WO2015016642A1 - 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지 - Google Patents

도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2015016642A1
WO2015016642A1 PCT/KR2014/007067 KR2014007067W WO2015016642A1 WO 2015016642 A1 WO2015016642 A1 WO 2015016642A1 KR 2014007067 W KR2014007067 W KR 2014007067W WO 2015016642 A1 WO2015016642 A1 WO 2015016642A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
composition
lithium secondary
secondary battery
electrode active
Prior art date
Application number
PCT/KR2014/007067
Other languages
English (en)
French (fr)
Inventor
손권남
이길선
권원종
오병훈
박수진
김인영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14831291.1A priority Critical patent/EP3002808B1/en
Priority to JP2016523677A priority patent/JP6276851B2/ja
Priority to CN201480043654.0A priority patent/CN105453316B/zh
Priority to US14/902,992 priority patent/US10862124B2/en
Publication of WO2015016642A1 publication Critical patent/WO2015016642A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/96Applications coating of particles
    • C08G2261/964Applications coating of particles coating of inorganic particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention enables the provision of an electrode containing a higher content of carbon nano-rubber uniformly dispersed, conductive material composition that can provide a battery, such as a lithium secondary battery having more improved electrical and life characteristics, It relates to a slurry composition for forming an electrode of a lithium secondary battery using the same and a lithium secondary battery.
  • electrical characteristics such as electrical conductivity, carbon black, which has been previously applied as a conductive material for electrodes, is used as a one-dimensional fiber structure.
  • electrical characteristics such as electrical conductivity, carbon black, which has been previously applied as a conductive material for electrodes
  • carbon nanotubes Alternative use of carbon nanotubes has been investigated and attempted.
  • the carbon nano-lube not only exhibits excellent electrical conductivity and thermal conductivity, but also maintains an effective conductive structure as a conductive material in the form of fiber, and thus is most popular as a new conductive material that replaces existing materials. I am getting it.
  • the present invention enables the provision of an electrode containing a higher content of carbon nanotubes in a uniformly dispersed state, the conductive material composition to provide a battery such as a lithium secondary battery having more improved electrical and life characteristics and It is providing the slurry composition for electrode formation of the lithium secondary battery using this.
  • the present invention also provides a lithium secondary battery exhibiting more improved properties, including an electrode formed from the slurry composition for electrode formation. [Measures of problem]
  • the present invention is a carbon nanotube; And comprising the poly-aromatic hydrocarbons, oxides of a plurality of kinds, molecular weight 300 to 1000 of the replicon aromatic hydrocarbon oxide 60 parts by weight 0 /, which provides a conductive material composition containing a dispersing agent containing the above content.
  • the conductive material composition may include carbon nanotube powder and a dispersant present on the surface of the carbon nanotube powder.
  • the oxygen content may be 12 to 50 weight 0 / ° of the total element content of the dispersant.
  • the polyaromatic hydrocarbon oxide may have a structure in which one or more oxygen-containing functional groups are bonded to an aromatic hydrocarbon including 5 to 30, black and 7 to 20 benzene rings, and the oxygen-containing functional group is a hydroxy group. It may include one or more selected from the group consisting of an epoxy group, a carboxyl group, a nitro group and a sulfone group.
  • the conductive material composition based on 100 parts by weight of the carbon nanotubes, about 1 to 50 parts by weight of the dispersant, black may include about 5 to 30 parts by weight.
  • the conductive material composition may be used for forming an electrode of a battery, and more specifically, may be included in an electrode slurry composition of a lithium secondary battery.
  • the present invention is an electrode active material, the above-described conductive material composition, binder and It provides a slurry composition for forming an electrode of a lithium secondary battery containing a solvent.
  • the electrode active material may comprise a positive electrode active material or a negative electrode active material
  • the binder is vinylidene fluoride / nucleus fluoropropylene copolymer ⁇ polyvinylidene fluoride, polyacrylonitrile polymethylmethacrylate, poly It may comprise one or more selected from the group consisting of acrylates, polytetrafluoroethylene, poly (styrene-butadiene) copolymers, alginates and polydopamines
  • the solvent may be water, N-methylpyridone, acetone, tetra It may include one or more selected from the group consisting of hydrofuran and decane.
  • the slurry composition may include 70 to 98 parts by weight of the electrode active material, 0.1 to 15 parts by weight of the conductive material composition, and 1 part of the binder, based on 100 parts by weight of the total content of solid content of the electrode active material, the conductive material composition, and the binder. It may comprise from 0 to 20 parts by weight.
  • the present invention includes a negative electrode including a current collector, a negative electrode active material, a conductive material and a binder and a negative electrode active material layer formed on the current collector;
  • a positive electrode comprising a current collector and a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder and formed on the current collector;
  • an electrolyte, and at least one of the negative electrode active material layer or the conductive material included in the positive electrode active material layer provides a lithium secondary battery including the conductive material composition described above.
  • This lithium secondary battery has a higher concentration of carbon nanotubes
  • an electrode formed from a powdery conductive material composition or the like contained in a uniformly dispersed form a higher content of carbon nanotubes may be included in the electrode in a uniformly dispersed state. Therefore, since the lithium secondary battery can be expressed by maximizing the performance improvement due to the high content of carbon nano-rubber, it may exhibit more excellent capacity characteristics, electrical characteristics, and life characteristics.
  • a novel dispersant capable of uniformly dispersing a high content of carbon nanolouves even in a powder state, and a conductive material composition containing the same.
  • a powdery conductive material composition and a slurry composition for forming an electrode including the same it is possible to provide an electrode including a carbon nanotube having a higher content uniformly.
  • the present invention can greatly contribute to realizing high capacity characteristics of various batteries such as lithium secondary batteries.
  • 1 a and 1 b (expanded view of the molecular weight 400 to 500 region) is a diagram showing the molecular weight distribution of the pitch analyzed by MALDI-TOF mass spectrum.
  • 2A and 2B (enlarged view of the molecular weight 400 to 500 region) is a diagram showing the molecular weight distribution of the dispersant obtained in Example 1 analyzed by MALCM-TOF mass spectrum.
  • 3 is a diagram showing a result of analyzing the pitch and the dispersant of Example 1 by 13C CPMAS NMR, respectively.
  • 5 is a diagram showing the molecular weight distribution of the dispersant obtained in Examples 2 to 4 by MALCH-TOF mass spectrum, and comparing the analysis results.
  • 6A and 6B are diagrams showing the distribution of carbon nanotubes in the conductive material composition dispersed on the surface of the active material (Graphite) when the electrode composition slurry composition and the electrode were formed in Example 9 by SEM analysis and confirmation; . 7A and D show the conductive material composition of Example 5, the slurry composition for forming an electrode of Example 9, an electrode (anode or negative electrode) and a lithium secondary battery in Test Example 2 using the dispersant of Example 1
  • the graph shows the electrical characteristics of each electrode compared with the case where a lithium secondary battery was formed without using a tertiary dispersant.
  • dispenser means to uniformly disperse other components, such as carbon nanotubes, in an aqueous solvent, an organic solvent, or a liquid medium. May refer to any ingredient.
  • conductive material composition may refer to any composition that can be used as a conductive material in a composition for forming an electrode of a battery such as a lithium secondary battery.
  • any composition that can be added as a conductive material to any electrode forming composition may belong to the category of "conductor composition”.
  • conductor composition any composition that can be added as a conductive material to any electrode forming composition may belong to the category of "conductor composition”.
  • polyaromatic hydrocarbon means two or more aromatic rings, for example, benzene rings, in a single compound structure, or
  • polyaromatic hydrocarbon oxide may refer to any compound in which the above-mentioned “polyaromatic hydrocarbon” reacts with an oxidizing agent and has one or more oxygen-containing functional groups bonded thereto.
  • the oxygen-containing functional group that can be introduced into the "polyaromatic hydrocarbon" by reaction with the oxidizing agent may be bonded to an aromatic ring such as a hydroxyl group, an epoxy group, a carboxyl group, a nitro group or a sulfone group and includes one or more oxygen in the functional group. It can be any functional group.
  • carbon nanotubes comprising the poly-aromatic hydrocarbons, oxides of a plurality of kinds, molecular weight 300 to 1000 of a poly-aromatic hydrocarbons to oxide 60 parts by weight 0 /. It is provided with a conductive material composition containing a dispersing agent containing the above content.
  • the conductive material composition of one embodiment is a predetermined poly with carbon nanotubes And a dispersant including a mixture of aromatic hydrocarbon oxides.
  • a dispersant including a mixture of aromatic hydrocarbon oxides.
  • the powdery carbon nanotubes can be more uniformly dispersed by the action of this specific dispersant.
  • a conductive material composition in which powdery carbon nanotubes are uniformly dispersed may be provided even without using a separate liquid medium, and a higher content of carbon nanotubes may be applied to a slurry composition for forming an electrode and an electrode using the conductive material composition. It was confirmed that it can be included in a uniformly dispersed state.
  • the dispersant may more uniformly disperse the carbon nanotubes due to the properties of the dispersant described later.
  • Pitch discharged from wastes during the refining of fossil fuels such as petroleum or coal is a by-product used for asphalt production, etc., and has a viscous complex form containing a plurality of polyaromatic hydrocarbons having a plurality of aromatic rings. I can stand.
  • the specific kind, structure, and distribution of the polyaromatic hydrocarbon oxides included in such a mixture may vary depending on the kind of pitch used as the raw material, its origin, or the kind of oxidizing agent.
  • the mixture of the polyaromatic hydrocarbon oxides included in the dispersant is 5 to 30, 7 to 20 black polyaromatic hydrocarbons each having a structure in which at least one oxygen-containing functional group is introduced into the polyaromatic hydrocarbons
  • the polyaromatic hydrocarbon oxide in such a mixture has a molecular weight distribution such that the above-described molecular weight distribution, that is, an oxide having a molecular weight of about 300 to 1000, or about 300 to 700, is about 60% by weight or more of the total mixture. do.
  • the type of the oxygen-containing functional group may vary depending on the type of oxidizing agent used in the oxidation process such as pitch, etc., for example, at least one selected from the group consisting of hydroxy group, epoxy group, carboxyl group, nitro group and sulfone group. And typically polyaromatic hydrocarbon oxides having various functional groups in the mixture.
  • Polyaromatic hydrocarbon oxides stratifying the above-described structural characteristics and molecular weight distribution, and their mixtures are hydrophobic ⁇ ⁇ It may have a domain and a hydrophilic region by oxygen-containing functional groups bonded to the aromatic ring and the like.
  • hydrophobic ⁇ -domains can interact with ⁇ - ⁇ with surfaces such as carbon nanotubes on which carbon-carbon bonds are formed, and hydrophilic regions can allow repulsive force to be expressed between each single carbon nanotube.
  • the dispersant comprising the mixture of polyaromatic hydrocarbon oxides may be present between each powder or particle of the carbon nanotubes to more uniformly disperse these carbon nanotubes.
  • the dispersant may be adsorbed on the powder surface of the carbon nanotubes by the aforementioned ⁇ - ⁇ interaction. Therefore, the conductive material composition of the embodiment including the specific dispersing agent described above may include the powdery carbon nanotubes in a more uniformly dispersed state.
  • the conductive material composition may be used to uniformly disperse the carbon nanotubes having a higher content in the slurry composition for forming the electrode and the electrode, the electrode exhibiting improved electrical characteristics, and excellent capacity characteristics and lifetime It can contribute greatly to provision of batteries, such as a lithium secondary battery which shows a characteristic etc.
  • the dispersant included in the conductive material composition of the embodiment can be prepared from a raw material such as a low-cost pitch through a simplified oxidation process, it can be easily obtained at a low manufacturing cost. Only by using such a dispersant, an electrode, a battery, and the like exhibiting excellent characteristics can be provided, which makes it easier to achieve high capacity and high efficiency of the battery.
  • a conductive material composition containing fibrous carbon such as carbon nanotubes and a polymer dispersant having a pyrene or quinacridone skeleton has been known (Korean Patent Publication No. 2010-0095473).
  • the polymer dispersing agent and the conductive material composition including the same are difficult to be provided in a powder state, and in particular, it is difficult to uniformly disperse carbon nanotubes and the like in a high content in such a powder state.
  • the dispersant included in the conductive material composition of the embodiment has a state of a mixture of polyaromatic hydrocarbon oxides having a range of various molecular weights and various oxygen-containing functional groups, and the like, without the need to introduce a separate functional group, Carbon nanotubes may be uniformly dispersed with respect to a solvent or a medium, and a conductive material composition including a higher content of carbon nanotubes in a uniformly dispersed state may be more easily manufactured and provided.
  • the dispersant included in the composition of the embodiment can evenly disperse a high content of carbon nanotubes in a powder state, so that it can be easily used to provide an electrode and a battery containing a higher content of carbon nanotubes. It becomes possible.
  • the conductive material composition of one embodiment is described for each component as follows.
  • the carbon nanotubes any type of carbon nanotubes known to be usable for various electrode compositions may be used.
  • a single wall carbon nanotube or a multi wall carbon nanotube may be used without any restriction, and an aspect ratio of about 100 to 1000 may be used.
  • Carbon nanotubes having (length / diameter) can be used.
  • the specific surface area of the carbon nanotubes may vary depending on the diameter or aspect ratio of the carbon nanotubes, and the amount of the dispersant for uniformly dispersing the carbon nanotubes in the conductive material composition varies depending on the specific surface area of the carbon nanotubes. I can regulate it.
  • the oxygen content of the total dispersant is about 12 to 50 weight 0 of the total element content. / 0 , or about 15 to 45 weight 0 /.
  • the oxygen content reflects the degree to which oxygen-containing functional groups are introduced by the oxidation process in the polyaromatic hydrocarbon oxide, and the hydrophilic region described above may be included to an appropriate degree according to the layer of oxygen content.
  • the above-mentioned dispersing agent can be used to more suitably disperse the carbon nano-lives.
  • the oxygen content may be calculated by elemental analysis of a plurality of polyaromatic hydrocarbon oxides included in the mixture described above. That is, the mixture sample (for example, about 1 mg), for example, about 900 ° C on a thin foil When heated to a high temperature, the foil may instantly melt and its temperature may rise to about 1500 to 1800 ° C., and gas may be generated from the complex sample due to the high temperature to collect and analyze and analyze the element content. . As a result of this elemental analysis, the total elemental content of carbon, oxygen, hydrogen, and nitrogen contained in the polyaromatic hydrocarbon oxides of the plurality may be measured and analyzed, and the oxygen content may be obtained for the total elemental content.
  • the dispersant included in the conductive material composition of the above-described embodiment may be prepared by a method including oxidizing a mixture including polyaromatic hydrocarbons having a molecular weight of 200 to 1500 in the presence of an oxidizing agent.
  • oxidizing a mixture including polyaromatic hydrocarbons having a molecular weight of 200 to 1500 in the presence of an oxidizing agent.
  • the pitch discharged from the remnants and the like during the refining process of fossil fuels such as petroleum or coal may take the form of a viscous complex containing a plurality of polyaromatic hydrocarbons.
  • the specific type, structure, composition ratio or molecular weight distribution of the polyaromatic hydrocarbon may vary depending on the raw material or the origin of the pitch, the pitch may be, for example, 5 to 50 aromatic rings, for example, a benzene ring. It may include a plurality of polyaromatic hydrocarbons contained in the structure, and may generally include polyaromatic hydrocarbons having a molecular weight of 200 to 1500. For example, a common compound containing a molecular weight of 200 to 1500.
  • Poly-aromatic hydrocarbons to be used as a starting material in the production method of the dispersing agent is a poly-aromatic hydrocarbons such molecular weight of from about 80 weight 0/0 or more Or about 90% by weight or more It may be included in the content.
  • polyaromatic hydrocarbons having an excessively large molecular weight are decomposed in the polyaromatic hydrocarbons included in the pitch, and a relatively narrow molecular weight distribution is obtained.
  • Mixtures of polyaromatic hydrocarbons having can be obtained.
  • polyaromatic hydrocarbons having molecular weights greater than about 1000 or about 700 can be broken down to small molecular weights.
  • At least one oxygen-containing functional group is introduced into the aromatic ring of each polyaromatic hydrocarbon, a mixture containing a plurality of polyaromatic hydrocarbon oxides, that is, the dispersant described above can be produced very simply.
  • the oxidizing agent can be used without any particular limitation as long as the kind thereof is not particularly limited and can cause oxidation reaction to introduce oxygen-containing functional groups to aromatic hydrocarbons.
  • Specific examples of such oxidizing agents include nitric acid (HN0 3 ), sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2 ), ammonium cerium (IV) sulfate; (NH 4 ) 4 Ce ( SO 4 ) 4 ) or ammonium cerium (IV) nitrate (Ammonium cerium (IV) nitrate; (NH 4 ) 2 Ce (N0 3 ) 6 ), and the like.
  • HN0 3 sulfuric acid
  • H 2 SO 4 hydrogen peroxide
  • NH 4 ) 4 Ce ( SO 4 ) 4 ) or ammonium cerium (IV) nitrate Ammonium cerium (IV) nitrate
  • this oxidation step can be carried out in the solvent, for about 0.5 to 20 hours under a reaction temperature of about 10 to 90 ° C.
  • a solution phase oxidant such as sulfuric acid and / or nitric acid
  • the polyaromatic A certain amount of the mixture including the hydrocarbons may be added, and the oxidation step may be performed at room temperature, for example, at about 2 (rc or 80 ° C. for about 1 to 12 hours.
  • the properties of the above-described dispersant for example, the degree of oxidation of the polyaromatic hydrocarbons, etc. can be appropriately adjusted to prepare a dispersant having desired properties.
  • the mixture including polyaromatic hydrocarbons having a molecular weight of 200 to 1500 as starting materials of the production method may be derived from a pitch obtained from a fossil fuel or a product thereof.
  • the type, structure or molecular weight distribution of the polyaromatic hydrocarbons may be different. Nevertheless, as the oxidation process is performed on the mixture including 3 ⁇ 4-aromatic hydrocarbons having a molecular weight of 200 to 1500 derived from the above pitch, the above-described dispersant exhibiting excellent dispersibility for the carbon-based material can be prepared simply.
  • the above-described manufacturing method after the oxidation step, may further comprise the step of purifying the resultant to obtain a mixture of a plurality of polyaromatic hydrocarbon oxides
  • the purification step is a step of centrifuging the result of the oxidation step It may proceed to include.
  • the conductive material composition of one embodiment containing the above-described dispersant and the like Powdery or particulate carbon nanotubes and dispersants present on the surface of such carbon nanotube powders or particles.
  • the dispersant is adsorbed on each carbon nano-lube powder by ⁇ - ⁇ interaction or the like, and the powdery carbon nanotubes may be uniformly dispersed through such ⁇ - ⁇ interaction and repulsive force.
  • the slurry composition and the electrode may be obtained by mixing the powdery conductive material composition in which the carbon nanotubes are uniformly dispersed without other liquid medium with other components of the slurry composition for forming an electrode, which will be described later. Thereby, it becomes possible to manufacture the electrode composition slurry composition and electrode which the uniformity disperse
  • the conductive material composition of the embodiment may include about 5 to 30 parts by weight, black about 10 to 20 parts by weight, black about 15 to 30 parts by weight based on 100 parts by weight of the carbon nanotubes. have. According to the content range of the dispersant, it is possible to uniformly disperse the carbon nanotubes having various surface areas.
  • the conductive material composition of one embodiment described above may be used for forming electrodes of various batteries, and may be included in, for example, an electrode slurry composition of a lithium secondary battery and used for forming an electrode such as a positive electrode or a negative electrode of a lithium secondary battery. .
  • a slurry composition for forming an electrode of a lithium secondary battery including the conductive material composition described above.
  • the composition may include an electrode active material, the conductive material composition of the above-described embodiment, a binder, and a solvent.
  • the slurry composition for forming an electrode may be prepared by mixing the aforementioned powdery conductive material composition with other components such as an active material, a binder, and a solvent.
  • the powder of carbon nanotubes is obtained using a conductive material composition that is uniformly dispersed in itself, it may include a carbon nanotube conductive material that is uniformly dispersed in a high concentration and a higher content of carbon nanotubes It is possible to obtain an electrode including in a uniformly dispersed state.
  • the slurry composition of the other embodiment may be in accordance with the composition and preparation method of a slurry composition for forming an electrode of a conventional lithium secondary battery, except for using the conductive material composition of the embodiment.
  • the slurry composition may include an electrode active material of a positive electrode active material or a negative electrode active material
  • the positive electrode active material may be a metal oxide, lithium composite metal oxide, or lithium composite metal capable of intercalating / deintercalating lithium. Sulfides or lithium complex metal nitrides may be used.
  • a negative electrode active material lithium metal or a lithium alloy; Any lithium or alloy thereof known to be usable as a negative electrode active material of a lithium secondary battery, such as coke, artificial alum, natural alum, combustible organic polymer compound, carbon fiber, Si, SiO Xl Sn or SnO 2 , or carbon-based Or silicon-based materials and the like can be used without any limitation.
  • the binder is vinylidene fluoride / nucleofluoropropylene 1 type selected from the group consisting of copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyacrylate, polytetrafluoroethylene, poly (styrene-butadiene) copolymer, alginate and polydopamine Resin containing the above or a mixture thereof can be used.
  • the solvent may be one solvent selected from the group consisting of water, N-methylpyridone, acetone, tetrahydrofuran, and decane, or two or more mixed solvents.
  • the slurry composition of another embodiment described above is about 70 to 98 parts by weight of the electrode active material, and 100 parts by weight of the total amount of solids of the electrode active material, the conductive material composition and the binder, excluding the solvent, About 0.1 to 15 parts by weight, and about 1.0 to 20 parts by weight of the binder.
  • the slurry composition may include the conductive material including the carbon nanotubes as a high content of about 10 parts by weight relative to the total solids, as the slurry composition includes the above-described conductive material composition. It is possible to keep the tube evenly dispersed in high concentration. Therefore, using such a slurry composition, it is possible to produce an electrode and a battery containing the carbon nanotubes in a uniformly dispersed state in a high content, and exhibiting more excellent electrical properties and the like.
  • a lithium secondary battery obtained by using the above-described conductive material composition and the slurry composition for electrode formation.
  • a lithium secondary battery includes a negative electrode including a current collector, a negative electrode active material, a conductive material and a binder, and a negative electrode active material layer formed on the current collector;
  • a positive electrode comprising a current collector and a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder and formed on the current collector;
  • an electrolyte, and at least one of the negative electrode active material layer or the conductive material included in the positive electrode active material layer may include the conductive material composition of the above-described embodiment.
  • Such a lithium secondary battery may be included in a state in which a higher content of carbon nanotubes is uniformly dispersed as a conductive material on the electrode. Therefore, the electrical characteristics of the electrode itself can be further improved, and by maximizing the advantages of using carbon nanotubes as a conductive material, a battery such as a lithium secondary battery exhibiting improved electrical characteristics, capacity characteristics, and lifetime characteristics can be provided. Will be. As a result, the present invention can greatly contribute to realizing high capacity characteristics of various batteries such as lithium secondary batteries.
  • the lithium secondary battery uses a conductive material composition of one embodiment as a conductive material, it may be according to the configuration of a conventional lithium secondary battery, further description thereof will be omitted.
  • the operation and effects of the invention will be described in more detail with reference to specific embodiments of the invention. However, these embodiments are only presented as an example of the invention, whereby the scope of the invention is not determined.
  • the dispersant of Example 1 was prepared by performing the following oxidation process and purification process on pitch, a petroleum by-product obtained from POSCO.
  • the pitch was found to include polyaromatic hydrocarbons having a molecular weight of 200 to 1500, particularly a large peak at 14Da intervals in the enlarged view of FIG. Having different numbers of aromatic rings (benzene rings) It was confirmed that a plurality of polyaromatic hydrocarbons are linked by aliphatic hydrocarbons. In contrast, referring to FIGS. 1A and 1B (enlarged view), the pitch was found to include polyaromatic hydrocarbons having a molecular weight of 200 to 1500, particularly a large peak at 14Da intervals in the enlarged view of FIG. Having different numbers of aromatic rings (benzene rings) It was confirmed that a plurality of polyaromatic hydrocarbons are linked by aliphatic hydrocarbons. In contrast, referring to FIGS.
  • the large peaks in the dispersing agent of Example 1 are present in the polyaromatic hydrocarbons at intervals of 44 Da and 16 D, respectively, which are represented by -COOH or It is proved that oxygen-containing functional groups such as -OH exist in the form of a mixture of introduced polyaromatic hydrocarbon oxides, and oxides having a molecular weight of about 300 to 1000 and black to about 300 to 700 are contained in 60% by weight or more. It became.
  • the pitch (top) used as the raw material and the dispersant (bottom) of Example 1 were analyzed by 13C CPMAS NMR (Varian 400MHz Solid-State NMR), respectively, and the results of the analysis were compared with FIG. 3.
  • the carbon-derived peak of the aromatic hydrocarbon and the carbon-derived peak of some aliphatic hydrocarbon were confirmed, but the presence of the oxygen-containing functional group was not confirmed.
  • the peak of the oxygen-containing functional group was confirmed. It was confirmed that such oxygen-containing functional groups were epoxy groups, hydroxyl groups, carboxyl groups, and the like.
  • Example 2 which is a petroleum by-product obtained from POSCO, except using a pitch of a sample different from Example 1, the reaction reaction time was 1 hour (Example 2), 3.5 hours (Example 3) and 7
  • the dispersing agents of Examples 2 to 4 were prepared in the same manner as in Example 1, except that the time of Example 4 was changed.
  • This dispersant was analyzed by MALDI-TOF mass spectrum in the same manner as in Example 1, and compared with FIG. 5.
  • a component polyaromatic hydrocarbon oxide having a molecular weight of about 1000 or more than about 700 in the dispersant decreases, and thus, a polyaromatic having a molecular weight of about 300 to 1000 or about 300 to 700. It was found that a dispersant in the form of a mixture containing a higher content of hydrocarbon oxides was obtained.
  • SiO Absorption and carbon coated SiO as a negative electrode active material
  • SBR as a binder (styrene-butadiene rubber), CMC (carboxym ethyl cellulose) is used as a thickener
  • the conductive material composition of Examples 5 to 8 is used, and the weight ratio thereof is by far: SiO: SBR: CMC: conductive material composition
  • the slurry composition for electrode formation was manufactured by mixing this 90: 5: 2: 2: 1.
  • the slurry composition was used to coat a thickness of 65 um on one surface of a copper current collector, dried and rolled, and then biased to a required size to prepare a negative electrode. Using this negative electrode, a positive electrode and a lithium secondary battery including the same were prepared in a conventional manner.
  • Example 9 In the slurry composition of Example 9 using the conductive material composition of Example 5, the distribution of carbon nanotubes in the conductive material composition dispersed on the surface of the active material (Graphite) was analyzed and confirmed by SEM and shown in FIGS. 6A and 6B, respectively. . 6A and 6B, it was confirmed that a high content of carbon nanotubes was included in a more uniformly dispersed state.
  • Test Example 2 Evaluation of Characteristics of Lithium Secondary Battery
  • Example 9 The lifespan characteristics and high rate characteristics of the lithium secondary battery prepared in Example 9 were evaluated, together with the electrode and the lithium secondary battery of the comparative example prepared using powdery carbon nano-Lube instead of the conductive material composition of Example 5 by the same method 7A and 7B.
  • the lithium secondary battery prepared in Examples exhibits better life characteristics and high rate characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 보다 높은 함량의 탄소 나노 튜브가 균일하게 분산된 상태로 포함된 전극의 제공을 가능케 하여, 보다 향상된 전기적 특성 및 수명 특성을 갖는 리튬 이차 전지 등 전지를 제공할 수 있게 하는 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지에 관한 것이다. 상기 도전재 조성물은 탄소 나노 튜브; 및 복수 종의 폴리 방향족 탄화수소 산화물을 포함하되, 분자량 300 내지 1000의 폴리 방향족 탄화수소 산화물을 60 중량% 이상의 함량으로 포함하는 분산제를 포함하는 것이다.

Description

【명세서】
【발명의 명칭】
도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지
【기술분야】
본 발명은 보다 높은 함량의 탄소 나노 류브가 균일하게 분산된 상태로 포함된 전극의 제공을 가능케 하여, 보다 향상된 전기적 특성 및 수명 특성을 갖는 리튬 이차 전지 등 전지를 제공할 수 있게 하는 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지에 관한 것이다.
【배경기술】
최근 들어, 전기 자동차, 전력 저장용 전지 또는 모바일 스마트 기기 등의 시장이 급격히 성장함에 따라, 이전에 알려진 것보다 높은 용량 및 출력 특성을 나타내는 리튬 이차 전지 등 전지의 개발이 요구되고 있다. 이러한 고용량 전지의 개발을 위해서는, 일반적으로 전극의 두께가 두꺼워질 필요가 있고, 두꺼워진 전극으로부터 current c lector까지 전자의 이송이 원활하게 이루어질 필요가 있다. 그런데, 기존에 이차 전지에서 도전재로 적용되던 영차원 구조인 카본블랙의 경우, 효과적인 도전 경로를 만들지 못하여, 위와 같은 기술적 요구를 제대로 층족하지 못하는 단점이 있다. 이로 인해, 최근에는 상기 도전재로서 1 차원 섬유 구조체인 탄소 나노 튜브의 사용이 검토되고 있다. 더불어, 상술한 고용량 전지의 개발을 위해, 실리콘계 음극 활물질이나, 새로운 리튬 복합 금속 산화물계의 양극 활물질 등 새로운 소재의 적용이 널리 검토 및 시도되고 있다. 다만, 이러한 신규 소재, 예를 들어, 실리콘계 음극 활물질 등 고용량 소재의 적용을 위해서는, 층방전 과정에서 도전 구조를 유지한채 부도체 또는 실리콘의 ¾개짐을 방지해야 하는 등 새로운 기술적 요구를 해결해야할 필요가 생기게 되었다.
이러한 새로운 기술적 요구를 해결하고, 더 나아가, 상기 전지의 전극 특성, 예를 들어, 전기 전도도 등 전기적 특성을 더욱 개선하기 위해, 기존에 전극의 도전재로 적용되어 왔던 카본블랙을 1 차원 섬유 구조체인 탄소 나노 튜브로 대체사용 하는 것이 검토 및 시도되고 있다. 특히, 이러한 탄소 나노 류브는 기존 소재에 비해 매우 우수한 전기 전도도 및 열 전도도 등을 나타낼 뿐 아니라, 섬유 형태의 도전재로서 효과적인 도전 구조를 유지할 수 있으므로, 기존 소재를 대체하는 새로운 도전재 소재로서 가장 각광받고 있다.
그러나 이러한 탄소 나노 튜브는 고체 분말 상태나, 전지 제조를 위한 슬러리 상태에서 분산성이 매우 떨어져 고농도 분산이 어려운 한계가 있다. 이로 인해, 기존에는 별도의 분산제와 더불어 액상 매질 등을 사용해 탄소 나노 튜브를 균일하게 분산시킨 후, 전극 형성을 위한 나머지 성분과 흔합하여 전극 형성용 슬러리 조성물 및 전극을 제조하는 방법을 적용하였다. 그러나 최근에 고용량 전지의 개발을 '위하여 슬러리 내의 고형분 함량의 증가가 필요하게 되었고, 그로 인한 두께가 증가된 전극에 효과적인 도전경로를 만들기 위하여 도전 성분으로서 다량의 탄소 나노 튜브의 사용이 필요하게 되었다. 이러한 경우, 기존의 액상 탄소 나노 튜브 분산액을 사용하면, 상기 전극 형성용 슬러리 조성물 및 전극에 보다 높은 함량의 탄소 나노 류브를 포함시키기 어려워 이러한 탄소 나노 튜브를 적용해 전극 및 전지 등의 특성을 향상시키는데 한계가 있었던 것이 사실이다. 더구나, 이러한 액상 매질 등을 적용할 경우, 전극 등의 형성을 위한 전체적인 공정성 역시 저하되는 점이 있다.
이러한 문제점을 해결하기 위해, 분말 등 고체 상태의 탄소 나노 튜브를 고농도로 균일하게 분산시킬 수 있어, 보다 높은 함량의 탄소 나노 튜브가 포함된 전극 및 이를 포함한 전지의 제공을 가능케 하는 기술의 개발이 계속적으로 요구되고 있다.
【발명의 내용】
【해결하려는 과제】
본 발명은 보다 높은 함량의 탄소 나노 튜브가 균일하게 분산된 상태로 포함된 전극의 제공을 가능케 하여, 보다 향상된 전기적 특성 및 수명 특성을 갖는 리튬 이차 전지 등 전지를 제공할 수 있게 하는 도전재 조성물 및 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물을 제공하는 것이다.
본 발명은 또한, 상기 전극 형성용 슬러리 조성물로부터 형성된 전극을 포함하여 보다 향상된 특성을 나타내는 리튬 이차 전지를 제공하는 것이다. 【과제의 해결 수단]
본 발명은 탄소 나노 튜브; 및 복수 종의 폴리 방향족 탄화수소 산화물을 포함하되, 분자량 300 내지 1000 의 플리 방향족 탄화수소 산화물을 60 중량0 /。 이상의 함량으로 포함하는 분산제를 포함하는 도전재 조성물을 제공한다.
상기 도전재 조성물은 탄소 나노 튜브 분말과, 탄소 나노 튜브 분말 표면에 존재하는 분산제를 포함할 수 있다.
또한, 상기 도전재 조성물에 포함된 분산제에서, 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하였을 때, 산소 함량이 상기 분산제의 전체 원소 함량의 12 내지 50 중량0 /。로 될 수 있다.
그리고, 상기 분산제에서, 폴리 방향족 탄화수소 산화물은 5 내지 30 개, 흑은 7 내지 20 개의 벤젠 고리가 포함된 방향족 탄화수소에 산소 함유 작용기가 하나 이상 결합된 구조를 가질 수 있고, 상기 산소 함유 작용기는 히드록시기, 에폭시기, 카르복시기, 니트로기 및 설폰기로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
한편, 상기 도전재 조성물에서는, 탄소 나노 튜브의 100 중량부를 기준으로, 분산제의 약 1 내지 50 중량부, 흑은 약 5 내지 30 중량부가 포함될 수 있다.
또, 상기 도전재 조성물은 전지의 전극 형성을 위해 사용될 수 있고, 보다 구체적으로 리튬 이차 전지의 전극 슬러리 조성물에 포함될 수 있다. 한편, 본 발명은 전극 활물질, 상술한 도전재 조성물, 결합제 및 용매를 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물을 제공한다. 이러한 슬러리 조성물에서, 전극 활물질은 양극 활물질 또는 음극 활물질을 포함할 수 있고, 결합제는 비닐리덴플루오라이드 /핵사플루오로프로필렌 코폴리머 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴 폴리메틸메타크릴레이트, 폴리아크릴레이트, 폴리테트라플루오로에틸렌, 폴리 (스티렌 -부타디엔) 공중합체, 알지네이트 및 폴리도파민으로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있으며, 용매는 물, N-메틸피를리돈, 아세톤, 테트라하이드로퓨란 및 데칸으로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다.
그리고, 상기 슬러리 조성물은 전극 활물질, 도전재 조성물 및 결합제를 합한 고형분의 총 함량 100 중량부에 대해, 전극 활물질의 70 내지 98 중량부와, 도전재 조성물의 0.1 내지 15 중량부와, 결합제의 1 .0 내지 20 중량부를 포함할 수 있다.
또한, 본 발명은 집전체와, 음극 활물질, 도전재 및 결합제를 포함하고 상기 집전체 상에 형성된 음극 활물질층을 포함하는 음극; 집전체와, 양극 활물질, 도전재 및 결합제를 포함하고 집전체 상에 형성된 양극 활물질층을 포함하는 양극; 및 전해질을 포함하고, 상기 음극 활물질층 또는 양극 활물질층에 포함된 도전재의 적어도 하나는 상술한 도전재 조성물을 포함하는 리튬 이차 전지를 제공한다.
이러한 리튬 이차 전지는 보다 높은 농도의 탄소 나노 튜브가 균일하게 분산된 형태로 포함된 분말상 도전재 조성물 등으로부터 형성된 전극을 가짐에 따라, 전극에 보다 높은 함량의 탄소 나노 튜브를 균일하게 분산된 상태로 포함시킬 수 있다. 따라서, 상기 리튬 이차 전지는 탄소 나노 류브의 고함량 함유에 따른 성능 향상을 극대화시켜 발현할 수 있으므로, 보다 우수한 용량 특성, 전기적 특성 및 수명 특성을 나타낼 수 있다.
【발명의 효과】 본 발명에 따르면, 분말 상태에서도 고함량의 탄소 나노 류브를 균일하게 분산시킬 수 있는 신규한 분산제와, 이를 포함한 도전재 조성물이 제공된다. 이러한 분말상 도전재 조성물 및 이를 포함한 전극 형성용 슬러리 조성물을 사용함에 따라, 보다 높은 함량의 탄소 나노 튜브가 균일하게 포함된 전극의 제공이 가능해 진다.
따라서, 이러한 전극 등을 사용해 보다 향상된 전기적 특성, 용량 특성 및 수명 특성 등을 나타내는 리튬 이차 전지 등 전지를 제공할 수 있게 된다. 그 결과, 본 발명은 리튬 이차 전지 등 각종 전지의 고용량 특성을 구현하는데 크게 기여할 수 있다.
【도면의 간단한 설명】
도 1 a 및 도 1 b (분자량 400 내지 500 영역의 확대도)는 pitch의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 나타낸 도면이다. 도 2a 및 도 2b (분자량 400 내지 500 영역의 확대도)는 실시예 1 에서 얻어진 분산제의 분자량 분포를 MALCM-TOF mass spectrum으로 분석하여 나타낸 도면이다. 도 3 은 pitch 및 실시예 1 의 분산제를 각각 13C CPMAS NMR로 분석하여, 그 분석 결과를 나타낸 도면이다.
도 4 는 pitch 및 실시예 1 의 분산제를 각각 FT-IR 로 분석하여, 그 분석 결과를 나타낸 도면이다.
도 5 는 실시예 2 내지 4 에서 각각 얻어진 분산제의 분자량 분포를 MALCH-TOF mass spectrum으로 분석하고, 그 분석 결과를 비교하여 나타낸 도면이다.
도 6a 및 6b는 실시예 9 에서 전극 형성용 슬러리 조성물 및 전극을 형성한 경우에, 활물질 (Graphite) 표면에 분산되어 있는 도전재 조성물 중의 탄소 나노 튜브의 분포를 SEM으로 분석 및 확인하여 나타낸 도면이다. 도 7a 및 기 D는 시험예 2에서 실시예 1 의 분산제를 사용하여 실시예 5 의 도전재 조성물, 실시예 9 의 전극 형성용 슬러리 조성물, 전극 (양극 또는 음극) 및 리튬 이차 전지를 형성한 경우, 각 전극의 전기적 특성을 삼기 분산제를 사용하지 않고 리튬 이차 전지를 형성한 경우와 비교하여 나타낸 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 구체적인 구현예에 따른 도전재 조성물, 이를 사용한 전극 형성용 슬러리 조성물 및 리튬 이차 전지에 대해 보다 구체적으로 설명하기로 한다.
먼저, 이하의 명세서에서, "분산제"란 수용매, 유기 용매 기타 액상의 매질 내에 다른 성분, 예를 들어, 탄소 나노 튜브 등을 균일하게 분산시키기 위한 임의의 성분을 지칭할 수 있다.
또, "도전재 조성물 "이라 함은 리튬 이차 전지 등 전지의 전극 형성용 조성물에 도전재로서 사용될 수 있는 임의의 조성물을 지칭할 수 있다. 이때, 상기 "도전재 조성물" 또는 전극 형성용 조성물의 상태나 구체적인 용도를 불문하고, 임의의 전극 형성용 조성물에 도전재로서 추가될 수 있는 조성물은 모두 "도전재 조성물 "의 범주에 속할 수 있음은 물론이다.
그리고, 이하의 명세서에서, "폴리 방향족 탄화수소"라 함은 단일 화합물 구조 내에 방향족 고리, 예를 들어, 벤젠 고리가 2 개 이상, 혹은
5개 이상 결합 및 포함되어 있는 방향족 탄화수소 화합물을 지칭할 수 있다. 또한, "폴리 방향족 탄화수소 산화물 "은 상술한 "폴리 방향족 탄화수소"가 산화제와 반응을 일으켜 이의 화학 구조 내에 산소 함유 작용기가 하나 이상 결합되어 있는 임의의 화합물을 지칭할 수 있다. 이때, 상기 산화제와의 반웅에 의해 "폴리 방향족 탄화수소"에 도입될 수 있는 산소 함유 작용기는 히드록시기, 에폭시기, 카르복시기, 니트로기 또는 설폰기 등 방향족 고리에 결합될 수 있고 작용기 중에 산소를 하나 이상 포함하는 임의의 작용기로 될 수 있다.
한편, 발명의 일 구현예에 따르면, 탄소 나노 튜브; 및 복수 종의 폴리 방향족 탄화수소 산화물을 포함하되, 분자량 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 60 중량0 /。 이상의 함량으로 포함하는 분산제를 포함하는 도전재 조성물이 제공된다.
일 구현예의 도전재 조성물은 탄소 나노 튜브와 함께, 소정의 폴리 방향족 탄화수소 산화물의 흔합물을 포함한 분산제를 포함하고 있다. 본 발명자들의 실험 결과, 이러한 특정 분산제의 작용으로 분말상 탄소 나노 튜브를 보다 균일하게 분산시킬 수 있음이 확인되었다. 그 결과 별도의 액상 매질을 사용하지 않더라도 분말상 탄소 나노 튜브가 균일하게 분산된 도전재 조성물이 제공될 수 있고, 이러한 도전재 조성물을 사용해 전극 형성용 슬러리 조성물 및 전극에 보다 높은 함량의 탄소 나노 튜브를 균일하게 분산된 상태로 포함시킬 수 있음이 확인되었다.
이와 같이, 상기 분산제가 탄소 나노 튜브를 보다 균일하게 분산시킬 수 있는 것은 후술하는 분산제의 특성에 기인한 것으로 예측될 수 있다. 석유 또는 석탄 등 화석 연료의 정제 과정에서 찌꺼기 등으로 배출되는 피치 (pitch)는 아스팔트 제조 등을 위해 사용되는 부산물로서, 다수의 방향족 고리를 갖는 폴리 방향족 탄화수소를 복수 종 포함하는 점성 있는 흔합물 형태를 띨 수 있다. 그런데, 본 발명자들의 실험 결과, 이러한 피치 등에 대해 산화제를 사용한 산화 공정을 거치게 되면, 상기 피치에 포함된 폴리 방향족 탄화수소들 중 지나치게 큰 분자량을 갖는 폴리 방향족 탄화수소들의 적어도 일부가 분해되고, 원심분리 등의 정제 공정을 통해 300 이하의 매우 낮은 분자량을 갖는 것들이 분리되어, 결과적으로 비교적 좁은 분자량 분포를 갖는 폴리 방향족 탄화수소들와 흔합물이 얻어지는 것으로 확인되었다. 이와 함께, 각 폴리 방향족 탄화수소의 방향족 고리에 하나 이상의 산소 함유 작용가가 도입되면서, 폴리 방향족 탄화수소 산화물들을 복수 종 포함하는 흔합물이 얻어지는 것으로 확인되었다. 구체적으로, 이러한 방법으로 얻어지는 폴리 방향족 탄화수소 산화물들의 흔합물은 MALDI-TOF MS로 분석하였을 때, 분자량이 약 300 내지 1000, 혹은 약 300 내지 700 인 폴리 방향족 탄화수소 산화물들을 약 60 중량0 /。 이상, 혹은 약 65 중량0 /。 이상, 혹은 약 70 내지 95 증량0 /。로 포함함이 확인되었다. 이러한 흔합물 중에 포함되는 폴리 방향족 탄화수소 산화물들의 구체적인 종류, 구조 및 분포 등은 그 원료로 되는 피치의 종류나 그 유래, 혹은 산화제의 종류 등에 따라 달라질 수 있다. 그러나, 적어도, 상기 분산제에 포함되는 폴리 방향족 탄화수소 산화물들의 흔합물은 5 내지 30 개, 흑은 7 내지 20 개 각각 포함된 폴리 방향족 탄화수소에 산소 함유 작용기가 하나 이상 도입된 구조를 갖는 폴리 방향족 탄화수소 산화물을 복수 종 포함하며, 이러한 흔합물 중의 폴리 방향족 탄화수소 산화물은 상술한 분자량 분포, 즉, 분자량 약 300 내지 1000, 혹은 약 300 내지 700 의 산화물이 전체 흔합물의 약 60 중량 % 이상으로 되는 분자량 분포를 갖게 된다.
이때, 상기 산소 함유 작용기의 종류는 피치 등의 산화 공정에서 사용되는 산화제의 종류 등에 따라 달라질 수 있지만, 예를 들어, 히드록시기, 에폭시기, 카르복시기, 니트로기 및 설폰기로 이루어진 군에서 선택된 1 종 이상으로 될 수 있고, 통상적으로 흔합물 내에 다양한 작용기들을 갖는 폴리 방향족 탄화수소 산화물들이 포함될 수 있다.
상술한 구조적 특성 및 분자량 분포 등을 층족하는 폴리 방향족 탄화수소 산화물들과, 이들의 흔합물은 방향족 고리들이 모인 소수성 π - 도메인과, 상기 방향족 고리 등에 결합된 산소 함유 작용기들에 의한 친수성 영역을 동시에 가질 수 있다. 이들 중 소수성 π - 도메인은 탄소 -탄소 결합들이 형성되어 있는 탄소 나노 튜브 등의 표면과 π - π 상호 작용을 할 수 있으며, 친수성 영역은 각각의 단일한 탄소 나노 튜브 간의 반발력이 발현되도록 할 수 있다. 그 결과, 상기 폴리 방향족 탄화수소 산화물들의 흔합물을 포함하는 상기 분산제는 탄소 나노 튜브의 각 분말 또는 입자 사이에 존재하여 이러한 탄소 나노 튜브를 보다 균일하게 분산시킬 수 있다. 보다 구체적으로, 상기 분산제는 상술한 π - π 상호 작용에 의해 탄소 나노 튜브의 분말 표면에 흡착되어 존재할 수 있다. 따라서, 상술한 특정 분산제를 포함하는 일 구현예의 도전재 조성물은 분말상 탄소 나노 튜브를 보다 균일하게 분산된 상태로 포함할 수 있다.
이에 따라, 상기 도전재 조성물을 사용해 전극 형성용 슬러리 조성물 및 전극에 보다 높은 함량의 탄소 나노 튜브를 균일하게 분산된 상태로 포함시킬 수 있으며, 보다 향상된 전기적 특성을 나타내는 전극과, 우수한 용량 특성 및 수명 특성 등을 나타내는 리튬 이차 전지 등 전지의 제공에 크게 기여할 수 있다.
더구나, 상기 일 구현예의 도전재 조성물에 포함되는 분산제는 저가의 피치 등의 원료로부터 단순화된 산화 공정을 통해 제조될 수 있으므로, 낮은 제조 단가로 용이하게 얻어질 수 있다. 이러한 분산제의 사용만으로도 우수한 특성을 나타내는 전극 및 전지 등을 제공할 수 있어, 전지의 고용량화 및 고효율화를 보다 쉽게 달성할 수 았게 된다. 한편 , 기존에는 탄소 나노 튜브 등의 섬유상 탄소와, 피렌 또는 퀴나크리돈 골격을 갖는 고분자 분산제를 포함한 도전재 조성물이 알려진 바 있다 (한국 공개 특허 공보 제 2010-0095473 호). 그러나, 이와 같은 고분자 분산제를 단독으로 사용할 경우, 상기 탄소 나노 튜브를 분산시키고자 하는 매질 (예를 들어, 상기 도전재 조성물에 포함되는 용매 등)의 종류에 따라, 고분자 분산제에 적절한 작용기를 도입하여 사용할 필요가 있다. 더구나, 위와 같은 고분자 분산제 및 이를 포함한 도전재 조성물은 분말 상태로 제공되기 어렵고, 특히, 이러한 분말 상태에서 탄소 나노 튜브 등을 높은 함량으로 균일하게 분산시키기 어렵게 된다.
그러나, 상기 일 구현예의 도전재 조성물에 포함된 분산제는 일정 범위의 다양한 분자량 및 여러 가지 산소 함유 작용기 등을 갖는 폴리 방향족 탄화수소 산화물들의 흔합물 상태를 가지므로, 별도의 작용기를 도입할 필요 없이, 다양한 용매 또는 매질에 대해 탄소 나노 튜브를 균일하게 분산시킬 수 있고, 보다 높은 함량의 탄소 나노 튜브를 균일하게 분산된 상태로 포함하는 도전재 조성물이 보다 쉽게 제조 및 제공될 수 있다. 더구나, 상기 일 구현예의 조성물에 포함된 분산제는 분말 상태에서도, 높은 함량의 탄소 나노 튜브를 균일하게 분산시킬 수 있으므로, 이를 사용해 보다 높은 함량의 탄소 나노 튜브를 포함하는 전극 및 전지를 용이하게 제공할 수 있게 된다.
한편, 일 구현예의 도전재 조성물을 각 성분별로 설명하면 이하와 같다. 상기 일 구현예의 도전재 조성물에서, 상기 탄소 나노 튜브로는 이전부터 각종 전극용 조성물 등에 사용 가능한 것으로 알려진 임의의 형태의 탄소 나노 튜브를 사용할 수 있다. 예를 들어, 이러한 탄소 나노 튜브로는 단일 벽 탄소 나노 류브 (Single Wall Carbon Nano Tube) 또는 다중 벽 탄소 나노 튜브 (Multi Wall Carbon Nano Tube)를 별다른 제한 없이 사용할 수 있으며, 약 100 내지 1000의 aspect ratio (길이 /직경)를 갖는 탄소 나노 튜브를 사용할 수 있다. 상기 탄소 나노 류브의 직경 또는 aspect ratio에 따라 탄소 나노 튜브의 비표면적이 달라질 수 있는데, 이러한 탄소 나노 튜브의 비표면적에 따라 상기 도전재 조성물 내에서 탄소 나노 튜브를 균일하게 분산시키기 위한 분산제의 사용량을 조절할 수 있다.
또한, 상기 탄소 나노 튜브와 함께 도전재 조성물에 포함되는 분산제는 이에 포함된 복수 종의 폴리 방향족 탄화수소 산화물들을 원소 분석하였을 때, 전체 분산제에 포함된 산소 함량이 전체 원소 함량의 약 12 내지 50 중량0 /0, 혹은 약 15 내지 45 중량 0/。로 될 수 있다. 이러한 산소 함량은 상기 폴리 방향족 탄화수소 산화물에서 산화 공정에 의해 산소 함유 작용기가 도입된 정도를 반영하는 것으로서, 이러한 산소 함량의 층족에 따라 상술한 친수성 영역이 적절한 정도로 포함될 수 있다. 그 결과, 상술한 분산제를 사용해 탄소 나노 류브를 보다 적절히 분산시킬 수 있다.
상기 산소 함량은 상술한 혼합물에 포함된 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하여 산출할 수 있다. 즉, 상기 흔합물 시료 (예를 들어, 약 1mg)를, 예를 들어, 얇은 호일 위에서 약 900°C 내외의 고온으로 가열하면 호일이 순간적으로 녹으면서 그 온도가 약 1500 내지 1800 °C까지 상승할 수 있고, 이러한 고온에 의해 상기 흔합물 시료로부터 기체가 발생하여 이를 포집 및 원소 함량을 측정 및 분석할 수 있다. 이러한 원소 분석 결과 상기 복수 종의 폴리 방향족 탄화수소 산화물에 포함된 탄소, 산소, 수소 및 질소의 총 원소 함량이 측정 및 분석될 수 있고, 이러한 총 원소 함량에 대한 산소 함량을 구할 수 있다.
그리고, 상술한 일 구현예의 도전재 조성물에 포함되는 분산제는 산화제의 존재 하에, 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물을 산화하는 단계를 포함하는 방법으로 제조될 수 있다. 이러한 제조 방법에 대해 보다 구체적으로 설명하면 이하와 같다.
이미 상술한 바와 같이, 석유 또는 석탄 등 화석 연료의 정제 과정에서 찌꺼기 등으로 배출되는 피치는 폴리 방향족 탄화수소를 복수 종 포함하는 점성 있는 흔합물 형태를 띨 수 있다. 물론, 피치의 원료나 유래 등에 따라 상기 폴리 방향족 탄화수소의 구체적 종류, 구조, 조성비 또는 분자량 분포 등이 달라질 수 있지만, 상기 피치는, 예를 들어, 5 내지 50 개의 방향족 고리, 예를 들어, 벤젠 고리가 구조 중에 포함된 폴리 방향족 탄화수소를 복수 종 포함할 수 있으며, 대체로 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을 포함할 수 있다. 예를 들어, 상기 분산제의 제조 방법에서 출발 물질로 사용되는 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물 (예를 들어, 피치)은 이러한 분자량 범위의 폴리 방향족 탄화수소들을 약 80 중량0 /0 이상, 혹은 약 90 증량 % 이상의 함량으로 포함할 수 있다.
그런데, 이러한 피치 등 폴리 방향족 탄화수소들을 포함한 흔합물에 대해 산화제를 사용한 산화 공정을 거치게 되면, 상기 피치에 포함된 폴리 방향족 탄화수소들 중에 지나치게 큰 분자량을 갖는 폴리 방향족 탄화수소들이 분해되고, 비교적 좁은 분자량 분포를 갖는 폴리 방향족 탄화수소들의 흔합물이 얻어질 수 있다. 예를 들어, 약 1000, 혹은 약 700 을 초과하는 분자량을 갖는 폴리 방향족 탄화수소들이 작은 분자량을 갖는 것으로 분해될 수 있다. 또한, 이와 함께 각 폴리 방향족 탄화수소의 방향족 고리에 하나 이상의 산소 함유 작용기가 도입되면서, 폴리 방향족 탄화수소 산화물들을 복수 종 포함하는 흔합물, 다시 말해서 상술한 분산제가 매우 간단하게 제조될 수 있다.
이러한 분산제의 제조 방법에서, 산화제는 그 종류가 특히 제한되지 않고 방향족 탄화수소에 산소 함유 작용기를 도입하는 산화 반웅을 일으킬 수 있는 것이라면 별다른 제한 없이 모두 사용될 수 있다. 이러한 산화제의 구체적인 예로는, 질산 (HN03), 황산 (H2SO4), 과산화수소 (H2O2), 암모늄 세륨 (IV) 황산염 (Ammonium cerium(IV) sulfate; (NH4)4Ce(SO4)4) 또는 암모늄 세륨 (IV) 질산염 (Ammonium cerium(IV) nitrate; (NH4)2Ce(N03)6) 등을 들 수 있고, 이들 중에 선택된 2종 이상의 흔합물을 사용할 수도 있음은 물론이다. 그리고, 이러한 산화 단계는 수용매 내에서, 약 10 내지 90 °C의 반웅 온도 하에 약 0.5 내지 20 시간 동안 진행될 수 있다. 구체적인 예에서, 황산 및 /또는 질산 등의 용액상 산화제의 존재 하에, 상기 폴리 방향족 탄화수소들을 포함한 흔합물을 일정량 첨가하고, 상온, 예를 들어, 약 2(rc 흑은 80 °C에서 약 1 내지 12 시간 동안 상기 산화 단계를 진행할 수 있다. 이러한 산화 단계의 반웅 온도 또는 시간 등을 조절함에 따라, 상술한 분산제의 특성, 예를 들어, 폴리 방향족 탄화수소들이 산화되는 정도 등을 적절히 조절하여 원하는 특성을 갖는 분산제를 제조할 수 있다.
또한, 이미 상술한 바와 같이, 상기 제조 방법의 출발 물질로 되는 분자량 200 내지 1500 의 폴리 방향족 탄화수소들을 포함한 흔합물은 화석 연료 또는 이의 산물로부터 얻어진 피치 (pitch)에서 유래할 수 있으며, 이러한 원료 등의 종류에 따라, 상기 폴리 방향족 탄화수소들의 종류, 구조 또는 분자량 분포 등은 서로 달라질 수 있다. 그럼에도 불구하고, 상기 피치 등에서 유래한 분자량 200 내지 1500 의 ¾리 방향족 탄화수소들을 포함한 흔합물에 대해 산화 공정을 진행함에 따라, 탄소계 소재에 대해 우수한 분산력을 나타내는 상술한 분산제가 간단히 제조될 수 있다.
한편, 상술한 제조 방법은, 산화 단계 후에, 그 결과물을 정제하여 복수 종의 폴리 방향족 탄화수소 산화물의 흔합물을 얻는 단계를 더 포함할 수 있고, 이러한 정제 단계는 산화 단계의 결과물을 원심분리하는 단계를 포함하여 진행될 수 있다. 이러한 정제 단계의 진행으로, 이미 상술한 분자량 분포 등을 충족하는 폴리 방향족 탄화수소 산화물들의 흔합물, 즉, 상술한 분산제를 보다 순도 높고 적절하게 얻을 수 있으며, 상기 분산제를 사용해 탄소 나노 튜브를 균일하게 분산시킬 수 있다.
한편, 상술한 분산제 등을 포함하는 일 구현예의 도전재 조성물은 분말상 또는 입자 상태의 탄소 나노 튜브와, 이러한 탄소 나노 튜브 분말 또는 입자 표면에 존재하는 분산제를 포함할 수 있다. 즉, 상기 분산제는 각 탄소 나노 류브 분말 상에 π - π 상호 작용 등에 의해 흡착되어 존재하며, 이러한 π - π 상호 작용 및 반발력 등을 통해 분말상 탄소 나노 튜브를 균일하게 분산시킬 수 있다. 따라서, 별도의 액상 매질 없이도 탄소 나노 튜브가 균일하게 분산된 분말상 도전재 조성물을 후술하는 전극 형성용 슬러리 조성물의 다른 성분과 흔합하여 상기 슬러리 조성물 및 전극을 얻을 수 있다. 이에 따라, 공정성을 보다 향상시키면서 보다 높은 함량의 탄소 나노 류브가 균일하게 분산 및 포함된 전극 형성용 슬러리 조성물 및 전극을 제조하는 것이 가능해 진다.
또, 상기 일 구현예의 도전재 조성물은 상기 탄소 나노 튜브의 100 중량부를 기준으로, 분산제의 약 5 내지 30 중량부, 흑은 약 10 내지 20 중량부, 흑은 약 15 내지 30 중량부를 포함할 수 있다. 이러한 분산제의 함량 범위에 따라 다양한 표면적을 갖는 탄소 나노 튜브를 균일하게 분산시킬 수 있다.
상술한 일 구현예의 도전재 조성물은 다양한 전지의 전극 형성을 위해 사용될 수 있으며, 예를 들어, 리튬 이차 전지의 전극 슬러리 조성물에 포함되어 리튬 이차 전지의 양극 또는 음극 등의 전극 형성을 위해 사용될 수 있다.
이에 발명의 다른 구현예에 따르면, 상술한 도전재 조성물을 포함한 리튬 이차 전지의 전극 형성용 슬러리 조성물이 제공된다. 이러한 슬러리 조성물은 전극 활물질, 상술한 일 구현예의 도전재 조성물, 결합제 및 용매를 포함할 수 있다.
이러한 전극 형성용 슬러리 조성물은 상술한 분말상 도전재 조성물을 활물질, 결합제 및 용매 등의 다른 성분과 흔합하여 제조될 수 있다. 특히, 탄소 나노 튜브의 분말이 그 자체로 균일하게 분산된 도전재 조성물을 사용하여 얻어짐에 따라, 고농도로 균일하게 분산된 탄소 나노 튜브 도전재를 포함할 수 있고 보다 높은 함량의 탄소 나노 튜브를 균일하게 분산된 상태로 포함하는 전극을 얻을 수 있다.
다만, 상기 다른 구현예의 슬러리 조성물은 상기 일 구현예의 도전재 조성물을 사용함을 제외하고는, 통상적인 리튬 이차 전지의 전극 형성용 슬러리 조성물의 조성 및 제조 방법에 따를 수 있다.
예를 들어, 상기 슬러리 조성물은 양극 활물질 또는 음극 활물질의 전극 활물질을 포함할 수 있고, 양극 활물질로는 리튬을 인터칼레이션 /디인터칼레이션할 수 있는 금속 산화물, 리튬 복합 금속 산화물, 리튬 복합 금속 황화물 또는 리륨 복합 금속 질화물 등이 사용될 수 있다. 또, 음극 활물질로는 리튬 금속이나 리튬 합금; 코크스, 인조 혹연, 천연 혹연, 유기 고분자 화합물 연소체, 탄소 섬유, Si, SiOXl Sn 또는 SnO2 등과 같이 이전부터 리튬 이차 전지의 음극 활물질로 사용 가능한 것으로 알려진 임의의 리튬 또는 이의 합금이나, 탄소계 또는 실리콘계 소재 등이 별다른 제한 없이 모두 사용될 수 있다.
또한, 상기 결합제로는 비닐리덴플루오라이드 /핵사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리아크릴레이트, 폴리테트라플루오로에틸렌, 폴리 (스티렌 -부타디엔) 공중합체, 알지네이트 및 폴리도파민으로 이루어진 군에서 선택된 1 종 이상을 포함하는 수지 또는 이들의 흔합물을 사용할 수 있다.
그리고, 상기 용매로는 물, N-메틸피를리돈, 아세톤, 테트라하이드로퓨란 및 데칸으로 이루어진 군에서 선택된 1 종의 용매 또는 2 종 이상의 흔합 용매를 사용할 수 있다.
한편, 상술한 다른 구현예의 슬러리 조성물은 용매를 제외하고, 전극 활물질, 도전재 조성물 및 결합제를 합한 고형분의 총 함량 100 중량부에 대해, 전극 활물질의 약 70 내지 98 중량부와, 도전재 조성물의 약 0.1 내지 15 중량부와, 결합제의 약 1 .0 내지 20 중량부를 포함할 수 있다. 이와 같이, 상기 슬러리 조성물은 상술한 도전재 조성물을 포함함에 따라, 탄소 나노 튜브를 포함한 도전재를 전체 고형분 대비 약 10 중량부에 이르는 높은 함량으로서 포함할 수 있으며, 이러한 슬러리 조성물 내에서 상기 탄소 나노 튜브가 고농도로 균일하게 분산된 상태를 유지할 수 있다. 따라서, 이러한 슬러리 조성물을 이용해, 탄소 나노 튜브를 높은 함량으로 균일하게 분산된 상태로서 포함하고, 보다 우수한 전기적 특성 등을 나타내는 전극 및 전지를 제조할 수 있다.
한편, 발명의 또 다른 구현예에 따르면, 상술한 도전재 조성물 및 전극 형성용 슬러리 조성물을 사용해 얻어지는 리륨 이차 전지가 제공된다. 이러한 리튬 이차 전지는 집전체와, 음극 활물질, 도전재 및 결합제를 포함하고 상기 집전체 상에 형성된 음극 활물질층을 포함하는 음극; 집전체와, 양극 활물질, 도전재 및 결합제를 포함하고 집전체 상에 형성된 양극 활물질층을 포함하는 양극; 및 전해질을 포함하고, 상기 음극 활물질층 또는 양극 활물질층에 포함된 도전재의 적어도 하나는 상술한 일 구현예의 도전재 조성물을 포함하는 것일 수 있다.
이러한 리륨 이차 전지는 전극에 보다 높은 함량의 탄소 나노 튜브가 도전재로서 균일하게 분산된 상태로 포함될 수 있다. 따라서, 이러한 전극 자체의 전기적 특성이 보다 향상될 수 있고, 탄소 나노 튜브를 도전재로 사용함에 따른 장점을 극대화하여 향상된 전기적 특성, 용량 특성 및 수명 특성 등을 나타내는 리튬 이차 전지 등 전지를 제공할 수 있게 된다. 그 결과, 본 발명은 리튬 이차 전지 등 각종 전지의 고용량 특성을 구현하는데 크게 기여할 수 있다.
한편, 상기 리튬 이차 전지는 도전재로서 일 구현예의 도전재 조성물을 사용함을 제외하고는, 통상적인 리튬 이차 전지의 구성에 따를 수 있으므로, 이에 관한 추가적인 설명은 생략하기로 한다. 이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다. 실시예 1 : 분산제의 제조
포스코로부터 입수한 석유 부산물인 피치 (pitch)에 대해 다음과 같은 산화 공정 및 정제 공정을 진행하여 실시예 1의 분산제를 제조하였다.
먼저, 황산 /질산의 흔합 용액 (부피비 3:1 )의 75 ml에 피치 0.5 내지 1 .5 g을 첨가하고, 약 70 °C에서 약 3.5 시간 동안 산화 반웅을 진행하였다. 이후, 상기 산화 반응이 진행된 피치 반웅 용액을 상온으로 넁각시킨 후, 5 배 가량 증류수로 희석시킨 다음, 약 3500 rpm에서 30 분간 원심분리하였다. 이어서, 상등액을 제거하고, 동일량의 증류수를 넣고 재분산한 후에, 동일 조건에서 다시 원심분리하여 최종적으로 침전물을 회수하고 건조하였다. 이를 통해, 실시예 1의 분산제를 제조하였다.
먼저, 이러한 분산제의 제조 과정 중 원료로 사용된 피치의 분자량 분포를 MALDI-TOF mass spectrum으로 분석하여 도 1 a 및 도 1 b (분자량
400 내지 500 영역의 확대도)에 도시하였고, 실시예 1 의 분산제의 분자량 분포를 마찬가지로 분석하여 도 2a 및 도 2b (분자량 400 내지 500 영역의 확대도)에 도시하였다. 이러한 분석은 MALCH-TOF mass spectrum 장비 (Ultraflex II, Bruker)를 사용하여, 상기 피치 또는 분산제를 matrix에 넣고 흔합한 후에 건조하여 진행하였다.
상기 도 1a 및 도 1 b (확대도)를 참고하면, pitch의 경우 분자량 200 내지 1500 의 분자량을 갖는 폴리 방향족 탄화수소들을 포함하는 것으로 확인되었고, 특히 도 1 b의 확대도에서 분자량 14Da 간격으로 큰 피크들이 검출되는 갓으로부터 서로 다른 개수의 방향족 고리 (벤젠 고리)들을 갖는 복수 종의 폴리 방향족 탄화수소들이 aliphatic hydrocarbon에 의하여 연결되어 있음이 확인되었다. 이에 비해, 도 2a 및 도 2b (확대도)를 참고하면, 실시예 1 의 분산제는 폴리 방향족 탄화수소들에 각각 44Da과 16D의 간격으로 존재하는 큰 피크들이 관찰되었는데 이는 이러한 방향족 탄화수소들에 -COOH 또는 -OH 등 산소 함유 작용기들이 도입된 폴리 방향족 탄화수소 산화물들의 흔합물 형태로 존재함을 증명하는 것으로, 약 300 내지 1000, 흑은 약 300 내지 700 의 분자량을 갖는 산화물들이 60 중량 % 이상으로 포함됨이 확인되었다.
또한, 상기 원료로 사용된 pitch (상단) 및 실시예 1 의 분산제 (하단)를 각각 13C CPMAS NMR (Varian 400MHz Solid-State NMR)로 분석하여, 그 분석 결과를 도 3 에 비교하여 나타내었다. 도 3 을 참고하면, pitch에서는 방향족 탄화수소의 탄소 유래 피크와, 일부 지방족 탄화수소의 탄소 유래 피크가 확인되었으나, 산소 함유 작용기의 존재는 확인되지 않았다. 이에 비해, 실시예 1 의 분산제에 대한 NMR 분석 결과, 산소 함유 작용기의 피크가 확인되었다. 이러한 산소 함유 작용기의 종류는 에폭시기, 히드록시기 또는 카르복시기 등인 것으로 확인되었다.
부가하여, 상기 원료로 사용된 pitch 및 실시예 1 의 분산제를 각각 분말 상태로서 FT-IR (Agilent 660-IR)로 분석하여 그 분석 결과를 도 4 에 비교하여 나타내었다. 이러한 도 4 를 통해서도, 실시예 1 의 분산제에서 산소 함유 작용기의 피크가 생성됨을 확인하였다. 실시예 2 내지 4: 분산제의 제조
포스코로부터 입수한 석유 부산물인 피치 (pitch; 단, 실시예 1 과는 다른 샘플의 피치 사용)를 사용하고, 산화 반웅 시간을 각각 1 시간 (실시예 2), 3.5 시간 (실시예 3) 및 7 시간 (실시예 4)으로 달리한 것을 제외하고는 실시예 1 과 동일한 방법으로 진행하여 실시예 2 내지 4 의 분산제를 각각 제조하였다.
이러한 분산제를 실시예 1 과 동일한 방법으로 MALDI-TOF mass spectrum으로 분석하여, 도 5 에 비교하여 함께 나타내었다. 도 5 를 참고하면, 산화 시간의 증가에 따라, 분산제 중 분자량 약 1000, 혹은 약 700 초과의 성분 (폴리 방향족 탄화수소 산화물)의 함량이 줄어들어, 분자량 약 300 내지 1000, 혹은 약 300 내지 700 의 폴리 방향족 탄화수소 산화물을 보다 높은 함량으로 포함하는 흔합물 형태의 분산제가 얻어짐이 확인되었다. 시험예 1 : 분산제의 산소 함량 측정
실시예 3 및 4 에서 얻어진 분산제 시료약 1 mg을 얇은 호일 위에서 약 900 °C 내외의 고온으로 가열하였다. 이때, 호일이 순간적으로 녹으면서 그 온도가 약 1500 내지 180C C까지 상승하였으며, 이러한 고온에 의해 상기 시료로부터 기체가 발생하였다. 이러한 기체를 포집 및 원소 분석하여 탄소, 산소, 수소 및 질소의 각 원소 함량을 측정 및 분석하였다. 이러한 분석 결과는 각 분산제 제조를 위해 사용된 피치에 대한 분석 결과와 비교하여 하기 표 1에 나타내었다.
[표 1]
Figure imgf000026_0001
상기 표 1 을 참고하면 실시예 3 및 4 의 분산제 중에는, 각 원소의 함량을 분석하였을 때 산소의 함량이 전체 원소 함량의 약 12 내지 50 중량0 /0, 혹은 약 30 내지 40 중량0 /0로 됨이 확인되었다. 실시예 5 내지 8: 도전재 조성물의 제조
증류수, 에탄을, 아세톤, THF, 또는 NMP 등의 극성 유기용매 중 선택된 용매 3L에 실시예 1 내지 4 의 분산제 3.0 g을 넣고 sonication을 통하여 재분산한 후에, 탄소 나노 튜브 10.0 g을 분산제 용액에 넣고 다시 한 시간 정도 sonication을 진행하였다. 이어서, 이러한 탄소 나노 튜브 용액을 8000 rpm에서 원심분리하고, 분산제 -탄소 나노 튜브 침전물을 회수 및 건조하여 탄소 나노 튜브 분말형 도전재 조성물을 제조하였다. 실시예 9 내지 12: 전극 및 리튬 이차 전지의 제조
음극 활물질로 혹연과 탄소코팅된 SiO를 사용하고, 결합제로 SBR (styrene-butadiene rubber)를 사용하며, 증점제로 CMC (carboxym ethyl cellulose)를 사용하고 상기 실시예 5 내지 8 의 도전재 조성물을 사용하며, 이들의 중량비가 혹연: SiO: SBR:CMC:도전재 조성물이 90:5:2:2:1 로 되게 흔합하여 전극 형성용 슬러리 조성물을 제조하였다. 이러한 슬러리 조성물을 사용하여 구리 집전체의 일면에 65 um의 두께로 코팅하고, 건조 및 압연한 후 필요한 크기로 편칭하여 음극을 제조하였다. 이러한 음극을 사용하고, 통상적인 방법으로 양극 및 이를 포함하는 리튬 이차 전지를 각 제조하였다. 실시예 5의 도전재 조성물을 사용한 실시예 9의 슬러리 조성물에서, 활물질 (Graphite) 표면에 분산되어 있는 도전재 조성물 중의 탄소 나노 튜브의 분포를 SEM으로 분석 및 확인하여 도 6a 및 6b에 각각 나타내었다. 이러한 도 6a 및 6b를 참고하면, 고함량의 탄소 나노 튜브가 보다 균일하게 분산된 상태로 포함되어 있음이 확인되었다. 시험예 2: 리튬 이차 전지의 특성 평가
실시예 9 에서 제조된 리튬 이차 전지의 수명 특성 및 고율 특성을 평가하였으며, 이와 함께 실시예 5 의 도전재 조성물 대신 분말상 탄소 나노 류브를 사용해 제조된 비교예의 전극 및 리튬 이차 전지를 동일한 방법으로 평가하여 도 7a 및 7b에 나타내었다.
도 7a 및 도 기 3를 참고하면, 실시예에서 제조된 리튬 이차 전지는 보다 우수한 수명 특성 및 고율 특성을 나타냄이 확인되었다.

Claims

【특허청구범위】
【청구항 1】
탄소 나노 튜브; 및
복수 종의 폴리 방향족 탄화수소 산화물을 포함하되, 분자량 300 내지 1000 의 폴리 방향족 탄화수소 산화물을 60 중량0 /。 이상의 함량으로 포함하는 분산제를 포함하는 도전재 조성물.
【청구항 2】 (
제 1 항에 있어서, 탄소 나노 류브 분말과, 탄소 나노 튜브 분말 표면에 존재하는 분산제를 포함하는 분말상 도전재 조성물.
[청구항 3】
제 1 항에 있어서, 복수 종의 폴리 방향족 탄화수소 산화물을 원소 분석하였을 때, 산소 함량이 상기 분산제의 전체 원소 함량의 12 내지 50 중량0 /。인 도전재 조성물.
【청구항 4】
제 1 항에 있어서, 폴리 방향족 탄화수소 산화물은 5 내지 30 개의 벤젠 고리가 포함된 방향족 탄화수소에 산소 함유 작용기가 하나 이상 결합된 구조를 갖는 도전재 조성물.
【청구항 5】
제 4 항에 있어서, 방향족 탄화수소는 7 내지 20 개의 벤젠 고리를 구조 내에 갖는 도전재 조성물.
【청구항 6】 제 4 항에 있어서, 산소 함유 작용기는 히드록시기, 에폭시기, 카르복시기, 니트로기 및 설폰기로 이루어진 군에서 선택된 1 종 이상을 포함하는 분산제.
【청구항 7】
제 1 항에 있어서, 탄소 나노 튜브의 100 중량부를 기준으로, 분산제의 1 내지 50 중량부를 포함하는 도전재 조성물.
【청구항 8】
거 I 1 항에 있어서, 전지의 전극 형성을 위해 사용되는 도전재 조성물.
【청구항 9】
제 8 항에 있어서, 리튬 이차 전지의 전극 슬러리 조성물에 포함되는 도전재 조성물.
【청구항 10】
전극 활물질, 제 1 항의 도전재 조성물, 결합제 및 용매를 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
【청구항 1 1】
제 10 항에 있어서, 전극 활물질은 양극 활물질 또는 음극 활물질을 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
【청구항 12]
제 10 항에 있어서, 결합제는 비닐리덴플루오라이드 /핵사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리아크릴레이트, 폴리테트라플루오로에틸렌 폴리 (스티렌-부타디엔) 공중합체, 알지네이트 및 폴리도파민으로 이투어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
【청구항 13】
제 10 항에 있어서, 용매는 물, N-메틸피를리돈, 아세톤, 테트라하이드로퓨란 및 데칸으로 이루어진 군에서 선택된 1 종 이상을 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
【청구항 14]
제 10 항에 있어서, 전극 활물질, 도전재 조성물 및 결합제를 합한 고형분의 총 함량 100 중량부에 대해,
전극 활물질의 70 내지 98 중량부와,
■ 도전재 조성물의 0.1 내지 15 중량부와,
결합제의 1 .0 내지 20 중량부를 포함하는 리튬 이차 전지의 전극 형성용 슬러리 조성물.
【청구항 15】
집전체와, 음극 활물질, 도전재 및 결합제를 포함하고 상기 집전체 상에 형성된 음극 활물질층을 포함하는 음극;
집전체와, 양극 활물질, 도전재 및 결합제를 포함하고 집전체 상에 형성된 양극 활물질층을 포함하는 양극; 및
전해질을 포함하고,
상기 음극 활물질층 또는 양극 활물질충에 포함된 도전재의 적어도 하나는 제 1 항의 도전재 조성물을 포함하는 리튬 이차 전지
PCT/KR2014/007067 2013-08-01 2014-07-31 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지 WO2015016642A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14831291.1A EP3002808B1 (en) 2013-08-01 2014-07-31 Conductor composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
JP2016523677A JP6276851B2 (ja) 2013-08-01 2014-07-31 導電材組成物、これを用いたリチウム二次電池の電極形成用スラリー組成物およびリチウム二次電池
CN201480043654.0A CN105453316B (zh) 2013-08-01 2014-07-31 导电材料组合物、使用该导电材料组合物的用于形成锂二次电池的电极的浆料组合物以及锂二次电池
US14/902,992 US10862124B2 (en) 2013-08-01 2014-07-31 Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130091626 2013-08-01
KR10-2013-0091626 2013-08-01
KR10-2014-0098034 2014-07-31
KR1020140098034A KR101601949B1 (ko) 2013-08-01 2014-07-31 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2015016642A1 true WO2015016642A1 (ko) 2015-02-05

Family

ID=52573195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007067 WO2015016642A1 (ko) 2013-08-01 2014-07-31 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지

Country Status (7)

Country Link
US (1) US10862124B2 (ko)
EP (1) EP3002808B1 (ko)
JP (1) JP6276851B2 (ko)
KR (1) KR101601949B1 (ko)
CN (1) CN105453316B (ko)
TW (1) TWI553048B (ko)
WO (1) WO2015016642A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181502A (ja) * 2015-03-23 2016-10-13 ヒュンダイ・モービス・カンパニー・リミテッド 照明装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10569243B2 (en) * 2013-08-01 2020-02-25 Lg Chem, Ltd. Dispersing agent, its preparation method and dispersed composition of carbon-based material comprising the same
CN106715508B (zh) * 2014-09-30 2020-04-21 富士胶片株式会社 凝胶粒子、感光性组合物、油墨组合物、凝胶粒子的水分散物的制造方法及图像形成方法
KR101672750B1 (ko) * 2016-02-11 2016-11-04 한밭대학교 산학협력단 친수성 내열 고분자가 포함된 다층구조전극 및 이의 제조방법 그리고 이를 포함하는 리튬이차전지
WO2019244643A1 (ja) * 2018-06-20 2019-12-26 日本ゼオン株式会社 二次電池機能層用スラリーの製造方法
JP6798531B2 (ja) * 2018-07-19 2020-12-09 トヨタ自動車株式会社 非水電解質二次電池
WO2020196115A1 (ja) * 2019-03-28 2020-10-01 日本ゼオン株式会社 リチウムイオン二次電池電極用導電材ペースト、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
CN110336037B (zh) * 2019-07-18 2021-08-17 上海交通大学 一种用于锂离子电池负极材料的水系粘结剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039443A (ja) * 2002-07-03 2004-02-05 Mitsubishi Electric Corp 電池およびその製造方法
KR20080038806A (ko) * 2006-10-31 2008-05-07 주식회사 엘지화학 전기 전도성을 향상시킨 도전제를 포함한 리튬 이차전지
KR20090054677A (ko) * 2007-11-27 2009-06-01 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR20100095473A (ko) 2007-12-25 2010-08-30 가오 가부시키가이샤 리튬전지 양극용 복합재료
KR20110072917A (ko) * 2009-12-23 2011-06-29 삼성전자주식회사 탄소계 도전재료, 이를 포함하는 전극 조성물 및 이로부터 제조된 전극 및 이차 전지
KR20110101347A (ko) * 2010-03-08 2011-09-16 엔바로테크 주식회사 그라펜이 분산된 고분자 복합재료 및 이를 제조하는 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164632A (ja) * 1985-01-17 1986-07-25 Fuji Sekiyu Kk 界面活性物質の製造法
US6251290B1 (en) * 1997-02-27 2001-06-26 Continuum Environmental, Inc. Method for recovering hydrocarbons from tar sands and oil shales
JP2008520404A (ja) 2004-10-01 2008-06-19 インペリアル・ケミカル・インダストリーズ・ピーエルシー 分散体、フィルム、コーティング及び複合体
KR100735996B1 (ko) * 2005-01-20 2007-07-06 삼성전자주식회사 탄소나노튜브용 분산제 및 그를 포함하는 탄소나노튜브조성물
US20060189822A1 (en) * 2005-01-20 2006-08-24 Yoon Seon M Dispersant for dispersing carbon nanotubes and carbon nanotube composition comprising the same
US7335258B2 (en) * 2005-03-31 2008-02-26 Intel Corporation Functionalization and separation of nanotubes and structures formed thereby
JP5109129B2 (ja) 2005-07-05 2012-12-26 国立大学法人 奈良先端科学技術大学院大学 カーボンナノチューブ分散液の製造方法
KR100728160B1 (ko) 2005-11-30 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
JP2007258030A (ja) 2006-03-24 2007-10-04 Nok Corp 炭素材料薄膜の製造方法
KR100773551B1 (ko) * 2006-04-14 2007-11-07 삼성전자주식회사 탄소나노튜브 분산액 및 그 제조 방법
FI20070137A0 (fi) * 2007-02-15 2007-02-15 Raisio Benecol Oy Menetelmä rasvahappojen, hartsihappojen ja sterolien eristämiseksi mäntyöljypiestä
EP2154108A4 (en) 2007-04-27 2014-06-25 Kuraray Co MONOFEUILLE CARBON NANOTUBE DISPERSION LIQUID AND PROCESS FOR PRODUCING SINGLE CARBON NANOTUBE DISPERSION LIQUID
JP5372476B2 (ja) 2007-12-25 2013-12-18 花王株式会社 リチウム電池正極用複合材料の製造方法
KR101079665B1 (ko) * 2009-06-23 2011-11-03 극동씰테크 주식회사 저차원탄소 함유 탄소복합체 제조 방법 및 탄소블록 제조 방법
JP5663855B2 (ja) 2009-09-30 2015-02-04 東レ株式会社 導電性複合体およびリチウムイオン電池用負極。
EP2546908B1 (en) 2010-03-11 2016-06-15 LG Chem, Ltd. Organic polymer-silicon composite particle, preparation method for same, and cathode and lithium secondary battery including same
JP2012252824A (ja) 2011-06-01 2012-12-20 Asahi Glass Co Ltd 蓄電素子用電極の製造方法および蓄電素子
JP6162693B2 (ja) * 2011-06-24 2017-07-12 ブルーワー サイエンス アイ エヌ シー. 導電性を改善した溶解性の高いカーボンナノチューブ
TWI448422B (zh) * 2011-09-14 2014-08-11 Ind Tech Res Inst 奈米碳管粉體與其形成方法、複合材料之形成方法
JP5807749B2 (ja) * 2011-12-08 2015-11-10 ソニー株式会社 非水電解液二次電池用正極、非水電解液二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CA2807998C (en) * 2012-03-01 2020-08-18 Zeta Global, Ltd. Systems and methods for recovering hydrocarbons
JP5273274B1 (ja) 2012-04-27 2013-08-28 東洋インキScホールディングス株式会社 リチウム二次電池電極形成用組成物、二次電池用電極
US20140302296A9 (en) * 2012-09-24 2014-10-09 C3Nano Inc. Transparent conductive films with carbon nanotubes, inks to form the films and corresponding processes
US10569243B2 (en) * 2013-08-01 2020-02-25 Lg Chem, Ltd. Dispersing agent, its preparation method and dispersed composition of carbon-based material comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039443A (ja) * 2002-07-03 2004-02-05 Mitsubishi Electric Corp 電池およびその製造方法
KR20080038806A (ko) * 2006-10-31 2008-05-07 주식회사 엘지화학 전기 전도성을 향상시킨 도전제를 포함한 리튬 이차전지
KR20090054677A (ko) * 2007-11-27 2009-06-01 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
KR20100095473A (ko) 2007-12-25 2010-08-30 가오 가부시키가이샤 리튬전지 양극용 복합재료
KR20110072917A (ko) * 2009-12-23 2011-06-29 삼성전자주식회사 탄소계 도전재료, 이를 포함하는 전극 조성물 및 이로부터 제조된 전극 및 이차 전지
KR20110101347A (ko) * 2010-03-08 2011-09-16 엔바로테크 주식회사 그라펜이 분산된 고분자 복합재료 및 이를 제조하는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3002808A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181502A (ja) * 2015-03-23 2016-10-13 ヒュンダイ・モービス・カンパニー・リミテッド 照明装置
US9741700B2 (en) 2015-03-23 2017-08-22 Hyundai Mobis Co., Ltd. Lighting device

Also Published As

Publication number Publication date
TW201520255A (zh) 2015-06-01
CN105453316B (zh) 2018-01-02
KR20150016124A (ko) 2015-02-11
JP6276851B2 (ja) 2018-02-07
KR101601949B1 (ko) 2016-03-09
JP2016523439A (ja) 2016-08-08
EP3002808A4 (en) 2017-01-25
US10862124B2 (en) 2020-12-08
EP3002808A1 (en) 2016-04-06
EP3002808B1 (en) 2018-09-05
US20160190590A1 (en) 2016-06-30
TWI553048B (zh) 2016-10-11
CN105453316A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
KR101652921B1 (ko) 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지
WO2015016642A1 (ko) 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지
CN104781958B (zh) 阴极活性物质、导电性组合物、阴极材料、阴极结构体及二次电池以及它们的制造方法
Jian et al. Monodispersed hierarchical Co 3 O 4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries
Kwon et al. Fabrication of graphene sheets intercalated with manganese oxide/carbon nanofibers: toward high‐capacity energy storage
JP6241480B2 (ja) 高分散性グラフェン組成物およびその製造方法、ならびに高分散性グラフェン組成物を含むリチウムイオン二次電池用電極
US20200044240A1 (en) Graphite and Group IVA Composite Particles and Methods of Making
EP2924784A1 (en) Method for producing negative electrode material for lithium ion batteries
WO2016068043A1 (ja) リチウム硫黄電池のカソード材料の製造方法、リチウム硫黄電池のカソード材料、およびリチウム硫黄電池
TW201437143A (zh) 做爲鋰離子電池陽極材料之Si/C複合物
JP2011048992A (ja) 炭素材料、電極材料及びリチウムイオン二次電池負極材料
WO2015016639A1 (ko) 분산제, 이의 제조 방법 및 이를 포함하는 탄소계 소재의 분산 조성물
US20150010830A1 (en) Germanium nanoparticle/carbon composite anode material using no binder for lithium-polymer battery having high capacity and high rapid charge/discharge characteristics
Hou et al. Facile spray-drying/pyrolysis synthesis of intertwined SiO@ CNFs&G composites as superior anode materials for Li-ion batteries
JPWO2016181890A1 (ja) 非水電解質二次電池用電極および非水電解質二次電池
KR20160078720A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN107251289B (zh) 被碳质材料覆盖的电极活性物质、二次电池用电极及二次电池
Shafique et al. Impact of different conductive polymers on the performance of the sulfur positive electrode in Li–S batteries
WO2015099379A1 (ko) 도전재 조성물, 이를 사용한 리튬 이차 전지의 전극 형성용 슬러리 조성물 및 리튬 이차 전지
CN109904436B (zh) 一种钛酸钴二氧化钛复合物纳米线及其制备方法
KR20060115267A (ko) 리튬/유황이차전지의 사이클 특성을 향상시키기 위해첨가재로 mwnt와 gnf를 이용한 유황전극
Han et al. Pressure‐Induced Synthesis of Homogeneously Dispersed Sn/SnO2/C Nanocomposites as Advanced Anodes for Lithium‐Ion Batteries
Venugopal et al. A Simple Synthesis of Co3O4 Nanoparticles Decorated on Multiwalled Carbon Nanotubes Hybrid Material for Rechargeable Li-Ion and Li-Air Batteries
KR101460641B1 (ko) 마그네슘 이차전지용 양극활물질 및 이의 제조방법
EP4234639A1 (en) Carbon black, slurry, and lithium-ion secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043654.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831291

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014831291

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016523677

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14902992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE