WO2015016599A1 - 고체 산화물 연료전지 및 이의 제조방법 - Google Patents

고체 산화물 연료전지 및 이의 제조방법 Download PDF

Info

Publication number
WO2015016599A1
WO2015016599A1 PCT/KR2014/006980 KR2014006980W WO2015016599A1 WO 2015016599 A1 WO2015016599 A1 WO 2015016599A1 KR 2014006980 W KR2014006980 W KR 2014006980W WO 2015016599 A1 WO2015016599 A1 WO 2015016599A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass frit
electrolyte
precursor
fuel cell
solid oxide
Prior art date
Application number
PCT/KR2014/006980
Other languages
English (en)
French (fr)
Inventor
김종우
최광욱
신동오
류창석
김균중
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480042419.1A priority Critical patent/CN105409041B/zh
Priority to JP2016525306A priority patent/JP6240761B2/ja
Priority to US14/908,057 priority patent/US9923213B2/en
Publication of WO2015016599A1 publication Critical patent/WO2015016599A1/ko
Priority to US15/890,230 priority patent/US10593966B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1266Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present specification relates to a solid oxide fuel cell and a method of manufacturing the same.
  • Solid Oxide Fuel Cell called the 3rd generation fuel cell, is a fuel cell that uses solid oxide that can permeate oxygen or hydrogen ions as electrolyte.It was first operated by Bauer and Preis in 1937. It became. SOFCs operate at the highest temperatures (700 ° C. to 1000 ° C.) of existing fuel cells. Because all components are solid, the structure is simpler than other fuel cells, and there is no problem of electrolyte loss, replenishment and corrosion. It also operates at high temperatures, eliminating the need for precious metal catalysts and facilitating fuel supply through direct internal reforming. It also has the advantage that thermal combined cycle power generation using waste heat is possible because it emits hot gases. Because of these advantages, research on SOFC is being actively conducted with the aim of commercializing it at the beginning of the 21st century.
  • a typical SOFC consists of an oxygen ion conductive electrolyte and an anode (cathode) and a fuel anode (anode) located on both sides thereof.
  • Oxygen ions produced by the reduction reaction of oxygen in the cathode move through the electrolyte to the anode and react with hydrogen supplied to the anode to generate water.
  • electrons are generated at the anode and electrons are consumed at the cathode.
  • the basic principle of operation is to connect the two electrodes to each other to generate a current.
  • 1 illustrates an example of an operation principle of a solid oxide fuel cell. That is, the current may be generated by the reaction of oxygen introduced through the cathode and hydrogen introduced through the anode.
  • the air electrode and fuel electrode of SOFC should have high porosity, and the electrolyte provided between them should have a dense structure. Therefore, in order to prepare them, a pacing process is performed individually, and in particular, in the case of an electrolyte which should have a dense structure, the firing should be performed at a particularly high temperature. As a result, a warpage phenomenon occurs between the components according to the sintering temperature difference, and each component is fired separately, thereby increasing the process cost.
  • the present specification provides a solid oxide fuel cell and a method of manufacturing the same that can solve the above problems.
  • One embodiment of the present specification is an air electrode; Fuel electrode; And an electrolyte provided between the cathode and the anode, and at least one of the cathode, the anode, and the electrolyte includes a glass frit or a material derived from the glass frit.
  • an exemplary embodiment of the present specification comprises the steps of preparing a cathode precursor; Preparing an electrolyte precursor; Preparing an anode precursor; Providing the electrolyte precursor between the cathode precursor and the anode precursor; And a firing step of simultaneously firing the cathode precursor, the electrolyte precursor, and the anode precursor, wherein at least one of the cathode precursor, the electrolyte precursor, and the anode precursor includes a glass frit. to provide.
  • the solid oxide fuel cell according to the exemplary embodiment of the present specification may minimize the distortion at each interface of the cathode, the electrolyte, and the anode.
  • the solid oxide fuel cell according to an exemplary embodiment of the present specification has an advantage that can be manufactured through one firing process.
  • the solid oxide fuel cell according to the exemplary embodiment of the present specification may form an electrolyte having a dense structure despite the low temperature firing step.
  • the solid oxide fuel cell according to the exemplary embodiment of the present specification has excellent process efficiency through the unification of the low temperature firing process and the firing step.
  • FIG. 1 illustrates an example of an operation principle of a solid oxide fuel cell.
  • FIG. 2 shows an SEM image according to Example 1.
  • FIG. 3 shows an SEM image according to Example 2.
  • FIG. 4 shows an SEM image according to Comparative Example 1.
  • FIG. 5 shows an SEM image according to Example 3.
  • FIG. 6 shows an SEM image according to Example 4.
  • FIG. 8 shows an SEM image according to Example 5.
  • FIG. 9 shows an SEM image according to Example 6.
  • One embodiment of the present specification is an air electrode; Fuel electrode; And an electrolyte provided between the cathode and the anode, and at least one of the cathode, the anode, and the electrolyte includes a glass frit or a material derived from the glass frit.
  • the glass frit or the material derived from the glass frit may be a sintering aid.
  • the glass frit or the material derived from the glass frit of the present specification may serve to lower the sintering temperature during formation of the cathode, the anode, and / or the electrolyte.
  • the glass frit of the present specification may serve to promote sintering and shorten the sintering time.
  • the glass frit may be used without limitation as long as the glass frit is generally used.
  • the glass frit may be an amorphous compound.
  • the glass frit may refer to a powdery material that is ground as needed after melting and quenching the raw material of the amorphous compound.
  • the glass frit is SiO 2 , B 2 O 3 , Al 2 O 3 , Bi 2 O 3 , PbO, CaO, BaO, LiO, MgO, Na 2 O, K 2 O, ZnO , MnO, ZrO 2 , V 2 O 5 , P 2 O 5 , Y 2 O 3 , SrO, GaO, Se 2 O 3 , TiO 2 and La 2 O 3 may include one or more selected from the group consisting of. have.
