
Figure JPOXMLDOC01-appb-T000014
 
<リチウムイオン二次電池の評価方法>
 上記方法で作製したリチウムイオン二次電池を、45℃の恒温槽中、正極活物質1gあたり40mAの定電流で4.5Vまで充電し、さらに正極活物質1gあたり5mAの電流になるまで4.5Vの定電圧で充電を続けた。その後、正極活物質1gあたり5mAの電流で1.5Vまで放電し、初期容量を求めた。さらに初期容量測定後のリチウムイオン電池について、45℃の恒温槽中で、正極活物質1gあたり40mAの定電流で4.5Vまで充電し、さらに正極活物質1gあたり5mAの電流になるまで4.5Vの定電圧で充電を続け、その後、正極活物質1gあたり40mAの電流で1.5Vまで放電する充放電サイクルを100回繰り返した。そして、1サイクル目で得られた初期容量(単位:mAh/g)と20,40,60,80,100サイクル目で得られた放電容量(単位:mAh/g)の比から、各サイクル後の容量維持率を求めた。
 上記評価の結果を表2に示す。表2中の「サイクル数」は、充放電サイクルの繰り返しの回数(サイクル目)を表し、「容量維持率」は、(所定のサイクル目の放電容量(mAh/g))/(1サイクル目の放電容量(mAh/g))(単位:%)を表す。この結果を図2及び図3のグラフに示す。
Figure JPOXMLDOC01-appb-T000015
 
 以上の結果から、放電時の電圧を4.5Vという従来よりも高い電位に設定して使用した場合においても、実施例1~4の二次電池は、比較例1~2よりも容量維持率が優れており、特に60サイクル目以降の容量維持率が顕著に優れていることが明らかである。また、参考例1の結果から、1,1,2,3,3,3-ヘキサフルオロプロピレンジフルオロメチルエーテルが添加された電解液に、ホウ素系化合物である2-アリル-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランを添加することは避けるべきであることが理解される。
 本発明は、リチウムイオン二次電池の分野で利用可能である。
1  正極
1A 正極集電体
1B 正極リードタブ
2  負極
2A 負極集電体
2B 負極リードタブ
3  多孔質セパレータ
4  外装体

Claims (11)

  1.  非水系溶媒と、リチウム塩と、下記一般式(I)で表されるフッ素含有エーテル化合物と、を含むことを特徴とする電解液。
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、Rは炭素数3~8のアルキル基を表し、Rは炭素数1のアルキル基を表し、Rのアルキル基に結合する水素原子のうち少なくとも6個はフッ素原子で置換され、Rのアルキル基に結合する水素原子のうち少なくとも1個はフッ素原子で置換されている。]
  2.  前記電解液の総量に対する前記フッ素含有エーテル化合物の含有量が、1~60体積%であることを特徴とする請求項1に記載の電解液。
  3.  前記非水系溶媒が、エチレンカーボネートとジエチレンカーボネートとの混合溶媒であることを特徴とする請求項1又は2に記載の電解液。
  4.  前記非水系溶媒が、フッ化エチレンカーボネートとジエチレンカーボネートとの混合溶媒であることを特徴とする請求項1又は2に記載の電解液。
  5.  前記非水系溶媒の総量に対するフッ化エチレンカーボネートの含有量が、30~70体積%であることを特徴とする請求項4に記載の電解液。
  6.  下記一般式(B-1)で表されるホウ素系化合物をさらに含有することを特徴とする請求項1~5の何れか一項に記載の電解液。
    Figure JPOXMLDOC01-appb-C000002
     
    [式中、Rは炭素数1~4のアルキル基又は炭素数2~4アルケニル基を表し、Rは炭素数1~4のアルキル基を表す。]
  7.  前記電解液の総量に対する前記ホウ素系化合物の含有量が、0.01~5質量%であることを特徴とする請求項6に記載の電解液。
  8.  前記フッ素含有エーテル化合物100質量部に対する前記ホウ素系化合物の含有量が、5質量部以下であることを特徴とする請求項6又は7に記載の電解液。
  9.  前記フッ素含有エーテル化合物が、1,1,2,3,3,3-ヘキサフルオロプロピルジフルオロメチルエーテルであることを特徴とする請求項1~8の何れか一項に記載の電解液。
  10.  前記フッ素含有エーテル化合物が、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルジフルオロメチルエーテルであることを特徴とする請求項1~8の何れか一項に記載の電解液。
  11.  請求項1~10の何れか一項に記載の電解液を備えたことを特徴とするリチウムイオン二次電池。
PCT/JP2014/071762 2013-08-21 2014-08-20 電解液、及びリチウムイオン二次電池 WO2015025882A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015532878A JP6360831B2 (ja) 2013-08-21 2014-08-20 電解液、及びリチウムイオン二次電池
CN201480018952.4A CN105074995B (zh) 2013-08-21 2014-08-20 电解液、及锂离子二次电池
EP14837902.7A EP3038200B1 (en) 2013-08-21 2014-08-20 Electrolyte and lithium ion secondary battery
US14/771,387 US9728810B2 (en) 2013-08-21 2014-08-20 Electrolyte and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-171605 2013-08-21
JP2013171605 2013-08-21

Publications (1)

Publication Number Publication Date
WO2015025882A1 true WO2015025882A1 (ja) 2015-02-26

Family

ID=52483653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071762 WO2015025882A1 (ja) 2013-08-21 2014-08-20 電解液、及びリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US9728810B2 (ja)
EP (1) EP3038200B1 (ja)
JP (1) JP6360831B2 (ja)
CN (2) CN105074995B (ja)
WO (1) WO2015025882A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190273A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 非水電解液、及び電気化学デバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373378B1 (en) * 2015-11-05 2020-04-29 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution for secondary batteries, and secondary battery
CN107331892B (zh) * 2016-04-28 2021-06-18 比亚迪股份有限公司 一种电解液、正极及其制备方法和一种锂离子电池
CN107481858A (zh) * 2017-07-27 2017-12-15 李勇 一种耐高温的电解液
US11894521B2 (en) * 2018-06-01 2024-02-06 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
CN111244549B (zh) * 2020-03-09 2021-08-03 珠海冠宇电池股份有限公司 一种电解液及其制备方法和应用
US11769867B2 (en) * 2021-07-26 2023-09-26 Textron Innovations Inc. Forming battery electrodes and associated battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126015A (ja) 1997-06-30 1999-01-29 Daikin Ind Ltd 非水電解液電池用電解液およびこれを用いた非水電解液電池
JP2008176987A (ja) * 2007-01-17 2008-07-31 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2011210651A (ja) 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
WO2012127717A1 (ja) * 2011-03-24 2012-09-27 日本電気株式会社 二次電池
WO2012132060A1 (ja) * 2011-03-28 2012-10-04 日本電気株式会社 二次電池および電解液
WO2012141301A1 (ja) 2011-04-13 2012-10-18 日本電気株式会社 リチウム二次電池
JP2013026180A (ja) 2011-07-26 2013-02-04 Sanyo Chem Ind Ltd 電極保護膜形成剤
WO2013073288A1 (ja) * 2011-11-14 2013-05-23 日本電気株式会社 リチウムイオン二次電池
JP2014110235A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用電解液及びリチウムイオン二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218982B2 (ja) * 1995-07-25 2001-10-15 住友化学工業株式会社 非水電解液とリチウム二次電池
TW360987B (en) * 1995-07-25 1999-06-11 Sumitomo Chemical Co Non-aqueous electrolyte and lithium secondary battery
JP4605133B2 (ja) * 2006-06-05 2011-01-05 ソニー株式会社 非水電解質およびこれを用いた非水電解質電池、並びに非水電解質の製造方法
KR20110016934A (ko) 2009-02-06 2011-02-18 파나소닉 주식회사 리튬 이온 이차전지 및 리튬 이온 이차전지의 제조방법
US20110076572A1 (en) * 2009-09-25 2011-03-31 Khalil Amine Non-aqueous electrolytes for electrochemical cells
CN102064344A (zh) * 2010-12-21 2011-05-18 东莞市杉杉电池材料有限公司 一种新型动力电池用电解液
TWI497792B (zh) * 2011-02-01 2015-08-21 Taiwan Hopax Chems Mfg Co Ltd 用於電化學裝置之電解液及其電化學裝置
US20120237837A1 (en) * 2011-03-18 2012-09-20 E-One Moli Energy (Canada) Limited Additives for improving the high temperature performance in non-aqueous rechargeable lithium-ion batteries
CN102751534A (zh) 2012-07-18 2012-10-24 中国科学院福建物质结构研究所 一种动力锂电池用阻燃电解液
KR20140032069A (ko) * 2012-09-05 2014-03-14 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
US9812735B2 (en) * 2013-08-21 2017-11-07 Sekisui Chemical Co., Ltd. Lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126015A (ja) 1997-06-30 1999-01-29 Daikin Ind Ltd 非水電解液電池用電解液およびこれを用いた非水電解液電池
JP2008176987A (ja) * 2007-01-17 2008-07-31 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2011210651A (ja) 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
WO2012127717A1 (ja) * 2011-03-24 2012-09-27 日本電気株式会社 二次電池
WO2012132060A1 (ja) * 2011-03-28 2012-10-04 日本電気株式会社 二次電池および電解液
WO2012141301A1 (ja) 2011-04-13 2012-10-18 日本電気株式会社 リチウム二次電池
JP2013026180A (ja) 2011-07-26 2013-02-04 Sanyo Chem Ind Ltd 電極保護膜形成剤
WO2013073288A1 (ja) * 2011-11-14 2013-05-23 日本電気株式会社 リチウムイオン二次電池
JP2014110235A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用電解液及びリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3038200A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190273A1 (ja) * 2022-03-30 2023-10-05 日本ゼオン株式会社 非水電解液、及び電気化学デバイス

Also Published As

Publication number Publication date
CN105074995B (zh) 2018-01-02
EP3038200B1 (en) 2019-01-16
CN105789688A (zh) 2016-07-20
US9728810B2 (en) 2017-08-08
US20160013516A1 (en) 2016-01-14
EP3038200A1 (en) 2016-06-29
EP3038200A4 (en) 2017-03-29
CN105074995A (zh) 2015-11-18
JP6360831B2 (ja) 2018-07-18
JPWO2015025882A1 (ja) 2017-03-02
CN105789688B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
JP6070540B2 (ja) 二次電池および電解液
JP6191454B2 (ja) 二次電池および電解液
JP6360831B2 (ja) 電解液、及びリチウムイオン二次電池
JP5704633B2 (ja) 二次電池
WO2012056765A1 (ja) 二次電池及びその製造方法
JP6861417B2 (ja) 電解液およびリチウムイオン二次電池
JP5867399B2 (ja) 二次電池
JP2011096638A (ja) 二次電池
JP5867396B2 (ja) 二次電池
JP6575943B2 (ja) リチウムイオン二次電池
JP5811093B2 (ja) 二次電池
JP5867398B2 (ja) 二次電池
JP6123674B2 (ja) リチウム二次電池及びこれを用いた車両
JPWO2016098428A1 (ja) リチウムイオン二次電池
WO2012029645A1 (ja) 二次電池およびそれに用いる二次電池用電解液
JP6739737B2 (ja) 正極材料、負極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極、リチウムイオン二次電池、リチウムイオン二次電池用電解液、リチウムイオン二次電池用電極スラリー
JP5369017B2 (ja) リチウムイオン二次電池用電解液及びリチウムイオン二次電池
JP2023159870A (ja) リチウムイオン電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018952.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532878

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771387

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014837902

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE