WO2012091446A2 - 금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택 - Google Patents

금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택 Download PDF

Info

Publication number
WO2012091446A2
WO2012091446A2 PCT/KR2011/010216 KR2011010216W WO2012091446A2 WO 2012091446 A2 WO2012091446 A2 WO 2012091446A2 KR 2011010216 W KR2011010216 W KR 2011010216W WO 2012091446 A2 WO2012091446 A2 WO 2012091446A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal support
solid oxide
fuel cell
oxide fuel
Prior art date
Application number
PCT/KR2011/010216
Other languages
English (en)
French (fr)
Other versions
WO2012091446A3 (ko
Inventor
박영민
송정훈
안진수
배홍열
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100137302A external-priority patent/KR101277893B1/ko
Priority claimed from KR1020100137303A external-priority patent/KR101289202B1/ko
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP11853326.4A priority Critical patent/EP2660917A4/en
Priority to JP2013547339A priority patent/JP2014504778A/ja
Priority to US13/977,129 priority patent/US20130280634A1/en
Publication of WO2012091446A2 publication Critical patent/WO2012091446A2/ko
Publication of WO2012091446A3 publication Critical patent/WO2012091446A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell (SOFC), and more particularly, an integrated metal support type solid oxide fuel cell unit cell of a manifold and a battery, a method of manufacturing the same, and a solid oxide fuel cell using the same. It's about the stack.
  • SOFC solid oxide fuel cell
  • a solid oxide fuel cell has a structure in which a plurality of electricity generating units including a unit cell and a separator are stacked.
  • the unit cell includes an electrolyte membrane, an anode (air electrode) located on one surface of the electrolyte membrane, and a cathode (fuel electrode) located on the other surface of the electrolyte membrane.
  • oxygen ions generated by the reduction reaction of oxygen in the cathode move through the electrolyte membrane to the cathode, and then react with hydrogen supplied to the cathode to generate water. At this time, electrons flow from the cathode to the external electrode in the process of being consumed by the cathode, and the unit cell uses the electron flow to produce electrical energy.
  • a fuel cell composed of an electrolyte, an air electrode, and a fuel electrode is called a unit cell. Since the amount of electric energy produced by one unit cell is very limited, the unit cells are connected in series to use the fuel cell for power generation. Phosphorus laminate (stack, stack) will be produced. The separator is used to prevent mixing of fuel and air while electrically connecting the cathode and the anode of each unit cell to form a stack.
  • a separator plate, an anode, an electrolyte, and an air electrode form a unit.
  • the separator uses a ferritic stainless steel sheet based on Fe-Cr.
  • the gas may move between the air electrode and the fuel electrode. It provides a passage and requires the ability to electrically connect the cell to the cell.
  • the metal support type solid oxide fuel cell is nickel or stainless steel as a support, an electrode (fuel electrode or air electrode) in contact with the support is formed, the electrolyte is formed in contact with the electrode, the electrode is formed in contact with the electrolyte Has a structure. Since a metal having high strength is used as a support instead of a ceramic, there is an advantage that a gasket type sealant can be applied instead of a glass sealant because the stress that the unit cell can withstand when the laminate is stacked is large.
  • One aspect of the present invention is to provide a metal support-type solid oxide fuel cell, a method of manufacturing the same, and a solid oxide fuel cell stack, which do not form a cell frame, and thus have a simple process and excellent economic efficiency.
  • the present invention is a metal support
  • It is formed on one surface of the electrolyte, and comprises a second electrode having a different polarity from the first electrode,
  • a metal support-type solid oxide fuel cell unit cell wherein a manifold serving as a fluid passage is formed in the metal support, the first electrode, the electrolyte, and the second electrode.
  • the present invention comprises the steps of preparing a metal support, a first electrode, an electrolyte and a second electrode;
  • It provides a method of manufacturing a metal support-type solid oxide fuel cell unit cell comprising a.
  • the present invention provides a plurality of unit cells
  • It is disposed between two or more unit cells includes a separator connected in series,
  • a metal support-type solid oxide fuel cell stack comprising a sealing material formed between the unit cell and the separator.
  • the metal support type solid oxide fuel cell of the present invention does not require a cell frame because the manifold is formed in the cell, the process is simple and the cost of the stack (stack) can be reduced.
  • FIG. 1 is a cross-sectional view of an example of the metal support-type solid oxide fuel cell of the present invention.
  • FIG. 2 is a manufacturing process chart of the metal support-type solid oxide fuel cell of the present invention.
  • FIG 3 is a cross-sectional view of another example of the metal support-type solid oxide fuel cell of the present invention.
  • Figure 4 is a schematic diagram showing an example of the metal support-type solid oxide fuel cell stack of the present invention.
  • the metal support-type solid oxide fuel cell unit cell of the present invention includes a metal support 101.
  • the metal support is preferably a porous metal, has a mesh shape or a foam shape, and the material is preferably stainless steel, iron alloy, or nickel-based alloy.
  • the metal support may contain at least one of Zr, Ce, Ti, Mg, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Nb, Sn, La, Ta, V, and Nd oxides. weight% It is preferable to include below. When the oxide is added in an amount of more than 20% by weight, the elasticity of the metal support decreases, and the fuel cell is weak in shock.
  • the first electrode is formed on one surface of the metal support.
  • a fuel electrode or an air electrode is formed as the first electrode.
  • the first electrode is the cathode 103, and in this case, the metal support 101 is called the cathode support.
  • the metal support is called an anode support.
  • the cathode 103 is preferably a perovskite structure of LSM (La x Sr 1-x MnO 3- ) or LSCF (La x Sr 1-x Co y Fe 1-y O 3- ), which is a fuel electrode.
  • LSM La x Sr 1-x MnO 3-
  • LSCF La x Sr 1-x Co y Fe 1-y O 3-
  • materials such as Yttria Stabilized Zirconia (Ni-YSZ), Ru / YSZ cermet, Ni / SDC cermet, Ni / GDC cermet, Ni, Ru, and Pt are preferable.
  • the diffusion barrier layer 105 is formed between the cathode 103 and the electrolyte 107.
  • the diffusion barrier layer 105 may include an oxygen ion conductor having Ce as a main component.
  • the diffusion barrier layer 105 serves to prevent a reaction between the cathode 103 and the electrolyte 107.
  • the electrolyte 107 is formed between the first electrode and the second electrode.
  • the electrolyte 107 preferably includes an oxygen ion conductor having Zr as a main component.
  • ZrO 2 system CaO, MgO, Sc 2 O 3 , Y 2 O 3 doped ZrO 2
  • CeO 2 system Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 doped CeO 2
  • Bi 2 O 3 system CaO, SrO, BaO, Gd 2 O 3 , Y 2 O 3 doped Bi 2 O 3
  • Perovskite oxide ((La, Sr) (Ga, Mg) O 3- ⁇ , Ba (Ce, Gd) O 3- ⁇ ) and the like.
  • the second electrode is formed in contact with the electrolyte.
  • the first electrode is the cathode 103
  • the second electrode becomes the anode 109. That is, the first electrode and the second electrode are different electrodes.
  • the fuel cell unit cell of the present invention includes at least one manifold formed through a laminate stacked with a metal support, a first electrode, an electrolyte, and a second electrode.
  • the manifold is a fluid passage through which air and fuel are supplied and discharged.
  • a manifold and a unit cell are separately formed, and a process of joining the manifold and the unit cell with a glass sealant or the like is required, and the fuel cell must be sealed to prevent leakage of fuel or air through the joining site.
  • the manifold and the unit cell are integrally formed, and there is no need to join the manifold and the cell. The manufacture of the laminate (stack) is simple and the reliability of the laminate is improved.
  • the manifold is provided with an air or fuel cutout.
  • FIG. 4 describes the use of the barrier film as follows.
  • a second blocking portion 111 is formed to prevent air from flowing into the fuel electrode 109, which is the second electrode.
  • the first blocking part 112 may be formed to block fuel from flowing into the cathode 103 as the first electrode.
  • the fuel cell unit cell of the present invention has the advantage that a separate cell frame is not required because the manifold penetrating the stack forming the battery is formed.
  • FIG. 2 is a process chart showing a process of the manufacturing method of the present invention.
  • a metal support, a first electrode, an electrolyte, and a second electrode are manufactured (S200).
  • a metal support is produced by a tape casting method or an extrusion method, and a first electrode, an electrolyte, and a second electrode are produced by any one of a tape casting method, a screen printing method, and a wet spray method.
  • the laminate sequentially stacks a metal support, a first electrode, an electrolyte, and a second electrode.
  • the sintering temperature is preferably 1300 ⁇ 1400 °C, the gas atmosphere is determined by adjusting the ratio of nitrogen, argon, hydrogen or each gas.
  • the battery in the case of using a solid oxide not containing chromium, the battery may be manufactured by sintering in an air atmosphere and then reducing at 800 to 1000 ° C.
  • a solid oxide is used as a raw material, coarsening of Ni particles in the anode functional layer can be suppressed by sintering and reducing in air, which helps to improve battery performance.
  • a manifold is formed with respect to the sintered laminate (S230).
  • the manifold is preferably formed using punching, laser, water jet.
  • Conventional ceramic support cells cannot form manifolds by punching due to the brittleness of ceramics after sintering, and the failure rate is high even when using lasers and water jets. Fold formation is possible.
  • the solid oxide fuel cell stack according to the present invention includes a metal support 434, a fuel electrode 435, an electrolyte 436, and an air electrode 437 formed on the metal support 430. And at least one separator 400 electrically connecting the cathode 437 and the anode 435 of the solid oxide fuel cell unit cell 430.
  • FIG. 4 is illustrated as being stacked on the metal support in the order of anode / electrolyte / air electrode, but is not limited thereto, and may be stacked in the order of the cathode / electrolyte / fuel electrode.
  • the solid oxide fuel cell stack of the present invention includes an air electrode 437 and manifolds 402 and 432 for supplying and discharging fuel or air to the anode 435, and the manifolds 402 and 432 are the solids. It is preferable to be formed integrally with the oxide fuel cell.
  • a sealing material (410, 450) formed between the solid oxide fuel cell 430 and the separator 400.
  • a buffer layer may be further included between the electrolyte and the cathode of the unit cell, if necessary.
  • YSZ included in the anode reacts with (La, Sr) (Co, Fe) O 3, etc. of the cathode, a material having high resistance such as La 2 ZrO 7 may be generated to reduce the efficiency of the fuel cell. Therefore, in order to suppress such a reaction, it is preferable to form a buffer layer between the electrolyte membrane and the cathode.
  • the seals 410 and 450 may also use glass seals, and preferably the gasket seals 410 and 450 as shown in FIG. 4.
  • the gasket type sealant does not require high temperature heat treatment to seal the sealant, and the sealant performs deformation by pressing at room temperature to perform sealing, for example, a mica-based sealant, and the like.
  • the metal support type fuel cell forming the anode, the electrolyte, and the cathode on the metal support may have a much higher pressure than the anode support and the electrolyte support solid oxide fuel cell.
  • a glass sealant requires about 1 kg / cm 2 of pressure to form a seal
  • a gasket seal requires a high pressure of 10 kg / cm 2 or higher to form a seal, and as the unit cell area increases, Pressure becomes higher.
  • a gasket sealing material cannot be used because the above-described high surface pressure causes damage and deformation to the battery structure.
  • a metal support having a high mechanical strength since a metal support having a high mechanical strength is used, it can withstand high compressive stress of 10 kg / cm 2 or more, and thus, even a gasket sealant does not cause deformation or damage to the unit cell.
  • the solid oxide fuel cell unit cell is integrally formed with manifolds 402 and 432 capable of supplying and discharging fuel and air.
  • manifolds 402 and 432 are integrally formed, there is an advantage in that the fuel cell stack can be configured without a cell frame that is conventionally used when the unit cell is applied to the stack. That is, conventionally, a fuel cell stack was constructed by forming a unit cell-cell frame assembly in which a unit cell is bonded to a cell frame having a manifold, and then alternately stacking the unit cell-cell frame assembly and a separator plate.
  • the manifold is provided with an air or fuel cutout.
  • anode current collector 440 and the cathode current collector 420 may be further included between the solid oxide fuel cell and the separator of the present invention to improve current collection performance.
  • the anode current collector 440 is intended to improve current collection toward the anode side and to facilitate the movement of fuel gas.
  • the anode current collector 440 is preferably made of foamed metal. More specifically, the anode current collector of the present invention is not limited thereto, but particularly preferably made of a foam metal made of Ni and / or Ni alloy.
  • the cathode current collector 420 is to improve the cathode current collector and to facilitate the movement of air, it is preferably made of a foamed metal. More specifically, the cathode current collector of the present invention is not limited thereto, but may be a foamed metal made of stainless steel, Fe-Ni-based alloy, Fe-Ni-Cr-based alloy and / or Fe-Ni-SiC-based alloy. It is particularly preferable that it is made.
  • the separation plate of the solid oxide fuel cell is generally formed with a flow path for supplying air and fuel to the anode and the cathode, in the case of the fuel cell of the present invention may be used a separator plate formed with the flow path in this way.
  • a separator plate formed with the flow path in this way.
  • a separation plate without a flow path may be used. This is because the foamed metal can serve as a flow path together with the current collecting function.
  • the fuel cell of the present invention may further include a stopper for preventing the gap between the unit cell and the separation plate due to the current collector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 매니폴드와 전지의 일체화된 금속 지지체형 고체 산화물 연료전지에 관한 것으로서, 금속 지지체; 상기 금속 지지체의 일면에 형성된 제1 전극; 상기 제1 전극의 일면에 형성되는 전해질; 상기 전해질의 일면에 형성되며, 상기 제1 전극과 다른 극성을 갖는 제2 전극을 포함하여 이루어지며, 상기 금속지지체, 제1 전극, 전해질 및 제2 전극에 유체 통로인 매니폴드가 형성된 것을 특징으로 하는 금속 지지체형 고체 산화물 연료전지 단위전지와 이를 제조하는 방법, 상기 고체 산화물 연료전지를 이용한 스택을 제공한다.

Description

금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택
본 발명은 고체 산화물 연료전지(Solid Oxide Fuel Cell, SOFC)에 관한 것으로서, 보다 상세하게는 매니폴드와 전지의 일체화된 금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택에 관한 것이다.
고체 산화물 연료 전지(solid oxide fuel cell; SOFC)는 단위전지와 분리판으로 이루어진 전기 생성 유닛이 복수개 적층된 구조로 이루어진다. 단위전지는 전해질막, 상기 전해질막의 일면에 위치하는 양극(공기극)과 전해질막의 다른 일면에 위치하는 음극(연료극)을 포함한다.
공기극에 산소를 공급하고 음극에 수소를 공급하면, 공기극에서 산소의 환원 반응으로 생성된 산소 이온이 전해질막을 지나 음극으로 이동한 후 음극에 공급된 수소와 반응하여 물이 생성된다. 이때 음극에서 생성된 전자가 공기극으로 전달되어 소모되는 과정에서 외부 회로로 전자가 흐르며, 단위전지는 이러한 전자 흐름을 이용하여 전기 에너지를 생산한다.
전해질, 공기극 및 연료극으로 이루어진 연료 전지를 단위전지(unit cell)라고 하며, 1개의 단위전지가 생산하는 전기에너지의 양은 매우 제한적이기 때문에 연료전지를 발전에 이용하기 위해서는 단위전지를 직렬로 연결해 놓은 형태인 적층체(스택, stack)를 제작하게 된다. 스택을 형성하기 위해 각각의 단위전지의 공기극과 연료극을 전기적으로 연결하면서 연료와 공기의 혼합을 막기 위해 분리판을 이용한다.
스택을 구성하기 위해서는 분리판, 연료극, 전해질, 공기극이 하나의 단위를 이루며, 상기 분리판은 기본적으로 Fe-Cr을 기본으로 하는 페라이트계 스테인레스 강판을 사용하며, 공기극과 연료극에는 가스가 이동할 수 있는 통로(유로)를 제공하며, 셀과 셀을 전기적으로 연결시키는 기능이 필요하다.
한편, 금속 지지체형 고체 산화물 연료전지는 니켈 또는 스테인레스 스틸을 지지체로 하여, 상기 지지체와 접하는 전극(연료극 또는 공기극)이 형성되며, 상기 전극과 접하여 전해질이 형성되며, 상기 전해질과 접하여 전극이 형성되는 구조를 갖는다. 세라믹 대신 강도가 높은 금속을 지지체로 사용하므로, 적층체(스택) 조립시 단위전지가 견딜 수 있는 응력이 크기 때문에 유리 밀봉재 대신 개스킷형 밀봉재의 적용이 가능하다는 장점이 있다.
그러나, 이러한 경우에도 스택을 형성하기 위해 매니폴드가 형성된 셀 프레임과 셀을 브레이징 또는 밀봉하기 위한 유리 밀봉재를 사용하는 점에서, 복잡한 공정을 필요하며, 비용이 증가하는 문제가 있다.
본 발명의 일측면은 셀 프레임을 형성하지 않아, 공정이 간단하고 경제성이 우수한 금속 지지체형 고체 산화물 연료전지 및 이를 제조하는 방법과 상기 고체 산화물 연료전지 스택을 제공하고자 하는 것이다.
본 발명은 금속 지지체;
상기 금속 지지체의 일면에 형성된 제1 전극;
상기 제1 전극의 일면에 형성되는 전해질;
상기 전해질의 일면에 형성되며, 상기 제1 전극과 다른 극성을 갖는 제2 전극을 포함하여 이루어지며,
상기 금속지지체, 제1 전극, 전해질 및 제2 전극에 유체 통로인 매니폴드가 형성된 것을 특징으로 하는 금속 지지체형 고체 산화물 연료전지 단위전지를 제공한다.
또한, 본 발명은 금속 지지체, 제1 전극, 전해질 및 제2 전극을 제조하는 단계;
상기 금속 지지체, 제1 전극, 전해질 및 제2 전극을 적층하여 적층체를 형성하는 단계;
상기 적층체를 소결하는 단계; 및
상기 소결된 적층체에 매니폴드를 형성하는 단계
를 포함하는 금속 지지체형 고체 산화물 연료전지 단위전지의 제조방법을 제공한다.
또한, 본 발명은 복수의 단위전지와;
2개 이상의 단위전지 사이에 배치되어 직렬연결하는 분리판을 포함하며,
상기 단위전지와 분리판 사이에 형성되는 밀봉재를 포함하는 금속 지지체형 고체 산화물 연료전지 스택을 제공한다.
본 발명의 금속 지지체형 고체 산화물 연료전지는 매니폴드가 전지에 형성되기 때문에, 셀 프레임을 필요로 하지 않으므로, 공정이 간단하고 적층물(스택)의 가격 또한 절감할 수 있는 장점이 있다.
도 1은 본 발명 금속 지지체형 고체 산화물 연료전지의 일예의 단면도임.
도 2는 본 발명 금속 지지체형 고체 산화물 연료전지의 제조 공정도임.
도 3은 본 발명 금속 지지체형 고체 산화물 연료전지의 또다른 일예의 단면도임.
도 4는 본 발명 금속 지지체형 고체 산화물 연료전지 스택의 일예를 나타낸 모식도임.
이하, 본 발명에 대하여 상세히 설명한다.
먼저 본 발명의 금속 지지체형 고체 산화물 연료전지 단위전지에 대하여 도 1을 참고하여 상세히 설명한다.
본 발명의 금속 지지체형 고체 산화물 연료전지 단위전지는 금속 지지체(101)를 포함한다. 상기 금속 지지체는 다공질 금속이 바람직하며, 메쉬(mesh) 형상 또는 폼(foam) 형상을 가지며, 재질은 스테인레스 스틸, 철 합금 또는 니켈계 합금이 바람직하다. 상기 금속 지지체는 Zr, Ce, Ti, Mg, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Nb, Sn, La, Ta, V 및 Nd 산화물 중 1종 이상을 20중량% 이하로 포함하는 것이 바람직하다. 상기 산화물을 20중량% 초과하여 첨가하게 되면, 금속 지지체의 탄성이 감소하여, 연료전지가 충격에 약해지는 문제가 있다.
상기 금속 지지체의 일면에 제1 전극이 형성된다. 상기 제1 전극으로는 연료극 또는 공기극이 형성된다. 상기 도 1에서는 제1 전극이 공기극(103)이며, 이러한 경우에는 상기 금속 지지체(101)를 공기극 지지체라 칭한다. 한편, 상기 제1 전극이 연료극인 경우에는 상기 금속 지지체를 연료극 지지체라 칭한다.
상기 공기극(103)은 페로브스카이트 구조인 LSM(LaxSr1-xMnO3-) 또는 LSCF(LaxSr1-xCoyFe1-yO3-)인 것이 바람직하며, 연료극인 경우에는 Ni-YSZ(Yttria Stabilized Zirconia), Ru/YSZ cermet, Ni/SDC cermet, Ni/GDC cermet, Ni, Ru, Pt등의 물질인 것이 바람직하다.
한편, 확산 방지층(105)이 공기극(103)과 전해질(107) 사이에 형성되는 것이 보다 바람직하다. 상기 확산 방지층(105)은 Ce을 주성분으로 하는 산소이온 전도체를 포함할 수 있다. 확산 방지층(105)은 공기극(103)과 전해질(107)간 반응을 방지하는 역할을 한다.
전해질(107)은 제1 전극과 제2 전극 사이에 형성된다. 전해질(107)은 Zr을 주성분으로 하는 산소이온 전도체를 포함하는 것이 바람직하다. 구체적인 예로는 ZrO2 계(CaO, MgO, Sc2O3, Y2O3 doped ZrO2), CeO2 계: Sm2O3, Gd2O3, Y2O3 doped CeO2), Bi2O3계(CaO, SrO, BaO, Gd2O3, Y2O3 doped Bi2O3), 페로브스카이트(Perovskite) 산화물((La,Sr)(Ga,Mg)O3-δ, Ba(Ce,Gd)O3-δ)등의 물질이 있다.
제2 전극이 전해질과 접하여 형성된다. 상기 도 1에서는 제1 전극이 공기극(103)이었으므로, 제2 전극은 연료극(109)이 된다. 즉, 제1 전극과 제2 전극은 서로 다른 전극임을 의미한다.
본 발명 연료전지 단위전지는 금속 지지체, 제1 전극, 전해질 및 제2 전극으로 적층된 적층체를 관통하여 형성된 매니폴드를 하나 이상 포함하는 것이 바람직하다. 상기 매니폴드는 공기나 연료의 공급 및 배출이 이루어지는 유체 통로이다. 종래의 연료전지는 매니폴드와 단위전지가 따로 형성되어, 매니폴드와 단위전지를 유리 밀봉재 등을 이용하여 접합시키는 공정이 필요하며, 접합 부위를 통해 연료 또는 공기의 누출이 없도록 밀봉시켜야 한다. 그러나, 본 발명에서는 매니폴드와 단위전지를 일체형으로 만들어, 매니폴드와 셀을 접합할 필요가 없었으며, 적층체(스택) 제조가 간단하며, 적층체의 신뢰성 향상이 도움을 준다.
상기 매니폴드에는 공기 또는 연료 차단부이 형성되어 있는 것이 바람직하다. 도 3을 참조하여 상기 차단막의 용도를 설명하면 다음과 같다. 도 4에 나타난 바와 같이, 공기를 통과시키는 매니폴드(110')에서는 제 2전극인 연료극(109)에 공기가 유입되는 것을 방지하는 제2 차단부(111)가 형성되고, 연료를 통과시키는 매니폴드(110)에서는 제1 전극인 공기극(103)에 연료가 유입되는 것을 차단하는 제1 차단부(112)가 형성되는 것이 바람직하다.
상기와 같이, 본 발명 연료전지 단위전지는 전지를 이루는 적층체를 관통하는 매니폴드가 형성됨으로서, 별도의 셀 프레임이 필요하지 않다는 장점이 있다.
이하, 본 발명의 제조방법에 대하여 도 2를 참조하여 상세히 설명한다. 도 2는 본 발명의 제조방법의 공정을 나타낸 공정도이다.
먼저, 금속 지지체, 제1 전극, 전해질 및 제2 전극을 제조한다(S200). 먼저 테이프 캐스팅법 또는 압출법으로 금속 지지체를 제조하고, 테이프 캐스팅법, 스크린 인쇄법 및 습식 스프레이법 중 어느 하나의 방법으로 제1 전극, 전해질 및 제2 전극을 각각 제조한다.
이후, 적층체를 형성한다(S210). 적층체는 금속 지지체, 제1 전극, 전해질 및 제2 전극을 순차적으로 적층(stacking)한다.
상기 형성된 적층체를 소결한다(S220). 상기 소결은 질소 또는 환원 분위기에서는 행하는 것이 바람직하다. 상기 소결온도는 1300~1400℃가 바람직하며, 가스 분위기는 질소, 아르곤, 수소 또는 각 가스의 비율을 조절하여 결정한다.
한편, 크롬을 포함하지 않은 고체 산화물을 사용하는 경우에는 공기 분위기에서 소결한 후 800~1000℃에서 환원하여 전지를 제작할 수도 있다. 이와 같은 고체 산화물을 원료로 사용할 경우, 공기중에서 소결하고 환원하면, 연료극 기능층의 Ni입자 조대화를 억제할 수 있으므로, 전지 성능을 향상시키는데 도움이 된다.
상기 소결된 적층체에 대하여 매니폴드를 형성한다(S230). 상기 매니폴드는 펀칭, 레이저, 워터젯을 이용하여 형성하는 것이 바람직하다. 종래의 세라믹 지지체형 전지는 소결 후 세라믹의 취성 때문에 펀칭으로는 매니폴드 형성이 불가능하며, 레이저, 워터젯을 사용하더라도 불량률이 높으나, 금속 지지체형 전지의 경우에는 펀칭, 레이저, 워터젯 등 다양한 방법으로 매니폴드 형성이 가능하다.
이하, 본 발명의 금속 지지체 고체 산화물 연료전지 스택에 대하여 도 4를 참조하여 상세히 설명한다. 본 발명의 고체 산화물 연료전지 스택은 금속지지체(434)와 상기 금속지지체 상에 형성된 연료극(435), 전해질(436) 및 공기극(437)을 포함하는 전술한 바와 같은 고체 산화물 연료전지 단위전지(430)를 포함하고, 상기 고체 산화물 연료전지 단위전지(430)의 공기극(437)과 연료극(435)을 전기적으로 연결하는 적어도 하나의 분리판(400)을 포함한다.
다만, 도 4에는 금속 지지체 상에 연료극/전해질/공기극 순서로 적층된 것으로 도시되어 있으며, 이에 한정되는 것은 아니며, 공기극/전해질/연료극 순으로 적층되어도 무방하다.
본 발명의 고체 산화물 연료전지 스택은 공기극(437)과 연료극(435)에 연료 또는 공기의 공급 및 배출을 위한 매니폴드(402, 432)를 포함하며, 상기 매니폴드(402, 432)는 상기 고체 산화물 연료전지에 일체로 형성되는 것이 바람직하다.
상기 고체 산화물 연료전지(430)와 분리판(400) 사이에 형성되는 밀봉재(410, 450)를 포함하는 것이 바람직하다.
한편, 도면에 도시되지는 않았으나, 상기 단위전지의 전해질과 공기극 사이에는, 필요에 따라, 버퍼층을 추가로 포함될 수 있다. 연료극에 포함된 YSZ와 공기극의 (La,Sr)(Co,Fe)O3 등이 반응하면 La2ZrO7과 같은 저항이 큰 물질을 생성되어 연료 전지의 효율을 감소시킬 수 있다. 따라서, 이와 같은 반응을 억제하기 위해 상기 전해질막과 공기극 사이에 버퍼층을 형성하는 것이 바람직하다.
상기 밀봉재(410, 450)는 유리 밀봉재를 사용하는 것도 가능하고, 바람직하게는 도 4에 나타난 바와 같이 개스킷형 밀봉재(410, 450)인 것이 바람직하다. 상기 개스킷형 밀봉재는 밀봉을 위해 고온의 열처리가 요구되지 않으며, 상온에서 가압을 통해 변형이 일어나 밀봉을 수행하는 밀봉재로, 예를 들면 마이카 계열 밀봉재 등이 이에 속한다.
상기와 같이 금속 지지체 상에 연료극, 전해질, 공기극을 형성하는 금속 지지체형 연료 전지의 경우 연료극 지지체, 전해질 지지체 고체 산화물 연료 전지에 비해 훨씬 높은 압력을 견딜 수 있다는 특징이 있다. 일반적으로 유리 밀봉재의 경우, 밀봉 형성을 위해 약 1kg/cm2의 압력이 요구되는 반면, 개스킷 밀봉재는 밀봉 형성을 위해 10kg/cm2 이상의 높은 압력이 요구되며, 단위전지의 면적이 증가할 수록 요구되는 압력은 더욱 높아진다. 전해질 지지체나 연료극 지지체형 연료 전지의 경우, 기계적 강도가 약하기 때문에 상기와 같은 높은 면압을 가할 경우, 전지 구조에 손상 및 변형이 유발되기 때문에, 개스킷 밀봉재를 사용할 수 없었다. 그러나, 본 발명의 경우에는 기계적 강도가 높은 금속 지지체를 사용하기 때문에, 10kg/cm2 이상의 높은 압축 응력을 견딜 수 있으며, 따라서 개스킷 밀봉재를 사용하여도 단위전지에 변형이나 손상이 유발되지 않는다.
한편, 본 발명에서 상기 고체 산화물 연료전지 단위전지는 도 4에 도시된 바와 같이, 연료 및 공기를 공급 및 배출할 수 있는 매니폴드(402, 432)가 일체로 형성된다. 이와 같이, 매니폴드(402, 432)가 일체로 형성될 경우, 종래에 단위전지를 스택에 적용할 때 사용되었던 셀 프레임 없이 연료 전지 스택을 구성할 수 있다는 장점이 있다. 즉, 종래에는 단위전지를 매니폴드를 갖는 셀 프레임에 접합시킨 단위전지-셀 프레임 접합체를 형성한 후, 이 단위전지-셀 프레임 접합체와 분리판을 교대로 적층하는 방법으로 연료 전지 스택을 구성하였으며, 이와 같이 셀 프레임을 사용할 경우, 단위전지와 셀 프레임 사이로 기체가 빠져나오는 것을 방지하기 위해서, 단위전지와 셀 프레임 사이를 유리 밀봉재로 밀봉해야 했다. 그러나, 상기와 같이 단위전지의 금속 지지체 자체에 매니폴드를 형성할 경우, 셀 프레임을 사용할 필요가 없으며, 그 결과, 단위전지와 셀 프레임의 밀봉이 요구되지 않는다. 따라서, 이중 밀봉(셀 프레임-단위전지 밀봉, 분리판 매니폴드 밀봉)이 요구되었던 종래의 구조에 비해 훨씬 단순한 밀봉 구조를 갖는 연료 전지 스택을 제조할 수 있다.
상기 매니폴드에는 공기 또는 연료 차단부가 형성되어 있는 것이 바람직하다.
또한, 본 발명의 고체 산화물 연료전지와 분리판 사이에 집전 성능 향상을 위해 연료극 집전체(440) 및 공기극 집전체(420)가 추가로 포함될 수 있다. 상기 연료극 집전체(440)는 연료극 쪽의 집전을 향상시키고, 연료 가스의 이동을 용이하게 하기 위한 것으로, 발포 금속으로 이루어지는 것이 바람직하다. 보다 구체적으로는, 본 발명의 상기 연료극 집전체는, 이로써 한정되는 것은 아니나, Ni 및/또는 Ni 합금 재질의 발포 금속으로 이루어지는 것이 특히 바람직하다.
한편, 상기 공기극 집전체(420)는 공기극 집전을 향상시키고, 공기의 이동을 원활하게 하기 위한 것으로, 발포 금속으로 이루어지는 것이 바람직하다. 보다 구체적으로는, 본 발명의 공기극 집전체는, 이로써 한정되는 것은 아니나, 스테인레스 스틸, Fe-Ni계 합금, Fe-Ni-Cr계 합금 및/또는 Fe-Ni-SiC계 합금 재질의 발포 금속으로 이루어지는 것이 특히 바람직하다.
한편, 고체 산화물 연료전지의 분리판에는 공기 및 연료를 연료극 및 공기극에 공급하기 위한 유로가 형성되는 것이 일반적이며, 본 발명의 연료 전지의 경우, 이와 같이 유로가 형성된 분리판을 사용하여도 무방하다. 또한, 본 발명에 있어서, 상기와 같이 발포 금속으로 이루어진 집전체를 추가로 포함할 경우에는 유로가 형성되지 않은 분리판을 사용하여도 무방하다. 발포 금속이 집전 기능과 함께 유로 역할을 수행할 수 있기 때문이다.
또한, 도면에 도시되지는 않았으나, 본 발명의 연료 전지는 상기 집전체로 인해 단위전지와 분리판 사이에 간극이 발생하는 것을 방지하기 위한 스토퍼를 추가로 포함할 수 있다.
한편, 첨부된 도면에 대한 부호를 정리하면 다음과 같다.
101.....금속 지지체 103.....공기극
105.....확산 방지층 107.....전해질
109.....연료극 110, 110'.....매니폴드
111.....공기 차단막(제2 차단부) 112.....연료 차단막(제1 차단부)
400.....분리판 410, 450.....밀봉재
420.....공기극 집전체 440.....연료극 집전체
430.....단위전지 434.....금속 지지체
435.....연료극 436.....연료극
437.....공기극 402, 432.....매니폴드

Claims (16)

  1. 금속 지지체;
    상기 금속 지지체의 일면에 형성된 제1 전극;
    상기 제1 전극의 일면에 형성되는 전해질;
    상기 전해질의 일면에 형성되며, 상기 제1 전극과 다른 극성을 갖는 제2 전극을 포함하여 이루어지며,
    상기 금속지지체, 제1 전극, 전해질 및 제2 전극에 유체 통로인 매니폴드가 형성된 것을 특징으로 하는 금속 지지체형 고체 산화물 연료전지 단위전지.
  2. 청구항 1에 있어서,
    상기 제1 전극은 공기극이고, 제2 전극은 연료극인 것을 특징으로 하는 금속 지지체형 고체 산화물 연료전지 단위전지.
  3. 청구항 2에 있어서,
    상기 제1 전극에 형성된 매니폴드에는, 상기 제1 전극 내부로의 연료의 흐름을 차단하는 제1 차단부가 형성되고, 상기 제2 전극에 형성된 매니폴드에는 제2 전극 내부로의 연료의 흐름을 차단하는 제2 차단부가 형성되는 것을 특징으로 하는 금속 지지체형 고체 산화물 연료전지 단위전지.
  4. 청구항 1에 있어서,
    상기 금속 지지체는 스테인레스 스틸, 철 합금 및 니켈계 합금 중 어느 하나인 금속 지지체형 고체 산화물 연료전지 단위전지.
  5. 청구항 1에 있어서,
    상기 금속 지지체는 Zr, Ce, Ti, Mg, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, Mo, Y, Nb, Sn, La, Ta, V 및 Nd 산화물 중 1종 이상을 20중량% 이하로 포함하는 금속 지지체형 고체 산화물 연료전지 단위전지.
  6. 청구항 1에 있어서,
    상기 금속 지지체는 메쉬(mesh) 형상 또는 폼(foam) 형상인 금속 지지체형 고체 산화물 연료전지 단위전지.
  7. 청구항 2에 있어서,
    상기 공기극은 페로브스카이트 구조인 LSM(LaxSr1-xMnO3-) 또는 LSCF(LaxSr1-xCoyFe1-yO3-)인 금속 지지체형 고체 산화물 연료전지 단위전지.
  8. 청구항 2에 있어서,
    상기 연료극은 Ni-YSZ(Yttria Stabilized Zirconia), Ru/YSZ cermet, Ni/SDC cermet, Ni/GDC cermet, Ni, Ru 및 Pt로 이루어진 그룹에선 선택된 어느 하나인 금속 지지체형 고체 산화물 연료전지 단위전지.
  9. 금속 지지체, 제1 전극, 전해질 및 제2 전극을 제조하는 단계;
    상기 금속 지지체, 제1 전극, 전해질 및 제2 전극을 적층하여 적층체를 형성하는 단계;
    상기 적층체를 소결하는 단계; 및
    상기 소결된 적층체에 매니폴드를 형성하는 단계
    를 포함하는 금속 지지체형 고체 산화물 연료전지 단위전지의 제조방법.
  10. 청구항 9에 있어서,
    상기 금속 지지체는 테이프 캐스팅법 또는 압출법으로 제조하는 금속 지지체형 고체 산화물 연료전지 단위전지의 제조방법.
  11. 청구항 9에 있어서,
    상기 제1 전극, 전해질 및 제2 전극은 테이프 캐스팅법, 스크린 인쇄법 및 습식 스프레이법 중 어느 하나의 방법으로 제조하는 금속 지지체형 고체 산화물 연료전지 단위전지의 제조방법.
  12. 청구항 9에 있어서,
    상기 소결은 질소 또는 환원 분위기에서 이루어지는 금속 지지체형 고체 산화물 연료전지 단위전지의 제조방법.
  13. 청구항 9에 있어서,
    상기 매니폴드는 펀칭, 레이저 및 워터젯 중 어느 하나의 방법으로 형성되는 금속 지지체형 고체 산화물 연료전지 단위전지의 제조방법.
  14. 청구항 1 내지 8 중 어느 한 항에 따른 복수의 단위전지와;
    2개 이상의 단위전지 사이에 배치되어 직렬연결하는 분리판을 포함하며,
    상기 단위전지와 분리판 사이에 형성되는 밀봉재를 포함하는 금속 지지체형 고체 산화물 연료전지 스택.
  15. 청구항 14에 있어서,
    상기 밀봉재는 개스킷형 밀봉재인 금속 지지체형 고체 산화물 연료전지 스택.
  16. 청구항 15에 있어서,
    상기 개스킷형 밀봉재는 가압을 통해 밀봉을 수행하며, 감압을 통해 해체가능한 밀봉재인 금속 지지체형 고체 산화물 연료 전지 스택.
PCT/KR2011/010216 2010-12-28 2011-12-28 금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택 WO2012091446A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11853326.4A EP2660917A4 (en) 2010-12-28 2011-12-28 METAL SUPPORTED SOLID OXIDE FUEL CELL UNIT, PROCESS FOR PREPARING AND STACKING SOLID OXIDE FUEL CELLS USING THE UNIT CELL
JP2013547339A JP2014504778A (ja) 2010-12-28 2011-12-28 金属支持体型固体酸化物燃料電池の単位電池及びその製造方法とこれを用いた固体酸化物燃料電池スタック
US13/977,129 US20130280634A1 (en) 2010-12-28 2011-12-28 Unit Cell of Metal-Supported Solid Oxide Fuel Cell, Preparation Method Thereof, and Solid Oxide Fuel Cell Stack Using the Unit Cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0137303 2010-12-28
KR10-2010-0137302 2010-12-28
KR1020100137302A KR101277893B1 (ko) 2010-12-28 2010-12-28 금속 지지체형 고체 산화물 연료전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택
KR1020100137303A KR101289202B1 (ko) 2010-12-28 2010-12-28 금속 지지체형 고체 산화물 연료 전지 스택

