WO2015019871A1 - 熱電変換材料及びその製造方法 - Google Patents
熱電変換材料及びその製造方法 Download PDFInfo
- Publication number
- WO2015019871A1 WO2015019871A1 PCT/JP2014/069700 JP2014069700W WO2015019871A1 WO 2015019871 A1 WO2015019871 A1 WO 2015019871A1 JP 2014069700 W JP2014069700 W JP 2014069700W WO 2015019871 A1 WO2015019871 A1 WO 2015019871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoelectric
- conversion material
- thermoelectric conversion
- thermoelectric semiconductor
- fine particles
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 137
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 114
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 121
- 239000010419 fine particle Substances 0.000 claims abstract description 58
- 239000002608 ionic liquid Substances 0.000 claims abstract description 50
- 239000000203 mixture Substances 0.000 claims abstract description 46
- 239000010409 thin film Substances 0.000 claims abstract description 40
- 229920006015 heat resistant resin Polymers 0.000 claims abstract description 32
- 238000000137 annealing Methods 0.000 claims abstract description 17
- 238000001035 drying Methods 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 34
- -1 halide anion Chemical class 0.000 claims description 26
- 229920001721 polyimide Polymers 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 14
- 239000002985 plastic film Substances 0.000 claims description 10
- 229920006255 plastic film Polymers 0.000 claims description 10
- 239000004962 Polyamide-imide Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 229920002312 polyamide-imide Polymers 0.000 claims description 9
- 239000009719 polyimide resin Substances 0.000 claims description 9
- 229910052714 tellurium Inorganic materials 0.000 claims description 8
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 claims description 7
- 150000001768 cations Chemical class 0.000 claims description 7
- 239000003822 epoxy resin Substances 0.000 claims description 7
- 229920000647 polyepoxide Polymers 0.000 claims description 7
- 239000004697 Polyetherimide Substances 0.000 claims description 5
- 229920006122 polyamide resin Polymers 0.000 claims description 5
- 229920001601 polyetherimide Polymers 0.000 claims description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 4
- 229920003235 aromatic polyamide Polymers 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 2
- 238000000034 method Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 13
- 238000010248 power generation Methods 0.000 description 12
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 10
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 9
- 229910052797 bismuth Inorganic materials 0.000 description 9
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- VWUCIBOKNZGWLX-UHFFFAOYSA-N 1h-imidazol-1-ium;bromide Chemical compound [Br-].C1=C[NH+]=CN1 VWUCIBOKNZGWLX-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- OMEPJWROJCQMMU-UHFFFAOYSA-N selanylidenebismuth;selenium Chemical compound [Se].[Bi]=[Se].[Bi]=[Se] OMEPJWROJCQMMU-UHFFFAOYSA-N 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- UWVZAZVPOZTKNM-UHFFFAOYSA-M 1-butyl-4-methylpyridin-1-ium;bromide Chemical compound [Br-].CCCC[N+]1=CC=C(C)C=C1 UWVZAZVPOZTKNM-UHFFFAOYSA-M 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- RSJCFBORABJFGA-UHFFFAOYSA-M 1-butyl-4-methylpyridin-1-ium;iodide Chemical compound [I-].CCCC[N+]1=CC=C(C)C=C1 RSJCFBORABJFGA-UHFFFAOYSA-M 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- PNFDJARFTVDEJY-UHFFFAOYSA-M 1,3-dibutylimidazol-1-ium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCN1C=C[N+](CCCC)=C1 PNFDJARFTVDEJY-UHFFFAOYSA-M 0.000 description 1
- ZUCIHBBZTSYZDU-UHFFFAOYSA-M 1-(3-methylbutyl)pyridin-1-ium;chloride Chemical compound [Cl-].CC(C)CC[N+]1=CC=CC=C1 ZUCIHBBZTSYZDU-UHFFFAOYSA-M 0.000 description 1
- BRVTVERRBKAUQL-UHFFFAOYSA-M 1-(3-methylhexyl)pyridin-1-ium;chloride Chemical compound [Cl-].CCCC(C)CC[N+]1=CC=CC=C1 BRVTVERRBKAUQL-UHFFFAOYSA-M 0.000 description 1
- CNQZEJATTBCPSL-UHFFFAOYSA-M 1-(3-methyloctyl)pyridin-1-ium;chloride Chemical compound [Cl-].CCCCCC(C)CC[N+]1=CC=CC=C1 CNQZEJATTBCPSL-UHFFFAOYSA-M 0.000 description 1
- AANCOISQVBSNFE-UHFFFAOYSA-M 1-(3-methylpentyl)pyridin-1-ium;chloride Chemical compound [Cl-].CCC(C)CC[N+]1=CC=CC=C1 AANCOISQVBSNFE-UHFFFAOYSA-M 0.000 description 1
- UTBPDHFBLINOEF-UHFFFAOYSA-M 1-(4-methylhexyl)pyridin-1-ium;chloride Chemical compound [Cl-].CCC(C)CCC[N+]1=CC=CC=C1 UTBPDHFBLINOEF-UHFFFAOYSA-M 0.000 description 1
- XZYXGAXDRSVNJO-UHFFFAOYSA-M 1-(4-methyloctyl)pyridin-1-ium;chloride Chemical compound [Cl-].CCCCC(C)CCC[N+]1=CC=CC=C1 XZYXGAXDRSVNJO-UHFFFAOYSA-M 0.000 description 1
- FHDQNOXQSTVAIC-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;chloride Chemical compound [Cl-].CCCCN1C=C[N+](C)=C1 FHDQNOXQSTVAIC-UHFFFAOYSA-M 0.000 description 1
- MEMNKNZDROKJHP-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCN1C=C[N+](C)=C1 MEMNKNZDROKJHP-UHFFFAOYSA-M 0.000 description 1
- HOISBTKPPVRFDS-UHFFFAOYSA-M 1-decyl-3-methylimidazol-3-ium;bromide Chemical compound [Br-].CCCCCCCCCC[N+]=1C=CN(C)C=1 HOISBTKPPVRFDS-UHFFFAOYSA-M 0.000 description 1
- HTZVLLVRJHAJJF-UHFFFAOYSA-M 1-decyl-3-methylimidazolium chloride Chemical compound [Cl-].CCCCCCCCCCN1C=C[N+](C)=C1 HTZVLLVRJHAJJF-UHFFFAOYSA-M 0.000 description 1
- OPXNHKQUEXEWAM-UHFFFAOYSA-M 1-dodecyl-3-methylimidazol-3-ium;chloride Chemical compound [Cl-].CCCCCCCCCCCCN1C=C[N+](C)=C1 OPXNHKQUEXEWAM-UHFFFAOYSA-M 0.000 description 1
- GWQYPLXGJIXMMV-UHFFFAOYSA-M 1-ethyl-3-methylimidazol-3-ium;bromide Chemical compound [Br-].CCN1C=C[N+](C)=C1 GWQYPLXGJIXMMV-UHFFFAOYSA-M 0.000 description 1
- BMQZYMYBQZGEEY-UHFFFAOYSA-M 1-ethyl-3-methylimidazolium chloride Chemical compound [Cl-].CCN1C=C[N+](C)=C1 BMQZYMYBQZGEEY-UHFFFAOYSA-M 0.000 description 1
- NKRASMXHSQKLHA-UHFFFAOYSA-M 1-hexyl-3-methylimidazolium chloride Chemical compound [Cl-].CCCCCCN1C=C[N+](C)=C1 NKRASMXHSQKLHA-UHFFFAOYSA-M 0.000 description 1
- WZUUBBQFNXXHQS-UHFFFAOYSA-M 1-pentylpyridin-1-ium;chloride Chemical compound [Cl-].CCCCC[N+]1=CC=CC=C1 WZUUBBQFNXXHQS-UHFFFAOYSA-M 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- AXHIXEAPCGQESY-UHFFFAOYSA-M 3-methyl-1-(3-methylbutyl)pyridin-1-ium;chloride Chemical compound [Cl-].CC(C)CC[N+]1=CC=CC(C)=C1 AXHIXEAPCGQESY-UHFFFAOYSA-M 0.000 description 1
- OXFBEEDAZHXDHB-UHFFFAOYSA-M 3-methyl-1-octylimidazolium chloride Chemical compound [Cl-].CCCCCCCCN1C=C[N+](C)=C1 OXFBEEDAZHXDHB-UHFFFAOYSA-M 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- 229910000809 Alumel Inorganic materials 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 229910019974 CrSi Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910005900 GeTe Inorganic materials 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-O Piperidinium(1+) Chemical compound C1CC[NH2+]CC1 NQRYJNQNLNOLGT-UHFFFAOYSA-O 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-O Pyrazolium Chemical compound C1=CN[NH+]=C1 WTKZEGDFNFYCGP-UHFFFAOYSA-O 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-O Pyrrolidinium ion Chemical compound C1CC[NH2+]C1 RWRDLPDLKQPQOW-UHFFFAOYSA-O 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910007657 ZnSb Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- CZJCMXPZSYNVLP-UHFFFAOYSA-N antimony zinc Chemical compound [Zn].[Sb] CZJCMXPZSYNVLP-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- XUCHXOAWJMEFLF-UHFFFAOYSA-N bisphenol F diglycidyl ether Chemical compound C1OC1COC(C=C1)=CC=C1CC(C=C1)=CC=C1OCC1CO1 XUCHXOAWJMEFLF-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-O hydron;pyrimidine Chemical compound C1=CN=C[NH+]=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-O 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- BJDYCCHRZIFCGN-UHFFFAOYSA-N pyridin-1-ium;iodide Chemical compound I.C1=CC=NC=C1 BJDYCCHRZIFCGN-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- DDJAGKOCVFYQOV-UHFFFAOYSA-N tellanylideneantimony Chemical compound [Te]=[Sb] DDJAGKOCVFYQOV-UHFFFAOYSA-N 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 229910006585 β-FeSi Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/857—Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/852—Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/856—Thermoelectric active materials comprising organic compositions
Definitions
- the present invention relates to a thermoelectric conversion material that performs mutual energy conversion between heat and electricity, and in particular, uses a thermoelectric semiconductor composition containing finely divided thermoelectric semiconductors, heat resistant resins, and ionic liquids, and has thermoelectric conversion characteristics and flexibility.
- the present invention relates to an improved thermoelectric conversion material and a method for producing the same.
- thermoelectric power generation technology that has a simple system and can be reduced in size has attracted attention as a recovery power generation technology for unused waste heat energy generated from fossil fuel resources used in buildings, factories, and the like.
- thermoelectric power generation generally has poor power generation efficiency, and various companies and research institutions are actively researching and developing power generation efficiency.
- it is essential to improve the efficiency of thermoelectric conversion materials. To achieve these, development of materials with high electrical conductivity similar to metal and low thermal conductivity comparable to glass is desired. It is rare.
- S is a Seebeck coefficient
- ⁇ electrical conductivity (reciprocal of resistivity)
- ⁇ thermal conductivity.
- Patent Document 1 discloses a solution that has an insulator on a support and serves as a material for p-type and n-type organic semiconductor elements for the purpose of improving power generation efficiency and producing efficiently.
- coating or printing using is disclosed.
- Non-Patent Document 1 discusses the production of a thin-film thermoelectric conversion element by forming a composition in which bismuth telluride is dispersed in an epoxy resin as a thermoelectric conversion material and forming a film by coating them. Furthermore, as a thermoelectric material (Patent Document 2) in which an organic thermoelectric material such as polythiophene or a derivative thereof and an inorganic thermoelectric material are integrated in a dispersed state, or an inorganic thermoelectric material, the average particle diameter is 1 to 100 nm.
- An organic-inorganic hybrid thermoelectric material Patent Document 3) characterized by comprising inorganic particles substantially free of a protective agent that can hinder carrier delivery and an organic thermoelectric material has been studied.
- Patent Document 1 it is necessary to perform patterning including alignment multiple times by screen printing or the like, such as embedding a conductive layer, p-type and n-type organic semiconductor elements between insulating layers patterned on a support. There is a problem that the process becomes complicated, resulting in a long tact time and high cost, and the thermoelectric conversion characteristics are not sufficient. Further, in the thin film type thermoelectric conversion element of Non-Patent Document 1, since heat treatment is performed at a temperature higher than the decomposition temperature of the binder resin, only the same degree of flexibility as in the case of forming a film of bismuth telluride can be obtained. The conversion characteristics were not sufficient.
- thermoelectric materials of Patent Documents 2 and 3 when the heat treatment is performed at a temperature higher than the decomposition temperature of the organic thermoelectric material after forming the thin film of the thermoelectric material in order to further improve the thermoelectric conversion characteristics, the organic thermoelectric material Disappeared and the thermoelectric conversion characteristics might be deteriorated.
- an object of the present invention is to provide a thermoelectric conversion material that is excellent in thermoelectric performance and flexibility, and can be easily manufactured at low cost, and a manufacturing method thereof.
- thermoelectric conversion material comprising a thin film made of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat resistant resin, and an ionic liquid on a support.
- thermoelectric conversion material according to (1) wherein the amount of the ionic liquid is 0.01 to 50% by mass in the thermoelectric semiconductor composition.
- the cation component of the ionic liquid contains at least one selected from a pyridinium cation and a derivative thereof, an imidazolium cation and a derivative thereof.
- the anionic component of the ionic liquid contains a halide anion.
- the thermoelectric conversion material according to (4), wherein the halide anion contains at least one selected from Cl ⁇ , Br ⁇ , and I ⁇ .
- thermoelectric conversion material according to (1) wherein the heat-resistant resin is at least one selected from polyamide resin, polyamideimide resin, polyimide resin, and epoxy resin. (7) The thermoelectric conversion material according to the above (1), wherein the amount of the thermoelectric semiconductor fine particles is 30 to 99% by mass in the thermoelectric semiconductor composition. (8) The thermoelectric conversion material according to (1), wherein the thermoelectric semiconductor fine particles have an average particle diameter of 10 nm to 200 ⁇ m. (9) The thermoelectric conversion material according to (1), wherein the thermoelectric semiconductor fine particles are fine particles of a bismuth-tellurium-based thermoelectric semiconductor material. (10) The thermoelectric conversion material according to (1), wherein the support is a plastic film.
- thermoelectric conversion material according to (10), wherein the plastic film is at least one selected from a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film.
- a method for producing a thermoelectric conversion material having a thin film made of a thermoelectric semiconductor composition comprising thermoelectric semiconductor fine particles, a heat resistant resin and an ionic liquid on a support, wherein the thermoelectric semiconductor fine particles, heat resistance
- a method for producing a thermoelectric conversion material comprising: applying a thermoelectric semiconductor composition containing a resin and an ionic liquid; drying the thin film to form a thin film; and annealing the thin film.
- the support is a plastic film.
- thermoelectric conversion material that can be easily manufactured at low cost and is excellent in thermoelectric conversion characteristics and flexibility.
- thermoelectric conversion material has a thin film made of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat resistant resin and an ionic liquid on a support.
- the support used for the thermoelectric conversion material of the present invention is not particularly limited as long as it does not affect the decrease in electrical conductivity and the increase in thermal conductivity of the thermoelectric conversion material.
- the support include glass, silicon, and plastic film.
- a plastic film is preferable from the viewpoint of excellent flexibility.
- a plastic film specifically, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, a polyamideimide film, a polyetherketone film, a polyetheretherketone film, Examples thereof include polyphenylene sulfide films and poly (4-methylpentene-1) films.
- the laminated body of these films may be sufficient.
- the performance of the thermoelectric conversion material can be maintained without thermal deformation of the support, and the heat resistance and dimensional stability are high.
- a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film are preferable, and a polyimide film is particularly preferable because of its high versatility.
- the thickness of the support is preferably from 1 to 1000 ⁇ m, more preferably from 10 to 500 ⁇ m, and even more preferably from 20 to 100 ⁇ m, from the viewpoints of flexibility, heat resistance and dimensional stability.
- the plastic film preferably has a decomposition temperature of 300 ° C. or higher.
- thermoelectric semiconductor fine particles used for the thermoelectric conversion material of the present invention can be obtained by pulverizing the thermoelectric semiconductor material to a predetermined size with a fine pulverizer or the like.
- thermoelectric semiconductor material is not particularly limited as long as it can generate a thermoelectromotive force by applying a temperature difference.
- thermoelectric semiconductor material for example, p-type bismuth telluride, n-type bismuth telluride, Bi 2 Te 3 and the like.
- Bismuth-tellurium-based thermoelectric semiconductor materials include telluride-based thermoelectric semiconductor materials such as GeTe and PbTe; antimony-tellurium-based thermoelectric semiconductor materials; zinc-antimony-based thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2 , Zn 4 Sb 3 ; Silicon-germanium-based thermoelectric semiconductor materials such as Bi 2 Se 3 ; bismuth selenide-based thermoelectric semiconductor materials; silicide-based thermoelectric semiconductor materials such as ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73 and Mg 2 Si; oxide-based thermoelectric Semiconductor materials: Heusler materials such as FeVAl, FeVAiSi, and FeVTiAl, sulfur such as TiS 2 A compound thermoelectric semiconductor material or the like is used.
- thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium-based thermoelectric semiconductor material such as p-type bismuth telluride, n-type bismuth telluride, or Bi 2 Te 3 .
- p-type bismuth telluride carriers are holes and the Seebeck coefficient is a positive value, and for example, those represented by Bi x Te 3 Sb 2 -x are preferably used.
- X is preferably 0 ⁇ X ⁇ 0.8, and more preferably 0.4 ⁇ X ⁇ 0.6.
- X is greater than 0 and less than or equal to 0.6 because the Seebeck coefficient and electrical conductivity are increased, and the characteristics as a p-type thermoelectric conversion material are maintained.
- the n-type bismuth telluride is preferably one in which the carrier is an electron and the Seebeck coefficient is a negative value, for example, Bi 2 Te 3 -Y Se Y.
- Y is preferably 0 ⁇ Y ⁇ 3, more preferably 0.1 ⁇ Y ⁇ 2.7. It is preferable that Y is 0 or more and 3 or less because the Seebeck coefficient and electrical conductivity are increased, and the characteristics as an n-type thermoelectric conversion material are maintained.
- the amount of the thermoelectric semiconductor fine particles used in the present invention in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, and still more preferably 70 to 95% by mass. If the blending amount of the thermoelectric semiconductor fine particles is within the above range, the absolute value of the Seebeck coefficient is large, the decrease in electrical conductivity is suppressed, and only the thermal conductivity is reduced. A film having film strength and flexibility is preferably obtained.
- the average particle diameter of the thermoelectric semiconductor fine particles used in the present invention is preferably 10 nm to 200 ⁇ m, more preferably 10 nm to 30 ⁇ m, still more preferably 50 nm to 10 ⁇ m, and particularly preferably 1 to 6 ⁇ m. If it is in the said range, uniform dispersion
- a method for obtaining thermoelectric semiconductor fine particles by pulverizing the thermoelectric semiconductor material is not particularly limited, and is a jet mill, ball mill, bead mill, colloid mill, conical mill, disc mill, edge mill, milling mill, hammer mill, pellet mill, wheelie mill, roller.
- thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction particle size analyzer (CILAS, type 1064), and was the median value of the particle size distribution.
- thermoelectric semiconductor fine particles used in the present invention are preferably those that have been subjected to an annealing treatment (hereinafter sometimes referred to as annealing treatment A).
- annealing treatment A By performing the annealing treatment A, the thermoelectric semiconductor fine particles have improved crystallinity, and further, the surface oxide film of the thermoelectric semiconductor fine particles is removed, so that the Seebeck coefficient of the thermoelectric conversion material is increased and the thermoelectric performance index is further improved. Can be made.
- Annealing treatment A is not particularly limited, but under an inert gas atmosphere such as nitrogen or argon in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor fine particles before preparing the thermoelectric semiconductor composition.
- thermoelectric semiconductor fine particles it is preferably carried out for several minutes to several tens of hours under a reducing gas atmosphere such as hydrogen or under a vacuum condition at a temperature below the melting point of the fine particles.
- a reducing gas atmosphere such as hydrogen or under a vacuum condition at a temperature below the melting point of the fine particles.
- the ionic liquid used in the present invention is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in a wide temperature range of ⁇ 50 to 500 ° C.
- Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, the reduction of the electrical conductivity between the thermoelectric semiconductor fine particles can be effectively suppressed as a conductive auxiliary agent.
- the ionic liquid has high polarity based on the aprotic ionic structure and is excellent in compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric conversion material can be made uniform.
- ionic liquids can be used.
- nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium, etc.
- the cation component of the ionic liquid is a pyridinium cation and a derivative thereof from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor fine particles and resin, and suppression of decrease in electrical conductivity of the gap between thermoelectric semiconductor fine particles. It is preferable to contain at least one selected from imidazolium cations and derivatives thereof.
- the anion component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ and I ⁇ .
- ionic liquids in which the cation component includes a pyridinium cation and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, 3-methyl-hexylpyridinium Chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, 1-butyl-4- Chill pyridinium iodide and the like. Of these, 1-butylpyr
- ionic liquids in which the cation component includes an imidazolium cation and derivatives thereof include [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2 -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-Tetradecyl-3-methylimida 1-ethyl-3-methylimidazolium te
- the ionic liquid preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, and more preferably 10 ⁇ 6 S / cm or more. If the ionic conductivity is in the above range, it is possible to effectively suppress a reduction in electrical conductivity between the thermoelectric semiconductor fine particles as a conductive auxiliary agent.
- the above ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive additive can be maintained even when a thin film made of a thermoelectric semiconductor composition is annealed as described later.
- the ionic liquid has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of preferably 10% or less, more preferably 5% or less, and further preferably 1% or less. .
- TG thermogravimetry
- the blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass.
- the blending amount of the ionic liquid is within the above range, a decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
- the heat resistant resin used in the present invention serves as a binder between the thermoelectric semiconductor fine particles, and is for increasing the flexibility of the thermoelectric conversion material.
- the heat-resistant resin is not particularly limited, but when the thermoelectric semiconductor fine particles are crystal-grown by annealing treatment or the like for the thin film made of the thermoelectric semiconductor composition, various materials such as mechanical strength and thermal conductivity as the resin are used.
- a heat resistant resin that maintains the physical properties without being damaged is used.
- the heat resistant resin include polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, polybenzoxazole resin, polybenzimidazole resin, epoxy resin, and copolymers having a chemical structure of these resins. Is mentioned.
- the heat resistant resins may be used alone or in combination of two or more.
- polyamide resin, polyamideimide resin, polyimide resin, and epoxy resin are preferable because they have higher heat resistance and do not adversely affect the crystal growth of thermoelectric semiconductor fine particles in the thin film, and have excellent flexibility.
- More preferred are polyamide resins, polyamideimide resins, and polyimide resins.
- a polyimide resin is more preferable as the heat-resistant resin in terms of adhesion to the polyimide film.
- the polyimide resin is a general term for polyimide and its precursor.
- the heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, the flexibility of the thermoelectric conversion material can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed as described later.
- the heat-resistant resin preferably has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and still more preferably 1% or less. . If the mass reduction rate is in the above range, the flexibility of the thermoelectric conversion material can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed as described later. .
- TG thermogravimetry
- the blending amount of the heat resistant resin in the thermoelectric semiconductor composition is preferably 0 to 40% by mass, more preferably 0.5 to 20% by mass, and further preferably 1 to 20% by mass. When the blending amount of the heat resistant resin is within the above range, a film having both high thermoelectric performance and film strength can be obtained.
- the thermoelectric semiconductor composition used in the present invention may further include a dispersant, a film-forming aid, a light stabilizer, an antioxidant, an adhesive as necessary.
- a dispersant such as an imparting agent, a plasticizer, a colorant, a resin stabilizer, a filler, a pigment, a conductive filler, a conductive polymer, and a curing agent may be included. These additives can be used alone or in combination of two or more.
- thermoelectric semiconductor fine particles, the ionic liquid, and the ionic liquid can be obtained by a known method such as an ultrasonic homogenizer, a spiral mixer, a planetary mixer, a disperser, or a hybrid mixer. What is necessary is just to add the said heat resistant resin, the said other additive as needed, and also a solvent, and mix and disperse
- the solvent include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methyl pyrrolidone, and ethyl cellosolve. These solvents may be used alone or in a combination of two or more.
- the solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
- the thin film comprising the thermoelectric semiconductor composition can be formed by applying the thermoelectric semiconductor composition on a support and drying, as will be described in the method for producing a thermoelectric conversion material of the present invention described later. .
- a large-area thermoelectric conversion material can be obtained easily at low cost.
- the thickness of the thin film made of the thermoelectric semiconductor composition is not particularly limited, but is preferably 100 nm to 200 ⁇ m, more preferably 300 nm to 150 ⁇ m, and still more preferably 5 to 150 ⁇ m from the viewpoint of thermoelectric performance and film strength.
- thermoelectric conversion material of the present invention can be used alone.
- a plurality of thermoelectric conversion materials are electrically connected in series via electrodes, and thermally connected in parallel via a ceramic or insulating flexible sheet.
- the thermoelectric conversion element can be used for power generation and cooling.
- thermoelectric conversion material In the method for producing a thermoelectric conversion material of the present invention, the thermoelectric semiconductor composition is applied onto a support, dried, and a thin film is formed (hereinafter also referred to as a thin film forming process). It includes a step of annealing (hereinafter sometimes referred to as an annealing step). Hereinafter, the steps included in the present invention will be sequentially described.
- thermoelectric semiconductor composition of the present invention As a method for applying the thermoelectric semiconductor composition of the present invention on a support, known methods such as screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, doctor blade, and the like are available. There are no particular restrictions. When the coating film is formed in a pattern, screen printing, slot die coating, or the like that can be easily formed using a screen plate having a desired pattern is preferably used. Next, a thin film is formed by drying the obtained coating film. As a drying method, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted.
- the heating temperature is usually 80 to 150 ° C., and the heating time is usually several seconds to several tens of minutes, although it varies depending on the heating method.
- the heating temperature is not particularly limited as long as it is in a temperature range in which the used solvent can be dried.
- the obtained thermoelectric conversion material is preferably further subjected to annealing treatment (hereinafter sometimes referred to as annealing treatment B) after the thin film is formed.
- annealing treatment B annealing treatment
- the annealing treatment B is not particularly limited, but is usually performed under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled. Although depending on the heat-resistant temperature, etc., it is carried out at 100 to 500 ° C. for several minutes to several tens of hours.
- thermoelectric conversion material having high thermoelectric performance and low cost can be obtained by a simple method.
- thermoelectric performance evaluation and the flexibility evaluation of the thermoelectric conversion materials produced in Examples and Comparative Examples were performed by calculating the electrical conductivity, Seebeck coefficient and thermal conductivity by the following methods.
- ⁇ Thermoelectric performance evaluation> (A) Electrical conductivity The thermoelectric conversion materials produced in the examples and comparative examples were measured with a surface resistance measuring device (Mitsubishi Chemical Co., Ltd., trade name: Loresta GP MCP-T600). Measurement was made and electric conductivity ( ⁇ ) was calculated.
- B Seebeck coefficient The thermoelectromotive force of the thermoelectric conversion material produced by the Example and the comparative example based on JISC2527: 1994 was measured, and Seebeck coefficient (S) was computed.
- thermoelectromotive force was measured from the electrode adjacent to the thermocouple installation position.
- the distance between both ends of the sample for measuring the temperature difference and the electromotive force is 25 mm, one end is kept at 20 ° C., and the other end is heated from 25 ° C. to 50 ° C. in 1 ° C. increments.
- the electric power was measured, and the Seebeck coefficient (S) was calculated from the slope.
- the installation position of the thermocouple and the electrode is symmetrical with respect to the center line of the thin film, and the distance between the thermocouple and the electrode is 1 mm.
- ⁇ Flexibility evaluation> About the thermoelectric conversion material produced in the Example and the comparative example, the flexibility of the thin film when the mandrel diameter was 10 mm was evaluated by a cylindrical mandrel method. Before and after the cylindrical mandrel test, the appearance and thermoelectric performance of the thermoelectric conversion material were evaluated, and the flexibility was evaluated according to the following criteria.
- thermoelectric conversion material before and after the test When there is no abnormality in the appearance of the thermoelectric conversion material before and after the test and the dimensionless thermoelectric figure of merit ZT does not change: When there is no abnormality in the appearance of the thermoelectric conversion material before and after the test and the decrease in ZT is less than 30%: ⁇ When cracks such as cracks occur in the thermoelectric conversion material after the test, or ZT decreases by 30% or more: ⁇
- thermoelectric semiconductor fine particles A p-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 (manufactured by High-Purity Chemical Laboratory, particle size: 180 ⁇ m), a bismuth-tellurium-based thermoelectric semiconductor material, is used in an ultra-fine grinding machine (Aisin Nano Technologies, Nanojet Mizer NJ- 50-B type) was used and pulverized in a nitrogen gas atmosphere to produce three types of thermoelectric semiconductor fine particles T1 to T3 having different average particle diameters.
- the thermoelectric semiconductor fine particles obtained by pulverization were subjected to particle size distribution measurement using a laser diffraction particle size analyzer (CILAS, model 1064).
- the average particle diameters of the fine particles T1 to T3 of the obtained bismuth-tellurium-based thermoelectric semiconductor material were 0.66 ⁇ m (T1), 2.8 ⁇ m (T2), and 5.5 ⁇ m (T3), respectively. Further, Bi 2 Se 3 (manufactured by High Purity Chemical Laboratory, particle size: 80 ⁇ m), which is a bismuth selenide thermoelectric semiconductor material, is crushed in the same manner as described above, and a bismuth selenide thermoelectric semiconductor material having an average particle size of 0.88 ⁇ m. Thermoelectric semiconductor fine particles T4 were prepared.
- TiS 2 manufactured by High-Purity Chemical Laboratory
- TiS 2 which is a sulfide-based thermoelectric semiconductor material
- Example 1 (1) Preparation of thermoelectric semiconductor composition
- thermoelectric semiconductor composition in which 2 ⁇ 10 ⁇ 4 S / cm was mixed and dispersed was prepared.
- thermoelectric conversion material (2) Manufacture of thermoelectric conversion material
- the coating liquid prepared in (1) is applied onto a polyimide film (made by Toray DuPont, trade name “Kapton”, thickness 50 ⁇ m) as a support by spin coating, The film was dried at 150 ° C. for 10 minutes under an argon atmosphere to form a thin film having a thickness of 10 ⁇ m.
- the fine particles of the thermoelectric semiconductor material were grown to produce a thermoelectric conversion material.
- thermoelectric conversion material was produced in the same manner as in Example 1 except that the thermoelectric semiconductor fine particles were changed from T1 to T2.
- Example 3 A thermoelectric conversion material was produced in the same manner as in Example 1 except that the thermoelectric semiconductor fine particles were changed from T1 to T3.
- Example 4 The ionic liquid is changed from [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] to [1-butyl-3- (2-hydroxyethyl) imidazolium tetrafluoroborate] (in Table 1, ionic liquid 2, A thermoelectric conversion material was produced in the same manner as in Example 2 except that the electric conductivity was changed to 1.8 ⁇ 10 ⁇ 4 S / cm.
- thermoelectric conversion material was produced in the same manner as in Example 1 except that the fine particle T1 of the bismuth-tellurium-based thermoelectric semiconductor material was changed to the thermoelectric semiconductor fine particle T4 of the bismuth selenide-based thermoelectric semiconductor material.
- thermoelectric conversion material was produced in the same manner as in Example 1 except that.
- thermoelectric conversion material was produced in the same manner as in Example 2 except that the change was made to 5 ⁇ 10 ⁇ 5 S / cm.
- thermoelectric conversion material was produced in the same manner as in Example 2 except that the degree was changed to 1.4 ⁇ 10 ⁇ 4 S / cm.
- Example 9 A thermoelectric conversion material was produced in the same manner as in Example 7, except that the thickness of the thin film made of the thermoelectric semiconductor composition was changed from 10 ⁇ m to 100 ⁇ m.
- Example 10 Except for changing the ionic liquid to 1-butyl-4-methylpyridinium iodide (manufactured by Sigma-Aldrich Japan Co., Ltd., Table 1, ionic liquid 5, electrical conductivity: 2.4 ⁇ 10 ⁇ 4 S / cm) In the same manner as in Example 2, a thermoelectric conversion material was produced.
- thermoelectric conversion material was produced in the same manner as in Example 7 except that the thermoelectric semiconductor fine particles were changed from T1 to T5.
- thermoelectric semiconductor fine particles T1 The compounding amount of the thermoelectric semiconductor fine particles T1 is changed from 90% by mass to 85, 80 and 55% by mass as shown in Table 1, and the compounding amount of the ionic liquid 1 from 5% by mass to 10, 15 as shown in Table 1.
- a thermoelectric conversion material was produced in the same manner as in Example 1 except that the content was changed to 40% by mass.
- thermoelectric conversion material was produced in the same manner as in Example 2 except that the ionic liquid was not added and the blending amount of the polyimide resin was changed from 5 mass% to 10 mass%.
- thermoelectric conversion material (Comparative Example 2) A mixture of poly (3,4-ethylenedioxythiophene), which is a conductive polymer, and polystyrene sulfonate ions (PEDOT: PSS in Table 1), ionic liquid 1 and thermoelectric semiconductor fine particles T2 without adding a heat resistant resin.
- a coating liquid composed of a thermoelectric semiconductor composition mixed and dispersed with the composition shown in Table 1 was prepared, and a thermoelectric conversion material was produced in the same manner as in Example 2.
- thermoelectric conversion material was produced in the same manner as in Comparative Example 2 except that the annealing treatment B was not performed.
- thermoelectric conversion material was produced in the same manner as in Example 11 except that the ionic liquid was not added and the blending amount of the polyimide resin was changed from 5 mass% to 10 mass%.
- Table 2 shows the results of thermoelectric performance evaluation and flexibility evaluation of the thermoelectric conversion materials obtained in Examples 1 to 14 and Comparative Examples 1 to 4.
- thermoelectric conversion materials of Examples 1 to 10 and 12 to 14 have a dimensionless thermoelectric figure of merit ZT of one order or more higher than that of Comparative Example 1 in which no ionic liquid is added, and before and after the cylindrical mandrel test, It was found that cracks such as cracks did not occur in the thermoelectric conversion material, the dimensionless thermoelectric figure of merit ZT hardly decreased, and the flexibility was excellent. Furthermore, it was found that the dimensionless thermoelectric figure of merit ZT and flexibility are far superior to Comparative Examples 2 and 3 in which no heat resistant resin is used (only a conductive polymer having low heat resistance is used).
- thermoelectric conversion material of Example 11 using the thermoelectric semiconductor fine particles T5 of the sulfide-based thermoelectric semiconductor material has a dimensionless thermoelectric performance index as compared with Comparative Example 4 in which no ionic liquid is added and only T5 and a heat-resistant resin are used. It was found that ZT was higher by 3 orders or more and thermoelectric conversion characteristics were excellent.
- thermoelectric conversion material of the present invention is used as a thermoelectric conversion element that performs mutual energy conversion between heat and electricity and is incorporated in a module. Specifically, a thermoelectric conversion material that can be easily manufactured at low cost and has excellent thermoelectric performance is obtained. For example, when installing on a wall surface of a building, a low-cost thermoelectric conversion material is used for a large area. Can be used as
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pyridine Compounds (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
Abstract
Description
このような中で、特許文献1には、発電効率の向上及び効率よく製造することを目的として、支持体上に、絶縁体を有し、p型、n型有機半導体素子の材料となる溶液を用いて塗布又は印刷後に、乾燥する工程を経ることにより作製した熱電変換素子の製造方法が開示されている。また、非特許文献1には、熱電変換材料として、ビスマステルライドをエポキシ樹脂に分散した組成物とし、それらを塗布により成膜することで、薄膜型熱電変換素子を作製する検討がなされている。さらに、ポリチオフェンもしくはその誘導体などの有機熱電材料と、無機熱電材料とが分散状態で一体化されている熱電材料(特許文献2)や、無機熱電材料として、平均粒子径が1~100nmであり、キャリアの受け渡しの阻害要因となりうる保護剤が実質的に存在しない無機粒子と、有機熱電材料とからなることを特徴とする有機-無機ハイブリッド熱電材料(特許文献3)が検討されている。
また、非特許文献1の薄膜型熱電変換素子では、バインダー樹脂の分解温度以上の高温で加熱処理を行うため、ビスマステルライドのみを成膜した場合と同程度の屈曲性しか得られず、しかも熱電変換特性が十分ではなかった。
さらに、特許文献2、3の熱電材料は、熱電変換特性をより向上させるために、熱電材料の薄膜を形成した後に有機熱電材料の分解温度以上の高温で加熱処理を行った場合、有機熱電材料が消失してしまい、熱電変換特性が低下するおそれがあった。
すなわち、本発明は、以下の(1)~(13)を提供するものである。
(1)支持体上に、熱電半導体微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物からなる薄膜を有することを特徴とする熱電変換材料。
(2)前記イオン液体の配合量が、前記熱電半導体組成物中0.01~50質量%である上記(1)に記載の熱電変換材料。
(3)前記イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含む上記(1)に記載の熱電変換材料。
(4)前記イオン液体のアニオン成分が、ハロゲン化物アニオンを含む上記(1)に記載の熱電変換材料。
(5)前記ハロゲン化物アニオンが、Cl-、Br-、I-から選ばれる少なくとも1種を含む上記(4)に記載の熱電変換材料。
(6)前記耐熱性樹脂が、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂から選ばれる少なくとも1種である上記(1)に記載の熱電変換材料。
(7)前記熱電半導体微粒子の配合量が、前記熱電半導体組成物中30~99質量%である上記(1)に記載の熱電変換材料。
(8)前記熱電半導体微粒子の平均粒径が、10nm~200μmである上記(1)に記載の熱電変換材料。
(9)前記熱電半導体微粒子が、ビスマス-テルル系熱電半導体材料の微粒子である上記(1)に記載の熱電変換材料。
(10)前記支持体が、プラスチックフィルムである上記(1)に記載の熱電変換材料。
(11)前記プラスチックフィルムが、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムから選ばれる少なくとも1種である上記(10)に記載の熱電変換材料。
(12)支持体上に、熱電半導体微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物からなる薄膜を有する熱電変換材料の製造方法であって、支持体上に、熱電半導体微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物を塗布し、乾燥し、薄膜を形成する工程、さらに該薄膜をアニール処理する工程を含むことを特徴とする熱電変換材料の製造方法。
(13)前記支持体が、プラスチックフィルムである上記(12)に記載の熱電変換材料の製造方法。
本発明の熱電変換材料は、支持体上に、熱電半導体微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物からなる薄膜を有することを特徴とする。
本発明の熱電変換材料に用いる支持体は、熱電変換材料の電気伝導率の低下、熱伝導率の増加に影響を及ぼさないものであれば、特に制限されない。支持体としては、例えば、ガラス、シリコン、プラスチックフィルム等が挙げられる。なかでも、屈曲性に優れるという点から、プラスチックフィルムが好ましい。
プラスチックフィルムとしては、具体的には、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルム、ポリエーテルケトンフィルム、ポリエーテル・エーテルケトンフィルム、ポリフェニレンサルファイドフィルム、ポリ(4-メチルペンテン-1)フィルム等が挙げられる。また、これらフィルムの積層体であってもよい。
これらの中でも、熱電半導体組成物からなる薄膜をアニール処理した場合でも、支持体が熱変形することなく、熱電変換材料の性能を維持することができ、耐熱性及び寸法安定性が高いという点から、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムが好ましく、さらに、汎用性が高いという点から、ポリイミドフィルムが特に好ましい。
また、上記プラスチックフィルムは、分解温度が300℃以上であることが好ましい。
本発明の熱電変換材料に用いる熱電半導体微粒子は、熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕することにより得られる。
前記p型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiXTe3Sb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.6以下であるとゼーベック係数と電気伝導率が大きくなり、p型熱電変換材料としての特性が維持されるので好ましい。
また、前記n型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、Bi2Te3-YSeYで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3であり、より好ましくは0.1<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、n型熱電変換材料としての特性が維持されるので好ましい。
前記熱電半導体材料を粉砕して熱電半導体微粒子を得る方法は特に限定されず、ジェットミル、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、製粉ミル、ハンマーミル、ペレットミル、ウィリーミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
なお、熱電半導体微粒子の平均粒径は、レーザー回折式粒度分析装置(CILAS社製、1064型)にて測定することにより得られ、粒径分布の中央値とした。
本発明で用いるイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50~500℃の幅広い温度領域において液体で存在し得る塩をいう。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電変換材料の電気伝導率を均一にすることができる。
本発明に用いる耐熱性樹脂は、熱電半導体微粒子間のバインダーとして働き、熱電変換材料の屈曲性を高めるためのものである。該耐熱性樹脂は、特に制限されるものではないが、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体微粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される耐熱性樹脂を用いる。
前記耐熱性樹脂としては、例えば、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂、エポキシ樹脂、及びこれらの樹脂の化学構造を有する共重合体等が挙げられる。前記耐熱性樹脂は、単独でも又は2種以上組み合わせて用いてもよい。これらの中でも、耐熱性がより高く、且つ薄膜中の熱電半導体微粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。前述の支持体として、ポリイミドフィルムを用いた場合、該ポリイミドフィルムとの密着性などの点から、耐熱性樹脂としては、ポリイミド樹脂がより好ましい。なお、本発明においてポリイミド樹脂とは、ポリイミド及びその前駆体を総称する。
前記溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、メチルピロリドン、エチルセロソルブ等の溶媒などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。
本発明の熱電変換材料の製造方法は、支持体上に、前記熱電半導体組成物を塗布し、乾燥し、薄膜を形成する工程(以下、薄膜形成工程ということがある。)、さらに該薄膜をアニール処理する工程(以下、アニール処理工程ということがある。)を含むことを特徴とする。以下、本発明に含まれる工程について、順次説明する。
本発明の熱電半導体組成物を、支持体上に塗布する方法としては、スクリーン印刷、フレキソ印刷、グラビア印刷、スピンコート、ディップコート、ダイコート、スプレーコート、バーコート、ドクターブレード等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷、スロットダイコート等が好ましく用いられる。
次いで、得られた塗膜を乾燥することにより、薄膜が形成されるが、乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒~数十分である。
また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒を乾燥できる温度範囲であれば、特に制限はない。
得られた熱電変換材料は、薄膜形成後、さらにアニール処理(以下、アニール処理Bということがある。)を行うことが好ましい。該アニール処理Bを行うことで、熱電性能を安定化させるとともに、薄膜中の熱電半導体微粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。アニール処理Bは、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる樹脂及びイオン性流体の耐熱温度等に依存するが、100~500℃で、数分~数十時間行われる。
<熱電性能評価>
(a)電気伝導率
実施例及び比較例で作製した熱電変換材料を、表面抵抗測定装置(三菱化学社製、商品名:ロレスタGP MCP-T600)により、四端子法で試料の表面抵抗値を測定し、電気伝導率(σ)を算出した。
(b)ゼーベック係数
JIS C 2527:1994に準拠して実施例及び比較例で作製した熱電変換材料の熱起電力を測定し、ゼーベック係数(S)を算出した。作製した熱変換材料の一端を加熱して、熱変換材料の両端に生じる温度差をクロメル-アルメル熱電対を使用し測定し、熱電対設置位置に隣接した電極から熱起電力を測定した。
具体的には、温度差と起電力を測定する試料の両端間距離を25mmとし、一端を20℃に保ち、他端を25℃から50℃まで1℃刻みで加熱し、その際の熱起電力を測定して、傾きからゼーベック係数(S)を算出した。なお、熱電対及び電極の設置位置は、薄膜の中心線に対し、互いに対称の位置にあり、熱電対と電極の距離は1mmである。
(c)熱伝導率
熱伝導率の測定には3ω法を用いて熱伝導率(λ)を算出した。
得られた、電気伝導率、ゼーベック係数及び熱伝導率から、熱電性能指数Z(Z=σS2/λ)を求め、無次元熱電性能指数ZT(T=300K)を算出した。
<屈曲性評価>
実施例及び比較例で作製した熱電変換材料について、円筒形マンドレル法によりマンドレル径φ10mmの時の薄膜の屈曲性を評価した。円筒形マンドレル試験前後で、熱電変換材料の外観評価及び熱電性能評価を行い、以下の基準で屈曲性を評価した。
試験前後で熱電変換材料の外観に異常が見られず無次元熱電性能指数ZTが変化しない場合:◎
試験前後で熱電変換材料の外観に異常が見られずZTの減少が30%未満であった場合:○
試験後に熱電変換材料にクラック等の割れが発生したり、ZTが30%以上減少した場合:×
ビスマス-テルル系熱電半導体材料であるp型ビスマステルライドBi0.4Te3Sb1.6(高純度化学研究所製、粒径:180μm)を、超微粉砕機(アイシンナノテクノロジーズ社製、ナノジェットマイザー NJ-50-B型)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径の異なる3種類の熱電半導体微粒子T1~T3を作製した。粉砕して得られた熱電半導体微粒子に関して、レーザー回折式粒度分析装置(CILAS社製、1064型)により粒度分布測定を行った。
なお、得られたビスマス-テルル系熱電半導体材料の微粒子T1~T3の平均粒径は、それぞれ、0.66μm(T1)、2.8μm(T2)、5.5μm(T3)であった。
また、ビスマスセレナイド系熱電半導体材料であるBi2Se3(高純度化学研究所製、粒径:80μm)を上記と同様に粉砕し、平均粒径0.88μmのビスマスセレナイド系熱電半導体材料の熱電半導体微粒子T4を作製した。
また、硫化物系熱電半導体材料であるTiS2(高純度化学研究所製)を上記と同様に粉砕し、平均粒径2.0μmの硫化物系熱電半導体材料の熱電半導体微粒子T5を作製した。
(1)熱電半導体組成物の作製
表1に示す実施例1に記載した配合量になるように、得られたビスマス-テルル系熱電半導体材料の微粒子T1、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物-co-4,4´-オキシジアニリン)溶液、溶媒:メチルピロリドン、固形分濃度:5質量%、分解温度:490℃、熱重量測定による300℃における質量減少率:0.5%)、及びイオン液体として[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド](表1中、イオン液体1、電気伝導度:7.2×10-4S/cm)を混合分散した熱電半導体組成物からなる塗工液を調製した。
(1)で調製した塗工液を、スピンコート法により支持体であるポリイミドフィルム(東レデュポン社製、商品名「カプトン」、厚さ50μm)上に塗布し、温度150℃で、10分間アルゴン雰囲気下で乾燥し、厚さが10μmの薄膜を形成した。次いで、得られた薄膜に対し、水素とアルゴンの混合ガス(水素:アルゴン=5体積%:95体積%)雰囲気下で、加温速度5K/minで昇温し、350℃で1時間保持し、薄膜形成後のアニール処理Bを行うことにより、熱電半導体材料の微粒子を結晶成長させ、熱電変換材料を作製した。
熱電半導体微粒子をT1からT2に変えたこと以外は、実施例1と同様にして、熱電変換材料を作製した。
熱電半導体微粒子をT1からT3に変えたこと以外は、実施例1と同様にして、熱電変換材料を作製した。
イオン液体を[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]から[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト](表1中、イオン液体2、電気伝導度:1.8×10-4S/cm)に変えたこと以外は、実施例2と同様にして、熱電変換材料を作製した。
ビスマス-テルル系熱電半導体材料の微粒子T1から、ビスマスセレナイド系熱電半導体材料の熱電半導体微粒子T4に変えたこと以外は、実施例1と同様にして、熱電変換材料を作製した。
耐熱性樹脂を、エポキシ樹脂(Hexion Specialty Chemicals社製、EPON 862、分解温度:300℃)に変え、硬化剤(Dixie Chemicals社製、 methylhexahydrophthalic anhydride)をエポキシ樹脂に対して、4.25質量%添加したこと以外は、実施例1と同様にして、熱電変換材料を作製した。
イオン液体を[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]から1-ブチル-4-メチルピリジニウムブロミド(東京化成株式会社製、表1中、イオン液体3、電気伝導度:3.5×10-5S/cm)に変えたこと以外は、実施例2と同様にして、熱電変換材料を作製した。
イオン液体を[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]から1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート(東京化成株式会社製、表1中、イオン液体4、電気伝導度:1.4×10-4S/cm)に変えたこと以外は、実施例2と同様にして、熱電変換材料を作製した。
熱電半導体組成物からなる薄膜の厚みを10μmから100μmに変えたこと以外は、実施例7と同様にして、熱電変換材料を作製した。
イオン液体を1-ブチル-4-メチルピリジニウムヨージド(シグマアルドリッチジャパン株式会社製、表1中、イオン液体5、電気伝導度:2.4×10-4S/cm)に変えたこと以外は、実施例2と同様にして、熱電変換材料を作製した。
熱電半導体微粒子をT1からT5に変えたこと以外は、実施例7と同様にして、熱電変換材料を作製した。
熱電半導体微粒子T1の配合量を90質量%から、表1に示すように85、80、55質量%に、またイオン液体1の配合量を5質量%から、表1に示すように10、15、40質量%にした以外は、実施例1と同様にして、熱電変換材料を作製した。
イオン液体を加えず、ポリイミド樹脂の配合量を5質量%から10質量%にした以外は実施例2と同様にして熱電変換材料を作製した。
耐熱性樹脂を加えず、導電性高分子であるポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸イオンの混合物(表1中、PEDOT:PSS)とイオン液体1と熱電半導体微粒子T2を表1に記載の配合で混合分散した熱電半導体組成物からなる塗工液を調製し、実施例2と同様にして、熱電変換材料を作製した。
アニール処理Bを行わないこと以外は、比較例2と同様にして、熱電変換材料を作製した。
イオン液体を加えず、ポリイミド樹脂の配合量を5質量%から10質量%にした以外は実施例11と同様にして熱電変換材料を作製した。
硫化物系熱電半導体材料の熱電半導体微粒子T5を用いた実施例11の熱電変換材料については、イオン液体を加えない、T5と耐熱性樹脂のみからなる比較例4に比べて、無次元熱電性能指数ZTが3オーダー以上高く、熱電変換特性が優れていることが分かった。
Claims (13)
- 支持体上に、熱電半導体微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物からなる薄膜を有することを特徴とする熱電変換材料。
- 前記イオン液体の配合量が、前記熱電半導体組成物中0.01~50質量%である請求項1に記載の熱電変換材料。
- 前記イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含む請求項1に記載の熱電変換材料。
- 前記イオン液体のアニオン成分が、ハロゲン化物アニオンを含む請求項1に記載の熱電変換材料。
- 前記ハロゲン化物アニオンが、Cl-、Br-、I-から選ばれる少なくとも1種を含む請求項4に記載の熱電変換材料。
- 前記耐熱性樹脂が、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂から選ばれる少なくとも1種である請求項1に記載の熱電変換材料。
- 前記熱電半導体微粒子の配合量が、前記熱電半導体組成物中30~99質量%である請求項1に記載の熱電変換材料。
- 前記熱電半導体微粒子の平均粒径が、10nm~200μmである請求項1に記載の熱電変換材料。
- 前記熱電半導体微粒子が、ビスマス-テルル系熱電半導体材料の微粒子である請求項1に記載の熱電変換材料。
- 前記支持体が、プラスチックフィルムである請求項1に記載の熱電変換材料。
- 前記プラスチックフィルムが、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムから選ばれる少なくとも1種である請求項10に記載の熱電変換材料。
- 支持体上に、熱電半導体微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物からなる薄膜を有する熱電変換材料の製造方法であって、支持体上に、熱電半導体微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物を塗布し、乾燥し、薄膜を形成する工程、さらに該薄膜をアニール処理する工程を含むことを特徴とする熱電変換材料の製造方法。
- 前記支持体が、プラスチックフィルムである請求項12に記載の熱電変換材料の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14833738.9A EP2884550B1 (en) | 2013-08-09 | 2014-07-25 | Thermoelectric conversion material and production method therefor |
KR1020157006837A KR101547450B1 (ko) | 2013-08-09 | 2014-07-25 | 열전 변환 재료 및 그의 제조 방법 |
CN201480002414.6A CN104641479B (zh) | 2013-08-09 | 2014-07-25 | 热电转换材料及其制造方法 |
US14/428,141 US9431593B2 (en) | 2013-08-09 | 2014-07-25 | Thermoelectric conversion material and production method therefor |
JP2015502431A JP5712340B1 (ja) | 2013-08-09 | 2014-07-25 | 熱電変換材料及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013166632 | 2013-08-09 | ||
JP2013-166632 | 2013-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015019871A1 true WO2015019871A1 (ja) | 2015-02-12 |
Family
ID=52461210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069700 WO2015019871A1 (ja) | 2013-08-09 | 2014-07-25 | 熱電変換材料及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9431593B2 (ja) |
EP (1) | EP2884550B1 (ja) |
JP (1) | JP5712340B1 (ja) |
KR (1) | KR101547450B1 (ja) |
CN (1) | CN104641479B (ja) |
TW (1) | TWI620353B (ja) |
WO (1) | WO2015019871A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017011166A (ja) * | 2015-06-24 | 2017-01-12 | リンテック株式会社 | 熱電半導体組成物、並びに熱電変換材料及びその製造方法 |
JP2017041540A (ja) * | 2015-08-20 | 2017-02-23 | リンテック株式会社 | ペルチェ冷却素子及びその製造方法 |
JPWO2016104615A1 (ja) * | 2014-12-26 | 2017-10-05 | リンテック株式会社 | ペルチェ冷却素子及びその製造方法 |
JP2018516457A (ja) * | 2015-04-14 | 2018-06-21 | エルジー エレクトロニクス インコーポレイティド | 熱電素材及びこれを含む熱電素子と熱電モジュール |
WO2018110403A1 (ja) * | 2016-12-13 | 2018-06-21 | リンテック株式会社 | 熱電変換材料及びその製造方法 |
WO2018159291A1 (ja) * | 2017-02-28 | 2018-09-07 | リンテック株式会社 | 熱電変換モジュール及びその製造方法 |
JP2019153664A (ja) * | 2018-03-02 | 2019-09-12 | 株式会社ミクニ | 熱電変換モジュールの製造方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10566515B2 (en) | 2013-12-06 | 2020-02-18 | Sridhar Kasichainula | Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device |
US10367131B2 (en) | 2013-12-06 | 2019-07-30 | Sridhar Kasichainula | Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device |
US11024789B2 (en) | 2013-12-06 | 2021-06-01 | Sridhar Kasichainula | Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs |
US10290794B2 (en) | 2016-12-05 | 2019-05-14 | Sridhar Kasichainula | Pin coupling based thermoelectric device |
US20180090660A1 (en) | 2013-12-06 | 2018-03-29 | Sridhar Kasichainula | Flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs |
US10141492B2 (en) | 2015-05-14 | 2018-11-27 | Nimbus Materials Inc. | Energy harvesting for wearable technology through a thin flexible thermoelectric device |
US11276810B2 (en) | 2015-05-14 | 2022-03-15 | Nimbus Materials Inc. | Method of producing a flexible thermoelectric device to harvest energy for wearable applications |
US11283000B2 (en) | 2015-05-14 | 2022-03-22 | Nimbus Materials Inc. | Method of producing a flexible thermoelectric device to harvest energy for wearable applications |
CN106328801B (zh) * | 2016-09-21 | 2019-03-01 | 国家纳米科学中心 | 一种通过界面调控法制备溶剂化纳米晶热电薄膜的方法 |
TWI608639B (zh) | 2016-12-06 | 2017-12-11 | 財團法人工業技術研究院 | 可撓熱電結構與其形成方法 |
JP7486949B2 (ja) * | 2017-03-16 | 2024-05-20 | リンテック株式会社 | 熱電変換モジュール用電極材料及びそれを用いた熱電変換モジュール |
CN107275019B (zh) * | 2017-06-14 | 2018-12-11 | 上海萃励电子科技有限公司 | 一种具有局部制冷功能的ptc贴片元件 |
CN107527999B (zh) * | 2017-08-25 | 2020-03-31 | 京东方科技集团股份有限公司 | 半导体混合材料及其制备方法、薄膜晶体管以及电子装置 |
KR20200070222A (ko) * | 2017-10-24 | 2020-06-17 | 히타치가세이가부시끼가이샤 | 열전 변환 모듈의 제조 방법, 열전 변환 모듈 및 열전 변환 모듈용 접합재 |
KR102080377B1 (ko) * | 2017-12-31 | 2020-02-21 | 서울대학교산학협력단 | 열전 물질 및 그 형성 방법 |
US11974504B2 (en) * | 2019-12-16 | 2024-04-30 | Lintec Corporation | Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body |
CN111403586B (zh) * | 2020-03-30 | 2023-05-02 | 自贡市吉欣科技有限公司 | 一种N型TiS2基热电材料及其制备方法 |
KR20230017782A (ko) * | 2020-05-29 | 2023-02-06 | 린텍 가부시키가이샤 | 열전 변환 모듈 및 그 제조 방법 |
CN113594346B (zh) * | 2021-06-30 | 2023-11-17 | 南方科技大学 | 一种有机热电薄膜及其制备方法 |
CN115385307A (zh) * | 2022-07-15 | 2022-11-25 | 浙江先导热电科技股份有限公司 | 一种碲化铋微纳米粉体材料的制备方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046145A (ja) | 2001-04-27 | 2003-02-14 | Naoki Toshima | 熱電材料及び熱電素子並びに熱電材料の製造方法 |
JP2010123885A (ja) * | 2008-11-21 | 2010-06-03 | National Institute Of Advanced Industrial Science & Technology | 熱電モジュール及び該熱電モジュールを用いた発電方法 |
JP2010199276A (ja) | 2009-02-25 | 2010-09-09 | Konica Minolta Holdings Inc | 熱電変換素子およびその製造方法 |
JP2012009462A (ja) | 2009-09-14 | 2012-01-12 | Tokyo Univ Of Science | 有機−無機ハイブリッド熱電材料、当該熱電材料を用いた熱電変換素子及び有機−無機ハイブリッド熱電材料の製造方法 |
WO2012121133A1 (ja) * | 2011-03-04 | 2012-09-13 | 独立行政法人産業技術総合研究所 | 熱電変換材料及び該材料を用いたフレキシブル熱電変換素子 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6759587B2 (en) * | 2001-04-27 | 2004-07-06 | Hokushin Corporation | Thermoelectric materials, thermoelectric device, and method for producing thermoelectric materials |
US7790137B2 (en) * | 2006-08-14 | 2010-09-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Metal telluride nanocrystals and synthesis thereof |
US8920682B2 (en) * | 2010-03-19 | 2014-12-30 | Eastern Michigan University | Nanoparticle dispersions with ionic liquid-based stabilizers |
JP5630747B2 (ja) * | 2010-05-14 | 2014-11-26 | リンテック株式会社 | 酸化亜鉛系導電性積層体及びその製造方法並びに電子デバイス |
JP5526104B2 (ja) * | 2011-10-25 | 2014-06-18 | 株式会社日立製作所 | 熱電変換複合材料、それを用いた熱電変換材料ペースト、およびそれを用いた熱電変換モジュール |
CN104205383B (zh) | 2012-03-21 | 2017-05-17 | 琳得科株式会社 | 热电转换材料及其制造方法 |
CN104247063B (zh) | 2012-04-27 | 2017-08-29 | 琳得科株式会社 | 热电转换材料及其制造方法 |
US20150004733A1 (en) * | 2013-06-27 | 2015-01-01 | The Board Of Trustees Of The University Of Alabama | Exfoliation of thermoelectric materials and transition metal dichalcogenides using ionic liquids |
-
2014
- 2014-07-25 US US14/428,141 patent/US9431593B2/en active Active
- 2014-07-25 EP EP14833738.9A patent/EP2884550B1/en active Active
- 2014-07-25 KR KR1020157006837A patent/KR101547450B1/ko active IP Right Grant
- 2014-07-25 JP JP2015502431A patent/JP5712340B1/ja active Active
- 2014-07-25 WO PCT/JP2014/069700 patent/WO2015019871A1/ja active Application Filing
- 2014-07-25 CN CN201480002414.6A patent/CN104641479B/zh active Active
- 2014-07-30 TW TW103125959A patent/TWI620353B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003046145A (ja) | 2001-04-27 | 2003-02-14 | Naoki Toshima | 熱電材料及び熱電素子並びに熱電材料の製造方法 |
JP2010123885A (ja) * | 2008-11-21 | 2010-06-03 | National Institute Of Advanced Industrial Science & Technology | 熱電モジュール及び該熱電モジュールを用いた発電方法 |
JP2010199276A (ja) | 2009-02-25 | 2010-09-09 | Konica Minolta Holdings Inc | 熱電変換素子およびその製造方法 |
JP2012009462A (ja) | 2009-09-14 | 2012-01-12 | Tokyo Univ Of Science | 有機−無機ハイブリッド熱電材料、当該熱電材料を用いた熱電変換素子及び有機−無機ハイブリッド熱電材料の製造方法 |
WO2012121133A1 (ja) * | 2011-03-04 | 2012-09-13 | 独立行政法人産業技術総合研究所 | 熱電変換材料及び該材料を用いたフレキシブル熱電変換素子 |
Non-Patent Citations (2)
Title |
---|
D. MADAN, JOURNAL OF APPLIED PHYSICS, vol. 109, 2011, pages 034904 |
See also references of EP2884550A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016104615A1 (ja) * | 2014-12-26 | 2017-10-05 | リンテック株式会社 | ペルチェ冷却素子及びその製造方法 |
JP2018516457A (ja) * | 2015-04-14 | 2018-06-21 | エルジー エレクトロニクス インコーポレイティド | 熱電素材及びこれを含む熱電素子と熱電モジュール |
US10600947B2 (en) | 2015-04-14 | 2020-03-24 | Lg Electronics Inc. | Thermoelectric materials, and thermoelectric element and thermoelectric module comprising the same |
JP2017011166A (ja) * | 2015-06-24 | 2017-01-12 | リンテック株式会社 | 熱電半導体組成物、並びに熱電変換材料及びその製造方法 |
JP2017041540A (ja) * | 2015-08-20 | 2017-02-23 | リンテック株式会社 | ペルチェ冷却素子及びその製造方法 |
CN110168759A (zh) * | 2016-12-13 | 2019-08-23 | 琳得科株式会社 | 热电转换材料及其制造方法 |
JPWO2018110403A1 (ja) * | 2016-12-13 | 2019-10-24 | リンテック株式会社 | 熱電変換材料及びその製造方法 |
WO2018110403A1 (ja) * | 2016-12-13 | 2018-06-21 | リンテック株式会社 | 熱電変換材料及びその製造方法 |
JP7173869B2 (ja) | 2016-12-13 | 2022-11-16 | リンテック株式会社 | 熱電変換材料及びその製造方法 |
US11522114B2 (en) | 2016-12-13 | 2022-12-06 | Lintec Corporation | Thermoelectric conversion material and method for producing same |
CN110168759B (zh) * | 2016-12-13 | 2023-07-04 | 琳得科株式会社 | 热电转换材料及其制造方法 |
WO2018159291A1 (ja) * | 2017-02-28 | 2018-09-07 | リンテック株式会社 | 熱電変換モジュール及びその製造方法 |
JPWO2018159291A1 (ja) * | 2017-02-28 | 2020-02-13 | リンテック株式会社 | 熱電変換モジュール及びその製造方法 |
JP7113458B2 (ja) | 2017-02-28 | 2022-08-05 | リンテック株式会社 | 熱電変換モジュール及びその製造方法 |
JP2019153664A (ja) * | 2018-03-02 | 2019-09-12 | 株式会社ミクニ | 熱電変換モジュールの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150036828A (ko) | 2015-04-07 |
US9431593B2 (en) | 2016-08-30 |
EP2884550A1 (en) | 2015-06-17 |
EP2884550B1 (en) | 2016-11-16 |
TWI620353B (zh) | 2018-04-01 |
JP5712340B1 (ja) | 2015-05-07 |
JPWO2015019871A1 (ja) | 2017-03-02 |
US20150228879A1 (en) | 2015-08-13 |
KR101547450B1 (ko) | 2015-08-25 |
EP2884550A4 (en) | 2015-11-18 |
CN104641479B (zh) | 2016-06-15 |
CN104641479A (zh) | 2015-05-20 |
TW201521246A (zh) | 2015-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5712340B1 (ja) | 熱電変換材料及びその製造方法 | |
CN107112409B (zh) | 帕尔贴冷却元件及其制造方法 | |
JP7173869B2 (ja) | 熱電変換材料及びその製造方法 | |
JP7245652B2 (ja) | フレキシブル熱電変換素子及びその製造方法 | |
JP6672562B2 (ja) | ペルチェ冷却素子及びその製造方法 | |
WO2016147809A1 (ja) | 排熱回収シート | |
JP6400498B2 (ja) | 無線タグ及びrfidシステム | |
WO2020022228A1 (ja) | 熱電変換ユニット | |
JP6791544B2 (ja) | 熱電半導体組成物、並びに熱電変換材料及びその製造方法 | |
JP2021057481A (ja) | 熱電変換素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015502431 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014833738 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014833738 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14428141 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157006837 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14833738 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |