WO2015020081A1 - 赤外線温度センサ及び赤外線温度センサを用いた装置 - Google Patents

赤外線温度センサ及び赤外線温度センサを用いた装置 Download PDF

Info

Publication number
WO2015020081A1
WO2015020081A1 PCT/JP2014/070705 JP2014070705W WO2015020081A1 WO 2015020081 A1 WO2015020081 A1 WO 2015020081A1 JP 2014070705 W JP2014070705 W JP 2014070705W WO 2015020081 A1 WO2015020081 A1 WO 2015020081A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
film
infrared
infrared temperature
case
Prior art date
Application number
PCT/JP2014/070705
Other languages
English (en)
French (fr)
Inventor
野尻 俊幸
Original Assignee
Semitec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semitec株式会社 filed Critical Semitec株式会社
Priority to KR1020167001699A priority Critical patent/KR102265449B1/ko
Priority to DE112014003676.5T priority patent/DE112014003676T5/de
Priority to US14/909,138 priority patent/US10107689B2/en
Priority to CN201480042590.2A priority patent/CN105452826B/zh
Priority to JP2015520730A priority patent/JP5847985B2/ja
Publication of WO2015020081A1 publication Critical patent/WO2015020081A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid

Definitions

  • the present invention relates to an infrared temperature sensor that detects infrared rays from a detection object and measures the temperature of the detection object, and an apparatus using the infrared temperature sensor.
  • the temperature of the object to be detected is measured by detecting infrared rays from the object to be detected in a non-contact manner.
  • An infrared temperature sensor is used.
  • Such an infrared temperature sensor is provided with a temperature-compensating thermal element in addition to the infrared-sensitive thermal element in order to improve the followability associated with the ambient temperature change and compensate for the ambient temperature change.
  • the infrared detecting thermal element and the temperature compensating thermal element are disposed on a heat-absorbing film, and this film is held in a sealed state by a case (see Patent Documents 1 to 3). .
  • the air in the sealed space portion expands and the internal pressure rises, causing a problem that the film swells and deforms. To do.
  • the air in the space portion is excessively expanded, there may be a problem that a wiring pattern wired on the film is cut due to deformation of the film.
  • the film is deformed, the amount of incident infrared rays and the amount of heat released from the film are changed, which causes a problem that the output of the infrared temperature sensor fluctuates.
  • the present invention has been made in view of the above problems, and provides an infrared temperature sensor that can reduce deformation of a film, enable high accuracy, and ensure reliability, and an apparatus using the infrared temperature sensor. With the goal.
  • An infrared temperature sensor includes a film that absorbs infrared rays, covers and holds the film, forms a hermetic space between the films, and has an opening to guide infrared rays.
  • the ventilation means is a means for allowing air permeability between the space portion and the outside, and the formation position and form thereof are not particularly limited.
  • An infrared temperature sensor is the infrared temperature sensor according to the first aspect, wherein the ventilation means is a through hole formed in a case.
  • the ventilation means is a through hole formed in a case.
  • the infrared temperature sensor according to claim 3 is the infrared temperature sensor according to claim 1, wherein the ventilation means is formed between a case and a film.
  • the infrared temperature sensor according to claim 4 is the infrared temperature sensor according to claim 1, wherein the ventilation means is a through hole formed in a film corresponding to the light guide part and the shielding part. .
  • the infrared temperature sensor according to claim 5 is the infrared temperature sensor according to claim 1, wherein the ventilation means is a through hole formed in the film corresponding to the shielding portion and a through hole formed in the case. It is characterized by.
  • the infrared temperature sensor according to claim 6 is the infrared temperature sensor according to any one of claims 1 to 5, wherein the light guide portion and the shielding portion are substantially symmetrical about a partition wall that partitions them. It is formed in the form of.
  • the infrared temperature sensor according to claim 7 is the infrared temperature sensor according to any one of claims 1 to 6, wherein the film is connected to a thermal element for detecting infrared rays and a thermal element for temperature compensation.
  • a wiring pattern is formed, and a heat-cured material having an insulating property in which a filler of fine particles is mixed is enclosed in a connection portion between an external lead terminal connected to the wiring pattern and an external lead wire, To do.
  • the infrared temperature sensor according to claim 8 is the infrared temperature sensor according to claim 7, wherein the primary particle diameter of the filler of the fine particles is 5 nm to 80 nm.
  • the infrared temperature sensor according to claim 9 is the infrared temperature sensor according to claim 7 or claim 8, wherein the heat-cured product is an epoxy resin, and the fine filler is silica, calcium carbonate, carbon nanotube, or graphite. It is characterized by being.
  • the infrared temperature sensor according to claim 10 is the infrared temperature sensor according to any one of claims 1 to 6, wherein the film is connected to a thermal element for detecting infrared rays and a thermal element for temperature compensation.
  • a wiring pattern is formed, and the external lead terminal and the external lead wire connected to the wiring pattern are connected via a relay terminal.
  • An apparatus using the infrared temperature sensor according to claim 11 is provided with the infrared temperature sensor according to any one of claims 1 to 10.
  • the infrared temperature sensor can be used in various devices such as a fixing device of a copying machine, a battery unit, and an IH cooking heater.
  • the applied device is not particularly limited.
  • an infrared temperature sensor capable of reducing the deformation of the film, enabling high accuracy, and ensuring reliability, and an apparatus using the infrared temperature sensor.
  • FIG. 3A is a cross-sectional view taken along line XX in FIG. 2A
  • FIG. 3B is a cross-sectional view taken along line YY. It is a top view which shows the wiring connection relationship of the same infrared temperature sensor.
  • the infrared temperature sensor which concerns on the 2nd Embodiment of this invention is shown, (a) is a top view, (b) is a front view, (c) is a side view, (d) is a rear view. 6A is a cross-sectional view taken along line XX in FIG. 5A, and FIG. 6B is a cross-sectional view taken along line YY. It is a top view which shows the wiring connection relationship of the same infrared temperature sensor.
  • the infrared temperature sensor which concerns on the 3rd Embodiment of this invention is shown, (a) is a top view, (b) is a front view, (c) is a side view, (d) is a rear view.
  • FIG. 9A is a cross-sectional view taken along line XX in FIG. 8A
  • FIG. 9B is a cross-sectional view taken along line YY. It is a top view which shows the wiring connection relationship of the same infrared temperature sensor.
  • the infrared temperature sensor which concerns on the 4th Embodiment of this invention is shown, (a) is a top view, (b) is a front view, (c) is a side view, (d) is a rear view.
  • 12A is a cross-sectional view taken along line XX in FIG. 11A
  • FIG. 12B is a cross-sectional view taken along line YY. It is a top view which shows the wiring connection relationship of the same infrared temperature sensor.
  • the infrared temperature sensor which concerns on the 5th Embodiment of this invention is shown, (a) is a top view, (b) is a front view, (c) is a side view, (d) is a rear view. 15A is a cross-sectional view taken along line XX in FIG. 14A, and FIG. 15B is a cross-sectional view taken along line YY. It is a top view which shows the wiring connection relationship of the same infrared temperature sensor.
  • the infrared temperature sensor which concerns on the 6th Embodiment of this invention is shown, (a) is a top view, (b) is a front view, (c) is a side view, (d) is a rear view.
  • FIG. 18A is a cross-sectional view taken along line XX in FIG. 17A
  • FIG. 18B is a cross-sectional view taken along line YY. It is a top view which shows the wiring connection relationship of the same infrared temperature sensor.
  • FIG. 1 is a perspective view of an infrared temperature sensor
  • FIG. 2 (a) is a plan view
  • (b) is a front view
  • (c) is a side view
  • (d) is a rear view
  • 3A and 3B are sectional views
  • FIG. 4 is a plan view showing a wiring connection relationship on the film.
  • the scale of each member and member is appropriately changed.
  • the infrared temperature sensor 1 includes a case 2, a film 3, an infrared detection thermal element 4 and a temperature compensation thermal element 5 disposed on the film 3. Yes.
  • Case 2 is composed of a first case 21 and a second case 22.
  • the first case 21 is a holding body
  • the second case 22 is a lid member.
  • the case 2 is made of a resin material such as nylon, PBT, PPS, or ABS.
  • the material forming the case 2 is not particularly limited, and a material obtained by adding a filler such as carbon, metal, or ceramic to a resin, a metal material such as aluminum, copper, iron, or nickel, or a black metal material. A body-coated material or the like can be used.
  • the first case 21 includes a substantially rectangular parallelepiped main body portion 21a protruding to the front side (upper side in FIG. 2B) and a substantially rectangular flange portion 21b formed around the main body portion 21a. ing.
  • the main body portion 21a is formed with a light guide portion 23 for guiding infrared rays and a shielding portion 24 for shielding infrared rays.
  • the light guide 23 has an opening 23a on the front side and is formed in a substantially rectangular parallelepiped cylindrical shape by the side wall 21c and the partition wall 21d.
  • the partition wall 21 d is located at the boundary between the light guide 23 and the shield 24 and serves to partition the light guide 23 and the shield 24.
  • the reflection surface may be formed by metal polishing the inner peripheral surface of the light guide portion 23 or metal plating the inner peripheral surface.
  • the shielding part 24 is disposed adjacent to the light guide part 23, and is formed in a substantially symmetric form with the light guide part 23 with the partition wall 21d as an axis.
  • the shielding part 24 has a shielding wall 24a on the front side, and a substantially rectangular parallelepiped space part 24b is formed by the side wall 21c and the partition wall 21d. Moreover, the back side facing the shielding wall 24a is opened.
  • the second case 22 includes a substantially rectangular parallelepiped main body portion 22a projecting to the back side (the lower side in FIG. 2B) and a substantially rectangular flange portion 22b formed around the main body portion 22a.
  • the main body portion 22 a is formed in a form that substantially matches the shape of the back surface side of the main body portion 21 a in the first case 21, and is continuous on the inner side corresponding to the light guide portion 23 and the shielding portion 24.
  • a space 22c is formed.
  • a ventilation means is provided which allows the space portion 22c and the space portion 24b of the shielding portion 24 to be permeable to the outside.
  • the film 3 is a resin film formed in a substantially rectangular shape. As shown in FIG. 4, a wiring pattern 7 (not shown) is formed on one surface, and the infrared detection thermal element 4 and the temperature compensation thermal sensor are formed on the wiring pattern 7. Element 5 is connected and arranged. An external lead terminal 8 is formed at the end of the wiring pattern 7, and the external lead wire 6 is electrically connected to the external lead terminal 8 by means such as soldering or welding.
  • a resin made of a polymer material such as fluorine, silicon, polyimide, polyester, polyethylene, polycarbonate, or PPS (polyphenylene sulfide) can be used.
  • Other materials may be used as long as they absorb infrared rays.
  • carbon black or an inorganic pigment one or more of chrome yellow, petal, titanium white, and ultramarine may be mixed and dispersed in these resins to use a material that can absorb infrared rays of almost all wavelengths.
  • the film 3 is interposed between the flange portion 21b of the first case 21 and the flange portion 22b of the second case 22 by combining and joining the first case 21 and the second case 22. It is designed to be fixed.
  • the infrared detecting thermal element 4 is disposed at a position corresponding to the light guide 23, and the temperature compensating thermal element 5 is disposed at a position corresponding to the shielding part 24.
  • the case 22 is positioned on the space 22c side.
  • first case 21 and the second case 22 are coupled to each other so that the film 3 is covered and held by the case 1 and between the case 1 and the film 3 as described above.
  • the space 22c and the space 24b are hermetically formed.
  • FIGS. 2 (b) and 3 (b) there is a space portion in the main body 21 a (side wall 21 c) in the first case 21, near the film 3 corresponding to the shielding portion 24.
  • a through-hole 11 is formed as a ventilation means that allows the air permeability between 24b and the outside.
  • a through hole 12 is formed in the second case 22 near the film 3 of the main body portion 22a as a ventilation means allowing air permeability between the space portion 22c and the outside.
  • These through holes 11 and 12 are not particularly limited in order to prevent entry of hot air, wind, etc. into the space 22c and the space 24b, but are preferably formed to have a diameter of about ⁇ 1 ⁇ m to ⁇ 800 ⁇ m.
  • the through hole is preferably formed on both the first case 21 side and the second case 22 side, but at least one case, that is, the first case 21 side or the second case 22 side. It may be sufficient if formed.
  • the infrared detecting thermal element 4 detects infrared rays from the detection target and measures the temperature of the detection target.
  • the temperature-compensating thermal element 5 detects the ambient temperature and measures the ambient temperature.
  • These infrared detecting thermal element 4 and temperature compensating thermal element 5 are composed of thermal elements having at least substantially equal temperature characteristics, and are disposed on the film 3.
  • the infrared detecting thermal element 4 and the temperature compensating thermal element 5 are made of a ceramic semiconductor such as a thermistor containing a metal oxide of Mn, Co, Ni, Ti, Al, Zn, Cu and Fe. ing. Since this ceramic semiconductor has a high B constant which is a temperature coefficient, it is possible to detect a temperature change of the film 3 that absorbs infrared rays with high sensitivity.
  • the ceramic semiconductor preferably has a crystal structure having a cubic spinel phase as a main phase.
  • a crystal structure having a cubic spinel phase as a main phase.
  • the electrical characteristics of the ceramic sintered body are not obtained. The variation is small, and highly accurate measurement is possible when using a plurality of infrared temperature sensors.
  • the environment resistance is high.
  • a single-phase crystal structure composed of a cubic spinel phase is most desirable.
  • the infrared detecting thermal element 4 and the temperature compensating thermal element 5 are selected from thermistor elements and thin film thermistors obtained from the same wafer formed of ceramics semiconductors by resistance values within a predetermined tolerance. It is preferable that
  • the relative error of the B constant is small between the pair of infrared detecting thermal element 4 and temperature compensating thermal element 5, and at the same time, the temperature difference between the two detecting the temperature can be detected with high accuracy.
  • the B constant selection operation and the resistance value adjusting step are not required, and the productivity can be improved.
  • thermistor elements used in the infrared detecting thermal element 4 and the temperature compensating thermal element 5 may be any of bulk, laminated, thick film and thin film, for example.
  • the infrared rays that have reached the film 3 are absorbed by the film 3 and converted into thermal energy.
  • the converted thermal energy is transmitted to the infrared detecting thermal element 4 to increase the temperature of the infrared detecting thermal element 4.
  • the infrared detection thermal element 4 and the temperature compensation thermal element 5 are ceramic semiconductors having at least substantially equal temperature characteristics, and the resistance value of the infrared detection thermal element 4 changes due to infrared rays from the detection target.
  • infrared rays are shielded by the shielding wall 24a of the shielding part 24, but the temperature of the case 2 rises due to the radiant heat from the object to be detected and the ambient atmosphere temperature.
  • the resistance value changes corresponding to the rise.
  • the infrared detecting thermal element 4 and the temperature compensating thermal element 5 have an ambient temperature. It changes similarly with respect to a change, can prevent the influence with respect to a thermal disturbance, and it becomes possible to detect the temperature change by the infrared rays from a detection target object reliably.
  • the temperature change of the infrared temperature sensor 1 can be made uniform as a whole following the ambient temperature change.
  • the air in the sealed space portion expands to increase the internal pressure, the film swells and deforms, If the air in the space is excessively expanded, there may be a problem that the wiring pattern wired on the film is cut. Furthermore, the deformation of the film is promoted by repeated increases and decreases in the internal pressure of the space.
  • the through hole 11 is formed in the first case 21, and the through hole 12 is formed in the second case 22.
  • the air permeability to the outside is ensured by the through holes 11 and the through holes 12, and the increase of the internal pressure is suppressed. It becomes possible to reduce the deformation.
  • the space portion 24 b communicates with the outside through the through hole 11, and the space portion 22 c communicates with the outside through the through hole 12.
  • FIGS. 5A is a plan view
  • FIG. 5B is a front view
  • FIG. 5C is a side view
  • FIG. 5D is a rear view
  • FIGS. 6A and 6B are cross-sectional views
  • FIG. 7 is a plan view showing a wiring connection relationship on the film.
  • symbol is attached
  • the basic configuration of the infrared temperature sensor is the same as that of the first embodiment.
  • the formation mode of the ventilation means that allows the air permeability between the space 24b and the space 22c and the outside is different.
  • the ventilation means is formed between the case 2 and the film 3.
  • a concave groove 13 is formed in the flange portion 21b of the first case 2 as a ventilation means, and the flange portion 22b of the second case 22 is formed.
  • a concave groove 14 is formed in the upper surface. Since the concave grooves 13 and 14 formed in the case 2 are opposed to each other with the film 3 interposed therebetween, the ventilation means (the concave grooves 13 and 14) are formed between the case 2 and the film 3. Become so.
  • the space between the ventilation means is preferably 1 ⁇ m to 500 ⁇ m.
  • the space portion 24 b communicates with the outside through the recessed groove 13
  • the space portion 22 c communicates with the outside through the recessed groove 14. For this reason, the rise of the internal pressure of the space part 24b and the space part 22c can be suppressed, and deformation of the film 3 can be reduced.
  • Ventilation means may be configured.
  • the first case 21 and the second case 22 can be configured by a method of relaxing tightness.
  • the infrared temperature sensor 1 that can reduce the deformation of the film, enable high accuracy, and ensure reliability.
  • FIGS. 8A is a plan view
  • FIG. 8B is a front view
  • FIG. 8C is a side view
  • FIG. 8D is a rear view
  • 9A and 9B are cross-sectional views
  • FIG. 7 is a plan view showing a wiring connection relationship on the film.
  • symbol is attached
  • the basic configuration of the infrared temperature sensor is the same as that of the first embodiment, but the formation mode of the ventilation means allowing the air permeability between the space portion 24b and the space portion 22c and the outside is different. Yes.
  • through-holes 15 and 16 penetrating the front and back are provided as ventilation means at positions corresponding to the light guide portion 23 and the shielding portion 24 in the film 3. It is formed so as to avoid the wiring pattern 7.
  • the through holes 15 and 16 are not particularly limited in order to prevent entry of hot air, wind or the like into the space 22c and the space 24b, but are preferably formed to 1 ⁇ m to 500 ⁇ m. Therefore, the space portion 22c communicates with the outside through the through hole 15, and the space portion 24b communicates with the outside from the through hole 16 through the through hole 15 via the space portion 22c.
  • the increase in the internal pressure of the space 24b and the space 22c can be suppressed, deformation of the film 3 can be reduced, high accuracy can be achieved, and reliability can be ensured. Can do.
  • FIGS. 11 to 13 11A is a plan view
  • FIG. 11B is a front view
  • FIG. 11C is a side view
  • FIG. 11D is a rear view
  • 12A and 12B are cross-sectional views
  • FIG. 13 is a plan view showing a wiring connection relationship on the film.
  • symbol is attached
  • the basic configuration of the infrared temperature sensor is the same as that of the first embodiment, but the formation mode of the ventilation means allowing the air permeability between the space portion 24b and the space portion 22c and the outside is different. Yes.
  • the through-holes 16 penetrating through the front and back surfaces of the wiring pattern 7 are provided as ventilation means at positions corresponding to the shielding portions 24 in the film 3. Is formed to avoid.
  • a through hole 17 is formed as a ventilation means on the main body 21 a (side wall 21 c) in the first case 21 and near the film 3 corresponding to the shielding part 24. Therefore, the space 24b communicates with the outside through the through hole 17, and the space 22c communicates with the outside through the through hole 17 from the through hole 16 through the space 24b.
  • the through hole 17 formed in the main body portion 21 a in the first case 21 may be formed in the main body portion 22 a in the second case 22. Therefore, similarly to each of the above embodiments, it is possible to suppress an increase in the internal pressure of the space portion 24b and the space portion 22c, and to reduce deformation of the film 3.
  • FIGS. 14A is a plan view
  • FIG. 14B is a front view
  • FIG. 14C is a side view
  • FIG. 14D is a rear view
  • FIGS. 15A and 15B are cross-sectional views
  • FIG. 16 is a plan view showing a wiring connection relationship on the film.
  • symbol is attached
  • the basic configuration of the infrared temperature sensor is the same as that of the first embodiment, but the formation mode of the ventilation means allowing the air permeability between the space portion 24b and the space portion 22c and the outside is different. Yes. Further, the connection configuration of the external lead wire 6 is shown.
  • the through-holes 16 penetrating the front and back are provided as wiring means 7 at positions corresponding to the shielding portions 24 in the film 3 as ventilation means. Is formed to avoid.
  • a concave groove 14 is formed in the flange portion 22 b of the second case 22. Therefore, the space portion 24 b communicates with the outside through the recessed hole 14 from the through hole 16 through the space portion 22 c, and the space portion 22 c communicates with the outside through the recessed groove 14. For this reason, the raise of the internal pressure of the space part 24b and the space part 22c can be suppressed.
  • the external lead wire 6 is electrically connected to the external lead terminal 8 by soldering or the like.
  • the epoxy resin that is the heat-cured product Rh is mixed with a fine particle filler to increase the viscosity and thixotropy of the epoxy resin liquid, thereby suppressing the wraparound. Therefore, it can avoid that the space part 24b and the space part 22c will be in a sealed state.
  • Silica is the optimum material for the filler of the fine particles, and the fluidity can be kept low by mixing fine particles having a primary particle size of 5 nm to 80 nm with the epoxy resin. Therefore, the phenomenon that the epoxy resin wraps around is eliminated, and the space portion 24b and the space portion 22c can be prevented from being in a sealed state.
  • the material of the fine particle filler is preferably silica, but may be carbon nanotube, graphite, calcium carbonate, or the like. In the case of calcium carbonate, the primary particle size imparting thickening and thixotropy is about 80 ⁇ m at the maximum.
  • FIGS. 17A is a plan view
  • FIG. 17B is a front view
  • FIG. 17C is a side view
  • FIG. 17D is a rear view
  • 18A and 18B are cross-sectional views
  • FIG. 19 is a plan view showing the wiring connection relation on the film.
  • symbol is attached
  • the configuration of the infrared temperature sensor is the same as that of the fifth embodiment, and the formation of the ventilation means is also the same, but the relay terminal 9 is used for the connection configuration of the external lead wire 6.
  • the relay terminal 9 includes a slightly wide connection terminal portion 91 and a lead portion 92 extending from the connection terminal portion 91.
  • the relay terminal 9 is integrated with a holding member 93 made of a resin material by insert molding.
  • the lead portion 92 is electrically connected to the external lead terminal 8 by means such as soldering or welding, and then the second case is coupled to the first case.
  • the holding member 93 is fixed to the second case 22 side by fixing means (not shown).
  • connection terminal portion 91 of the relay terminal 9 is exposed to the outside on the back side of the case 2 (see FIGS. 17D and 18A).
  • an arbitrary external lead wire 6 can be connected to the connection terminal 91 by means such as soldering or welding.
  • the connection strength can be increased, and a connection portion such as soldering can be achieved. It is no longer necessary to enclose an insulating heat-cured product Rh such as an epoxy resin. Therefore, it is possible to avoid the problem of closing the ventilation means that occurs when a heat-cured product Rh such as an epoxy resin having high fluidity is used.
  • the infrared temperature sensor 1 can be managed in a state where the external lead wire 6 is not connected, and the external lead wire can be managed depending on the infrared temperature sensor 1 having a different length or the like of the external lead wire 6. 6 can be connected.
  • the problem of blocking the ventilation means can be avoided, and the number of varieties having different lengths of the external lead wires 6 has increased, and the number of varieties can be increased. Mass productivity can be secured.
  • the infrared temperature sensor 1 in each of the embodiments described above can be applied to various devices such as a fixing device of a copying machine, a battery unit, and an IH cooking heater.
  • the specially applied device is not limited.
  • the present invention is not limited to the configuration of each of the embodiments described above, and various modifications can be made without departing from the spirit of the invention. Moreover, each said embodiment is shown as an example and is not intending limiting the range of invention.
  • the ventilation means may be formed so that the hermetically sealed space and the outside communicate with each other, and the formation position, shape, number, and the like are not particularly limited.
  • a thermal sensing element for infrared detection and a thermal compensation element for temperature compensation a thin film thermistor or a chip thermistor formed of a ceramic semiconductor is preferably used. Can do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 フィルムの変形を軽減し、高精度化を可能にして、信頼性を確保できる赤外線温度センサ及びこの赤外線温度センサを用いた装置を提供する。 赤外線温度センサ1は、赤外線を吸収するフィルム3と、このフィルム3を覆って保持するとともにフィルム3との間に密閉的な空間部22c、24bを形成し、開口部23aを有して赤外線を導く導光部23及び遮蔽壁24aを有して赤外線を遮蔽する遮蔽部24を備えたケース1と、前記空間部と外部との通気性を許容する通気手段11~17と、前記フィルム3上に配置され、前記導光部23に対応する位置に配設された赤外線検知用感熱素子4と、前記フィルム3上に配置され、前記遮蔽部24に対応する位置に配設された温度補償用感熱素子5とを備えている。

Description

赤外線温度センサ及び赤外線温度センサを用いた装置
 本発明は、検知対象物からの赤外線を検知して、検知対象物の温度を測定する赤外線温度センサ及びこの赤外線温度センサを用いた装置に関する。
 従来、例えば、複写機の定着装置に用いられる加熱定着ローラ等の検知対象物の温度を測定する温度センサとして、検知対象物からの赤外線を非接触で検知して、検知対象物の温度を測定する赤外線温度センサが使用されている。
 このような赤外線温度センサは、周囲温度の変化に伴う追随性を改善し、周囲温度の変化を補償するため、赤外線検知用感熱素子の他に温度補償用感熱素子が設けられている。
 また、赤外線検知用感熱素子及び温度補償用感熱素子は、熱吸収性のフィルム上に配置されており、このフィルムは、ケースによって密閉状態に保持されている(特許文献1乃至特許文献3参照)。
国際公開2013/014707号 特開2003-194630号公報 特開2004-612834号公報
 しかしながら、上記のような従来の赤外線温度センサにおいては、赤外線温度センサの周囲温度が高くなると、密閉状態とされた空間部の空気が膨張して内圧が上昇し、フィルムが膨らみ変形する問題が発生する。また、過度に空間部の空気が膨張すると、フィルムの変形によりフィルムに配線された配線パターンが切断される等の不具合が発生する場合がある。さらに、フィルムが変形することによって、赤外線の入射量やフィルムからの放熱量が変化し、赤外線温度センサの出力が変動する問題も生じる。
 本発明は、上記課題に鑑みてなされたもので、フィルムの変形を軽減し、高精度化を可能にして、信頼性を確保できる赤外線温度センサ及びこの赤外線温度センサを用いた装置を提供することを目的とする。
 請求項1に記載の赤外線温度センサは、赤外線を吸収するフィルムと、このフィルムを覆って保持するとともにフィルムとの間に密閉的な空間部を形成し、開口部を有して赤外線を導く導光部及び遮蔽壁を有して赤外線を遮蔽する遮蔽部を備えたケースと、前記空間部と外部との通気性を許容する通気手段と、前記フィルム上に配置され、前記導光部に対応する位置に配設された赤外線検知用感熱素子と、前記フィルム上に配置され、前記遮蔽部に対応する位置に配設された温度補償用感熱素子と、を具備することを特徴とする。
 通気手段は、空間部と外部との通気性を許容する手段であり、その形成位置や形態が格別限定されるものではない。
 赤外線検知用感熱素子及び温度補償用感熱素子としては、薄膜サーミスタやチップサーミスタが好適に用いられるが、これらに限らず、例えば、熱電対や測温抵抗体等を用いることができる。
 かかる発明によれば、フィルムの変形を軽減し、高精度化を可能にして、信頼性を確保できる。
 請求項2に記載の赤外線温度センサは、請求項1に記載の赤外線温度センサにおいて、前記通気手段は、ケースに形成された貫通孔であることを特徴とする。
 ケースは、例えば、第1のケース及び第2のケースから構成される場合、これら第1のケース及び第2のケースの少なくとも一方に貫通孔が形成されればよい。
 請求項3に記載の赤外線温度センサは、請求項1に記載の赤外線温度センサにおいて、前記通気手段は、ケースとフィルムとの間に形成されていることを特徴とする。
 請求項4に記載の赤外線温度センサは、請求項1に記載の赤外線温度センサにおいて、前記通気手段は、導光部及び遮蔽部に対応するフィルムに形成された貫通孔であることを特徴とする。
 請求項5に記載の赤外線温度センサは、請求項1に記載の赤外線温度センサにおいて、前記通気手段は、遮蔽部に対応するフィルムに形成された貫通孔及びケースに形成された貫通孔であることを特徴とする。
 請求項6に記載の赤外線温度センサは、請求項1乃至請求項5のいずれか一に記載の赤外線温度センサにおいて、前記導光部と遮蔽部とは、これらを仕切る区画壁を軸として略対称の形態に形成されていることを特徴とする。
 請求項7に記載の赤外線温度センサは、請求項1乃至請求項6のいずれか一に記載の赤外線温度センサにおいて、前記フィルムには、赤外線検知用感熱素子及び温度補償用感熱素子が接続される配線パターンが形成されており、この配線パターンに接続された外部引出端子と外部リード線との接続部に微粒子のフィラーが混合された絶縁性を有する加熱硬化物が封入されていることを特徴とする。
 請求項8に記載の赤外線温度センサは、請求項7に記載の赤外線温度センサにおいて、前記微粒子のフィラーの一次粒径が5nm~80nmであることを特徴とする。
 請求項9に記載の赤外線温度センサは、請求項7又は請求項8に記載の赤外線温度センサにおいて、前記加熱硬化物がエポキシ樹脂であり、微粒子のフィラーがシリカ、炭酸カルシウム、カーボンナノチューブ若しくはグラファイトであることを特徴とする。
 請求項10に記載の赤外線温度センサは、請求項1乃至請求項6のいずれか一に記載の赤外線温度センサにおいて、前記フィルムには、赤外線検知用感熱素子及び温度補償用感熱素子が接続される配線パターンが形成されており、この配線パターンに接続された外部引出端子と外部リード線とは、中継端子を介して接続されることを特徴とする。
 請求項11に記載の赤外線温度センサを用いた装置は、請求項1乃至請求項10のいずれか一に記載された赤外線温度センサが備えられていることを特徴とする。
 赤外線温度センサは、例えば、複写機の定着装置、バッテリーユニット、IHクッキングヒータ等の各種装置に用いることができる。適用される装置が格別限定されるものではない。
 本発明によれば、フィルムの変形を軽減し、高精度化を可能にして、信頼性を確保できる赤外線温度センサ及びこの赤外線温度センサを用いた装置を提供することができる。
本発明の第1の実施形態に係る赤外線温度センサを示す斜視図である。 同赤外線温度センサを示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は背面図である。 図3(a)は図2(a)中、X-X線に沿った断面図、(b)はY-Y線に沿った断面図である。 同赤外線温度センサの配線接続関係を示す平面図である。 本発明の第2の実施形態に係る赤外線温度センサを示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は背面図である。 図6(a)は図5(a)中、X-X線に沿った断面図、(b)はY-Y線に沿った断面図である。 同赤外線温度センサの配線接続関係を示す平面図である。 本発明の第3の実施形態に係る赤外線温度センサを示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は背面図である。 図9(a)は図8(a)中、X-X線に沿った断面図、(b)はY-Y線に沿った断面図である。 同赤外線温度センサの配線接続関係を示す平面図である。 本発明の第4の実施形態に係る赤外線温度センサを示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は背面図である。 図12(a)は図11(a)中、X-X線に沿った断面図、(b)はY-Y線に沿った断面図である。 同赤外線温度センサの配線接続関係を示す平面図である。 本発明の第5の実施形態に係る赤外線温度センサを示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は背面図である。 図15(a)は図14(a)中、X-X線に沿った断面図、(b)はY-Y線に沿った断面図である。 同赤外線温度センサの配線接続関係を示す平面図である。 本発明の第6の実施形態に係る赤外線温度センサを示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は背面図である。 図18(a)は図17(a)中、X-X線に沿った断面図、(b)はY-Y線に沿った断面図である。 同赤外線温度センサの配線接続関係を示す平面図である。
 以下、本発明の第1の実施形態に係る赤外線温度センサについて図1乃至図4を参照して説明する。図1は、赤外線温度センサの斜視図を示し、図2(a)は、平面図、(b)は正面図、(c)は側面図、(d)は背面図を示している。また、図3(a)及び(b)は、断面図を示し、図4は、フィルム上の配線接続関係を示す平面図である。なお、各図では、各部材及び部分を認識可能な大きさとするために、各部材及び部材の縮尺を適宜変更している。
 図1及び図2に示すように、赤外線温度センサ1は、ケース2と、フィルム3と、このフィルム3上に配設された赤外線検知用感熱素子4及び温度補償用感熱素子5とを備えている。
 ケース2は、第1のケース21と第2のケース22とから構成されている。具体的には、第1のケース21は、保持体であり、第2のケース22は、蓋部材である。また、ケース2は、例えば、ナイロン、PBT、PPSやABS等の樹脂材料によって形成されている。
 なお、ケース2を形成する材料は、格別限定されるものではなく、樹脂にカーボン、金属、セラミック等のフィラーを含有させた材料、アルミニウム、銅、鉄、ニッケル等の金属材料、金属材料に黒体塗装を施した材料などを用いることができる。
 第1のケース21は、前面側(図2(b)における上側)へ突出する略直方体形状の本体部21aと、この本体部21aの周囲に形成された略長方形状のフランジ部21bとを備えている。本体部21aには、赤外線を導く導光部23及び赤外線を遮蔽する遮蔽部24が形成されている。
 導光部23は、前面側に開口部23a有して側壁21c及び区画壁21dによって略直方体形状の筒状に形成されている。区画壁21dは、導光部23と遮蔽部24との境界部に位置して導光部23と遮蔽部24とを仕切る役目をなしている。なお、導光部23の内周面には、必要に応じて例えば、黒色塗装やアルマイト処理等を施して赤外線吸収層を形成するようにしてもよい。また、導光部23の内周面を金属研磨したり、内周面に金属めっきを施したりして反射面を形成するようにしてもよい。
 遮蔽部24は、導光部23に隣接して配置されており、区画壁21dを軸として導光部23と略対称の形態に形成されている。遮蔽部24は、遮蔽壁24aを前面側に有して側壁21c及び区画壁21dによって略直方体形状の空間部24bが形成されている。また、遮蔽壁24aと対向する背面側は開口されている。
 第2のケース22は、背面側(図2(b)における下側)へ突出する略直方体形状の本体部22aと、この本体部22aの周囲に形成された略長方形状のフランジ部22bとを備えている。本体部22aは、第1のケース21における本体部21aの背面側の形状と略合致する形態に形成されていて、内側には前記導光部23と遮蔽部24に対応して連続するような空間部22cが形成されるようになっている。
 本実施形態においては、後述するように、この空間部22c及び前記遮蔽部24の空間部24bと外部との通気性を許容する通気手段が設けられている。
 フィルム3は、略長方形状に形成された樹脂フィルムであり、図4に示すように一表面に図示しない配線パターン7が形成され、この配線パターン7に赤外線検知用感熱素子4及び温度補償用感熱素子5が接続され配置されている。配線パターン7の終端には、外部引出端子8が形成されていて、この外部引出端子8には、外部リード線6がはんだ付けや溶接等の手段によって電気的に接続されている。
 フィルム3は、フッ素、シリコン、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、PPS(ポリフェニレンスルフィド)等の高分子材料からなる樹脂を用いることができる。赤外線を吸収する材料であれば他の材料を使用してもよい。さらに、これらの樹脂にカーボンブラック又は無機顔料(クロムイエロ、弁柄、チタンホワイト、群青の1種以上)を混合分散させて略全波長の赤外線を吸収し得るような材料を用いてもよい。
 このフィルム3は、第1のケース21と第2のケース22とが組合わされ結合されることによって、第1のケース21のフランジ部21bと第2のケース22のフランジ部22bとの間に介在され固定されるようになっている。また、この場合、赤外線検知用感熱素子4は、導光部23に対応する位置に配設され、温度補償用感熱素子5は、遮蔽部24に対応する位置に配設され、ともに第2のケース22の空間部22c側に位置されるようになる。
 さらに、第1のケース21と第2のケース22とが結合されることによって、フィルム3は、ケース1に覆われ保持されるとともに、ケース1とフィルム3との間には、前記のような空間部22c及び空間部24bが密閉的に形成される。
 ここで、図2(b)及び図3(b)に示すように、第1のケース21における本体部21a(側壁21c)であって、遮蔽部24に対応するフィルム3寄りには、空間部24bと外部との通気性を許容する通気手段として、貫通孔11が形成されている。また、第2のケース22における本体部22aのフィルム3寄りには、同様に、空間部22cと外部との通気性を許容する通気手段として、貫通孔12が形成されている。
 これら貫通孔11、12は、空間部22c及び空間部24bに熱気、風等の侵入を防ぐため、格別限定されるものではないが、φ1μm~φ800μm程度に形成するのが好ましい。
 なお、貫通孔は、第1のケース21側と第2のケース22側との双方に形成するのが望ましいが、少なくとも一方のケース、すなわち、第1のケース21側又は第2のケース22側に形成されていればよい場合がある。
 赤外線検知用感熱素子4は、検知対象物からの赤外線を検知して、検知対象物の温度を測定する。温度補償用感熱素子5は、周囲温度を検知して、周囲温度を測定する。これら赤外線検知用感熱素子4及び温度補償用感熱素子5は、少なくとも略等しい温度特性を有する感熱素子で構成されており、前記フィルム3上に配置されている。
 具体的には、赤外線検知用感熱素子4及び温度補償用感熱素子5は、Mn、Co、Ni、Ti、Al、Zn、Cu及びFeの金属酸化物を含有するサーミスタ等のセラミックス半導体から構成されている。このセラミックス半導体は、温度係数であるB定数が高いため、赤外線を吸収するフィルム3の温度変化を感度よく検出することができる。
 前記セラミックス半導体は、立方晶スピネル相を主相とする結晶構造を有していることが望ましく、この場合、異方性もなく、また、不純物層がないので、セラミックス焼結体内で電気特性のばらつきが小さく、複数の赤外線温度センサを用いる際に高精度な測定が可能になる。さらに、安定した結晶構造のため、耐環境に対する信頼性も高い。なお、セラミックス半導体としては、立方晶スピネル相からなる単相の結晶構造が最も望ましい。
  また、赤外線検知用感熱素子4及び温度補償用感熱素子5とが、セラミックス半導体で形成された同一のウエハから得たサーミスタ素子、薄膜サーミスタの中から所定の許容誤差内の抵抗値で選別したものであることが好ましい。
  この場合、対となる赤外線検知用感熱素子4及び温度補償用感熱素子5とでB定数の相対誤差が小さくなり、同時に温度を検出する両者の温度差分を高精度に検出することができる。また、赤外線検知用感熱素子4及び温度補償用感熱素子5とについて、B定数の選別作業や抵抗値の調整工程が不要になり、生産性を向上させることができる。
 なお、赤外線検知用感熱素子4及び温度補償用感熱素子5に用いるサーミスタ素子の構成は、例えば、バルク、積層、厚膜、薄膜のいずれの構成であってもよい。
 次に、上記赤外線温度センサ1の動作について説明する。検知対象物の表面から放射された赤外線は、赤外線温度センサ1の導光部23における開口部23aから入射し、導光部23に導かれて導光部23を通過しフィルム3に到達する。このフィルム3に到達した赤外線は、フィルム3に吸収されて熱エネルギーに変換される。
 変換された熱エネルギーは、赤外線検知用感熱素子4に伝達され、赤外線検知用感熱素子4の温度を上昇させる。赤外線検知用感熱素子4と温度補償用感熱素子5とは、少なくともほぼ等しい温度特性を有するセラミックス半導体であり、検知対象物からの赤外線によって赤外線検知用感熱素子4の抵抗値が変化する。
 同時に、赤外線は遮蔽部24の遮蔽壁24aによって遮られるが、検知対象物からの輻射熱や周囲雰囲気温度によってケース2の温度が上昇するため、温度補償用感熱素子5の抵抗値もケース2の温度上昇に相当する抵抗値の変化を受ける。
 この場合、導光部23と遮蔽部24とは、区画壁21dを軸として略対称の形態に形成されているため、赤外線検知用感熱素子4と温度補償用感熱素子5とは、周囲の温度変化に対して同じように変化し、熱的外乱に対する影響を防ぐことができ、検知対象物からの赤外線による温度変化を確実に検出することが可能となる。
 なお、ケース2が金属等の熱伝導性を有する材料で形成されている場合には、周囲の温度変化に追従して赤外線温度センサ1の温度変化が全体として均一化することができる。
 以上のような動作において、従来の赤外線温度センサでは、赤外線温度センサの周囲温度が高くなると、密閉状態とされた空間部の空気が膨張して内圧が上昇し、フィルムが膨らみ変形し、また、過度に空間部の空気が膨張すると、フィルムに配線された配線パターンが切断される等の不具合が発生する場合がある。さらに、空間部の内圧の上昇、低下の繰り返しでフィルムの変形を助長することとなる。
 しかしながら、本実施形態においては、第1のケース21には、貫通孔11が形成され、第2のケース22には、貫通孔12が形成されている。このため、空間部24b及び空間部22cの内圧が上昇するような温度環境にあっても、貫通孔11及び貫通孔12によって外部との通気性が確保され、内圧の上昇を抑制し、フィルム3の変形を軽減することが可能となる。具体的には、空間部24bは、貫通孔11によって外部と連通し、空間部22cは、貫通孔12によって外部と連通する。
 以上のように本実施形態によれば、フィルムの変形を軽減し、高精度化を可能にして、信頼性を確保できる赤外線温度センサ1を提供することができる。
 次に、本発明の第2の実施形態に係る赤外線温度センサについて図5乃至図7を参照して説明する。図5(a)は、平面図、(b)は正面図、(c)は側面図、(d)は背面図を示している。また、図6(a)及び(b)は、断面図を示し、図7は、フィルム上の配線接続関係を示す平面図である。なお、第1の実施形態と同一又は相当部分には同一符号を付し重複する説明を省略する。
 本実施形態は、赤外線温度センサの基本的な構成は、第1の実施形態と同様である。空間部24b及び空間部22cと外部との通気性を許容する通気手段の形成態様が異なっている。通気手段は、ケース2とフィルム3との間に形成されるようになっている。
 図5(a)及び(c)並びに図6(b)に示すように、通気手段として、第1のケース2のフランジ部21bに凹溝13が形成され、第2のケース22のフランジ部22bに凹溝14が形成されている。これらケース2に形成された凹溝13、14は、フィルム3を介在して対向するようになってので、通気手段(凹溝13、14)は、ケース2とフィルム3との間に形成されるようになる。空間部22c及び空間部24bに熱気、風等の侵入を防ぐため、格別限定されるものではないが、通気手段(凹溝13、14)の間隔は1μm~500μmに形成するのが好ましい。
 したがって、空間部24bは、凹溝13によって外部と連通し、空間部22cは、凹溝14によって外部と連通する。このため、空間部24b及び空間部22cの内圧の上昇を抑制し、フィルム3の変形を軽減することができる。
 なお、第1のケース2におけるフランジ部21bの略全周とフィルム3との間、第2のケース22におけるフランジ部22bの略全周とフィルム3との間に僅かな隙間が形成されるように通気手段を構成してもよい。この場合は、例えば、第1のケース21と第2のケース22とを結合する緊密度を緩和する等の方法によって構成できる。
 以上のように本実施形態によれば、第1の実施形態と同様に、フィルムの変形を軽減し、高精度化を可能にして、信頼性を確保できる赤外線温度センサ1を提供することができる。
 次に、本発明の第3の実施形態に係る赤外線温度センサについて図8乃至図10を参照して説明する。図8(a)は、平面図、(b)は正面図、(c)は側面図、(d)は背面図を示している。また、図9(a)及び(b)は、断面図を示し、図7は、フィルム上の配線接続関係を示す平面図である。なお、第1の実施形態と同一又は相当部分には同一符号を付し重複する説明を省略する。
 本実施形態は、赤外線温度センサの基本的な構成は、第1の実施形態と同様であるが、空間部24b及び空間部22cと外部との通気性を許容する通気手段の形成態様が異なっている。
 図8(a)、図9(a)及び図10に示すように、通気手段として、フィルム3における導光部23及び遮蔽部24に対応する位置に、表裏に貫通する貫通孔15、16が配線パターン7を避けるように形成されている。貫通孔15、16は空間部22c及び空間部24bに熱気、風等の侵入を防ぐため、格別限定されるものではないが、1μm~500μmに形成するのが好ましい。
 したがって、空間部22cは、貫通孔15によって外部と連通し、空間部24bは、貫通孔16から空間部22cを介して貫通孔15を経て外部と連通する。
 したがって、上記各実施形態と同様に、空間部24b及び空間部22cの内圧の上昇を抑制し、フィルム3の変形を軽減することができ、高精度化を可能にして、信頼性を確保することができる。
 続いて、本発明の第4の実施形態に係る赤外線温度センサについて図11乃至図13を参照して説明する。図11(a)は、平面図、(b)は正面図、(c)は側面図、(d)は背面図を示している。また、図12(a)及び(b)は、断面図を示し、図13は、フィルム上の配線接続関係を示す平面図である。なお、第1の実施形態と同一又は相当部分には同一符号を付し重複する説明を省略する。
 本実施形態は、赤外線温度センサの基本的な構成は、第1の実施形態と同様であるが、空間部24b及び空間部22cと外部との通気性を許容する通気手段の形成態様が異なっている。
 図11(a)、図12(a)及び(b)並びに図13に示すように、通気手段として、フィルム3における遮蔽部24に対応する位置に、表裏に貫通する貫通孔16が配線パターン7を避けるように形成されている。また、第1のケース21における本体部21a(側壁21c)であって、遮蔽部24に対応するフィルム3寄りには、通気手段として、貫通孔17が形成されている。
 したがって、空間部24bは、貫通孔17によって外部と連通し、空間部22cは、貫通孔16から空間部24bを介して貫通孔17を経て外部と連通する。
 なお、前記第1のケース21における本体部21aに形成された貫通孔17は、第2のケース22における本体部22aに形成するようにしてもよい。
 したがって、上記各実施形態と同様に、空間部24b及び空間部22cの内圧の上昇を抑制し、フィルム3の変形を軽減することが可能となる。
 次に、本発明の第5の実施形態に係る赤外線温度センサについて図14乃至図16を参照して説明する。図14(a)は、平面図、(b)は正面図、(c)は側面図、(d)は背面図を示している。また、図15(a)及び(b)は、断面図を示し、図16は、フィルム上の配線接続関係を示す平面図である。なお、第1の実施形態と同一又は相当部分には同一符号を付し重複する説明を省略する。
 本実施形態は、赤外線温度センサの基本的な構成は、第1の実施形態と同様であるが、空間部24b及び空間部22cと外部との通気性を許容する通気手段の形成態様が異なっている。また、外部リード線6の接続構成を示している。
 図14(a)、図15(a)及び(b)並びに図16に示すように、通気手段として、フィルム3における遮蔽部24に対応する位置に、表裏に貫通する貫通孔16が配線パターン7を避けるように形成されている。また、第2のケース22のフランジ部22bに凹溝14が形成されている。したがって、空間部24bは、貫通孔16から空間部22cを介して凹溝14を経て外部と連通し、空間部22cは、凹溝14によって外部と連通する。このため、空間部24b及び空間部22cの内圧の上昇を抑制することができる。
 図14(d)及び図16に示すように、外部引出端子8に外部リード線6がはんだ付け等によって電気的に接続される。
 この場合、はんだ付け等の接続部をエポキシ樹脂等の絶縁性の加熱硬化物Rhを封入して保護し、接続部の強度と信頼性を向上させる方法がとられる。しかしながら、エポキシ樹脂は流動性が高いので封入に際して前記フイルム3とケース1の合わせ目やフィルム3を伝わって反対側まで回り込む可能性がある。これにより、通気手段としての例えば、凹溝14がエポキシ樹脂によって閉塞され、空間部24b及び空間部22cが密閉状態になってしまう問題が生じる。
 本実施形態では、加熱硬化物Rhであるエポキシ樹脂に、微粒子のフィラーを混合しエポキシ樹脂の液体の増粘やチキソトロピー性を付与することで回り込みを抑制している。したがって、空間部24b及び空間部22cが密閉状態になってしまうことを回避することができる。
 微粒子のフィラーの材質はシリカが最適で、一次粒径が5nm~80nmの微粒子をエポキシ樹脂に混合することで流動性を低く抑えることができる。したがって、エポキシ樹脂が回り込む現象がなくなり、空間部24b及び空間部22cが密閉状態となることを回避できる。なお、微粒子のフィラーの材質はシリカが好ましいが、カーボンナノチューブ、グラファイト及び炭酸カルシウム等であってもよい。炭酸カルシウムの場合、増粘やチキソトロピー性を付与する一次粒径は最大で80μm程度である。
 次に、本発明の第6の実施形態に係る赤外線温度センサについて図17乃至図19を参照して説明する。図17(a)は、平面図、(b)は正面図、(c)は側面図、(d)は背面図を示している。また、図18(a)及び(b)は、断面図を示し、図19は、フィルム上の配線接続関係を示す平面図である。なお、第5の実施形態と同一又は相当部分には同一符号を付し重複する説明を省略する。
 本実施形態は、赤外線温度センサの構成は、第5の実施形態と同様であり、通気手段の形成態様も同様であるが、外部リード線6の接続構成について中継端子9が用いられている。
 すなわち、この外部引出端子8は、中継端子9を介して外部リード線6と接続されるようになっている。中継端子9は、やや幅広の接続端子部91と、この接続端子部91から延出されたリード部92とを備えている。また、この中継端子9は、樹脂材料で形成された保持部材93にインサート成形されて一体化されている。
 このような中継端子9は、リード部92が外部引出端子8にはんだ付けや溶接等の手段によって電気的に接続され、その後、第1のケースに第2のケースが結合されるようになる。なお、保持部材93は第2のケース22側に図示しない固定手段によって固定される。
 このような構成によれば、中継端子9の接続端子部91は、ケース2の背面側において外部に露出している状態になるので(図17(d)及び図18(a)参照)、第1のケースと第2のケースとが結合された後に、この接続端子91に任意の外部リード線6をはんだ付けや溶接等の手段によって接続することができる。
 したがって、外部リード線6をフィルム3に形成された外部引出端子8に直接接続せずに、中継端子9を介在して接続するため、接続強度を高くすることができ、はんだ付け等の接続部にエポキシ樹脂等の絶縁性の加熱硬化物Rhを封入する必要がなくなる。よって、流動性が高いエポキシ樹脂等の加熱硬化物Rhを用いた場合に発生する通気手段を閉塞するという問題を回避することができる。
 また、中継端子9を用いることにより、外部リード線6の長さ等が異なる多様な品種に対応することができ、量産性を向上することが可能となる。つまり、外部リード線6が接続されていない状態で赤外線温度センサ1を管理することができ、このような赤外線温度センサ1に外部リード線6の長さ等が異なる品種に応じて、外部リード線6を接続することができる。
 以上のように本実施形態によれば、通気手段を閉塞するという問題を回避することができるとともに、外部リード線6の長さ等が異なる品種が増加し、少量多品種になった場合にも量産性を確保することができる。
 以上説明してきた各実施形態における赤外線温度センサ1は、複写機の定着装置、バッテリーユニット、IHクッキングヒータ等の各種装置に備えられ適用することができる。格別適用される装置が限定されるものではない。
 なお、本発明は、上記各実施形態の構成に限定されることなく、発明の要旨を逸脱しない範囲で種々の変形が可能である。また、上記各実施形態は、一例として提示したものであり、発明の範囲を限定することは意図していない。
 例えば、通気手段は、密閉的な空間部と外部とが連通するように形成されていればよく、形成位置、形状や個数等、格別限定されるものではない。
 また、赤外線検知用感熱素子及び温度補償用感熱素子としては、セラミックス半導体で形成された薄膜サーミスタやチップサーミスタが好適に用いられるが、これらに限らず、熱電対や測温抵抗体等を用いることができる。
1・・・赤外線温度センサ
2・・・ケース
3・・・フィルム
4・・・赤外線検知用感熱素子
5・・・温度補償用感熱素子
6・・・外部リード線
7・・・配線パターン
8・・・外部引出端子
9・・・中継端子
11~17・・・通気手段
21・・・第1のケース(保持体)
21d・・・区画壁
22・・・第2のケース(蓋部材)
22c、24b・・・空間部
23・・・導光部
23a・・・開口部
24・・・遮蔽部
24a・・・遮蔽壁
Rh・・・加熱硬化物(エポキシ樹脂)

Claims (11)

  1.  赤外線を吸収するフィルムと、
     このフィルムを覆って保持するとともにフィルムとの間に密閉的な空間部を形成し、開口部を有して赤外線を導く導光部及び遮蔽壁を有して赤外線を遮蔽する遮蔽部を備えたケースと、
     前記空間部と外部との通気性を許容する通気手段と、
     前記フィルム上に配置され、前記導光部に対応する位置に配設された赤外線検知用感熱素子と、
     前記フィルム上に配置され、前記遮蔽部に対応する位置に配設された温度補償用感熱素子と、
     を具備することを特徴とする赤外線温度センサ。
  2.  前記通気手段は、ケースに形成された貫通孔であることを特徴とする請求項1に記載の赤外線温度センサ。
  3.  前記通気手段は、ケースとフィルムとの間に形成されていることを特徴とする請求項1に記載の赤外線温度センサ。
  4.  前記通気手段は、導光部及び遮蔽部に対応するフィルムに形成された貫通孔であることを特徴とする請求項1に記載の赤外線温度センサ。
  5.  前記通気手段は、遮蔽部に対応するフィルムに形成された貫通孔及びケースに形成された貫通孔であることを特徴とする請求項1に記載の赤外線温度センサ。
  6.  前記導光部と遮蔽部とは、これらを仕切る区画壁を軸として略対称の形態に形成されていることを特徴とする請求項1乃至請求項5のいずれか一に記載の赤外線温度センサ。
  7.  前記フィルムには、赤外線検知用感熱素子及び温度補償用感熱素子が接続される配線パターンが形成されており、この配線パターンに接続された外部引出端子と外部リード線との接続部に微粒子のフィラーが混合された絶縁性を有する加熱硬化物が封入されていることを特徴とする請求項1乃至請求項6のいずれか一に記載の赤外線温度センサ。
  8.  前記微粒子のフィラーの一次粒径が5nm~80nmであることを特徴とする請求項7に記載の赤外線温度センサ。
  9.  前記加熱硬化物がエポキシ樹脂であり、微粒子のフィラーがシリカ、炭酸カルシウム、カーボンナノチューブ若しくはグラファイトであることを特徴とする請求項7又は請求項8に記載の赤外線温度センサ。
  10.  前記フィルムには、赤外線検知用感熱素子及び温度補償用感熱素子が接続される配線パターンが形成されており、この配線パターンに接続された外部引出端子と外部リード線とは、中継端子を介して接続されることを特徴とする請求項1乃至請求項6のいずれか一に記載の赤外線温度センサ。
  11.  請求項1乃至請求項10のいずれか一に記載された赤外線温度センサが備えられていることを特徴とする赤外線温度センサを用いた装置。
PCT/JP2014/070705 2013-08-09 2014-08-06 赤外線温度センサ及び赤外線温度センサを用いた装置 WO2015020081A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167001699A KR102265449B1 (ko) 2013-08-09 2014-08-06 적외선 온도 센서 및 적외선 온도 센서를 이용한 장치
DE112014003676.5T DE112014003676T5 (de) 2013-08-09 2014-08-06 Infrarottemperatursensor und den Infrarottemperatursensor verwendende Vorrichtung
US14/909,138 US10107689B2 (en) 2013-08-09 2014-08-06 Infrared temperature sensor and device using infrared temperature sensor
CN201480042590.2A CN105452826B (zh) 2013-08-09 2014-08-06 红外线温度传感器及利用红外线温度传感器的装置
JP2015520730A JP5847985B2 (ja) 2013-08-09 2014-08-06 赤外線温度センサ及び赤外線温度センサを用いた装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-166563 2013-08-09
JP2013166563 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015020081A1 true WO2015020081A1 (ja) 2015-02-12

Family

ID=52461412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070705 WO2015020081A1 (ja) 2013-08-09 2014-08-06 赤外線温度センサ及び赤外線温度センサを用いた装置

Country Status (6)

Country Link
US (1) US10107689B2 (ja)
JP (1) JP5847985B2 (ja)
KR (1) KR102265449B1 (ja)
CN (1) CN105452826B (ja)
DE (1) DE112014003676T5 (ja)
WO (1) WO2015020081A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152220A1 (ja) * 2015-03-25 2016-09-29 Semitec株式会社 赤外線温度センサ、回路基板及び赤外線温度センサを用いた装置
JPWO2016152221A1 (ja) * 2015-03-25 2017-04-27 Semitec株式会社 赤外線温度センサ及び赤外線温度センサを用いた装置
JP2017181130A (ja) * 2016-03-29 2017-10-05 三菱マテリアル株式会社 赤外線センサ装置
JPWO2017217272A1 (ja) * 2016-06-13 2018-06-21 株式会社芝浦電子 赤外線温度センサ
WO2019053759A1 (ja) * 2017-09-12 2019-03-21 株式会社芝浦電子 赤外線温度センサ
KR20210009116A (ko) * 2019-07-16 2021-01-26 에스케이하이닉스 주식회사 온도 감지 장치 및 이를 이용한 온도 감지 시스템

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116535A1 (ja) * 2016-12-20 2018-06-28 株式会社芝浦電子 赤外線温度センサ
CN106629574B (zh) * 2016-12-30 2019-02-05 中国科学院微电子研究所 一种mems红外光源及其制作方法
CN109416283B (zh) * 2017-06-06 2019-12-24 株式会社芝浦电子 红外线温度传感器及其制造方法
KR101930898B1 (ko) * 2018-06-26 2019-03-11 (주)힌지코리아 비접촉식 온도센서 조립체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213722A (ja) * 1993-01-14 1994-08-05 Nohmi Bosai Ltd 焦電素子
JP2001326367A (ja) * 2000-05-12 2001-11-22 Denso Corp センサおよびその製造方法
JP2002168702A (ja) * 2000-11-30 2002-06-14 Denso Corp 温度センサ
JP2003194630A (ja) * 2001-12-27 2003-07-09 Ishizuka Electronics Corp 非接触温度センサおよび非接触温度センサ用検出回路
JP2007273982A (ja) * 2007-03-26 2007-10-18 Hitachi Ltd 半導体モジュールの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566529A (ja) 1991-09-06 1993-03-19 Fuji Photo Film Co Ltd カラー画像の減力方法
JP2582416Y2 (ja) * 1992-02-18 1998-10-08 シチズン時計株式会社 サーモパイル
US5683181A (en) * 1995-05-12 1997-11-04 Thermal Wave Imaging, Inc. Method and apparatus for enhancing thermal wave imaging of reflective low-emissivity solids
GB2310952B (en) * 1996-03-05 1998-08-19 Mitsubishi Electric Corp Infrared detector
JPH11132857A (ja) * 1997-10-28 1999-05-21 Matsushita Electric Works Ltd 赤外線検出器
JP3859479B2 (ja) * 2001-10-17 2006-12-20 日本電気株式会社 ボロメータ型赤外線検出器
JP2004061283A (ja) 2002-07-29 2004-02-26 Ishizuka Electronics Corp 赤外線センサ及びこれを用いた物体の大きさと表面温度の判定装置
JP4432947B2 (ja) * 2006-09-12 2010-03-17 株式会社デンソー 赤外線式ガス検出器
WO2010048303A1 (en) * 2008-10-21 2010-04-29 Lifescan, Inc. Infrared temperature measurement of strip
JP5404548B2 (ja) * 2010-07-26 2014-02-05 三菱電機株式会社 空気調和機
US8481943B2 (en) * 2010-09-04 2013-07-09 Accuflux Inc. Net solar radiometer
CN102401699B (zh) * 2010-09-17 2015-08-19 三菱综合材料株式会社 温度传感器
KR101927064B1 (ko) 2011-07-26 2018-12-10 삼성전자주식회사 전자책 또는 전자노트에 대한 요약 데이터 생성 장치 및 방법
WO2013014707A1 (ja) 2011-07-26 2013-01-31 株式会社芝浦電子 赤外線温度センサ、及び、それを用いた定着器
JP5853476B2 (ja) * 2011-08-04 2016-02-09 セイコーエプソン株式会社 赤外線検出素子及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213722A (ja) * 1993-01-14 1994-08-05 Nohmi Bosai Ltd 焦電素子
JP2001326367A (ja) * 2000-05-12 2001-11-22 Denso Corp センサおよびその製造方法
JP2002168702A (ja) * 2000-11-30 2002-06-14 Denso Corp 温度センサ
JP2003194630A (ja) * 2001-12-27 2003-07-09 Ishizuka Electronics Corp 非接触温度センサおよび非接触温度センサ用検出回路
JP2007273982A (ja) * 2007-03-26 2007-10-18 Hitachi Ltd 半導体モジュールの製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152220A1 (ja) * 2015-03-25 2016-09-29 Semitec株式会社 赤外線温度センサ、回路基板及び赤外線温度センサを用いた装置
JP6076549B1 (ja) * 2015-03-25 2017-02-08 Semitec株式会社 赤外線温度センサ、回路基板及び赤外線温度センサを用いた装置
JPWO2016152221A1 (ja) * 2015-03-25 2017-04-27 Semitec株式会社 赤外線温度センサ及び赤外線温度センサを用いた装置
KR20170129755A (ko) * 2015-03-25 2017-11-27 세미텍 가부시키가이샤 적외선 온도 센서, 회로 기판 및 적외선 온도 센서를 이용한 장치
CN107407602A (zh) * 2015-03-25 2017-11-28 世美特株式会社 红外线温度传感器、电路基板以及使用红外线温度传感器的装置
KR102610063B1 (ko) * 2015-03-25 2023-12-05 세미텍 가부시키가이샤 적외선 온도 센서, 회로 기판 및 상기 센서를 이용한 장치
JP2017181130A (ja) * 2016-03-29 2017-10-05 三菱マテリアル株式会社 赤外線センサ装置
JPWO2017217272A1 (ja) * 2016-06-13 2018-06-21 株式会社芝浦電子 赤外線温度センサ
US10845247B2 (en) 2016-06-13 2020-11-24 SHIBAURA ELECTRONICS Co., LTD Infrared temperature sensor
WO2019053759A1 (ja) * 2017-09-12 2019-03-21 株式会社芝浦電子 赤外線温度センサ
KR20210009116A (ko) * 2019-07-16 2021-01-26 에스케이하이닉스 주식회사 온도 감지 장치 및 이를 이용한 온도 감지 시스템
KR102213701B1 (ko) 2019-07-16 2021-02-08 에스케이하이닉스 주식회사 온도 감지 장치 및 이를 이용한 온도 감지 시스템

Also Published As

Publication number Publication date
US20160169745A1 (en) 2016-06-16
JP5847985B2 (ja) 2016-01-27
JPWO2015020081A1 (ja) 2017-03-02
KR102265449B1 (ko) 2021-06-15
CN105452826B (zh) 2019-07-23
KR20160041041A (ko) 2016-04-15
US10107689B2 (en) 2018-10-23
CN105452826A (zh) 2016-03-30
DE112014003676T5 (de) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5847985B2 (ja) 赤外線温度センサ及び赤外線温度センサを用いた装置
JP5640529B2 (ja) 赤外線センサ及びこれを備えた回路基板
JP5832007B2 (ja) 赤外線センサ及びその製造方法
JP6357328B2 (ja) 赤外線温度センサの製造方法
JP6076549B1 (ja) 赤外線温度センサ、回路基板及び赤外線温度センサを用いた装置
JP2011013213A (ja) 赤外線センサ
TWI568997B (zh) Infrared sensor
WO2011083593A1 (ja) 非接触温度センサ
WO2016152221A1 (ja) 赤外線温度センサ及び赤外線温度センサを用いた装置
KR101972197B1 (ko) 적외선 센서 및 적외선 센서 장치
CN108027277A (zh) 日射强度计
JP5741830B2 (ja) 赤外線センサ装置
JP2010043930A (ja) 非接触温度センサ
JP6030273B1 (ja) 赤外線温度センサ及び赤外線温度センサを用いた装置
WO2017145670A1 (ja) 赤外線センサ装置
JP5741924B2 (ja) 赤外線センサ
JP2005195435A (ja) 非接触型温度検出器
JP5569268B2 (ja) バッテリー用温度センサ装置
JP4177762B2 (ja) サーモパイル型赤外線検出器
WO2018225141A1 (ja) 赤外線温度センサおよびその製造方法
JPH11337414A (ja) 放射温度検出素子
JPH07128149A (ja) 輻射伝熱量測定センサー
JP2015083995A (ja) 赤外線センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042590.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015520730

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167001699

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14909138

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014003676

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834538

Country of ref document: EP

Kind code of ref document: A1