Publications (2)

Publication Number Publication Date
WO2012091446A2 true WO2012091446A2 (ko) 2012-07-05
WO2012091446A3 WO2012091446A3 (ko) 2012-08-23

Family

ID=46383715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010216 WO2012091446A2 (ko) 2010-12-28 2011-12-28 금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택

Country Status (4)

Country Link
US (1) US20130280634A1 (ko)
EP (1) EP2660917A4 (ko)
JP (1) JP2014504778A (ko)
WO (1) WO2012091446A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881930A (zh) * 2012-10-26 2013-01-16 中国科学院上海硅酸盐研究所 一种制备平板式金属支撑型固体氧化物燃料电池的方法
JP2016129158A (ja) * 2016-04-15 2016-07-14 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池用グリーンシートおよびその製造方法
CN110462907A (zh) * 2017-03-31 2019-11-15 大阪瓦斯株式会社 电化学装置、能量系统和固体氧化物型燃料电池

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014247B1 (fr) * 2013-11-29 2016-01-01 Commissariat Energie Atomique Procede de fabrication d'un assemblage membrane/electrodes comportant des renforts
WO2015136295A1 (en) * 2014-03-12 2015-09-17 Ceres Intellectual Property Company Limited Fuel cell stack arrangement
JP6394944B2 (ja) * 2014-07-08 2018-09-26 日産自動車株式会社 燃料電池発電システム
GB2550317B (en) 2016-03-09 2021-12-15 Ceres Ip Co Ltd Fuel cell
BR112019001269B1 (pt) 2016-07-29 2022-06-14 Nissan Motor Co., Ltd Célula a combustível
DE102016221998A1 (de) * 2016-11-09 2018-05-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Brennstoffzellenstapels
DE102016122888A1 (de) * 2016-11-28 2018-05-30 Technische Universität Clausthal Festoxidbrennstoffzelle, Brennstoffzellenstapel und Verfahren zur Herstellung einer Festoxidbrennstoffzelle
JP7033017B2 (ja) * 2018-06-21 2022-03-09 本田技研工業株式会社 燃料電池モジュール
DE102018216101A1 (de) * 2018-09-21 2020-03-26 Robert Bosch Gmbh Verfahren zu einer Herstellung einer metallgestützten Brennstoffzellen- und/oder Elektrolyseureinheit
US11239470B2 (en) 2018-12-17 2022-02-01 General Electric Company Integrated fuel cell and combustion system
WO2021162972A1 (en) * 2020-02-11 2021-08-19 Phillips 66 Company Solid oxide fuel cell frame assembly
CN113346118B (zh) * 2021-08-05 2021-11-05 北京思伟特新能源科技有限公司 一种采用共流延法制备金属支撑单体的方法
US11933216B2 (en) 2022-01-04 2024-03-19 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine
US11719441B2 (en) 2022-01-04 2023-08-08 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine
US11794912B2 (en) 2022-01-04 2023-10-24 General Electric Company Systems and methods for reducing emissions with a fuel cell
US11970282B2 (en) 2022-01-05 2024-04-30 General Electric Company Aircraft thrust management with a fuel cell
US11804607B2 (en) 2022-01-21 2023-10-31 General Electric Company Cooling of a fuel cell assembly
US11967743B2 (en) 2022-02-21 2024-04-23 General Electric Company Modular fuel cell assembly
US11817700B1 (en) 2022-07-20 2023-11-14 General Electric Company Decentralized electrical power allocation system
US11859820B1 (en) 2022-11-10 2024-01-02 General Electric Company Gas turbine combustion section having an integrated fuel cell assembly
US11923586B1 (en) 2022-11-10 2024-03-05 General Electric Company Gas turbine combustion section having an integrated fuel cell assembly

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129675A (ja) * 1989-10-14 1991-06-03 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH0541224A (ja) * 1991-08-05 1993-02-19 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH06290798A (ja) * 1993-02-08 1994-10-18 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH10106597A (ja) * 1996-09-25 1998-04-24 Fuji Electric Co Ltd 固体電解質型燃料電池
JPH10208760A (ja) * 1997-01-20 1998-08-07 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池
JP2002334706A (ja) * 2001-05-08 2002-11-22 Nissan Motor Co Ltd 電池要素層支持体及び固体電解質型燃料電池用セル板
KR100519414B1 (ko) * 2003-07-09 2005-10-06 한국전력공사 중앙분배형 분리판을 겸비한 용융탄산염 연료전지
KR100909120B1 (ko) * 2004-06-10 2009-07-23 테크니칼 유니버시티 오브 덴마크 고체 산화물 연료 전지
FR2891950B1 (fr) * 2005-10-11 2014-05-30 Commissariat Energie Atomique Empilement etanche de pile a combustible
JP2008010240A (ja) * 2006-06-28 2008-01-17 Ngk Insulators Ltd 固体酸化物形燃料電池及びその製造方法
EP2031684B1 (en) * 2007-08-31 2016-08-10 Technical University of Denmark Metal supported solid oxide fuel cell
WO2009059443A1 (de) * 2007-11-07 2009-05-14 Almus Ag Bipolzelle für brennstoffzellenstapel
KR100953102B1 (ko) * 2008-05-14 2010-04-19 포항공과대학교 산학협력단 다공질 금속의 후막 지지체를 이용한 금속 지지체형고체산화물 연료전지 및 이의 제조 방법
KR20100050687A (ko) * 2008-11-06 2010-05-14 한국과학기술원 금속지지체형 고체산화물 연료전지의 제조방법
FR2938270B1 (fr) * 2008-11-12 2013-10-18 Commissariat Energie Atomique Substrat en metal ou alliage metallique poreux, son procede de preparation, et cellules d'eht ou de sofc a metal support comprenant ce substrat
FR2948821B1 (fr) * 2009-08-03 2011-12-09 Commissariat Energie Atomique Cellule electrochimique a metal support et son procede de fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881930A (zh) * 2012-10-26 2013-01-16 中国科学院上海硅酸盐研究所 一种制备平板式金属支撑型固体氧化物燃料电池的方法
JP2016129158A (ja) * 2016-04-15 2016-07-14 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池用グリーンシートおよびその製造方法
CN110462907A (zh) * 2017-03-31 2019-11-15 大阪瓦斯株式会社 电化学装置、能量系统和固体氧化物型燃料电池

Also Published As

Publication number Publication date
EP2660917A4 (en) 2016-11-23
US20130280634A1 (en) 2013-10-24
WO2012091446A3 (ko) 2012-08-23
EP2660917A2 (en) 2013-11-06
JP2014504778A (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2012091446A2 (ko) 금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택
US7232626B2 (en) Planar electrochemical device assembly
JP2012049143A (ja) 電気化学的電池スタック組立体
WO2015016599A1 (ko) 고체 산화물 연료전지 및 이의 제조방법
US20080038621A1 (en) Electrochemical devices
EP1455952A1 (en) A process for making dense thin films
WO2013183884A1 (ko) 연료 전지용 집전판 및 이를 포함하는 스택 구조물
CN105359318A (zh) 包括多层互连接件的燃料电池系统
WO2013183885A1 (ko) 연료 전지용 스택 구조물 및 그의 구성
KR101277893B1 (ko) 금속 지지체형 고체 산화물 연료전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택
JP4156213B2 (ja) 固体酸化物形燃料電池
WO2012015113A1 (ko) 평관형 고체산화물 셀 스택
KR20200094876A (ko) 고체산화물 연료전지와 고체산화물 전해셀
CN112467164B (zh) 一种具有双电解质结构的固体氧化物电池芯片及制备方法
KR101289171B1 (ko) 매니폴드 밀봉이 없는 평판형 고체산화물 연료 전지
CN213905412U (zh) 一种具有双电解质结构的固体氧化物电池芯片
WO2018062692A1 (ko) 고체 산화물 연료전지
WO2014092357A1 (ko) 연료 전지용 스택 구조물
WO2011052843A1 (ko) 고체산화물 연료전지 및 그 제조방법
WO2024117421A1 (en) Solid oxide cell stack
KR101289202B1 (ko) 금속 지지체형 고체 산화물 연료 전지 스택
CN1253959C (zh) 单气室固体氧化物燃料电池组成的电池组
WO2024111818A1 (en) Solid oxide cell and manufacturing method thereof
WO2024111780A1 (en) Porous solid oxide composite and solid oxide cell comprising the same
WO2023038167A1 (ko) 접촉층을 포함하는 금속지지체형 고체산화물 연료전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853326

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013547339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13977129

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011853326

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011853326

Country of ref document: EP