WO2018116535A1 - 赤外線温度センサ - Google Patents

赤外線温度センサ Download PDF

Info

Publication number
WO2018116535A1
WO2018116535A1 PCT/JP2017/031651 JP2017031651W WO2018116535A1 WO 2018116535 A1 WO2018116535 A1 WO 2018116535A1 JP 2017031651 W JP2017031651 W JP 2017031651W WO 2018116535 A1 WO2018116535 A1 WO 2018116535A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
correction
temperature sensor
temperature
region
Prior art date
Application number
PCT/JP2017/031651
Other languages
English (en)
French (fr)
Inventor
潤 金谷
今野 達也
Original Assignee
株式会社芝浦電子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社芝浦電子 filed Critical 株式会社芝浦電子
Priority to CN201780003948.4A priority Critical patent/CN109073468B/zh
Priority to JP2017564523A priority patent/JP6317533B1/ja
Priority to US15/781,829 priority patent/US10533898B2/en
Publication of WO2018116535A1 publication Critical patent/WO2018116535A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J2005/0033Wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/066Differential arrangement, i.e. sensitive/not sensitive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/068Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling parameters other than temperature

Definitions

  • the present invention relates to an infrared temperature sensor used in a toner fixing device used in an image forming apparatus such as a copying machine or a printer.
  • the fixing device As a toner fixing device used in an image forming apparatus, a toner image corresponding to image information is formed on a recording sheet by an electrophotographic operation process, and then the unfixed toner is heated and fixed while moving the recording sheet.
  • the method of making it to be used is generally used.
  • the fixing device includes a fixing unit composed of a roller that conveys recording paper and toner carried on the recording sheet by static electricity, and a pressure unit composed of a roller that rotates in the opposite direction while being pressed against the fixing unit. Then, the toner is fused and fixed on the recording paper by moving it while applying heat and pressure.
  • the temperature of this roller greatly affects the image quality. Therefore, the temperature of the roller is controlled by detecting the temperature of the roller surface with a sensor.
  • an infrared temperature sensor that detects the temperature of the roller in a non-contact manner is known (for example, Patent Documents 1, 2, and 3).
  • the infrared temperature sensor is equipped with an infrared detection element and a temperature compensation element on the heat conversion film, detects the amount of infrared radiant heat from the roller as the fixing means to be detected by the infrared detection element, and further detects the ambient temperature using the temperature compensation element. By doing so, the temperature to be detected is specified.
  • JP 2011-141216 A Japanese Patent Laying-Open No. 2015-172537 JP 2002-156284 A International Publication 2013/065091
  • each manufactured infrared temperature sensor has a structural error mainly due to the dimensional accuracy of the component members and the assembly accuracy of the component members. Due to this structural error, the output characteristics from the sensor, that is, the detected temperature is deviated. Therefore, the manufactured infrared temperature sensors vary in the detected temperature.
  • the above Patent Documents 1 to 3 add mechanical elements such as a screw and a slide mechanism that adjust or correct the deviation of the detected temperature after completing the infrared temperature sensor. As a result, Patent Documents 1 to 3 eliminate the detection temperature shift by narrowing the opening area or the visual field area of the sensor case that captures infrared rays from the beginning. However, the proposals in Patent Documents 1 to 3 add mechanical elements to narrow the visual field area, which increases the work load and increases the cost.
  • patent document 4 proposes providing the coating film which adjusts an infrared absorptivity on the surface of a heat conversion film. According to this proposal, by providing the coating film, it is possible to adjust the infrared absorption rate of the entire heat conversion film and correct the detection temperature of the infrared temperature sensor. In addition, providing the coating film on the heat conversion film is easier and more cost effective than adding mechanical elements. However, since the heat capacity increases as the apparent volume of the heat conversion film increases by providing the coating film, the temperature detection responsiveness is delayed. Therefore, the proposal of Patent Document 4 may not be applicable to applications that require extremely high responsiveness.
  • an object of the present invention is to provide an infrared temperature sensor that can correct the detected temperature while ensuring high responsiveness.
  • the present invention relates to an infrared temperature sensor that is used while being opposed to a detection target and detects the temperature of the detection target in a non-contact manner according to infrared rays emitted from the detection target.
  • the infrared temperature sensor of the present invention is irradiated with infrared rays radiated from a detection target, and is disposed opposite to the heat conversion film that converts the irradiated infrared rays into heat, and the infrared rays radiated from the detection target.
  • the infrared temperature sensor of the present invention is characterized in that the irradiation surface has a correction region in which infrared emissivity is different from other regions.
  • the detection temperature can be corrected by forming a correction region on the irradiation surface without modifying the heat conversion film, so that the detection temperature can be corrected while ensuring high responsiveness.
  • forming the correction region can reduce the work load and reduce the cost compared to adding mechanical elements.
  • the correction area is different from the other areas in the infrared emissivity, and the infrared emissivity is higher or lower than the other areas on the irradiation surface.
  • the surface roughness of the correction region is larger or smaller than the other regions on the irradiation surface.
  • the correction region is formed of a coating film or sheet material having a higher infrared emissivity than other regions on the irradiated surface, or a coating film or sheet material having a lower infrared radiation rate.
  • the infrared temperature sensor of the present invention can select whether the infrared emissivity of the correction area is higher or lower than the irradiation surface of other areas.
  • the correction region in the first form is preferably formed by supplying energy from the outside.
  • This external energy can be supplied by laser beam irradiation.
  • the supply of energy from the outside is simpler than the addition of mechanical elements, so that the detected temperature can be easily corrected.
  • the irradiation surface in the temperature sensor of the present invention has at least two forms.
  • the first form is a case where the irradiation surface is divided into a plurality of sections, and the second form consists of a single surface in which the irradiation surfaces are continuously connected.
  • a correction area is provided on at least one of the divided irradiation surfaces.
  • the first form typically corresponds to the four inner surfaces of a rectangular tube-shaped light guide.
  • the correction region can be provided on the whole or a part of one irradiation surface.
  • the correction region can be provided on a part of a single surface.
  • the shape of the light guide portion of the infrared temperature sensor in the present invention is arbitrary as long as the object is achieved, but it can be a cylindrical shape or a plate shape.
  • the irradiation surface can be provided on the inner surface of the cylindrical light guide section.
  • a cylindrical or rectangular tube is applied to the cylindrical light guide.
  • the irradiation surface is provided on at least one of the front and back surfaces of the plate light guide section.
  • the plate-shaped light guide unit can be formed into a gate shape in plan view by combining a plurality of sheets in addition to a simple plate-shaped light guide unit.
  • the infrared temperature sensor of the present invention can include a first case and a second case arranged to face the first case.
  • the first case includes a shielding part and a light guide part, and the second case sandwiches the heat conversion film together with the first case.
  • the second case has an accommodation recess that accommodates the infrared detection element and the temperature compensation element held on the surface of the heat conversion film opposite to the detection target.
  • the irradiation surface and the correction region can be formed directly on the light guide part of the second case, or can be formed on the infrared absorption molded body attached to the light guide part of the second case.
  • the infrared temperature sensor described above is based on the determination process for determining whether or not the correction is necessary based on the actual temperature Ta and the specified temperature Tr obtained by actually detecting the temperature of the inspection sensor, and on the result of the determination in the determination process.
  • the inspection sensor can be manufactured by a method for manufacturing an infrared temperature sensor, including a correction step of forming a correction region having an infrared emissivity different from that of the surrounding area on the irradiation surface. According to this manufacturing method, since only the inspection sensor that needs correction is picked up, the infrared temperature sensor that has been corrected can be efficiently manufactured.
  • the detection temperature can be corrected by forming a correction region on the irradiated surface without modifying the heat conversion film, so that the detection temperature can be corrected while ensuring high responsiveness.
  • forming the correction region can reduce the work load and reduce the cost compared to adding mechanical elements.
  • the temperature sensor 10 radiates the temperature of a roller 2 as a fixing unit of a toner fixing device 1 used in an image forming apparatus such as a copying machine or a printer to be detected from the roller 2.
  • This is a sensor that detects the temperature of the roller 2 that is a detection target in a non-contact manner by detecting the infrared rays detected by the infrared detection element 43 and further detecting the ambient temperature by the temperature compensation element 45 to compensate the temperature.
  • the toner fixing device 1 includes a roller 2 as a fixing unit and a roller 3 as a pressure unit. Note that the temperature sensor 10 can also detect the temperature of the roller 3 as the pressure unit.
  • the side facing the detection target is defined as the front (front).
  • the infrared temperature sensor 10 (hereinafter simply referred to as the temperature sensor 10) includes a first case 20, a second case 30 assembled on the rear side of the first case 20, A heat conversion film 40 (hereinafter simply referred to as film 40) sandwiched between the first case 20 and the second case 30, and infrared detection held by the film 40 as shown in FIGS.
  • An element 43 and a temperature compensation element 45 held by the film 40 are included.
  • the infrared detecting element 43 and the temperature compensating element 45 are held on the surface of the film 40 opposite to the roller 2 to be detected.
  • a correction region 58 that has a different emissivity from the surrounding area, which is another region, is formed to correct the deviation in the detected temperature. Has been.
  • the first case 20 includes a base portion 21 having a rectangular planar shape, a body portion 22 having a rectangular parallelepiped shape that projects forward from the base portion 21, and a first case 20.
  • a base portion 21 and a body portion 22 are integrally formed of a metal material having high thermal conductivity such as aluminum or copper.
  • a metal material having a high thermal conductivity is a desirable form, the present invention is not limited to this.
  • the second case 30 is not limited to the second case 30.
  • the body portion 22 includes a side wall 23 rising from the base portion 21 and an upper wall 24 provided at the front end of the side wall 23, and a gap 25 is formed therein.
  • the gap 25 has a rectangular parallelepiped shape that is generally similar to the body portion 22.
  • the rear end side of the gap 25 passes through the first case 20 (base portion 21).
  • the gap 25 partially penetrates the upper wall 24 via an infrared incident window 26 that opens in a rectangular shape on the upper wall 24, but the other part is closed by the upper wall 24.
  • an infrared absorption molded body 50 is mounted in the gap 25 of the first case 20.
  • the infrared absorption molded body 50 has a rectangular parallelepiped outer shape and includes a peripheral wall 51 that forms the outer periphery.
  • the infrared absorption molded body 50 includes a first gap 53 and a second gap 54 that are surrounded by the peripheral wall 51 and are partitioned by the partition wall 52.
  • the first gap 53 and the second gap 54 penetrate in the front-rear direction in the height direction and in the state where the second gap 54 is disposed in the body portion 22, and have a substantially symmetrical form with respect to the partition wall 52.
  • FIG. 1 (e) an infrared absorption molded body 50 is mounted in the gap 25 of the first case 20.
  • the infrared absorption molded body 50 has a rectangular parallelepiped outer shape and includes a peripheral wall 51 that forms the outer periphery.
  • the infrared absorption molded body 50 includes a first gap 53 and
  • the infrared absorption molded body 50 having the above configuration is mounted in the body portion 22 of the first case 20. As shown in FIG. 1 (e), the infrared absorption molded body 50 is disposed on the side of the region where the first gap 53 penetrates the upper wall 24 through the infrared incident window 26 in the gap 25 of the body portion 22.
  • the second gap 54 is arranged on the side closed by the upper wall 24 in the gap 25 of the trunk portion 22.
  • the first gap 53 is arranged on the side corresponding to the infrared detection element 43, and the second gap 54 is arranged on the side corresponding to the temperature compensation element 45.
  • a rectangular tube-shaped light guide portion 59 through which infrared light incident from the infrared light incident window 26 passes is formed by a peripheral wall 51 and a partition wall 52 surrounding the first gap 53.
  • Infrared rays irradiated from the roller 2 toward the temperature sensor 10 are taken from the infrared incident window 26, pass through the first gap 53 toward the rear end side, and are irradiated onto the film 40.
  • a part of the infrared rays is irradiated to the inner surface 531 of the light guide portion 59 surrounding the first gap 53, and the infrared rays emitted from the inner surface 531 are also irradiated to the film 40.
  • This path through which the infrared rays pass through the light guide portion 59 becomes a light guide path. That is, as shown in FIGS.
  • the inner surface 531 connected to the infrared incident window 26 is irradiated with a part of infrared rays that are incident from the infrared incident window 26.
  • an irradiation surface 57 for allowing a part of the emitted infrared rays to reach the film 40 is configured.
  • the inner surface 541 surrounding the second gap 54 does not constitute the irradiation surface 57.
  • the surrounding wall 51 and the partition wall 52 surrounding the upper wall 24 and the second gap 54 of the body portion 22 form a shielding portion 27 that blocks the temperature compensation element 45 from being irradiated with infrared rays. As shown in FIG.
  • the irradiation surface 57 has a quadrangular shape so as to surround the light guide when viewed in plan, and the first irradiation surface 571 and the second irradiation surface 572 facing each other and the first irradiation surface orthogonal to these.
  • the infrared rays irradiated from the roller 2 toward the temperature sensor 10 are also irradiated to the side wall 23, the upper wall 24, and the base portion 21 of the body portion 22 that forms the first case 20.
  • the temperature sensor 10 is provided with a correction region 58 having a different infrared emissivity from the surroundings on the first irradiation surface 571.
  • the correction region 58 is not limited to the first irradiation surface 571 but may be provided on any one or more of the first irradiation surface 571, the second irradiation surface 572, the third irradiation surface 573, and the fourth irradiation surface 574. it can. However, forming the correction area 58 only on one surface can reduce the work load compared to forming the correction areas 58 on a plurality of surfaces.
  • the correction area 58 has a surface roughness larger than that of the first irradiation surface 571 in the periphery thereof. If the surface roughness of the correction region 58 is large, the infrared emissivity is higher than that of the first irradiation surface 571. Therefore, by providing the correction region 58, the amount of infrared rays reaching the film 40 is reduced. Therefore, the temperature detected by the temperature sensor 10 can be made lower than before the correction region 58 is formed.
  • the correction area 58 is formed by irradiating a part of the first irradiation surface 571 with a laser beam, as will be described later. By laser beam irradiation, the surface roughness becomes larger than before irradiation.
  • the correction region 58 has a quadrangular shape as an example, and is formed by irradiating a laser beam in a range occupied by the quadrangular shape.
  • an example is shown in which three correction areas 58 are provided side by side at the same height, but the shape, dimensions, and arrangement of the correction areas 58 are arbitrary as long as the infrared emissivity can be increased as much as necessary. is there.
  • the correction amount of the detected temperature of the temperature sensor 10 by forming the correction region 58 can be controlled by the area of the correction region 58 that occupies the irradiation surface.
  • FIG. 3 shows a deviation between the detected temperature of the temperature sensor 10 before correction and the detected temperature of the temperature sensor 10 after correction. The correction was performed by forming a rectangular correction region 58 having a side of 2 mm by laser beam irradiation and changing the number thereof. From the results shown in FIG. 3, it was confirmed that the correction amount of the detected temperature of the temperature sensor 10 can be controlled by the size of the correction region 58 in the irradiation surface.
  • the second case 30 includes a base portion 31 having a rectangular planar shape and an element housing portion 32 that protrudes rearward from the base portion 31.
  • the base 31 is formed in substantially the same shape and size as the base 21 of the first case 20.
  • the first case 20 and the second case 30 are positioned so that the base 21 and the base 31 are aligned with each other, and are joined via the film 40.
  • the element housing portion 32 is formed with a housing recess 33 that opens to the front end side.
  • the infrared detecting element 43 and the temperature compensating element 45 held on the film 40 are arranged facing the accommodating recess 33.
  • the infrared detection element 43 and the temperature compensation element 45 can be prevented from being in direct contact with the bottom floor 34 of the element accommodating portion 32 due to the presence of the accommodating recess 33. That is, the air contained in the housing recess 33 serves as a heat insulating layer, and the thermal influence from the outside to the infrared detection element 43 and the temperature compensation element 45, particularly from the rear of the temperature sensor 10, is minimized.
  • the film 40 has an infrared detecting element 43 and a temperature compensating element 45 arranged on the back side, which is one side, and is electrically connected to a wiring pattern (not shown). An external lead terminal is formed at the end of the wiring pattern, but this configuration is well known among those skilled in the art, and illustration and description thereof are omitted here.
  • the film 40 is formed of a resin made of a polymer material.
  • the material of the resin is not limited as long as it is a material that absorbs infrared light, and known resins such as polyphenylene sulfide, polyimide, polyester, and polyethylene can be used.
  • a material other than resin can be used as long as it absorbs infrared light.
  • the infrared detecting element 43 detects a temperature rise due to heat generated by the infrared rays radiated from the surface of the roller 2 being absorbed by the film 40, and the temperature compensating element 45 detects the ambient temperature.
  • the infrared detecting element 43 and the temperature compensating element 45 are heat sensitive elements having substantially the same temperature characteristics. Further, as the infrared detecting element 43 and the temperature compensating element 45, a resistor having a temperature coefficient such as a small-sized thin film thermistor or a platinum temperature sensor can be widely used, and is not limited to a specific material and form.
  • the infrared detecting element 43 and the temperature compensating element 45 are preferably arranged at positions symmetrical with respect to the center of the film 40 in the longitudinal direction.
  • the temperature sensor 10 As shown in FIGS. 1C and 1E, the temperature sensor 10 is positioned so that the first case 20 and the second case 30 have the base 21 and the base 31 aligned with each other, and the heat conversion film. 40 is joined.
  • the constituent members such as the first case 20 and the second case 30 that constitute the temperature sensor 10, and also when the constituent members are assembled. These variations appear as temperature deviations detected by the temperature sensor 10. Therefore, in order to correct the deviation of the detected temperature after the temperature sensor 10 is manufactured and to correct the target original temperature, the first irradiation is performed as shown in FIG. A correction area 58 is provided on the surface 571.
  • the temperature sensor 10 of the present embodiment corrects the detected temperature by correcting the emissivity of the infrared ray irradiated on the first irradiation surface 571 by the correction region 58.
  • the temperature sensor 10 includes a temperature detection circuit (not shown). This detection circuit is arbitrary, and a known detection circuit can be used. The same applies to the temperature detection procedure.
  • the temperature sensor 10 determines the manufacturing process for manufacturing the temperature sensor 10 (inspection sensor 10i) excluding the correction area 58, whether or not to provide the correction area 58 in the temperature sensor 10 and the specifications for the provision. And a forming process for forming the correction region 58.
  • the correction region 58 is formed when it is necessary to correct the detected temperature after the temperature sensor 10 is manufactured except the above. Accordingly, there is a temperature sensor 10 in which the correction region 58 is not formed even after a series of manufacturing steps. Even if the correction region 58 is provided, the specification is determined according to the degree of correction required for the temperature sensor 10, so that the area of the correction region 58 provided for each temperature sensor 10 is large. There may be differences. Therefore, in order to determine whether or not to provide the correction region 58 and the specifications for providing the correction region 58, after the temperature sensors 10 are once manufactured, the detected temperatures of the individual temperature sensors 10 are inspected, and correction is performed based on the inspection results. A formation process for providing the region 58 is necessary.
  • the inspection sensor 10 i that is the inspection target has the same configuration as the temperature sensor 10 except that the correction region 58 is not provided.
  • the inspection-correction line 70 As shown in FIG. 5, the forming process is executed by an inspection-correction line 70 along which the inspection sensor 10 i is transported along the transport path 71.
  • the inspection-correction line 70 includes a conveyance path 71, a first inspection unit 72, a correction unit 73, a second inspection unit 74, and a control unit 75.
  • the conveyance path 71 is configured by, for example, a belt conveyor that conveys the inspection sensor 10 i from the upstream U to the downstream L in the drawing.
  • a first inspection unit 72, a correction unit 73, and a second inspection unit 74 are arranged in this order from the upstream side U.
  • the first inspection unit 72 actually detects the temperature using the inspection sensor 10i, and obtains the measured temperature Ta.
  • the first inspection unit 72 includes a specified value heater 76.
  • the inspection sensor 10 i conveyed to the first inspection unit 72 detects the radiant heat energy from the specified value heater 76 and obtains the measured temperature Ta. Note that the temperature of the specified value heater 76 at this time is Tr.
  • the actually measured temperature Ta (data) from the inspection sensor 10 i is sent from the first inspection unit 72 to the control unit 75.
  • the correction unit 73 sets the correction region 58 on the first irradiation surface 571 based on the amount of deviation between the measured temperature Ta of the inspection sensor 10i and the specified temperature Tr (Tr-Ta, hereinafter, sometimes simply referred to as the amount of deviation).
  • the correction unit 73 includes a laser marking machine 77 that can control the irradiation region of the laser beam with high accuracy in order to form the correction region 58.
  • the laser engraving machine 77 forms a correction region 58 by irradiating a predetermined position of the first irradiation surface 571 with a laser beam within a predetermined area based on an instruction from the control unit 75.
  • the predetermined area to be irradiated with the laser beam is determined by the control unit 75 based on the deviation amount between the measured temperature Ta and the specified temperature Tr, and is instructed to the correction unit 73. If the shift amount (Tr ⁇ Ta) of the inspection sensor 10 i is equal to or smaller than the threshold value, the correction unit 73 does not form the correction region 58 in the inspection sensor 10 i. Therefore, the inspection sensor 10 i simply passes through the correction unit 73. These procedures are also performed based on an instruction from the control unit 75.
  • the second inspection unit 74 obtains the measured temperature Ta using the inspection sensor 10 i in which the correction region 58 is formed or not formed by the correction unit 73. Similar to the first inspection unit 72, the second inspection unit 74 includes a specified value heater 78, detects the actually measured temperature Ta by the inspection sensor 10 i, and sends the data to the control unit 75. The temperature of the specified value heater 78 at this time is also Tr.
  • Control unit 75 The control unit 75 manages the operation of each element of the inspection-correction line 70.
  • the control unit 75 is connected to the transport path 71, the first inspection unit 72, the correction unit 73, and the second inspection unit 74 by electrical communication means. Therefore, for example, the detected actual temperature Ta data is received from the first inspection unit 72, and an instruction to form the correction region 58 corresponding to the shift amount calculated based on the received data is transmitted to the correction unit 73.
  • the controller 75 holds data relating to the specified temperature Tr in order to calculate the deviation amount.
  • the control unit 75 also holds correction data in which the calculated shift amount is associated with the formation area of the correction region 58 determined according to the shift amount.
  • FIG. 6 An example of the correction data is shown in FIG.
  • the example of FIG. 6 shows a case where the deviation amount ⁇ T is a negative value because the measured temperature Ta is higher than the specified temperature Tr.
  • the deviation amount becomes zero, but the correction data also includes this.
  • the deviation amount is divided into a predetermined range, and the area of the correction region 58 is specified corresponding to the divided deviation amount.
  • the control unit 75 sends an instruction to the correction unit 73 that the irradiation of the laser beam is unnecessary because the inspection sensor 10i does not need correction. That is, 0 ⁇ ⁇ T> ⁇ T1 as the deviation amount becomes a threshold value for determining that the product is an acceptable product that does not require correction.
  • the control unit 75 sends an instruction to the correction unit 73 that the inspection sensor 10i needs to be corrected and that the formation area of the correction region 58 is A12.
  • This formation process includes an input process of the inspection sensor 10i, a first inspection process, a correction process, a second inspection process, and a pass / fail judgment process.
  • This step is a step for putting the inspection sensor 10 i into the inspection-correction line 70.
  • the inspection sensor 10 i is placed on the transport path 71 on the upstream side of the first inspection unit 72.
  • the inspection sensor 10 i is conveyed by the conveyance path 71 in the order of the first inspection unit 72, the correction unit 73, and the second inspection unit 74.
  • the controller 75 controls the conveyance speed including intermittent conveyance stop / resumption of conveyance of the conveyance path 71.
  • the control unit 75 operates the conveyance path 71 so that the inspection sensor 10i stops in that portion. To control.
  • the inspection sensor 10i used in this process is transported in an inclined state so that a laser beam can be applied to the irradiation surface 57 on which the correction area 58 is to be formed in a correction process described later. That is, in order to form the correction region 58 on the first irradiation surface 571 as in the present embodiment, the inspection sensor 10i can irradiate the first irradiation surface 571 with a laser beam as shown in FIG. It is transported in a tilted state. On the other hand, when forming the correction region 58 on the third irradiation surface 573, the inspection sensor 10i is transported in an inclined state so that the third irradiation surface 573 can be irradiated with a laser beam, as shown in FIG. 8B. Is done.
  • This step is a step for detecting the measured temperature Ta by the inspection sensor 10i. Specifically, when the inspection sensor 10i arrives at the first inspection unit 72, the control unit 75 instructs the first inspection unit 72 to detect the measured temperature Ta by the inspection sensor 10i. As described above, the measured temperature Ta is detected by heating the inspection environment to the specified temperature Tr by the specified value heater 76. The first inspection unit 72 sends the detected actual temperature Ta to the control unit 75. When acquiring the measured temperature Ta, the control unit 75 operates the conveyance path 71 so as to move the inspection sensor 10 i to the correction unit 73.
  • This step is a step of determining whether or not correction of the detected temperature of the inspection sensor 10i is necessary based on the specified temperature Tr and the actually measured temperature Ta by the inspection sensor 10i detected in the first inspection step. Specifically, first, the control unit 75 calculates a deviation amount ⁇ T (Tr ⁇ Ta) of the inspection sensor 10i from the measured temperature Ta acquired from the first inspection unit 72 and the specified temperature Tr held. . Next, the control unit 75 specifies the area of the correction region 58 necessary for correction by collating the calculated deviation amount ⁇ T with the correction data shown in FIG.
  • the control unit 75 determines that correction by laser beam irradiation is unnecessary. In this way, the control unit 75 determines whether or not correction is necessary. If correction is necessary, the control unit 75 specifies the area in which the correction region 58 is provided, and sends an instruction to the correction unit 73 based on the specified result.
  • This step is a step of forming the correction region 58 in the inspection sensor 10i determined to be corrected in the correction necessity determination step. Specifically, when the correction unit 73 receives an instruction from the control unit 75 that correction is necessary, the correction unit 73 operates the laser engraving machine 77 to thereby instruct the area indicated on a part of the first irradiation surface 571 ( A correction region 58 is formed by irradiating only the laser beam A12... (Step S109). The inspection sensor 10i has arrived at the correction unit 73 before this laser beam irradiation. After the correction area 58 is formed, the inspection sensor 10 i is moved to the second inspection unit 74. On the other hand, when the correction unit 73 receives an instruction from the control unit 75 that correction is not necessary, the correction unit 73 does not form the correction region 58 (step S107).
  • This step is a step for detecting the measured temperature Ta of the inspection sensor 10i that has passed through the correction step.
  • the second inspection unit 74 measures the actual temperature of the inspection sensor 10 i in which the correction region 58 is formed by the correction unit 73 and the inspection sensor 10 i in which the correction region 58 is not formed by the correction unit 73. Redetect Ta.
  • the content is the same as the temperature detection performed in the first inspection unit 72, and the detected actual temperature Ta is sent to the control unit 75.
  • the inspection sensor 10i that is determined to be unnecessary in the inspection in the first inspection unit 72 is re-inspected for the sake of complete inspection, but it goes without saying that the re-inspection of the inspection sensor 10i can be omitted.
  • a branch path is provided in the transport path 71 between the first inspection unit 72 and the correction unit 73, and the inspection sensor 10 i that does not require correction can be carried out to the branch path 79. .
  • This step is a step of determining whether or not the detected temperature needs to be corrected based on the measured temperature Ta by the inspection sensor 10i detected in the second inspection step. Specifically, when acquiring the measured temperature Ta from the second inspection unit 74, the control unit 75 determines whether or not further correction is necessary in the same manner as in step S105 in FIG. 7 (step S113). When the correction is not necessary, the inspection sensor 10i is carried out as an acceptable product (step S115). When correction is necessary, the product is unloaded as a rejected product and is transported toward the branch path 79 branched from the conveyance path 71, and is again put into the inspection-correction line 70 for inspection, or corrected by another means. Try (step S117).
  • the correction area 58 formed on the inspection sensor 10i carried out as a pass product has a different area of the correction area 58 for each inspection sensor 10i. That is, as shown in FIG. 3, the temperature detected by the temperature sensor 10 can be lowered in proportion to the area of the correction region 58, and therefore, in the inspection sensor 10 i having a large correction amount of the temperature sensor 10, the correction region 58 is corrected. The area of is formed large. On the other hand, in the inspection sensor 10i having a small correction amount, the area of the correction region 58 is formed small.
  • the degree of correction of the detected temperature can be corrected by the area irradiated with the laser beam, but the degree of correction can also be corrected by the intensity of the irradiated laser beam.
  • the degree of surface roughness of the portion irradiated with the laser beam varies depending on the intensity of the irradiated laser beam.
  • FIG. 4 shows a difference in detected temperature of the temperature sensor 10 in which the surface roughness of the correction region 58 is changed.
  • FIG. 4 shows that the detected temperature can be corrected by changing the degree of the surface roughness of the correction region 58. That is, the correction region 58 having a desired emissivity can be formed by changing the intensity of the laser beam.
  • the detected temperature can be corrected by forming the correction region 58 on the irradiation surface 57, responsiveness can be ensured even after correction.
  • the visual field area of the infrared incident window 26 for taking in infrared rays can be maintained, it can be used under the same temperature detection conditions as those not corrected.
  • the correction region 58 is formed by irradiating the laser beam, the work load is small and the cost can be reduced as compared with adding mechanical elements.
  • the manufacturing method of the temperature sensor 10 of the present embodiment the detection temperature deviation of the infrared temperature sensor can be corrected and the occurrence of defects can be reduced. Further, only the inspection sensor 10i that needs to be corrected in the first inspection process can be picked up, and these can be corrected to the correct detection temperature. Furthermore, the temperature sensor 10 having the correct detection temperature can be more reliably manufactured by the second inspection process.
  • the correction region 58 is formed by changing the surface roughness of the irradiation surface 57 in the same manner as the laser beam irradiation.
  • an irradiation region having a surface roughness different from that of the periphery is formed on the irradiation surface 57 by supplying energy from the outside.
  • a coating film formed by applying ink or paint to the first irradiation surface 571 to the fourth irradiation surface 574 can also be used as the correction region.
  • ink is mainly used for coloring, whereas paint is used for the purpose of protecting the substrate. It is possible to form a correction region having a different emissivity from that of the irradiation surface 57.
  • the ink that forms the correction region include black ink that can absorb infrared rays on the assumption that it has heat resistance. The same applies to the paint.
  • the correction region can be formed by attaching a sheet material having a different emissivity from the irradiation surface 57 to the irradiation surface 57.
  • a correction region made of a coating film is also formed in the correction step described above.
  • the shape of the coating film and the method for forming the coating film are arbitrary, but printing with an ink jet printer is preferable for accurately controlling the ink application amount and the application range.
  • the correction unit 73 of the inspection-correction line 70 described above includes an ink jet printer. Based on the instruction from the control unit 75, the ink jet printer is one of the first irradiation surface 571, the second irradiation surface 572, the third irradiation surface 573, and the fourth irradiation surface 574, or two or more of them.
  • a correction region is formed at a predetermined position by printing with a predetermined area.
  • the embodiment described above shows an example in which the infrared emissivity of the correction area is increased as compared with the surroundings, but the present invention is not limited to this.
  • the infrared emissivity of the correction region to be formed can be made higher or lower than the surroundings. That is, detection is performed by forming a coating film having an emissivity higher than the infrared emissivity of the irradiation surface 57 or by forming a coating film having an emissivity lower than the infrared emissivity of the irradiation surface 57. Correction that lowers the temperature or correction that increases the detected temperature can be realized.
  • the detection temperature needs to be lowered when the deviation amount is a negative value, a coating film having a higher emissivity than the infrared emissivity of the irradiation surface 57 is formed.
  • the amount of deviation is a positive value, it is necessary to raise the detection temperature, so a coating film having an emissivity lower than the infrared emissivity of the irradiation surface 57 is formed.
  • the detected temperature can be corrected by peeling off the correction area previously formed as a coating film by a predetermined area. That is, a correction region is formed by a coating film having an emissivity lower than the infrared emissivity of the irradiation surface 57, and when correction for lowering the detection temperature is necessary, the correction region is removed by a predetermined area. The detected temperature can be corrected to a predetermined value. In addition, a correction region is formed by a coating film having an emissivity higher than the infrared emissivity of the irradiation surface 57, and when correction to increase the detection temperature is necessary, the correction region is removed by a predetermined area. The detected temperature can be corrected to a predetermined value.
  • the roughness of the correction area 58 can be made larger or smaller than the circumference. That is, also in the form of correcting the surface roughness, the infrared emissivity in the correction region can be lowered, and the infrared emissivity can be increased.
  • the present invention is not limited to this, and the correction region having the infrared emissivity different from that of the other regions on the irradiation surface 57 is provided. Examples are included.
  • the irradiation surface 57 will be described as an example.
  • FIG. 10A shows the irradiation surface 57 in a developed state, and the irradiation surface 57 is divided into a first irradiation surface 571 to a fourth irradiation surface 574, and includes a plurality of section screens.
  • the correction region 58 can be formed on the whole of the first irradiation surface 571, and as shown in FIG.
  • the correction region 58 can be formed on the entire first irradiation surface 571 and the entire second irradiation surface 572.
  • the correction region 58 can be formed in a part of one first irradiation surface 571.
  • the correction region 58 may be partially formed so as to be biased downward as shown in FIG. 11A or biased upward as shown in FIG. 11B. Further, it can be formed to be biased to the right side as shown in FIG. 11C, and can be formed to be biased to the left side as shown in FIG.
  • the irradiation surface 57 is composed of a single continuous continuous surface.
  • the correction region 58 can be provided so as to be biased to a part of the single surface.
  • the infrared absorption molded body 50 is mounted inside the first case 20, but the present invention is not mounted with the infrared absorption molded body 50. It can also be applied to temperature sensors.
  • an irradiation surface is formed directly on the inner surface of the first case 20 connected to the infrared incident window 26 in the same manner as the irradiation surface 57, and a correction region is provided on the irradiation surface.
  • a correction area may be provided over the film 40 as long as the area is small.
  • the present invention is not limited to this, as long as the infrared ray detecting element and the temperature compensating element are held on the heat conversion film and the light guide part 59 that forms the infrared light guide path is provided.
  • the correction region of the invention can be provided.
  • this embodiment is provided with the trunk
  • the light guide unit 59 surrounds the first gap 53 without any gap in the circumferential direction, but the present invention is not limited to this.
  • a part of the partition wall 52 of the infrared absorption molded body 50 may be omitted and a part of the first gap 53 in the circumferential direction may be opened.
  • the light guide 59 has a rectangular tube shape, but the light guide in the present invention is not limited to this and may have a cylindrical shape. Moreover, the light guide part in this invention is not restricted to a cylinder shape, The form is arbitrary as long as it has the surface which can irradiate the irradiated infrared rays.
  • the rectangular light guide 59 may be formed in a gate shape, for example, by removing the third irradiation surface 573, and further, for example, the first irradiation surface forming the rectangular light guide 59 A plate-like form having only 571 may be used.
  • This plate-shaped light guide unit has at least one surface on the front and back as an irradiation surface.
  • a part of the circumferential direction of the second gap 54 is omitted in a range in which the function as the shielding part 27 can be secured, omitting the part of the partition wall 52 of the infrared absorption molded body 50. You may open it.
  • the infrared detection element 43 and the temperature compensation element 45 are held adjacent to a single film 40 on the same plane, but the present invention is not limited to this.
  • the infrared detection element 43 and the temperature compensation element 45 may be adjacent to each other while being shifted in position in the front-rear direction in which the infrared rays are incident.
  • the temperature compensating element 45 can be provided behind the infrared detecting element 43 for incident infrared rays.
  • the infrared detection element 43 and the temperature compensation element 45 are arranged in a line-symmetric position with respect to the center in the longitudinal direction of the film 40, but the present invention is not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

高い応答性を確保しつつ検知温度を補正できる赤外線温度センサを提供すること。本発明の赤外線温度センサ10は、熱変換フィルム40と、熱変換フィルム40に保持される赤外線検知素子43と、赤外線検知素子43に隣接して設けられ、熱変換フィルム40に保持される温度補償素子45と、入射した赤外線を赤外線検知素子43に向けて導く導光部59と、温度補償素子45に赤外線が照射されるのを遮る遮蔽部27と、を備え、導光部59の内面が、赤外線が照射される照射面57をなし、照射面57は、赤外線の放射率が周囲とは異なる補正領域58を有する、を特徴とする。

Description

赤外線温度センサ
 本発明は、コピー機やプリンタ等の画像形成装置に用いられるトナー定着器に用いられる赤外線温度センサに関するものである。
 画像形成装置に用いられるトナー定着器としては、電子写真方式の作動プロセスによって記録紙上に画像情報に対応してトナー像を担持形成したのち、記録紙を移動させながら未定着トナーを加熱して定着させる方式のものが一般に用いられている。
 定着器は、記録紙と、記録紙に静電気によって担持させたトナーとを、回転しながら搬送するローラからなる定着手段と、定着手段に圧接しながら反対方向に回転するローラからなる加圧手段とで挟み込み、熱と圧力を加えながら移動させることによって、トナーを溶着して記録紙に定着させる。
 このローラの温度は、画像品質に大きく影響する。そこで、センサによりローラ表面の温度を検知することで、ローラの温度を制御している。
 定着器のローラを傷つけるのを避けるために、非接触でローラの温度を検知する赤外線温度センサが知られている(例えば、特許文献1,2,3)。赤外線温度センサは、熱変換フィルム上に赤外線検知素子と温度補償素子を備え、検知対象である定着手段としてのローラの赤外線放射熱量を赤外線検知素子で検知し、さらに温度補償素子により雰囲気温度を検知することで温度補償して、検知対象の温度を特定する。
特開2011-141216号公報 特開2015-172537号公報 特開2002-156284号公報 国際公開2013/065091号公報
 ところで、作製された個々の赤外線温度センサは、主に構成部材の寸法精度及び構成部材の組立精度に起因する構造上の誤差を有している。この構造上の誤差により、センサからの出力特性、つまり検知温度にずれが生じるので、作製された複数の赤外線温度センサには検知温度にばらつきがある。以上の特許文献1~特許文献3は、赤外線温度センサを完成した後に検知温度のずれを調整又は補正する、ねじ、スライド機構などの機械的な要素を加える。これにより、特許文献1~特許文献3は、赤外線を取り込むセンサケースの開口部面積又は視野面積を当初より狭くすることで検知温度のずれを解消する。
 ところが、特許文献1~特許文献3の提案は、視野面積を狭くするのに機械的な要素を加えるので、作業負担が大きく、また、コストがかさむ。
 そこで、特許文献4は、熱変換フィルムの表面に赤外線吸収率を調整する塗膜を設けることを提案する。この提案によれば、塗膜を設けることにより、熱変換フィルム全体としての赤外線吸収率を調整し、赤外線温度センサの検知温度を補正することができる。しかも、塗膜を熱変換フィルムに設けるのは、機械的な要素を加えるのに比べて作業が容易であり、かつ、コストを抑えることができる。
 しかし、塗膜を設けることにより熱変換フィルムの見かけ上の体積が大きくなるのに伴って熱容量が大きくなるので、温度検知の応答性が遅くなる。したがって、特許文献4の提案では、非常に高い応答性が求められる用途に対応できないことがある。
 そこで本発明は、高い応答性を確保しつつ検知温度を補正できる赤外線温度センサを提供することを目的とする。
 本発明は、検知対象に対向配置されて用いられ、検知対象から放射される赤外線に応じて、検知対象の温度を非接触で検知する赤外線温度センサに関する。
 本発明の赤外線温度センサは、検知対象から放射される赤外線が照射され、照射された赤外線を熱に変換する熱変換フィルムと、熱変換フィルムに対向して配置され、検知対象から放射された赤外線が熱変換フィルムの一部に照射されるのを遮る遮蔽部と、検知対象から放射される赤外線が照射される熱変換フィルム上の領域に保持された赤外線検知素子と、遮蔽部により赤外線が遮蔽された熱変換フィルム上の領域に保持された温度補償素子と、検知対象から照射された赤外線を赤外線検知素子が配置された領域へ導く照射面を有する導光部と、備える。
 本発明の赤外線温度センサは、照射面が、赤外線の放射率が他の領域と異なる補正領域を有することを特徴とする。
 放射率とは、ある温度の物質の表面から放射されるエネルギと、それと同じ温度の黒体から放射されるエネルギとの比をいう。
 本発明の赤外線温度センサによれば、熱変換フィルムに手を加えることなく、照射面に補正領域を形成することにより検知温度を補正できるので、高い応答性を確保しつつ検知温度を補正できる。しかも、補正領域を形成するのは、機械的な要素を加えるのに比べて、作業負担が小さくかつコストを抑えることができる。
 本発明において、補正領域が他の領域と赤外線の放射率が異なる形態として、照射面における他の領域よりも赤外線の放射率が高いか、または、低いことが掲げられるが、さらに、少なくとも、以下の二つの形態を含む。
 一つ目は、照射面における他の領域よりも補正領域の表面粗さが大きいか、または、小さい。
 二つ目は、照射面における他の領域よりも赤外線の放射率の高い塗膜またはシート材か、もしくは、低い塗膜またはシート材により補正領域が形成されている。
 以上のように、本発明の赤外線温度センサは、補正領域の赤外線の放射率を他の領域の照射面よりも高くするか、または、低くするかを選択できる。したがって、温度センサの検知温度を上げる補正か又は下げる補正の両方に対応できる。つまり、検知温度を上げる補正が必要であれば、補正領域の赤外線の放射率を低くし、また、検知温度を下げる補正が必要であれば、補正領域の赤外線の放射率を高くすればよい。
 一つ目の形態における補正領域は、外部からエネルギが供給されることで形成されることが好ましい。この外部からのエネルギは、レーザビームの照射により供給されることができる。
 レーザビームの照射の例に限らず、外部からのエネルギの供給は機械的な要素を加えるのに比べて、作業が簡易であるから、検知温度の補正を容易に行うことができる。
 本発明の温度センサにおける照射面は少なくとも二つの形態を有する。
 一つ目の形態は照射面が複数に区画されている場合であり、二つ目の形態は照射面が連続的に連なる単一面からなる。
 一つ目の形態は、区画された少なくとも一つの照射面に補正領域が設けられる。一つ目の形態は、典型的には角筒状の導光部の四つの内面が該当する。
 一つ目の形態において、補正領域を一つの照射面の全体又は一部に設けることができる。
 二つ目の形態は、補正領域を単一面の一部に設けることができる。
 一つ目の形態において補正領域を一部に設ける場合、及び、二つ目の形態で補正領域を一部に設ける場合には、他の領域を補正領域の周囲に設けることができる。
 次に、本願発明における赤外線温度センサの導光部の形態はその目的を達成する限り任意であるが、筒状の形態をなすか、板状の形態をなすことができる。
 導光部が筒状の形態をなす場合には、照射面は筒状の導光部の内面に設けることができる。筒状の導光部には、円筒又は角筒が適用される。
 導光部が板状の形態をなす場合には、照射面は板状の導光部の表裏の少なくとも一方の面に設けられる。板状の導光部は、単純な一枚の板状の導光部の他に、複数枚を組み合わせることで、平面視して門型にすることができる。
 本発明の赤外線温度センサは、第一ケースと、第一ケースと対向して配置される第二ケースと、を備えることができる。第一ケースは遮蔽部と導光部を備え、第二ケースは第一ケースとともに熱変換フィルムを挟持する。第二ケースは、検知対象と反対側の熱変換フィルムの面に保持された赤外線検知素子及び温度補償素子を収容する収容凹部を有する、ことが好ましい。
 照射面及び補正領域は、第二ケースの導光部に直に形成できるし、第二ケースの導光部に装着される赤外線吸収成形体に形成できる。
 以上の赤外線温度センサは、検査センサについて、実際に温度検知を行なって取得した実測温度Taと規定温度Trに基づいて補正の要否を判定する判断工程と、判断工程における判断の結果に基づいて、検査センサについて、照射面に赤外線の放射率が周囲とは異なる補正領域を形成する補正工程と、を備える赤外線温度センサの製造方法により製造できる。
 この製造方法によれば、補正が必要な検査センサだけをピックアップするので、必要な補正がなされた赤外線温度センサを効率よく製造することができる。
 本発明の赤外線温度センサによれば、熱変換フィルムに手を加えることなく、照射面に補正領域を形成することにより検知温度を補正できるので、高い応答性を確保しつつ検知温度を補正できる。しかも、補正領域を形成するのは、機械的な要素を加えるのに比べて、作業負担が小さくかつコストを抑えることができる。
本実施の形態による赤外線温度センサを示す図であり、(a)は正面図、(b)は平面図、(c)は側面図、(d)は(b)の1d-1d矢視断面図、(e)は(b)の1e-1e矢視断面図である。 本実施の形態による赤外線温度センサに組み付けられる赤外線吸収成形体を示し、(a)は平面図、(b)は側面図である。 補正領域の個数と検知温度の関係を示すグラフである。 補正領域の表面粗さと検知温度の関係を示すグラフである。 本実施の形態による赤外線温度センサの検知温度を検査、補正するラインの概略構成を示すブロック図である。 ずれ量と、ずれ量に応じて定められる補正領域の面積と、が対応付けられた補正データの一例を示す表である。 本実施の形態による赤外線温度センサの検知温度を検査、補正する手順を示すフローチャートである。 投入工程における検査センサの配置の状態を示す説明図である。 実施の形態にかかる定着器の概略構成を示し、(a)は正面図、(b)は側面図である。 補正領域の例を示す図である。 補正領域のさらに他の例を示す図である。
 以下、添付図面を参照しながら、本発明の実施形態について説明する。
 温度センサ10は、例えば図9に示されるように、検知対象であるコピー機やプリンタ等の画像形成装置に用いられるトナー定着器1の定着手段としてのローラ2の温度を、ローラ2から放射される赤外線を赤外線検知素子43で検知し、さらに温度補償素子45により雰囲気温度を検知することで温度補償して、検知対象であるローラ2の温度を非接触で検知するセンサである。
 トナー定着器1は、定着手段としてのローラ2と、加圧手段としてのローラ3と、を備えている。なお、温度センサ10により加圧手段としてのローラ3の温度を検知することもできる。また、本実施形態において、検知対象に対向する側を前(前方)と定義する。
 赤外線温度センサ10(以下、単に温度センサ10)は、図1(a)~(c)に示すように、第一ケース20と、第一ケース20の後方側に組み付けられる第二ケース30と、第一ケース20と第二ケース30の間に挟持される熱変換フィルム40(以下、単にフィルム40)と、図1(d),(e)に示すように、フィルム40に保持される赤外線検知素子43と、フィルム40に保持される温度補償素子45と、から構成されている。赤外線検知素子43と温度補償素子45は、検知対象であるローラ2と反対側のフィルム40の面に保持される。
 温度センサ10は、完成品として製造された後に検知温度にずれが生じることが確認されたために、放射率が他の領域である周囲とは異なる補正領域58を形成して検知温度のずれが補正されている。
[第一ケース20]
 第一ケース20は、図1(a)~(c)に示すように、矩形の平面形状を有する基部21と、基部21から前方に向けて突出する外形が直方体状の胴部22と、第一ケース20内に装着される赤外線吸収成形体50と、を備えている。第一ケース20は、例えばアルミニウム、銅のように熱伝導率の高い金属材料により基部21と胴部22とが一体的に形成されている。ただし、高熱伝導率の金属材料は望ましい形態であるが、本発明はこれに限定されるものではない。第二ケース30も同様である。
 胴部22は、基部21から立ち上る側壁23と、側壁23の前端に設けられる上壁24と、を備え、その内部には空隙25が形成されている。この空隙25は、胴部22と概ね相似形の直方体の形状をなしている。
 この空隙25は後端側が第一ケース20(基部21)を貫通している。空隙25は、前端側において、一部は上壁24に矩形状に開口される赤外線入射窓26を介して上壁24を貫通するが、他の部分は上壁24により閉塞されている。
 第一ケース20の空隙25には、図1(e)に示すように、赤外線吸収成形体50が装着される。
 赤外線吸収成形体50は、図2(a)に示すように、直方体状の外形を有し、外周をなす周囲壁51を備える。また、赤外線吸収成形体50は、周囲壁51に取り囲まれ、かつ区画壁52により区画される第一空隙53と第二空隙54を備えている。第一空隙53と第二空隙54は、高さ方向、胴部22内に配置された状態では前後方向に貫通し、区画壁52を基準にしてほぼ対称の形態をなしている。周囲壁51は、図2(b)に示すように、第一空隙53に対応する部分が、第二空隙54に対応する部分よりも前方に向けて突出している。
 以上の構成を備える赤外線吸収成形体50は、第一ケース20の胴部22内に装着される。赤外線吸収成形体50は、図1(e)に示すように、第一空隙53が胴部22の空隙25の中で赤外線入射窓26を介して上壁24を貫通する領域の側に配置され、第二空隙54が胴部22の空隙25の中で上壁24により閉塞される側に配置される。赤外線検知素子43及び温度補償素子45を基準にすると、第一空隙53は赤外線検知素子43に対応する側に配置され、第二空隙54は温度補償素子45に対応する側に配置される。赤外線吸収成形体50には、第一空隙53を取り囲む周囲壁51と区画壁52により、赤外線入射窓26から入射された赤外線が通過する角筒状の導光部59が形成されている。
 ローラ2から温度センサ10に向けて照射される赤外線は、赤外線入射窓26から取り込まれ第一空隙53を後端側に向けて通過し、フィルム40に照射される。この通過の過程で、赤外線はその一部が第一空隙53を取り囲む導光部59の内面531に照射され、内面531から放射された赤外線もフィルム40に照射される。赤外線が導光部59を通過するこの経路が導光路になる。
 つまり、赤外線入射窓26に連なるこの内面531には、図1(b),(d),(e)に示すように、赤外線入射窓26から入射した赤外線の一部が照射され、照射された赤外線を放射することで、放射した赤外線の一部をフィルム40に到達させる照射面57が構成される。これに対し、第二空隙54を囲む内面541は、照射面57を構成しない。胴部22の上壁24と第二空隙54を囲む周囲壁51と区画壁52により、温度補償素子45に赤外線が照射されるのを遮る遮蔽部27が形成されている。
 照射面57は、図1(b)に示すように、平面視すると導光路を囲むように四角形をなしており、対向する第一照射面571及び第二照射面572と、これらと直交する第三照射面573及び第四照射面574と、からなる。
 なお、ローラ2から温度センサ10に向けて照射される赤外線は、第一ケース20をなす胴部22の側壁23、上壁24及び基部21にも照射される。
 温度センサ10は、図1(e)に示すように、周囲とは赤外線の放射率の異なる補正領域58が第一照射面571に設けられている。補正領域58は、第一照射面571に限らず、第一照射面571、第二照射面572、第三照射面573及び第四照射面574の何れか一つ又は二つ以上に設けることができる。ただし、一つの面だけに補正領域58を形成するのが、複数の面に補正領域58を形成するのに比べて作業負担を軽減できる。
 補正領域58は、その周囲における第一照射面571よりも表面粗さが大きい。補正領域58の表面粗さが大きいと、第一照射面571よりも赤外線の放射率が高くなるので、補正領域58が設けられることにより、フィルム40に到達する赤外線の量が少なくなる。したがって、補正領域58を形成する前と比べて、温度センサ10による検知温度を低くできる。
 補正領域58は、後述するように、第一照射面571の一部にレーザビームを照射することにより形成される。レーザビームの照射により、照射前に比べて表面粗さが大きくなる。
 補正領域58は、図1(e)に示すように、一例として四角形をなしており、この四角形が占める範囲にレーザビームが照射されることで形成されている。ここでは三つの補正領域58が、同じ高さで並んで設けられる例を示しているが、赤外線の放射率を必要なだけ高くできるのであれば、補正領域58の形状、寸法、配置は任意である。
 補正領域58を形成することによる温度センサ10の検知温度の補正量は、照射面に占める補正領域58の面積により制御できる。図3は、補正前の温度センサ10の検知温度と補正後の温度センサ10の検知温度との偏差を示す。補正は、一辺が2mmの矩形の補正領域58をレーザビーム照射により形成するとともに、その数を変えて行った。図3に示す結果より、照射面に占める補正領域58の面積の大小により、温度センサ10の検知温度の補正量を制御できることが確認された。
[第二ケース30]
 第二ケース30は、図1(c),(e)に示すように、矩形の平面形状を有する基部31と、基部31から後方に向けて突出する素子収容部32と、を備えている。
 基部31は、形状およびサイズが第一ケース20の基部21とほぼ同一に形成されている。そして、第一ケース20と第二ケース30は、基部21と基部31が互いの周縁が一致するように位置決めされ、フィルム40を介して接合される。
 素子収容部32には、前端側に開口する収容凹部33が形成される。フィルム40に保持される赤外線検知素子43及び温度補償素子45は、収容凹部33に臨んで配置される。赤外線検知素子43及び温度補償素子45は、素子収容部32の底床34との直接的な接触が、収容凹部33の存在により避けられる。つまり、収容凹部33内に含まれる空気が断熱層の役割を果たし、赤外線検知素子43及び温度補償素子45への外部、特に温度センサ10の後方からの熱影響を最小限に抑える。ただし、本発明において、空気による断熱層を設けることは望ましい形態ではあるが、赤外線検知素子43及び温度補償素子45が第二ケース30と直接接触する形態を排除しない。
[フィルム40]
 フィルム40は、一方の面であるうら面に赤外線検知素子43と温度補償素子45が配置され、図示しない配線パターンに電気的に接続されている。なお、配線パターンの端末には外部引出端子が形成されるが、この構成は当業者間で周知であるので、ここでの図示、説明は割愛する。
 フィルム40は、高分子材料からなる樹脂により形成される。赤外光を吸収する材料であれば樹脂の材質は問われず、ポリフェニレンスルフィド、ポリイミド、ポリエステル、ポリエチレン等の公知の樹脂を用いることができる。また、赤外光を吸収する材料であれば、樹脂以外の材料を用いることもできる。
[赤外線検知素子43及び温度補償素子45]
 赤外線検知素子43はローラ2の表面から放射された赤外線がフィルム40に吸収されて生ずる熱による温度上昇を検知し、温度補償素子45は雰囲気温度を検知する。なお、赤外線検知素子43と温度補償素子45はほぼ等しい温度特性を有する感熱素子が用いられる。
 また、赤外線検知素子43及び温度補償素子45としては、小型の例えば薄膜サーミスタ、白金温度センサ等の温度係数を持つ抵抗体を広く使用できるのであって、特定の材質、形態に限定されない。
 赤外線検知素子43と温度補償素子45は、好ましくは、フィルム40の長手方向の中心を基準に線対称の位置に配置される。
[温度センサ10]
 温度センサ10は、図1(c),(e)に示すように、第一ケース20と第二ケース30が、基部21と基部31が互いの周縁が一致するように位置決めされ、熱変換フィルム40を介して接合される。
 しかし、温度センサ10を構成する第一ケース20、第二ケース30などの構成部材に寸法のばらつきがあり、また、これらの構成部材を組み付ける際にもばらつきが生じる。これらのばらつきは温度センサ10による検知温度のずれとなって現れる。そこで、温度センサ10を作製した後に検知温度のずれを補正し、狙っている本来の温度を検知できるよう補正するために、本実施形態は、図1(e)に示すように、第一照射面571に補正領域58が設けられている。
 つまり、本実施形態の温度センサ10は、第一照射面571に照射された赤外線の放射率を補正領域58により補正することにより、検知温度の補正が行われている。
 なお、温度センサ10は、図示を省略するが、温度検知用の回路を備えている。この検知回路は任意であり、公知の検知回路を用いることができる。また、温度検知の手順についても同様である。
[温度センサ10の製造方法]
 次に、本実施形態の温度センサ10の製造方法について説明する。
 温度センサ10は、補正領域58を除いて温度センサ10(検査センサ10i)を製造する製造工程と、その後に温度センサ10に補正領域58を設けるか否か、及び、設ける場合の仕様を決めて補正領域58を形成する形成工程と、を経て製造される。
 つまり、補正領域58は、それを除いて温度センサ10を作製した後に、検知温度の補正が必要である場合に形成されるものである。したがって、一連の製造工程を経たとしても、補正領域58が形成されていない温度センサ10も存在する。また、補正領域58が設けられていたとしても、温度センサ10に要求される補正の度合いに応じてその仕様が決められるものであるから、個々の温度センサ10に設けられる補正領域58の面積が相違することがある。
 そこで、補正領域58を設けるか否か、及び、設ける場合の仕様を決めるために、温度センサ10を一旦作製した後に、個々の温度センサ10の検知温度を検査し、その検査結果に基づいて補正領域58を設ける形成工程が必要である。
 以下、図5を参照して本実施形態の形成工程を実行するラインについて説明し、その後に、図7を参照して本実施形態による形成工程の手順について説明する。
 なお、検査対象である検査センサ10iは、補正領域58が設けられていない点を除いて、温度センサ10と同じ構成を備えている。
[検査-補正ライン70]
 形成工程は、図5に示すように、搬送路71に沿って検査センサ10iが搬送される検査-補正ライン70によって実行される。
 検査-補正ライン70は、搬送路71と、第一検査部72と、補正部73と、第二検査部74と、制御部75と、を備えている。搬送路71は、図中、上流側Uから下流側Lに向けて検査センサ10iを搬送する例えばベルトコンベアから構成される。搬送路71上には、その上流側Uから順に、第一検査部72、補正部73、第二検査部74が配置されている。
[第一検査部72]
 第一検査部72は、検査センサ10iにより実際に温度検知を行ない、実測温度Taを得る。
 実測温度Taを得るために、第一検査部72は、規定値ヒータ76を備える。第一検査部72に搬送された検査センサ10iは、規定値ヒータ76からの輻射熱エネルギを検知し、実測温度Taを得る。なお、この時の規定値ヒータ76の温度をTrとする。検査センサ10iによる実測温度Ta(データ)は、第一検査部72から制御部75に送られる。
[補正部73]
 補正部73は、検査センサ10iの実測温度Taと規定温度Trのずれ量(Tr-Ta、以下、単にずれ量、と言うことがある)に基づいて、補正領域58を第一照射面571に形成する。
 補正部73は、補正領域58を形成するために、レーザビームの照射領域を高い精度で制御できるレーザ刻印機77を備える。レーザ刻印機77は、制御部75からの指示に基づいて、第一照射面571の所定位置にレーザビームを所定面積の範囲で照射することにより、補正領域58を形成する。レーザビームが照射される所定面積は、実測温度Taと規定温度Trのずれ量に基づいて制御部75が決定し、補正部73に指示する。
 検査センサ10iのずれ量(Tr―Ta)が閾値以下であれば、補正部73はその検査センサ10iには補正領域58を形成しない。したがって、その検査センサ10iは単に補正部73を通過するのみである。これらの手順も制御部75の指示に基づいて行なわれる。
[第二検査部74]
 第二検査部74は、第一検査部72と同様に、補正部73で補正領域58が形成された又は形成されない検査センサ10iで実測温度Taを得る。
 第二検査部74は、第一検査部72と同様に規定値ヒータ78を備え、検査センサ10iにより実測温度Taを検知し、そのデータを制御部75に送る。なお、この時の規定値ヒータ78の温度もTrとする。
[制御部75]
 制御部75は、検査-補正ライン70の各要素の動作を司る。
 制御部75は、搬送路71、第一検査部72、補正部73及び第二検査部74との間で、相互に電気的通信手段で繋がれている。したがって、例えば、検知された実測温度Taのデータを第一検査部72から受信し、受信したデータに基づいて算出したずれ量に対応する補正領域58の形成の指示を補正部73に送信する。
 制御部75は、ずれ量を算出するために、規定温度Trに関するデータを保持する。制御部75は、第一検査部72から実測温度Taを受信すると、保持している規定温度Trとのずれ量ΔTを算出(ΔT=Tr-Ta)する。第二検査部74から実測温度Taを受信する場合も同様である。
 制御部75は、また、算出されたずれ量と、当該ずれ量に応じて定められる補正領域58の形成面積と、が対応付けられた補正データを保持する。
 補正データの一例を図6に示す。図6の例は、実測温度Taが規定温度Trよりも高いため、ずれ量ΔTが、負の値となる場合を示している。もちろん、実測温度Taが規定温度Trに一致するとずれ量はゼロになるが、補正データはこれも含んでいる。
 また、ずれ量は所定の範囲に区分されており、区分されたずれ量に対応して補正領域58の面積が特定されている。
 図6についていくつかの例を説明すると、ずれ量が0≧ΔT>-ΔT1の場合には、補正領域58の形成面積が「0」(ゼロ)とされている。これは、0≧ΔT>-ΔT1の範囲はずれ量が微小であるから、補正が必要ないことを示している。この場合、制御部75は、当該検査センサ10iについては補正が不要であるからレーザビームの照射が不要であることの指示を補正部73に送る。つまり、ずれ量としての0≧ΔT>-ΔT1は、補正が必要のない合格品であることを判定する閾値になる。
 一方、ずれ量が-ΔT1≧ΔT>-ΔT2の範囲にある場合は、補正領域58の面積がA12であることが対応付けられている。この場合においては、制御部75は、検査センサ10iについて補正が必要であること、補正領域58の形成面積がA12であること、の指示を補正部73に送る。
[補正領域58の形成工程]
 次に、図7を参照しながら、以上の検査-補正ライン70により検査センサ10iを検査、補正する手順を説明する。この形成工程は、検査センサ10iの投入工程、第1検査工程、補正工程、第2検査工程および合否判断工程を含む。
[検査センサ10iの投入工程,図7 ステップS101]
 本工程は、検査センサ10iを検査-補正ライン70に投入するための工程である。
 具体的には、検査センサ10iは、第一検査部72よりも上流側で搬送路71に載せられる。その検査センサ10iは、搬送路71により第一検査部72、補正部73及び第二検査部74の順に搬送される。制御部75は搬送路71の間欠的な搬送停止・搬送再開を含めた搬送速度を制御する。なお、第一検査部72、補正部73及び第二検査部74において検査センサ10iは検査、補正されるため、当該部分において検査センサ10iが停止するように、制御部75は搬送路71の動作を制御する。
 本工程に用いられる検査センサ10iは、後述する補正工程において、補正領域58を形成させたい照射面57にレーザビームを照射できるように傾けた状態で搬送される。つまり、本実施形態のように第一照射面571に補正領域58を形成させるには、図8(a)に示すように、検査センサ10iは、第一照射面571にレーザビームを照射できるように傾けた状態で搬送される。一方、第三照射面573に補正領域58を形成させる場合は、図8(b)に示すように、検査センサ10iは、第三照射面573にレーザビームを照射できるように傾けた状態で搬送される。
[第1検査工程,図7 ステップS103]
 本工程は、検査センサ10iにより実測温度Taを検知するための工程である。
 具体的には、第一検査部72に検査センサ10iが到着すると、制御部75は第一検査部72に対して検査センサ10iにより実測温度Taを検知するように指示する。実測温度Taの検知は、前述したように、規定値ヒータ76により検査環境を規定温度Trに加熱して行なわれる。第一検査部72は、検知した実測温度Taを制御部75に送る。
 制御部75は、実測温度Taを取得すると、検査センサ10iを補正部73に移動するように搬送路71を動作させる。
[補正要否判断工程,図7 ステップS105]
 本工程は、規定温度Trと第1検査工程で検知した検査センサ10iにより実測温度Taに基づいて、検査センサ10iの検知温度の補正が必要か否かを判断する工程である。
 具体的には、先ず、制御部75が、第一検査部72から取得した実測温度Ta、及び、保持している規定温度Trから、検査センサ10iのずれ量ΔT(Tr-Ta)を算出する。
 次いで制御部75は、算出したずれ量ΔTと図6に示す補正データとを照合することにより、補正に必要な補正領域58の面積を特定する。
 この場合、補正に必要な補正領域58の形成面積が「0」(ゼロ)の場合には、制御部75はレーザビームの照射による補正が不要と判断する。こうして制御部75は、補正が必要か否かを判断し、さらに補正が必要な場合には補正領域58を設ける面積を特定し、特定された結果に基づいて補正部73に指示を送る。
[補正工程,図7 ステップS107,S109]
 本工程は、補正要否判断工程で補正が必要と判断された検査センサ10iに補正領域58を形成する工程である。
 具体的には、補正部73は、制御部75から補正が必要であることの指示を受けると、レーザ刻印機77を動作させることで、第一照射面571の一部に指示された面積(A12…)だけレーザビームを照射して補正領域58を形成する(ステップS109)。なお、検査センサ10iはこのレーザビームの照射が行なわれる前までに、補正部73に到着している。補正領域58の形成が済んだ検査センサ10iは、第二検査部74に移動される。
 一方、補正部73は、制御部75から補正が不要であることの指示を受けた場合には、補正領域58の形成を行なわない(ステップS107)。
[第2検査工程,図7 ステップS111]
 本工程は、補正工程を通過した検査センサ10iの実測温度Taを検知するための工程である。
 具体的には、第二検査部74は、補正部73で補正領域58が形成された検査センサ10i、及び、補正部73で補正領域58が形成されることなかった検査センサ10iについて、実測温度Taを再検知する。その内容は、第一検査部72で行なわれる温度検知と同じであり、検知された実測温度Taは制御部75に送られる。
 なお、第一検査部72における検査において補正が不要と判断された検査センサ10iについても再検査するのは検査の万全を期すためであるが、当該検査センサ10iについて再検査を省略できることは言うまでもない。この場合には、図5に示すように、第一検査部72と補正部73の間で搬送路71に分岐路を設け、補正が不要な検査センサ10iは分岐路79に搬出することもできる。
[合否判断工程,図7 ステップS113,S115,S117]
 本工程は、第2検査工程で検知した検査センサ10iにより実測温度Taに基づいて、検知温度の補正が必要か否かを判断する工程である。
 具体的には、制御部75は、第二検査部74から実測温度Taを取得すると、図7のステップS105と同様にして、さらに補正が必要か否か、を判断する(ステップS113)。補正が不要な場合には、検査センサ10iは合格品として搬出される(ステップS115)。補正が必要な場合には、不合格品として搬送路71から分岐する分岐路79に向けて搬出され、再度、検査-補正ライン70に投入して検査するか、又は、別の手段で補正を試みる、などされる(ステップS117)。
 合格品として搬出される検査センサ10iに形成されている補正領域58は、検査センサ10iごとに補正領域58の面積が異なっている。つまり、図3に示すように、補正領域58の面積に比例して温度センサ10の検知温度を下げることができるので、温度センサ10の検知温度の補正量が大きい検査センサ10iでは、補正領域58の面積が大きく形成される。一方、補正量が小さい検査センサ10iでは、補正領域58の面積が小さく形成される。
 以上のように、レーザビームを照射する面積により検知温度を補正の程度を補正できるが、照射するレーザビームの強度によっても補正の程度を補正できる。具体的には、照射するレーザビームの強度によって、レーザビームが照射された部位の表面粗さの程度が異なる。
 図4は、補正領域58の表面粗さを変更した温度センサ10の検知温度の相違を示している。図4より、補正領域58の表面粗さの程度を変えることにより、検知温度を補正できることがわかる。
 つまり、レーザビームの強度を変更することによって、所望の放射率の補正領域58を形成できる。
[温度センサ10、及び、その製造方法の効果]
 先ず、温度センサ10が奏する効果について説明する。
 温度センサ10は、表面粗さが照射面57よりも大きい補正領域58が形成されている。補正領域58の赤外線の放射率は、照射面57よりも高いので、補正領域58が形成されていることにより、フィルム40に到達する赤外線の量が減るので、温度センサ10の検知温度を下げることができる。
 さらに、補正領域58の面積を変えることにより、補正領域58の赤外線の放射率を変えることができるので、検知温度を所定の値に補正できる。
 このように、照射面57に補正領域58を形成することにより検知温度を補正できるので、補正後においても、応答性を確保できる。加えて、赤外線を取り込む赤外線入射窓26の視野面積を維持できるので、補正していないものと同じ温度検知条件で使用することができる。しかも、補正領域58はレーザビームを照射して形成されるものであるから、機械的な要素を加えるのに比べて、作業負担が小さくかつコストを抑えることができる。
 次に、温度センサ10の製造方法が奏する効果について説明する。
 本実施形態の温度センサ10の製造方法(形成工程)により、赤外線温度センサの検知温度ずれを補正し不良発生を減少できる。
 また、第1検査工程により補正が必要な検査センサ10iだけをピックアップすることができ、これらを正しい検知温度に補正できる。
 さらに、第2検査工程により、正しい検知温度の温度センサ10をより確実に製造することができる。
 以上、本発明を好ましい実施形態に基づいて説明したが、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 本発明は、補正領域を形成する他の手段としては、照射面57を工具により研削する、照射面57を加熱手段により溶融する、照射面57を腐食液でエッチングする、ことを採用できる。研削、溶融及びエッチングは、レーザビームを照射するのと同様に、照射面57の表面粗さを変えることで補正領域58を形成する。また、研削、溶融及びエッチングは、レーザビームを照射するのと同様に、外部からエネルギを供給することで、照射面57に周囲と表面粗さが異なる照射領域を形成する。
 本発明は、以上の表面粗さを補正する以外に、第一照射面571~第四照射面574にインクや塗料を塗布して形成される塗膜を補正領域として用いることもできる。ここで、インクは着色を主目的とするのに対して、塗料は素地を保護することを主目的とするものである点で一応相違するが、いずれであっても、塗布されることで周囲の照射面57とは放射率の異なる補正領域を形成することができる。
 補正領域を形成するインクとしては、耐熱性を有することを前提として、赤外線を吸収できる黒色インクが挙げられる。塗料も同様である。
 補正領域を構成する塗膜の面積を大きくすることにより、照射面57の赤外線の放射率を上げることができるのは、本実施形態と同様である。
 また、照射面57とは放射率の異なるシート材を照射面57に貼り付けることによって補正領域を形成することもできる。
 塗膜からなる補正領域も上述した補正工程において形成される。
 塗膜の形状、塗膜の形成方法は任意であるが、インクジェット方式のプリンタにより印刷することが、インクの塗布量、塗布範囲を正確に制御する上で好ましい。
 インクジェット方式のプリンタにより印刷する場合は、上述した検査-補正ライン70の補正部73が、インクジェットプリンタを備える。インクジェットプリンタは、制御部75からの指示に基づいて、第一照射面571、第二照射面572、第三照射面573、及び第四照射面574の何れか一つ、又は、二つ以上の所定位置に、所定面積で印刷することにより、補正領域を形成する。
 次に、上述した実施形態は補正領域の赤外線の放射率を周囲に比べて高くする例を示したが、本発明はこれに限定されない。
 例えば、塗膜を構成するインク又は塗料によっては、形成する補正領域の赤外線の放射率を周囲に比べて高くすることができるし、または、低くすることもできる。つまり、照射面57の赤外線の放射率よりも高い放射率を有する塗膜を形成するか、または、照射面57の赤外線の放射率よりも低い放射率を有する塗膜を形成することにより、検知温度を下げる補正、または、検知温度を上げる補正を実現できる。
 上述した本実施形態における形成工程において、ずれ量が負の値の場合には検知温度を下げる必要があるので、照射面57の赤外線の放射率よりも高い放射率を有する塗膜を形成する。逆にずれ量が正の値の場合には検知温度を上げる必要があるので、照射面57の赤外線の放射率よりも低い放射率を有する塗膜を形成する。
 塗膜を補正領域に利用する形態として、予め塗膜として形成されていた補正領域を所定の面積だけ剥がすことにより、検知温度を補正することもできる。つまり、照射面57の赤外線の放射率よりも低い放射率を有する塗膜により補正領域を形成させておき、検知温度を下げる補正が必要な場合には、補正領域を所定の面積だけ剥がすことにより、検知温度を所定の値に補正できる。
 また、照射面57の赤外線の放射率よりも高い放射率を有する塗膜により補正領域を形成させておき、検知温度を上げる補正が必要な場合には、補正領域を所定の面積だけ剥がすことにより、検知温度を所定の値に補正できる。
 周囲と表面粗さが異なる照射領域を照射面57に形成する形態においても、補正領域58の粗さを周囲よりも大きくできるし、小さくできる。つまり、表面粗さを補正する形態においても、補正領域における赤外線の放射率を低くすることができるし、赤外線の放射率を高くすることができる。
 以上の実施形態では周囲と放射率の異なる補正領域58を設ける例について説明したが、本発明はこれに限定されず、照射面57における他の領域よりも赤外線の放射率の異なる補正領域を設ける例を包含する。以下、照射面57を例にして説明する。
 図10(a)は照射面57を展開して示しているが、照射面57は第一照射面571~第四照射面574に区画されており、複数の区画面からなる。この場合、図10(a)に示すように、一つの第一照射面571の全体に補正領域58を形成することができるし、図10(b)に示すように、複数、ここでは一例として第一照射面571の全体、第二照射面572の全体に補正領域58を形成することができる。
 また、補正領域58は、図11(a)~(d)に示すように、例えば一つの第一照射面571の一部に補正領域58を形成することができる。一部に補正領域58を形成するのは、図11(a)に示すように下側に偏って形成できるし、図11(b)に示すように上側に偏って形成できる。また、図11(c)に示すように右側に偏って形成できるし、図11(d)に示すように左側に偏って形成できる。
 また、導光部が円筒状をなしている場合には、これを展開すると図10(c),(d)に示すように、照射面57は区画のない連続的に連なる単一面からなる。この場合には、図10(c),(d)に示すように、単一面の一部に偏って補正領域58を設けることができる。
 本発明に適用される温度センサの構造について言及すると、本実施形態は第一ケース20の内部に赤外線吸収成形体50が装着されているが、本発明は赤外線吸収成形体50が装着されていない温度センサにも適用できる。この温度センサは、赤外線入射窓26に連なる第一ケース20の内面に直に、照射面57と同様に照射面が構成され、この照射面に補正領域が設けられる。
 加えて、本発明は、微小な面積であればフィルム40にわたって補正領域が設けられていてもよい。
 また、本発明は、熱変換フィルムに赤外線検知素子と温度補償素子が保持され、かつ、赤外線の導光路を形成する導光部59を備える限り、その形状、寸法に関わらずその照射面に本発明の補正領域を設けることができる。
 例えば、本実施形態は第一ケース20に胴部22を備えているが、本発明は、この胴部22を備えることなく、基部21だけで導光部が形成されている温度センサについても適用できる。
 また、本実施形態は、導光部59が、第一空隙53を周方向に隙間なく取り囲んでいるが、本発明はこれに限定されない。例えば、導光部59としての機能を担保できる範囲で、赤外線吸収成形体50の区画壁52の部分を省いて、第一空隙53の周方向の一部を開放してもよい。
 また、導光部59は角筒状の形態をなしているが本発明における導光部はこれに限定されず円筒状の形態をなしていてもよい。また、本発明における導光部は、筒状に限るものではなく、照射された赤外線を放射できる面を有している限り、その形態は任意である。角筒状の導光部59を構成する例えば第三照射面573を取り除いた門型の形態をなしていてもよく、さらには、角筒状の導光部59を構成する例えば第一照射面571だけの板状の形態とすることもできる。この板状の導光部は、表裏の少なくとも一方の面を照射面とする。
 遮蔽部27についても同様のことが当てはまり、例えば、遮蔽部27として機能を担保できる範囲で、赤外線吸収成形体50の区画壁52の部分を省いて、第二空隙54の周方向の一部を開放してもよい。
 本実施形態は、赤外線検知素子43と温度補償素子45が、同一平面をなす単一のフィルム40に隣接して保持されているが、本発明はこれに限定されない。例えば、赤外線検知素子43と温度補償素子45を、赤外線が入射する向きの前後方向に位置をずらして隣接させてもよい。一例として、入射する赤外線に対して、温度補償素子45を赤外線検知素子43の背後に設けることもできる。なお、赤外線検知素子43と温度補償素子45を単一のフィルム40に保持させる場合は、赤外線検知素子43と温度補償素子45の配置に応じて、フィルム40を略C字状に折り曲げることが必要である。
 また、本実施形態は、赤外線検知素子43と温度補償素子45が、フィルム40の長手方向の中心を基準に線対称の位置に配置されているが、本発明はこれに限定されない。
1   トナー定着器
2,3 ローラ
10  赤外線温度センサ、温度センサ
10i 検査センサ
20  第一ケース
21  基部
22  胴部
23  側壁
24  上壁
25  空隙
26  赤外線入射窓
27  遮蔽部
30  第二ケース
31  基部
32  素子収容部
33  収容凹部
34  底床
40  熱変換フィルム、フィルム
43  赤外線検知素子
45  温度補償素子
50  赤外線吸収成形体
51  周囲壁
52  区画壁
53  第一空隙
531 内面
54  第二空隙
541 内面
57  照射面
571 第一照射面
572 第二照射面
573 第三照射面
574 第四照射面
58  補正領域
59  導光部
70  補正ライン
71  搬送路
72  第一検査部
73  補正部
74  第二検査部
75  制御部
76  規定値ヒータ
77  レーザ刻印機
78  規定値ヒータ
79  分岐路
L   下流側
U   上流側

Claims (15)

  1.  検知対象に対向配置されて用いられ、前記検知対象から放射される赤外線に応じて、前記検知対象の温度を非接触で検知する赤外線温度センサであって、
     前記検知対象から放射される前記赤外線が照射され、照射された前記赤外線を熱に変換する熱変換フィルムと、
     前記熱変換フィルムに対向して配置され、前記検知対象から放射された前記赤外線が前記熱変換フィルムの一部に照射されるのを遮る遮蔽部と、
     前記検知対象から放射される前記赤外線が照射される前記熱変換フィルム上の領域に保持された赤外線検知素子と、
     前記遮蔽部により前記赤外線が遮蔽された前記熱変換フィルム上の領域に保持された温度補償素子と、
     前記検知対象から照射された前記赤外線を前記赤外線検知素子が配置された前記領域へ導く照射面を有する導光部と、備え、
     前記照射面は、
     前記赤外線の放射率が他の領域と異なる補正領域を有する、
    ことを特徴とする赤外線温度センサ。
  2.  前記補正領域は、
     前記他の領域よりも前記赤外線の放射率が高いか、または、低い、
    請求項1に記載の赤外線温度センサ。
  3.  前記補正領域は、
     前記他の領域よりも表面粗さが大きいか、または、小さい、
    請求項2に記載の赤外線温度センサ。
  4.  前記補正領域は、
     外部からエネルギが供給されることで形成され、前記他の領域よりも表面粗さが大きいか、または、小さい、
    請求項3に記載の赤外線温度センサ。
  5.  外部からの前記エネルギは、レーザビームの照射により供給される、
    請求項4に記載の赤外線温度センサ。
  6.  前記補正領域は、
     前記他の領域よりも前記赤外線の放射率の高い塗膜またはシート材か、若しくは、低い塗膜またはシート材が形成されている、
    請求項2に記載の赤外線温度センサ。
  7.  前記照射面は、複数に区画されており、
     前記補正領域は区画された少なくとも一つの前記照射面に設けられる、
     請求項1~請求項6のいずれか一項に記載の赤外線温度センサ。
  8.  前記補正領域は一つの前記照射面の全体又は一部に設けられる、
    請求項7に記載の赤外線温度センサ。
  9.  前記照射面は連続的に連なる単一面からなり、
     前記補正領域は前記単一面の一部に設けられる、
     請求項1~請求項6のいずれか一項に記載の赤外線温度センサ。
  10.  前記他の領域は、前記補正領域の周囲に設けられる、
    請求項1~請求項9のいずれか一項に記載の赤外線温度センサ。
  11.  前記導光部は筒状の形態をなし、
     前記照射面は筒状の前記導光部の内面に設けられる、
     請求項1~請求項10のいずれか一項に記載の赤外線温度センサ。
  12.  第一ケースと、前記第一ケースと対向して配置される第二ケースと、を備え、
     前記第一ケースは前記遮蔽部と前記導光部を備え、
     前記第二ケースは前記第一ケースとともに前記熱変換フィルムを挟持する、
     請求項1~請求項11のいずれか一項に記載の赤外線温度センサ。
  13.  前記第二ケースは、
     前記検知対象と反対側の前記熱変換フィルムの面に保持された前記赤外線検知素子及び前記温度補償素子を収容する収容凹部を有する、
     請求項12に記載の赤外線温度センサ。
  14.  前記照射面及び前記補正領域は、前記第二ケースの前記導光部に直に形成されるか、前記第二ケースの前記導光部に装着される赤外線吸収成形体に形成される、
     請求項12又は請求項13に記載の赤外線温度センサ。
  15.  請求項1~請求項14のいずれか一項に記載の赤外線温度センサの製造方法であって、
     検査センサについて、実際に温度検知を行なって取得した実測温度Taと規定温度Trに基づいて補正の要否を判定する判断工程と、
     前記判断工程における判断の結果に基づいて、前記検査センサについて、前記照射面に前記赤外線の放射率が周囲とは異なる前記補正領域を形成する補正工程と、
    を備えることを特徴とする赤外線温度センサの製造方法。
PCT/JP2017/031651 2016-12-20 2017-09-01 赤外線温度センサ WO2018116535A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780003948.4A CN109073468B (zh) 2016-12-20 2017-09-01 红外线温度传感器及其制造方法
JP2017564523A JP6317533B1 (ja) 2016-12-20 2017-09-01 赤外線温度センサ
US15/781,829 US10533898B2 (en) 2016-12-20 2017-09-01 Infrared temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016246675 2016-12-20
JP2016-246675 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018116535A1 true WO2018116535A1 (ja) 2018-06-28

Family

ID=62626330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031651 WO2018116535A1 (ja) 2016-12-20 2017-09-01 赤外線温度センサ

Country Status (3)

Country Link
US (1) US10533898B2 (ja)
CN (1) CN109073468B (ja)
WO (1) WO2018116535A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS389798B1 (ja) * 1960-01-25 1963-06-20
WO2010140095A2 (en) * 2009-06-03 2010-12-09 Koninklijke Philips Electronics N.V. Light detector
WO2013014707A1 (ja) * 2011-07-26 2013-01-31 株式会社芝浦電子 赤外線温度センサ、及び、それを用いた定着器
WO2013065091A1 (ja) * 2011-11-04 2013-05-10 株式会社芝浦電子 赤外線温度センサ、及び、それを用いた定着器
JP2014089108A (ja) * 2012-10-30 2014-05-15 Tdk Corp 非接触温度センサ
JP2015172537A (ja) * 2014-03-12 2015-10-01 Semitec株式会社 赤外線温度センサ、赤外線温度センサを用いた装置及び赤外線温度センサの製造方法
JP2016050871A (ja) * 2014-09-01 2016-04-11 三菱マテリアル株式会社 赤外線センサおよび赤外線センサの感度調整方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155712A (en) * 1995-11-13 2000-12-05 Citizen Watch Co., Ltd. Radiation clinical thermometer
US6367972B1 (en) * 1998-09-29 2002-04-09 Ishizuka Electronics Corporation Non-contact temperature sensor with temperature compensating heat sensitive elements on plastic film
JP4628540B2 (ja) 2000-11-20 2011-02-09 石塚電子株式会社 赤外線温度センサ
JP4567806B1 (ja) * 2010-01-08 2010-10-20 立山科学工業株式会社 非接触温度センサ
CN102768073A (zh) * 2011-06-24 2012-11-07 戈达·乔蒂 用于熔融金属等物质温度测量的浸入式传感器及其测量方法
JP5828033B2 (ja) * 2012-08-03 2015-12-02 Semitec株式会社 高温計測で用いられる接触型赤外線温度センサ、熱機器及び排気システム
US10107689B2 (en) * 2013-08-09 2018-10-23 Semitec Corporation Infrared temperature sensor and device using infrared temperature sensor
JP6030273B1 (ja) * 2015-03-25 2016-11-24 Semitec株式会社 赤外線温度センサ及び赤外線温度センサを用いた装置
WO2016152221A1 (ja) * 2015-03-25 2016-09-29 Semitec株式会社 赤外線温度センサ及び赤外線温度センサを用いた装置
KR102610063B1 (ko) * 2015-03-25 2023-12-05 세미텍 가부시키가이샤 적외선 온도 센서, 회로 기판 및 상기 센서를 이용한 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS389798B1 (ja) * 1960-01-25 1963-06-20
WO2010140095A2 (en) * 2009-06-03 2010-12-09 Koninklijke Philips Electronics N.V. Light detector
WO2013014707A1 (ja) * 2011-07-26 2013-01-31 株式会社芝浦電子 赤外線温度センサ、及び、それを用いた定着器
WO2013065091A1 (ja) * 2011-11-04 2013-05-10 株式会社芝浦電子 赤外線温度センサ、及び、それを用いた定着器
JP2014089108A (ja) * 2012-10-30 2014-05-15 Tdk Corp 非接触温度センサ
JP2015172537A (ja) * 2014-03-12 2015-10-01 Semitec株式会社 赤外線温度センサ、赤外線温度センサを用いた装置及び赤外線温度センサの製造方法
JP2016050871A (ja) * 2014-09-01 2016-04-11 三菱マテリアル株式会社 赤外線センサおよび赤外線センサの感度調整方法

Also Published As

Publication number Publication date
CN109073468B (zh) 2020-04-28
US20190234802A1 (en) 2019-08-01
US10533898B2 (en) 2020-01-14
CN109073468A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109073472B (zh) 增材制造系统中的温度测量校准
US8351807B2 (en) Fixing unit including heating area adjustor and image forming apparatus using same
US9176443B2 (en) Infrared temperature sensor and fixing device using the same
US7778564B2 (en) Fixing device and fixing method of image forming apparatus
WO2013065091A1 (ja) 赤外線温度センサ、及び、それを用いた定着器
JP6317533B1 (ja) 赤外線温度センサ
KR101476710B1 (ko) 재단장치 및 이를 이용한 재단방법
WO2018116535A1 (ja) 赤外線温度センサ
KR200478917Y1 (ko) 금형 온도 측정장치를 구비한 취출 로봇
CN1373396A (zh) 影像加热设备
JP2018127238A (ja) シール装置
US6726357B2 (en) Media identification system
US11934118B2 (en) Fuser
JP2006220977A (ja) 温度検知装置、温度制御手段及びこれを用いた定着装置
WO2017217272A1 (ja) 赤外線温度センサ
JP2007213000A (ja) 定着装置及び画像形成装置
JPH11316351A (ja) セラミック補間フィルタ
KR101476711B1 (ko) 재단방법
JP2009168880A (ja) 定着装置及び印刷装置
JP2024032352A (ja) 加熱装置、定着装置及び画像形成装置
JP2006235604A (ja) ベルト定着器
JP2006243468A (ja) 定着装置および画像形成装置
JP5838591B2 (ja) グリーンシートの膜厚測定装置
US20180052058A1 (en) Non-contact temperature sensing apparatus
JP5641380B1 (ja) 温度検出装置、定着装置及び画像形成装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017564523

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883165

Country of ref document: EP

Kind code of ref document: A1