  • the glass frit of the present specification may further include an additive in addition to the above configuration, and may be used without limitation as long as it is a general glass frit.
  • the average particle diameter of the glass frit may be 500 nm or more and 20 ⁇ m or less.
  • the firing temperature of the electrolyte can be smoothly lowered as a sintering aid. If it is less than the above range, the melting of the glass frit is too fast to cause a problem that the firing temperature can not be lowered sufficiently, if the above range is exceeded may cause a problem that can act as a defect area in the electrolyte.
  • the glass transition temperature (Tg) of the glass frit may be 100 ° C to 800 ° C lower than the firing temperature of the solid oxide fuel cell.
  • the glass transition temperature of the glass frit may mean a temperature at which a phase of the glass frit changes, which may mean a temperature at which the glass frit in a solid state changes to a liquid state.
  • the glass frit is 100 ° C. to 800 ° C. lower than the firing temperature of the solid oxide fuel cell during firing for forming the solid oxide fuel cell. And / or may promote sintering of the precursor of the electrolyte and lower the sintering temperature.
  • the glass transition temperature (Tg) of the glass frit may be 450 ° C or more and 900 ° C or less.
  • the electrolyte may include the glass frit or a material derived from the glass frit.
  • the glass frit may lower the sintering temperature of the electrolyte and may serve to reduce the sintering time.
  • the electrolyte includes a glass frit or a material derived from the glass frit, and the electrolyte has a firing temperature of 1% to more than a state without a material derived from the glass frit or the glass frit. It may be 50% lower. Specifically, according to one embodiment of the present specification, the electrolyte may have a firing temperature of 1% to 15% lower than that of the glass frit or a material derived from the glass frit, or may be 5% to 10% lower. Can be.
  • the content of the glass frit or the material derived from the glass frit may be 0.01 wt% or more and 10 wt% or less with respect to the total weight of the electrolyte.
  • the content of the glass frit or the material derived from the glass frit is within the range, it is possible to improve the density of the electrolyte and to minimize side effects caused by the glass frit or the material derived from the glass frit in the electrolyte. Can be. Specifically, when the content exceeds the above range, a problem may occur in that the ionic conductivity of the electrolyte is lowered and a defective area may occur. In addition, when the content is less than the above range, there may be a problem that can not exhibit the effect of improving the density of the electrolyte by the glass frit or the material derived from the glass frit.
  • the material derived from the glass frit may be a glass frit re-solidified after melting.
  • the material derived from the glass frit may be included in the air electrode, the fuel electrode, and / or the electrolyte and undergo a sintering process to re-solidify the glass frit after melting.
  • the material derived from the glass frit may include the electrolyte material in a process in which the glass frit is melted and mixed with the electrolyte material and then resolidified.
  • the glass frit may be included in an electrolyte to constitute an electrolyte together with the electrolyte material in the electrolyte, and the glass frit may form the electrolyte in a more compact structure, and the electrolyte material It can play a role in making this tightly coupled.
  • the glass frit is included in the electrolyte, and then becomes a fluid state during the sintering process, and may also be resolidified after moving to the anode and / or the cathode. That is, according to one embodiment of the present specification, the glass frit or a material derived from the glass frit may be included in the air electrode and / or the fuel electrode as well as the electrolyte.
  • the porosity of the electrolyte may be 0% or more and 5% or less. Specifically, the closer the porosity of the electrolyte to 0%, the better the performance of the solid oxide fuel cell. This is because, when the movement of gas in the electrolyte occurs, the efficiency may be lowered.
  • the solid oxide fuel cell may be manufactured by co-firing, distortion between interfaces may be minimized. That is, the bonding force of the joint surface of each structure can be excellent.
  • the electrolyte may include a solid oxide having ion conductivity.
  • the electrolyte is a composite metal oxide including one or more selected from the group consisting of zirconium oxide based, cerium oxide based, lanthanum oxide based, titanium oxide based, and bismuth oxide based materials. It may include. More specifically, the electrolyte may include yttria stabilized zirconia (YSZ), scandia stabilized zirconia (ScSZ), samaria doped ceria (SDC), and gadolinia doped ceria (GDC).
  • YSZ yttria stabilized zirconia
  • ScSZ scandia stabilized zirconia
  • SDC samaria doped ceria
  • GDC gadolinia doped ceria
  • the YSZ is yttria stabilized zirconium oxide, and may be represented by (Y 2 O 3 ) x (ZrO 2 ) 1-x , and x may be 0.05 to 0.15.
  • ScSZ is a Scandinavian stabilized zirconium oxide, which may be represented by (Sc 2 O 3 ) x (ZrO 2 ) 1-x , and x may be 0.05 to 0.15.
  • the SDC is samarium dope ceria, and may be represented by (Sm 2 O 3 ) x (CeO 2 ) 1-x , and x may be 0.02 to 0.4.
  • the GDC is gadolium dope ceria, and may be represented by (Gd 2 O 3 ) x (CeO 2 ) 1-x , and x may be 0.02 to 0.4.
  • the thickness of the electrolyte may be 10 nm or more and 100 ⁇ m or less. More specifically, it may be 100 nm or more and 50 ⁇ m or less.
  • the cathode may include a metal oxide.
  • the cathode may be a metal oxide particle having a perovskite type crystal structure, (Sm, Sr) CoO 3 , (La, Sr) MnO 3 , (La, Sr) CoO 3 , (La, Sr) (Fe, Co) O 3 , (La, Sr) (Fe, Co, Ni) O 3 may include metal oxide particles, and the metal oxide may be used alone or in combination of two or more thereof. It may be included in the anode.
  • the material for forming the air electrode may include a precious metal such as platinum, ruthenium, palladium.
  • the air electrode may include La 0.8 Sr 0.2 MnO 3 (LSM), La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3 (LSCF), and the like.
  • the fuel electrode may use cermet in which a material and nickel oxide mixed in the aforementioned electrolyte are mixed. Furthermore, the anode may further include activated carbon.
  • the solid oxide fuel cell includes a stack including an interconnect connecting two or more unit cells to each other; A fuel supply unit supplying fuel to the stack; And an air supply unit supplying air to the stack, wherein the unit cell may include the solid oxide fuel cell.
  • the anode may include an anode support layer (ASL) and an anode functional layer (AFL).
  • AFL may be a porous membrane, which may be provided between the ASL and the electrolyte membrane. More specifically, the ASL may be a region in which an electrochemical reaction occurs in contact with the electrolyte membrane.
  • the ASL serves as a support layer of the anode, and for this purpose, may be formed relatively thicker than AFL.
  • the ASL allows fuel to reach the AFL smoothly. Excellent electrical conductivity can be formed.
  • the cathode may include a cathode support layer (CSL) and a cathode functional layer (CFL).
  • CSL cathode support layer
  • CFL cathode functional layer
  • the CFL may be a porous membrane, which may be provided between the CSL and the electrolyte. More specifically, the CSL may be a region in contact with the electrolyte membrane, in which an electrochemical reaction occurs.
  • the CSL serves as a support layer of the cathode, and for this purpose, may be formed relatively thicker than the CFL.
  • the CSL allows air to reach the CFL smoothly. Excellent electrical conductivity can be formed.
  • the interconnect may include a fuel flow path through which fuel may move to each unit cell, and an air flow path through which air may move to each unit cell.
  • the stack may be a stack of two or more unit cells.
  • the interconnect may include a fuel flow path and an air flow path connecting each unit cell.
  • each stack of unit cells is stacked in series, and a separator may be further provided between the unit cells to electrically connect them.
  • the solid oxide fuel cell may be a flat plate, cylindrical or flat tube.
  • One embodiment of the present specification comprises the steps of preparing a cathode precursor; Preparing an electrolyte precursor; Preparing an anode precursor; Providing the electrolyte precursor between the cathode precursor and the anode precursor; And a firing step of simultaneously firing the cathode precursor, the electrolyte precursor, and the anode precursor, wherein at least one of the cathode precursor, the electrolyte precursor, and the anode precursor includes a glass frit. to provide.
  • the temperature of the firing step may be 800 ° C or more and 1,600 ° C or less. Specifically, according to one embodiment of the present specification, the temperature of the firing step may be 1,000 ° C or more and 1,400 ° C or less.
  • the electrolyte precursor may be a glass frit.
  • the firing step may include the step of re-solidifying the glass frit after melting.
  • preparing the cathode precursor; Preparing the electrolyte precursor; And preparing the anode precursors may each independently include a step of forming a film using a tape casting method or a screen printing method and then drying the film.
  • a cathode precursor, YSZ containing 5 wt% of La 2 O 3 -B 2 O 3 -BaO-TiO 2 -based glass frit as an electrolyte precursor, and an anode precursor were respectively formed by tape casting. And these were laminated sequentially. Furthermore, the laminated film was fired at a temperature of 1,350 ° C. to manufacture a solid oxide fuel cell. In addition, in order to examine the density of the electrolyte membrane of the manufactured solid oxide fuel cell, the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • FIG. 2 shows an SEM image according to Example 1.
  • a solid oxide fuel cell was manufactured in the same manner as in Example 1, except that the content of the glass frit was 10% by weight, and the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • FIG. 3 shows an SEM image according to Example 2.
  • a solid oxide fuel cell was prepared in the same manner as in Example 1, and the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • FIG. 4 shows an SEM image according to Comparative Example 1.
  • Air electrode precursor as the electrolyte precursor to form a film with a La 2 O 3 -B 2 O 3 -BaO-TiO 2 based glass frit using a YSZ anode and each tape casting a precursor comprising 5% by weight relative to the total electrolyte precursor These were laminated sequentially. Furthermore, the laminated film was fired at a temperature of 1250 ° C. to manufacture a solid oxide fuel cell. In addition, in order to examine the density of the electrolyte membrane of the manufactured solid oxide fuel cell, the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • SEM electron microscope
  • FIG. 5 shows an SEM image according to Example 3.
  • a solid oxide fuel cell was manufactured in the same manner as in Example 3, except that the content of the glass frit was 10 wt%, and the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • FIG. 6 shows an SEM image according to Example 4.
  • a solid oxide fuel cell was prepared in the same manner as in Example 3, and the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • a film was formed by using a tape casting method of a cathode electrode and a GDC and an anode precursor each containing 5 wt% of La 2 O 3 -B 2 O 3 -BaO-TiO 2 -based glass frit as an electrolyte precursor. These were laminated sequentially. Furthermore, the laminated film was fired at a temperature of 1350 ° C. to manufacture a solid oxide fuel cell. In addition, in order to examine the density of the electrolyte membrane of the manufactured solid oxide fuel cell, the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • FIG. 8 shows an SEM image according to Example 5.
  • a solid oxide fuel cell was manufactured in the same manner as in Example 5, except that the content of the glass frit was 10% by weight, and the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • FIG. 9 shows an SEM image according to Example 6.
  • a solid oxide fuel cell was manufactured in the same manner as in Example 5, and the cross section of the electrolyte was confirmed by an electron microscope (SEM).
  • the cross section of the electrolyte which contains the glass frit and is calcined, has a dense structure, compared to the cross section of the electrolyte that is not calcined and contains the glass frit.
  • Example 4 SEM image in Example 4, even if calcined at a temperature of 1250 °C, it can be seen that the electrolyte having a more compact structure than the comparative example 1 calcined at 1350 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

본 명세서는 고체 산화물 연료전지 및 이의 제조방법에 관한 것이다.

Description

고체 산화물 연료전지 및 이의 제조방법
본 명세서는 2013년 7월 31일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0091212 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 고체 산화물 연료전지 및 이의 제조방법에 관한 것이다.
3세대 연료전지로 불리는 고체산화물 연료전지(SOFC; Solid Oxide Fuel Cell)는 산소 또는 수소 이온을 투과시킬 수 있는 고체산화물을 전해질로 사용하는 연료전지로써, 1937년에 Bauer와 Preis에 의해 처음으로 작동되었다. SOFC는 현존하는 연료전지 중 가장 높은 온도(700 ℃ 내지 1000 ?)에서 작동한다. 모든 구성요소가 고체로 이루어져 있기 때문에 다른 연료전지에 비해 구조가 간단하고, 전해질의 손실 및 보충과 부식의 문제가 없다. 또한, 고온에서 작동하기 때문에 귀금속 촉매가 필요하지 않으며, 직접 내부 개질을 통한 연료 공급이 용이하다. 고온의 가스를 배출하기 때문에 폐열을 이용한 열 복합 발전이 가능하다는 장점도 지니고 있다. 이러한 장점들 덕분에 SOFC에 관한 연구는 21세기 초에 상업화하는 것을 목표로 활발히 연구가 이루어지고 있다.
일반적인 SOFC는 산소 이온전도성 전해질과 그 양면에 위치한 공기극(양극, cathode) 및 연료극(음극, anode)으로 이루어져 있다. 공기극에서 산소의 환원 반응에 의해 생성된 산소 이온이 전해질을 통해 연료극으로 이동하여, 다시 연료극에 공급된 수소와 반응함으로써 물을 생성하게 되며, 이 때 연료극에서 전자가 생성되고 공기극에서 전자가 소모되므로 두 전극을 서로 연결하여 전류를 발생시키는 것이 기본 작동원리이다. 도 1은 고체산화물 연료전지의 작동원리의 일 예를 도시한 것이다. 즉, 공기극을 통하여 유입되는 산소와 연료극을 통하여 유입되는 수소가 반응하여 전류가 발생할 수 있다.
SOFC의 공기극과 연료극은 기공도가 높아야하고, 이들 사이에 구비되는 전해질은 치밀한 조직을 가져야 한다. 그러므로, 이들응 제조하기 위해서는 개별적으로 서성 공정이 이루어지고 있으며, 특히 치밀한 조직을 가져야 하는 전해질의 경우에는 특히 높은 온도에서 소성을 하여야 하였다. 이에 따라, 소결 온도차이에 따른 각 구성간 뒤틀림 현상이 발생하고, 각각의 구성을 별개로 소성하게 되어 공정 비용이 상승하는 문제가 있었다.
[선행기술문헌]
미국공개공보 2011-0073180호
본 명세서는 상기 문제점을 해결할 수 있는 고체 산화물 연료전지 및 이의 제조방법을 제공한다.
본 명세서의 일 실시상태는 공기극; 연료극; 및 상기 공기극 및 상기 연료극 사이에 구비된 전해질을 포함하고, 상기 공기극, 상기 연료극, 및 상기 전해질 중 적어도 하나는 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질을 포함하는 고체 산화물 연료전지를 제공한다.
또한, 본 명세서의 일 실시상태는 공기극 전구체를 준비하는 단계; 전해질 전구체를 준비하는 단계; 연료극 전구체를 준비하는 단계; 상기 공기극 전구체와 상기 연료극 전구체 사이에 상기 전해질 전구체를 구비하는 단계; 및 상기 공기극 전구체, 상기 전해질 전구체 및 상기 연료극 전구체를 동시에 소성하는 소성 단계를 포함하고, 상기 공기극 전구체, 상기 전해질 전구체 및 상기 연료극 전구체 중 적어도 하나는 글라스 프릿을 포함하는 고체 산화물 연료전지의 제조방법을 제공한다.
본 명세서의 일 실시상태에 따른 고체 산화물 연료전지는 공기극, 전해질 및 연료극 각 계면에 뒤틀림 현상을 최소화할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 고체 산화물 연료전지는 한번의 소성 공정을 통하여 제조할 수 있는 장점이 있다.
또한, 본 명세서의 일 실시상태에 따른 고체 산화물 연료전지는 낮은 온도의 소성 단계에도 불구하고, 치밀한 조직의 전해질을 형성할 수 있다.
또한, 본 명세서의 일 실시상태에 따른 고체 산화물 연료전지는 낮은 온도의 소성 과정 및 소성 단계의 일원화를 통하여 우수한 공정 효율을 가진다.
도 1은 고체산화물 연료전지의 작동원리의 일 예를 도시한 것이다.
도 2는 실시예 1에 따른 SEM 이미지를 나타낸 것이다.
도 3은 실시예 2에 따른 SEM 이미지를 나타낸 것이다.
도 4는 비교예 1에 따른 SEM 이미지를 나타낸 것이다.
도 5는 실시예 3에 따른 SEM 이미지를 나타낸 것이다.
도 6은 실시예 4에 따른 SEM 이미지를 나타낸 것이다.
도 7은 비교예 2에 따른 SEM 이미지를 나타낸 것이다.
도 8는 실시예 5에 따른 SEM 이미지를 나타낸 것이다.
도 9는 실시예 6에 따른 SEM 이미지를 나타낸 것이다.
도 10은 비교예 3에 따른 SEM 이미지를 나타낸 것이다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서의 일 실시상태는 공기극; 연료극; 및 상기 공기극 및 상기 연료극 사이에 구비된 전해질을 포함하고, 상기 공기극, 상기 연료극, 및 상기 전해질 중 적어도 하나는 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질을 포함하는 고체 산화물 연료전지를 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿(glass frit) 또는 상기 글라스 프릿으로부터 유래되는 물질은 소결 조제일 수 있다. 구체적으로, 본 명세서의 상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질은 상기 공기극, 연료극 및/또는 전해질의 형성시의 소결 온도를 낮추는 역할을 할 수 있다. 또한, 본 명세서의 상기 글라스 프릿은 소결을 촉진하여 소결 시간을 단축하는 역할을 할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿은 일반적으로 통용되는 글라스 프릿이면 제한없이 사용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿은 비결정성 화합물일 수 있다. 또한, 본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿은 비결정성 화합물의 원료를 용융시키고 급랭한 후에 필요에 따라 분쇄한 분말상의 물질을 의미할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿은 SiO2, B2O3, Al2O3, Bi2O3, PbO, CaO, BaO, LiO, MgO, Na2O, K2O, ZnO, MnO, ZrO2, V2O5, P2O5, Y2O3, SrO, GaO, Se2O3, TiO2 및 La2O3으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 본 명세서의 상기 글라스 프릿은 상기의 구성외에 첨가물을 더 포함할 수 있으며, 일반적인 글라스 프릿이면 제한없이 사용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿은 ZnO-SiO2 계, ZnO-B2O3-SiO2 계, ZnO-B2O3-SiO2-Al2O3 계, Bi2O3-SiO2 계, Bi2O3-B2O3-SiO2 계, Bi2O3-B2O3-SiO2-Al2O3 계, Bi2O3-ZnO-B2O3-SiO2 계, Bi2O3-ZnO-B2O3-SiO2-Al2O3 계, 및 La2O3-B2O3-BaO-TiO2 계 글라스 프릿으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿의 평균 입경은 500 ㎚ 이상 20 ㎛ 이하일 수 있다.
상기 글라스 프릿의 평균 입경이 상기 범위 내에 있는 경우, 소결 조제로서 상기 전해질의 소성온도를 원활하게 낮출 수 있다. 상기 범위 미만인 경우, 글라스 프릿의 용융이 지나치게 빠르게 되어 소성온도를 충분히 낮출 수 없는 문제가 발생할 수 있으며, 상기 범위를 초과하는 경우 전해질 내에서 결함영역으로 작용할 수 있는 문제가 발생할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿의 유리전이온도(Tg)는 상기 고체 산화물 연료전지의 소성 온도보다 100 ℃ 내지 800 ℃ 낮은 것일 수 있다. 상기 글라스 프릿의 유리전이온도는 글라스 프릿의 상(phase)이 변화하는 온도를 의미할 수 있으며, 이는 고체상태의 글라스 프릿이 액체상태로 변화하는 온도를 의미할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿은 고체 산화물 연료전지의 형성을 위한 소성시, 고체 산화물 연료전지의 소성 온도보다 100 ℃ 내지 800 ℃ 낮으므로, 액상의 형태로 변화하여 상기 공기극, 연료극 및/또는 전해질의 전구체의 소결을 촉진시킬 수 있으며, 소결 온도를 낮출 수 있다.
구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿의 유리전이온도(Tg)는 450 ℃ 이상 900 ℃ 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전해질은 상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래된 물질을 포함할 수 있다. 상기 글라스 프릿은 상기 전해질의 소결 온도를 낮출 수 있으며, 소결 시간을 줄일 수 있는 역할을 한다.
본 명세서의 일 실시상태에 따르면, 상기 전해질은 상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래된 물질을 포함하고, 상기 전해질은 상기 글라스 프릿 또는 글라스 프릿으로부터 유래되는 물질이 없는 상태보다 소성온도가 1 % 내지 50 % 더 낮은 것일 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 전해질은 상기 글라스 프릿 또는 글라스 프릿으로부터 유래되는 물질이 없는 상태보다 소성온도가 1 % 내지 15 % 더 낮을 수 있으며, 또는 5 % 내지 10 % 더 낮을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질의 함량은 상기 전해질 총중량에 대하여 0.01 중량% 이상 10 중량% 이하일 수 있다.
상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질의 함량이 상기 범위 내에 있는 경우, 전해질의 치밀도를 향상시킴과 동시에, 전해질 내에서 상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질에 의한 부작용을 최소화할 수 있다. 구체적으로, 상기 함량 범위를 초과하는 경우, 전해질의 이온 전도도가 저하되고, 결함 영역이 발생할 수 있는 문제가 발생할 수 있다. 또한, 상기 함량 범위 미만인 경우, 글라스 프릿 또는 글라스 프릿으로부터 유래되는 물질에 의한 전해질의 치밀도 향상 효과를 발휘할 수 없는 문제가 발생할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿으로부터 유래되는 물질은 글라스 프릿이 용융 후 재응고된 것일 수 있다. 구체적으로, 상기 글라스 프릿으로부터 유래되는 물질은 상기 공기극, 연료극 및/또는 전해질에 포함되어 소결 과정을 거치면서, 글라스 프릿이 녹은 후 재응고되는 것일 수 있다. 또한, 본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿으로부터 유래된 물질은 상기 글라스 프릿이 용융되어 상기 전해질 물질과 혼합된 후 재응고되는 과정에서 상기 전해질 물질을 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿은 전해질에 포함되어 전해질 내에서 상기 전해질 물질과 함께 전해질을 구성할 수 있으며, 상기 글라스 프릿은 전해질을 보다 치밀한 구조로 형성하게 할 수 있으며, 전해질 물질이 단단하게 결합되도록 하는 역할을 할 수 있다.
또한, 본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿은 전해질에 포함된 후, 소결 과정을 거치면서 유동적인 상태가 되어, 연료극 및/또는 공기극으로도 이동한 후 재응고될 수 있다. 즉, 본 명세서의 일 실시상태에 따르면, 상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질은 전해질 뿐만 아니라, 공기극 및/또는 연료극에도 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전해질의 공극률은 0 % 이상 5 % 이하일 수 있다. 구체적으로, 상기 전해질의 공극률은 0 % 에 가까울수록 고체 산화물 연료전지의 성능이 우수하다. 이는 전해질에서의 가스의 이동이 일어나는 경우, 효율이 저하될 수 있기 때문이다.
본 명세서의 일 실시상태에 따르면, 상기 고체 산화물 연료전지는 동시 소성에 의하여 제조가 가능하므로, 각 구성간의 계면 간에 뒤틀림 현상이 최소화될 수 있다. 즉, 각 구성의 접합면의 결합력이 우수할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전해질은 이온 전도성을 가지는 고체산화물을 포함할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 전해질은 산화 지르코늄계, 산화 세륨계, 산화 란탄계, 산화 티타늄계, 산화 비스무스계물질로 이루어진 군에서 선택되는 1종 이상을 포함하는 복합 금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 전해질은 이트리아 안정화 지르코니아(YSZ), 스칸디아 안정화 지르코니아(ScSZ), 사마리아 도핑된 세리아(SDC), 가돌리니아 도핑된 세리아(GDC)를 포함할 수 있다.
상기 YSZ는 이트리아(yttria) 안정화 산화 지르코늄으로서, (Y2O3)x(ZrO2)1-x로 표현될 수 있고, x는 0.05 내지 0.15일 수 있다.
상기 ScSZ는 스칸디나비아 안정화 산화 지르코늄으로서, (Sc2O3)x(ZrO2)1-x로 표현될 수 있고, x는 0.05 내지 0.15일 수 있다.
상기 SDC는 사마륨 도프 세리아로서, (Sm2O3)x(CeO2)1-x로 표현될 수 있고, x는 0.02 내지 0.4일 수 있다.
상기 GDC는 가도리움 도프 세리아로서, (Gd2O3)x(CeO2)1-x로 표현될 수 있고, x는 0.02 내지 0.4일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전해질의 두께는 10 ㎚ 이상 100 ㎛ 이하일 수 있다. 보다 구체적으로, 100 ㎚ 이상 50 ㎛ 이하일 수 있다..
본 명세서의 일 실시상태에 따르면, 상기 공기극은 금속산화물을 포함할 수 있다. 구체적으로, 상기 공기극은 페로브스카이트(perovskite) 형의 결정 구조를 가지는 금속 산화물 입자를 사용할 수 있으며, (Sm,Sr)CoO3, (La,Sr)MnO3, (La,Sr)CoO3, (La,Sr)(Fe,Co)O3, (La,Sr)(Fe,Co,Ni)O3 등의 금속산화물 입자를 포함할 수 있으며, 상기 금속산화물은 단독 또는 2종 이상을 혼합하여 상기 연료극에 포함될 수 있다. 또한, 본 명세서의 일 실시상태에 따르면, 상기 공기극을 형성하는 재료로서 백금, 루테늄, 팔라듐 등의 귀금속을 포함할 수 있다. 또한, 상기 공기극을 형성하는 재료로서 스트론튬, 코발트, 철 등이 도핑된 란탄 망가나이트를 사용할 수 있다. 예를 들어, 상기 공기극은 La0.8Sr0.2MnO3(LSM), La0.6Sr0.4Co0.8Fe0.2O3(LSCF) 등을 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 연료극은 전술한 전해질에 포함되는 물질 및 니켈 옥사이드가 혼합된 세메트(cermet)가 사용될 수 있다. 나아가, 상기 연료극은 활성탄소를 추가적으로 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고체 산화물 연료전지는 2 이상의 단위셀들을 서로 연결하는 인터커넥트를 포함하는 스택; 연료를 상기 스택으로 공급하는 연료공급부; 및 공기를 상기 스택으로 공급하는 공기공급부를 포함하고, 상기 단위셀은 상기 고체 산화물 연료전지를 포함할 수 있다.
명세서의 일 구현예에 따르면, 상기 연료극은 ASL(Anode Support layer) 및 AFL(Anode Functional Layer)를 포함할 수 있다. 상기 AFL은 다공성 막일 수 있으며, 이는 ASL 및 전해질막 사이에 구비될 수 있다. 보다 구체적으로, 상기 ASL은 전해질막과 접하여, 전기화학적반응이 일어나는 영역이 될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 ASL는 애노드의 지지층의 역할을 하며, 이를 위하여 AFL에 비하여 상대적으로 더 두껍게 형성될 수 있다. 또한, 상기 ASL은 연료를 AFL에까지 원활하게 도달하도록 하고. 전기 전도도가 우수하게 형성될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 공기극은 CSL(Cathode Support layer) 및 CFL(Cathode Functional Layer)를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 CFL은 다공성 막일 수 있으며, 이는 CSL 및 전해질 사이에 구비될 수 있다. 보다 구체적으로, 상기 CSL은 전해질막과 접하여, 전기화학적 반응이 일어나는 영역이 될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 CSL는 캐소드의 지지층의 역할을 하며, 이를 위하여 CFL에 비하여 상대적으로 더 두껍게 형성될 수 있다. 또한, 상기 CSL은 공기를 CFL에까지 원활하게 도달하도록 하고. 전기 전도도가 우수하게 형성될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 인터커넥트는 각각의 단위셀로 연료가 이동할 수 있는 연료 유로 및 각각의 단위셀로 공기가 이동할 수 있는 공기 유로를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 스택은 2 이상의 단위셀의 스택(stack)일 수 있다. 또한, 상기 인터커넥트는 각각의 단위셀을 연결하는 연료 유로 및 공기 유로를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 스택은 각각의 단위셀이 직렬로 적층되고, 상기 단위셀들 사이에 이들을 전기적으로 연결하는 분리판(seperator)이 더 구비될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고체산화물 연료전지는 평판형, 원통형 또는 평관형인 것일 수 있다.
본 명세서의 일 실시상태는 공기극 전구체를 준비하는 단계; 전해질 전구체를 준비하는 단계; 연료극 전구체를 준비하는 단계; 상기 공기극 전구체와 상기 연료극 전구체 사이에 상기 전해질 전구체를 구비하는 단계; 및 상기 공기극 전구체, 상기 전해질 전구체 및 상기 연료극 전구체를 동시에 소성하는 소성 단계를 포함하고, 상기 공기극 전구체, 상기 전해질 전구체 및 상기 연료극 전구체 중 적어도 하나는 글라스 프릿을 포함하는 고체 산화물 연료전지의 제조방법을 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 소성 단계의 온도는 800 ℃ 이상 1,600 ℃ 이하일 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 소성 단계의 온도는 1,000 ℃ 이상 1,400 ℃ 이하일 수 있다.
본 명세서의 일 실시상태에 따른 고체 산화물 연료전지의 제조방법에 있어서, 상기 전해질 전구체는 글라스 프릿을 포함하는 것일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 소성 단계는 상기 글라스 프릿이 용융 후 재응고하는 단계를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 공기극 전구체를 준비하는 단계; 상기 전해질 전구체를 준비하는 단계; 및 상기 연료극 전구체를 준비하는 단계는 각각 독립적으로, 테이프 캐스팅법 또는 스크린 프린팅법을 이용하여 막을 형성한 후 건조하는 단계를 포함할 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[실시예 1]
공기극 전구체, 전해질 전구체로서 La2O3-B2O3-BaO-TiO2 계 글라스 프릿이 전체 전해질 전구체에 대하여 5 중량%로 포함된 YSZ, 및 연료극 전구체를 각각 테이프 캐스팅법을 이용하여 막을 형성하고 이들을 순차적으로 적층하였다. 나아가, 상기 적층된 막을 1,350 ℃의 온도로 소성을 하여 고체산화물 연료전지를 제조하였다. 그리고, 제조된 고체산화물 연료전지의 전해질막의 치밀도를 검사하기 위하여, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 2는 실시예 1에 따른 SEM 이미지를 나타낸 것이다.
[실시예 2]
글라스 프릿의 함량을 10 중량%로 한 것을 제외하고, 상기 실시예 1과 같은 방법으로 고체 산화물 연료전지를 제조하고, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 3은 실시예 2에 따른 SEM 이미지를 나타낸 것이다.
[비교예 1]
글라스 프릿을 포함하지 않은 것을 제외하고, 상기 실시예 1과 같은 방법으로 고체 산화물 연료전지를 제조하고, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 4는 비교예 1에 따른 SEM 이미지를 나타낸 것이다.
[실시예 3]
공기극 전구체, 전해질 전구체로서 La2O3-B2O3-BaO-TiO2 계 글라스 프릿이 전체 전해질 전구체에 대하여 5 중량%로 포함된 YSZ 및 연료극 전구체를 각각 테이프 캐스팅법을 이용하여 막을 형성하고 이들을 순차적으로 적층하였다. 나아가, 상기 적층된 막을 1250 ℃의 온도로 소성을 하여 고체산화물 연료전지를 제조하였다. 그리고, 제조된 고체산화물 연료전지의 전해질막의 치밀도를 검사하기 위하여, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 5는 실시예 3에 따른 SEM 이미지를 나타낸 것이다.
[실시예 4]
글라스 프릿의 함량을 10 중량%로 한 것을 제외하고, 상기 실시예 3과 동일한 방법으로 고체 산화물 연료전지를 제조하고, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 6은 실시예 4에 따른 SEM 이미지를 나타낸 것이다.
[비교예 2]
글라스 프릿을 포함하지 않은 것을 제외하고, 상기 실시예 3과 같은 방법으로 고체 산화물 연료전지를 제조하고, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 7은 비교예 2에 따른 SEM 이미지를 나타낸 것이다.
[실시예 5]
공기극 전구체, 전해질 전구체로서 La2O3-B2O3-BaO-TiO2 계 글라스 프릿이 전체 전해질 전구체에 대하여 5 중량%로 포함된 GDC 및 연료극 전구체를 각각 테이프 캐스팅법을 이용하여 막을 형성하고 이들을 순차적으로 적층하였다. 나아가, 상기 적층된 막을 1350 ℃의 온도로 소성을 하여 고체산화물 연료전지를 제조하였다. 그리고, 제조된 고체산화물 연료전지의 전해질막의 치밀도를 검사하기 위하여, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 8는 실시예 5에 따른 SEM 이미지를 나타낸 것이다.
[실시예 6]
글라스 프릿의 함량을 10 중량%로 한 것을 제외하고, 상기 실시예 5와 동일한 방법으로 고체 산화물 연료전지를 제조하고, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 9는 실시예 6에 따른 SEM 이미지를 나타낸 것이다.
[비교예 3]
글라스 프릿을 포함하지 않은 것을 제외하고, 상기 실시예 5와 같은 방법으로 고체 산화물 연료전지를 제조하고, 전해질의 단면을 전자현미경(SEM)으로 확인하였다.
도 10은 비교예 3에 따른 SEM 이미지를 나타낸 것이다.
상기 실시예 및 비교예를 살펴보면, 글라스 프릿이 포함되지 않고 소성된 전해질의 단면에 비하여, 글라스 프릿이 포함되어 소성된 전해질의 단면이 치밀한 구조로 형성되어 있는 것을 알 수 있다.
실시예 4에서의 SEM 이미지는 1250 ℃ 온도로 소성하더라도, 1350 ℃에서 소성한 비교예 1에 비하여 치밀한 구조의 전해질이 형성된 것을 알 수 있다.

Claims (16)

  1. 공기극; 연료극; 및 상기 공기극 및 상기 연료극 사이에 구비된 전해질을 포함하고,
    상기 공기극, 상기 연료극, 및 상기 전해질 중 적어도 하나는 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질을 포함하는 고체 산화물 연료전지.
  2. 청구항 1에 있어서,
    상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질은 소결 조제인 것인 고체 산화물 연료전지.
  3. 청구항 1에 있어서,
    상기 글라스 프릿은 SiO2, B2O3, Al2O3, Bi2O3, PbO, CaO, BaO, LiO, MgO, Na2O, K2O, ZnO, MnO, ZrO2, V2O5, P2O5, Y2O3, SrO, GaO, Se2O3, TiO2 및 La2O3으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것인 고체 산화물 연료전지.
  4. 청구항 1에 있어서,
    상기 글라스 프릿은 ZnO-SiO2 계, ZnO-B2O3-SiO2 계, ZnO-B2O3-SiO2-Al2O3 계, Bi2O3-SiO2 계, Bi2O3-B2O3-SiO2 계, Bi2O3-B2O3-SiO2-Al2O3 계, Bi2O3-ZnO-B2O3-SiO2 계, Bi2O3-ZnO-B2O3-SiO2-Al2O3 계, 및 La2O3-B2O3-BaO-TiO2 계 글라스 프릿으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것인 고체 산화물 연료전지.
  5. 청구항 1에 있어서,
    상기 글라스 프릿의 유리전이온도(Tg)는 450 ℃ 이상 900 ℃ 이하인 것인 고체 산화물 연료전지.
  6. 청구항 1에 있어서,
    상기 전해질은 상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래된 물질을 포함하는 것인 고체 산화물 연료전지.
  7. 청구항 6에 있어서,
    상기 글라스 프릿 또는 상기 글라스 프릿으로부터 유래되는 물질의 함량은 상기 전해질 총중량에 대하여 0.01 중량% 이상 10 중량% 이하인 것인 고체 산화물 연료전지.
  8. 청구항 6에 있어서,
    상기 전해질은 상기 글라스 프릿 또는 글라스 프릿으로부터 유래되는 물질이 없는 상태보다 소성온도가 1 % 내지 50 % 더 낮은 것인 고체 산화물 연료전지.
  9. 청구항 1에 있어서,
    상기 글라스 프릿으로부터 유래되는 물질은 상기 글라스 프릿이 용융 후 재응고된 것인 고체 산화물 연료전지.
  10. 청구항 1에 있어서,
    상기 전해질의 공극률은 0 % 이상 5 % 이하인 것인 고체 산화물 연료전지.
  11. 청구항 1에 있어서,
    상기 전해질은 산화 지르코늄계, 산화 세륨계, 산화 란탄계, 산화 티타늄계, 산화 비스무스계물질로 이루어진 군에서 선택되는 1종 이상을 포함하는 복합 금속 산화물을 포함하는 것인 고체 산화물 연료전지.
  12. 청구항 1에 있어서,
    상기 고체산화물 연료전지는 평판형, 원통형 또는 평관형인 것인 고체산화물 연료전지.
  13. 공기극 전구체를 준비하는 단계;
    전해질 전구체를 준비하는 단계;
    연료극 전구체를 준비하는 단계;
    상기 공기극 전구체와 상기 연료극 전구체 사이에 상기 전해질 전구체를 구비하는 단계; 및
    상기 공기극 전구체, 상기 전해질 전구체 및 상기 연료극 전구체를 동시에 소성하는 소성 단계를 포함하고,
    상기 공기극 전구체, 상기 전해질 전구체 및 상기 연료극 전구체 중 적어도 하나는 글라스 프릿을 포함하는 고체 산화물 연료전지의 제조방법.
  14. 청구항 13에 있어서,
    상기 소성 단계의 온도는 800 ℃ 이상 1,600 ℃ 이하인 것인 고체 산화물 연료전지의 제조방법.
  15. 청구항 13에 있어서,
    상기 전해질 전구체는 글라스 프릿을 포함하는 것인 고체 산화물 연료전지의 제조방법.
  16. 청구항 13에 있어서,
    상기 공기극 전구체를 준비하는 단계; 상기 전해질 전구체를 준비하는 단계; 및 상기 연료극 전구체를 준비하는 단계는 각각 독립적으로, 테이프 캐스팅법 또는 스크린 프린팅법을 이용하여 막을 형성한 후 건조하는 단계를 포함하는 것인 고체 산화물 연료전지의 제조방법.
PCT/KR2014/006980 2013-07-31 2014-07-30 고체 산화물 연료전지 및 이의 제조방법 WO2015016599A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480042419.1A CN105409041B (zh) 2013-07-31 2014-07-30 固体氧化物燃料电池及其制造方法
JP2016525306A JP6240761B2 (ja) 2013-07-31 2014-07-30 固体酸化物燃料電池およびその製造方法
US14/908,057 US9923213B2 (en) 2013-07-31 2014-07-30 Solid oxide fuel cell and method for manufacturing same
US15/890,230 US10593966B2 (en) 2013-07-31 2018-02-06 Solid oxide fuel cell and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130091212 2013-07-31
KR10-2013-0091212 2013-07-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/908,057 A-371-Of-International US9923213B2 (en) 2013-07-31 2014-07-30 Solid oxide fuel cell and method for manufacturing same
US15/890,230 Division US10593966B2 (en) 2013-07-31 2018-02-06 Solid oxide fuel cell and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2015016599A1 true WO2015016599A1 (ko) 2015-02-05

Family

ID=52432063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006980 WO2015016599A1 (ko) 2013-07-31 2014-07-30 고체 산화물 연료전지 및 이의 제조방법

Country Status (5)

Country Link
US (2) US9923213B2 (ko)
JP (1) JP6240761B2 (ko)
KR (1) KR101672588B1 (ko)
CN (1) CN105409041B (ko)
WO (1) WO2015016599A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196699A (zh) * 2016-09-30 2019-01-11 株式会社Lg化学 固体氧化物燃料电池的电解质、包含其的固体氧化物燃料电池、用于所述电解质的组合物和用于制造所述电解质的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016144067A1 (ko) * 2015-03-06 2016-09-15 주식회사 엘지화학 전극의 제조방법, 이로 제조된 전극, 이를 포함하는 전극구조체, 연료전지 또는 금속공기이차전지, 상기 전지를 포함하는 전지모듈, 및 전극 제조용 조성물
KR20190044234A (ko) 2017-10-20 2019-04-30 재단법인대구경북과학기술원 이중 도핑을 통해 고온안정성이 강화된 어븀-안정화 산화비스무트 (esb)계 전해질
JP7247511B2 (ja) 2017-10-31 2023-03-29 Jnc株式会社 光配向用液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子、並びに、ジアミンおよびポリマー
CN108134119B (zh) * 2017-12-26 2020-08-07 成都新柯力化工科技有限公司 一种固体氧化物燃料电池氧化铋基电解质膜及制备方法
CN108232263A (zh) * 2018-01-02 2018-06-29 珠海光宇电池有限公司 复合固体电解质及其制备方法
KR20200077014A (ko) 2018-12-20 2020-06-30 현대자동차주식회사 화학적으로 내구성이 향상된 막-전극 접합체의 전해질막 및 이의 제조방법
CN109836154A (zh) * 2018-12-29 2019-06-04 清华大学 一种低温烧结致密化燃料电池中氧化铈基隔离层的方法
CN110165268B (zh) * 2019-06-20 2021-08-06 合肥学院 一种碳酸钙-氧化铋复合固体电解质陶瓷片的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131516A (ja) * 1997-07-10 1999-02-02 Meidensha Corp 固体電解質型燃料電池
JP2002015754A (ja) * 2000-06-30 2002-01-18 Kyocera Corp 固体電解質型燃料電池セルおよびその製法
JP2003123789A (ja) * 2001-08-06 2003-04-25 Nissan Motor Co Ltd 固体電解質材料、その製造方法およびそれを用いた固体電解質型燃料電池
JP2008257890A (ja) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd 燃料極用集電材、及びそれを用いた固体酸化物形燃料電池
KR20120104511A (ko) * 2009-07-03 2012-09-21 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 고온에서 작동되는 장치의 개스킷용 유리 조성물 및 이를 사용한 조립 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341360B2 (ja) 1993-06-30 2002-11-05 松下電器産業株式会社 バリスタとその製造方法
EP1313892A1 (de) * 2000-08-24 2003-05-28 Siemens Aktiengesellschaft Verfahren zum erzeugen einer festelektrolytschicht auf einem substrat
JP3858261B2 (ja) * 2001-05-22 2006-12-13 日産自動車株式会社 燃料電池用セル板、その製造方法および固体電解質型燃料電池
US7628951B1 (en) * 2005-10-21 2009-12-08 Ceramatec, Inc. Process for making ceramic insulation
US7989374B2 (en) * 2008-05-15 2011-08-02 Corning Incorporated Non-contaminating, electro-chemically stable glass frit sealing materials and seals and devices using such sealing materials
CN102123961A (zh) 2009-08-07 2011-07-13 Lg化学株式会社 制备硅太阳能电池的无铅玻璃料粉末、其制备方法、包含其的金属膏组合物和硅太阳能电池
JP5144622B2 (ja) * 2009-10-26 2013-02-13 日本電信電話株式会社 固体酸化物形燃料電池スタックとその製造方法
EP2503631A1 (en) * 2011-03-24 2012-09-26 Technical University of Denmark Method for producing ceramic devices by sintering in a low pO2 atmosphere and using sintering additives comprising a transition metal
KR20130042868A (ko) * 2011-10-19 2013-04-29 삼성전기주식회사 고체산화물 연료 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131516A (ja) * 1997-07-10 1999-02-02 Meidensha Corp 固体電解質型燃料電池
JP2002015754A (ja) * 2000-06-30 2002-01-18 Kyocera Corp 固体電解質型燃料電池セルおよびその製法
JP2003123789A (ja) * 2001-08-06 2003-04-25 Nissan Motor Co Ltd 固体電解質材料、その製造方法およびそれを用いた固体電解質型燃料電池
JP2008257890A (ja) * 2007-03-30 2008-10-23 Dainippon Printing Co Ltd 燃料極用集電材、及びそれを用いた固体酸化物形燃料電池
KR20120104511A (ko) * 2009-07-03 2012-09-21 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 고온에서 작동되는 장치의 개스킷용 유리 조성물 및 이를 사용한 조립 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196699A (zh) * 2016-09-30 2019-01-11 株式会社Lg化学 固体氧化物燃料电池的电解质、包含其的固体氧化物燃料电池、用于所述电解质的组合物和用于制造所述电解质的方法
CN109196699B (zh) * 2016-09-30 2021-09-07 株式会社Lg化学 固体氧化物燃料电池的电解质、包含其的固体氧化物燃料电池、用于所述电解质的组合物和用于制造所述电解质的方法

Also Published As

Publication number Publication date
US10593966B2 (en) 2020-03-17
US20180159149A1 (en) 2018-06-07
US20160164114A1 (en) 2016-06-09
US9923213B2 (en) 2018-03-20
CN105409041B (zh) 2018-11-09
JP2016525268A (ja) 2016-08-22
JP6240761B2 (ja) 2017-11-29
KR101672588B1 (ko) 2016-11-03
CN105409041A (zh) 2016-03-16
KR20150016118A (ko) 2015-02-11

Similar Documents

Publication Publication Date Title
WO2015016599A1 (ko) 고체 산화물 연료전지 및 이의 제조방법
WO2016080681A1 (ko) 고체 산화물 연료 전지의 제조방법
WO2012091446A2 (ko) 금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택
WO2016144067A1 (ko) 전극의 제조방법, 이로 제조된 전극, 이를 포함하는 전극구조체, 연료전지 또는 금속공기이차전지, 상기 전지를 포함하는 전지모듈, 및 전극 제조용 조성물
WO2016200206A1 (ko) 공기극 조성물, 공기극 및 이를 포함하는 연료 전지
WO2018062694A1 (ko) 고체 산화물 연료전지의 전해질, 이를 포함하는 고체 산화물 연료전지, 상기 전해질용 조성물 및 상기 전해질의 제조방법
WO2018062693A1 (ko) 고체 산화물 연료전지
WO2017048047A1 (ko) 고체산화물 연료전지의 전극 슬러리, 고체산화물 연료전지의 전극용 그린시트, 고체산화물 연료전지의 전극, 고체산화물 연료전지 및 고체산화물 연료전지의 전극의 제조방법
WO2013183885A1 (ko) 연료 전지용 스택 구조물 및 그의 구성
WO2017034163A1 (ko) 평판형 고체산화물 연료전지 및 이를 포함하는 전지모듈
WO2020167005A1 (ko) 나노다공구조의 혼합전도 기능층을 포함하는 고체산화물연료전지 및 그 제조방법
JP5560511B2 (ja) 電気化学リアクター
WO2015050409A1 (ko) 고체 산화물 연료전지의 연료극 지지체 제조방법 및 고체 산화물 연료전지의 연료극 지지체
WO2018062692A1 (ko) 고체 산화물 연료전지
WO2019112115A1 (ko) 지지체식 세라믹 연결재 제조방법 및 이에 의해 제조된 지지체식 세라믹 연결재
WO2023038167A1 (ko) 접촉층을 포함하는 금속지지체형 고체산화물 연료전지
WO2015016565A1 (ko) 무기 산화물 분말 및 이의 소결체를 포함하는 전해질
WO2017034334A1 (ko) 고체 산화물 연료전지의 제조방법, 고체 산화물 연료전지 및 이를 포함하는 전지 모듈
WO2018034489A1 (ko) 평판형 고체 산화물 연료전지
WO2021261692A1 (ko) 알칼리 기반 프로모터가 도입된 연료극을 포함하는 고체 산화물 연료전지
WO2014092357A1 (ko) 연료 전지용 스택 구조물
WO2016200193A1 (ko) 고체산화물 연료전지용 시트 적층체, 고체산화물 연료전지의 전구체, 고체산화물 연료전지용 시트 적층체 제조장치 및 고체산화물 연료전지용 시트 적층체 제조방법
WO2018062695A1 (ko) 고체 산화물 연료전지의 운전 방법
WO2017111562A1 (ko) 산화물계 전해질 이동 차단층이 형성된 용융탄산염 연료전지용 가스켓
WO2024122830A1 (en) Solid oxide composite and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042419.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525306

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908057

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831559

Country of ref document: EP

Kind code of ref document: A1