WO2015015885A1 - マルチレベル電力変換装置 - Google Patents

マルチレベル電力変換装置 Download PDF

Info

Publication number
WO2015015885A1
WO2015015885A1 PCT/JP2014/064105 JP2014064105W WO2015015885A1 WO 2015015885 A1 WO2015015885 A1 WO 2015015885A1 JP 2014064105 W JP2014064105 W JP 2014064105W WO 2015015885 A1 WO2015015885 A1 WO 2015015885A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching elements
voltage
phase
output
terminal
Prior art date
Application number
PCT/JP2014/064105
Other languages
English (en)
French (fr)
Inventor
長谷川 勇
貴志 小玉
猛 近藤
正太 漆畑
博巳 迫
賢司 小堀
鎮教 濱田
圭一 小太刀
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to EP14832709.1A priority Critical patent/EP3029824A4/en
Priority to RU2016105213A priority patent/RU2634910C2/ru
Priority to US14/908,884 priority patent/US9948206B2/en
Priority to CA2920079A priority patent/CA2920079C/en
Priority to CN201480043665.9A priority patent/CN105453406B/zh
Priority to SG11201600761VA priority patent/SG11201600761VA/en
Priority to BR112016002128-2A priority patent/BR112016002128B1/pt
Publication of WO2015015885A1 publication Critical patent/WO2015015885A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck

Definitions

  • the present invention relates to a multiphase multilevel power converter, and more particularly to a multilevel power converter using a flying capacitor in common in each phase.
  • FIG. 29 is a circuit configuration diagram showing a multilevel power conversion device in Patent Document 1.
  • controlling DC voltage sources DCC1 and DCC2 to 2E, and flying capacitors FC1 and FC2 to E output terminals U, V, W to 2E, E, 0, -E, -2E Can output phase voltage of 5 levels.
  • the maximum applied voltage of each of the switching elements Su1 to Su8, Sv1 to Sv8, and Sw1 to Sw8 and each of the diode elements Su9 to Su12, Sv9 to Sv12, and Sw9 to Sw12 is E.
  • Su6b and Su8 are configured in series. The same applies to switching elements Su7 and Su5b, Sv6b and Sv8, Sv7 and Sv5b, Sw6b and Sw8, Sw7 and Sw5b, Su9 and Su10, Su11 and Su12, Sv9 and Sv10, Sv11, Sv12, Sw9 and Sw10, Sw11 and Sw12. .
  • FIG. 30 a multilevel power converter as shown in FIG. 30 has been proposed.
  • the number of capacitors used is reduced by making the DC voltage sources DCC1 and DCC2 used and the flying capacitors FC1 and FC2 common to three phases, thereby achieving downsizing of the device.
  • the circuit of FIG. 29 can output phase voltages of five levels, and is configured of 10 switching elements and 4 diode elements per phase. If FIG. 29 is considered as a three-phase DC / AC converter, the number of switching elements used is 30, the number of diode elements is 12, and the total number is 42. As described above, the conventional multilevel power conversion device uses a large number of elements, resulting in high cost and large size of the device.
  • the multilevel power conversion device shown in FIG. 30 can arbitrarily select the charge / discharge pattern of the common flying capacitor regardless of the phase voltage level to be output.
  • components other than the DC voltage sources DCC1 and DCC2 and the flying capacitors FC1 and FC2 are used independently in each phase, the number of switching elements is large, and the cost and size of the apparatus has been increased.
  • the three-phase five-level power converter shown in FIG. 30 as many as 48 switching elements are required per three phases.
  • the total number of switching elements used can be reduced by providing switching elements S1 and S2 common to M phases, but the charge and discharge patterns of the flying capacitors FC1 and FC2 common to each phase There is a drawback that you can not choose any.
  • FIG. 32 shows switching patterns of the output phase voltage levels E and -E.
  • FIG. 33 shows an example of a charge / discharge pattern which can not be selected arbitrarily for the flying capacitor FC2.
  • (circle) in the figure represents the switching element in conduction.
  • the output phase voltage levels E and -E each have two patterns of output method, the pattern of E charges and discharges the flying capacitor FC2, and the pattern of -E charges the flying capacitor FC1, It is possible to discharge.
  • the output pattern of (b) of FIG. 32 is not applicable and is limited to the output pattern of (a) of FIG. Understand that it If the charge / discharge pattern is limited in this way, the charge / discharge of the flying capacitors FC1 and FC2 can not be switched arbitrarily, which causes a problem that the control method becomes complicated.
  • the multiphase multilevel power conversion device it is an object to reduce the number of elements used and to reduce the cost and size of the device.
  • the present invention has been made in view of the above-described conventional problems, and one aspect thereof is multilevel power generating an AC output converted from a voltage of a DC voltage source, a flying capacitor, and a capacitor to a plurality of voltage levels
  • a converter comprising N (N ⁇ 2) series-connected DC voltage sources common to respective phases, a first flying capacitor common to each phase whose one end is connected to the negative terminal of each DC voltage source, and A second flying capacitor common to each phase, one end of which is connected to the positive terminal of the DC voltage source, a positive terminal, a negative terminal of the first flying capacitor, a positive terminal of the second flying capacitor, and a negative terminal are input terminals.
  • One end of the switching element is connected to the terminal, the other ends of two adjacent switching elements are connected, and the other end is connected to a common connection point of the switching elements. Connect the ends, repeat this to the final stage where the number of switching elements will be two, connect the switching elements of the two output stages in series between the other ends of the two switching elements of the final stage, and switch the two switching elements of the output stage.
  • the capacitors are connected in parallel to each other, the common connection point of the switching elements in the output stage is used as an output terminal, and the switching elements are selectively turned on and off to control the potential of any one of the input terminals.
  • the phase module of M phase (M ⁇ 2) which outputs the potential obtained by adding and subtracting the voltage of the capacitor to the potential of any one of the input terminals from the output terminal. .
  • the present invention relates to a multilevel power conversion device that generates an AC output converted from a voltage of a DC voltage source, a flying capacitor and a capacitor to a plurality of voltage levels, and N (N22) series connected
  • a DC voltage source common to each phase a first flying capacitor whose positive terminal is connected to a common connection point of an nth DC voltage source (n: odd) and an n + 1 DC voltage source (n + 1: even);
  • a second flying capacitor whose negative end is connected to a common connection point of the direct current voltage source and the (n + 1) th direct current voltage source; a negative end of the nth direct current voltage source; a negative end of the first flying capacitor;
  • the positive terminal of the second flying capacitor is used as an input terminal, one end of the switching element is connected to each input terminal, the other ends of two adjacent switching elements are connected, and the other ends are connected to each other.
  • One end of the switching element is connected to the common connection point of the connected switching elements, and this is repeated to the final stage where the number of switching elements is two, and switching elements of two output stages between the other ends of the two switching elements in the final stage Are connected in series, capacitors are connected in parallel to the two switching elements in the output stage, and the common connection point of the switching elements in the output stage is used as the output terminal, and each switching element is selectively turned ON and OFF.
  • An M phase module that outputs from the output terminal the potential obtained by adding and subtracting the voltage of the capacitor to the potential of any one of the input terminals or the potential of any one of the input terminals; It is characterized by having.
  • the present invention relates to a multilevel power conversion device that generates an AC output converted from a voltage of a DC voltage source, a flying capacitor and a capacitor to a plurality of voltage levels, wherein two DCs connected in series are common A first DC voltage source and a second DC voltage source, wherein the voltage source, N number of first to Nth flying capacitors common to respective phases, whose negative terminals are sequentially connected in series to the negative terminal of the first DC voltage source;
  • the negative terminal is connected in series to the common connection point of N number N 2nd to Nth +1 flying capacitors common to each phase in which the positive electrode end is sequentially connected in series to the common connection point, and the first DC voltage source and the second DC voltage source N common second N + 1 to third N flying capacitors common to each phase, and N fourth to third N + 1 flying capacitors common to each phase in which positive terminals are sequentially connected in series to the positive terminal of the second DC voltage source
  • the switching elements are connected in series, and capacitors are connected in parallel to the two switching elements in the output stage.
  • the common connection point of the stage switching elements is used as an output terminal, and each switching element is selectively turned on and off to control the potential of any one of the input terminals or any of the input terminals.
  • a phase module of M phase for outputting from the output terminal the potential obtained by adding and subtracting the voltage of the capacitor to the potential of the terminal.
  • the present invention relates to a multilevel power conversion device that generates an AC output converted from a voltage of a DC voltage source, a flying capacitor and a capacitor to a plurality of voltage levels, wherein two DCs connected in series are common A voltage source, N number of first to Nth flying capacitors common to respective phases sequentially connected in series on the negative electrode side of the first DC voltage source, and a positive electrode terminal on the positive electrode side of the second DC voltage source Are sequentially connected in series to N common N + 1th to 2Nth flying capacitors common to each phase, positive and negative terminals of the first flying capacitor, positive terminals of the second to Nth flying capacitors, and N + 1 to 2N-1
  • the negative terminal of the flying capacitor and the positive and negative terminals of the second N flying capacitor are used as input terminals, one end of the switching element is connected to each input terminal, and two adjacent switching elements are connected.
  • the other end of the switching element is connected to the other end, and one end of the switching element is connected to the common connection point of the switching elements connected to the other end. This is repeated until the final stage where two switching elements are formed.
  • the switching elements of the two output stages are connected in series between the other ends of the capacitors, capacitors are connected in parallel to the two switching elements of the output stage, and the common connection point of the switching elements of the output stage is an output terminal.
  • first DC voltage source and the second DC voltage source may be integrated into one DC voltage source.
  • the present invention relates to a multilevel power converter for generating an AC output obtained by converting a voltage of a DC voltage source and a capacitor to a plurality of voltage levels, wherein 2N + 2 series connected DC voltage sources common to each phase
  • the positive and negative terminals of the first and second N + 2 DC voltage sources, the positive terminals of the second to Nth DC voltage sources, and the negative terminals of the N + 3 and second N + 1 DC voltage sources are input terminals, and switching elements are provided at each input terminals.
  • the other end of two adjacent switching elements is connected, and one end of the switching element is connected to the common connection point of the switching elements whose other ends are connected.
  • the switching elements of the two output stages are connected in series between the other ends of the two switching elements of the final stage, and for the two switching elements of the output stage,
  • the capacitors are connected in parallel, the common connection point of the switching elements in the output stage is used as an output terminal, and the switching elements are selectively turned on and off to control the potential of any one of the input terminals or
  • a phase module of M phase is provided, which outputs the potential obtained by adding and subtracting the voltage of the capacitor to the potential of any one of the input terminals from the output terminal.
  • the (N + 1) th DC voltage source and the (N + 2) th DC voltage source may be integrated into one DC voltage source.
  • the present invention relates to a multilevel power converter for generating an AC output obtained by converting a DC voltage to a plurality of voltage levels, wherein N (N ⁇ 2) series connected DC voltage sources common to respective phases and A first semiconductor element whose one end is connected to the positive terminal of each DC voltage source, a second semiconductor element whose one end is connected to the negative terminal of each DC voltage source, the other end of the first semiconductor element, a second A flying capacitor connected between the other end of the semiconductor element and a third connection point between a common connection point of the first semiconductor element and the flying capacitor and a common connection point of the second semiconductor element and the flying capacitor; A common cell having a fourth semiconductor element common to each phase, at least one of the one end of the first semiconductor element and the one end of the second semiconductor element, and a common connection point of the third and fourth semiconductor elements Input terminal, each input end And a switching element between the output terminals, selectively ON the switching elements, characterized by comprising a phase module of M phase OFF control (M ⁇ 3), the
  • the phase module connects one end of the switching element to each input terminal, connects the other ends of two adjacent switching elements, and connects the other ends to a common connection point of the switching elements Connect one end of the switching element to the final stage where the number of switching elements becomes two, and connect the switching elements of two output stages in series between the other ends of the two switching elements of the final stage.
  • Capacitors are connected in parallel to the two switching elements, and the common connection point of the switching elements of the output stage is used as an output terminal, and each of the switching elements is selectively turned on and off to control any of the input terminals. Whether the potential at the terminal of V or the potential at which the voltage of the capacitor is added or subtracted from the potential of any one of the input terminals is the output terminal And outputs.
  • one end of the first switching element is connected to one of the one end of the first semiconductor element and one end of the second semiconductor element, and the third and fourth semiconductor elements are commonly connected Connecting one end of the second switching element to a point, connecting the other ends of the first and second switching elements, and connecting one end of the third switching element to a common connection point of the first and second switching elements;
  • One end of a series circuit in which a fourth switching element and a fifth switching element are connected in series is connected to the other end of the three switching elements, and one common connecting point of one end of the first semiconductor element and one end of the second semiconductor element
  • the cathode of the first diode and the anode of the second diode are connected to each other, and the fourth switching element and the fifth switching element are connected in series in parallel to the first diode and the second diode.
  • the series circuit is connected, and the common connection point of the fourth and fifth switching elements is used as the output terminal, or when there are multiple fourth and fifth switching elements, the common connection point of the fourth and fifth switching elements One end of the switching element is connected, the other end of two adjacent switching elements are connected, the switching element is connected to the common connection point of the switching elements connected the other ends, and this becomes two switching elements Repeating up to the output stage, using the common connection point of the two switching elements of the output stage as the output terminal, and selectively controlling the switching elements ON and OFF, the potential of any one of the input terminals is output. It is characterized by outputting from.
  • one end of the first switching element is connected to one of the one end of the first semiconductor element and one end of the second semiconductor element, and the third and fourth semiconductor elements are commonly connected Connecting one end of the second switching element to a point, connecting the other ends of the first and second switching elements, and connecting one end of the third switching element to a common connection point of the first and second switching elements;
  • One end of a bidirectional switch is connected to the other end of one semiconductor element and one end of the second semiconductor element, the other end of the third switching element is connected to the other end of the bidirectional switch, and the third switching element Using the common connection point of the bi-directional switch as an output terminal, and selectively turning on and off each switching element to output the potential of any one of the input terminals from the output terminal.
  • two switching elements are connected in series between the other ends of the two adjacent switching elements other than the final stage, and capacitors are connected in parallel to the two switching elements connected in series, and two switches connected in series
  • One end of the switching element in the next stage is connected to the common connection point of the elements, and each switching element is selectively turned ON / OFF to control the potential of any one of the input terminals or the input terminal.
  • the voltage of a capacitor connected in parallel to the switching element of the output stage or a capacitor connected in parallel to the switching element connected in series between adjacent switching elements other than the final stage is added to or subtracted from the potential of any one of the terminals
  • the output potential may be output from the output terminal.
  • each DC voltage source may be divided into two or more in series.
  • part or all of the switching elements may be divided into two or more in series, or part or all of the switching elements may be divided into two or more in parallel.
  • the present invention in the multiphase multilevel power conversion device, it is possible to reduce the number of elements used and to reduce the cost and size of the device.
  • FIG. 1 is a circuit diagram showing a multilevel power conversion device according to a first embodiment.
  • FIG. 5 is a schematic view showing an operation example according to output voltage in the first embodiment.
  • FIG. 5 is a circuit diagram showing a multilevel power conversion device according to a second embodiment.
  • FIG. 8 is a schematic view showing an operation example according to output voltage in the second embodiment.
  • FIG. 7 is a circuit diagram showing a multilevel power conversion device according to a third embodiment.
  • FIG. 10 is a circuit diagram showing a multilevel power conversion device according to a fourth embodiment.
  • FIG. 14 is a circuit diagram showing a multilevel power conversion device according to a fifth embodiment.
  • FIG. FIG. 14 is a circuit diagram showing a multilevel power conversion device according to a seventh embodiment.
  • FIG. 18 is a circuit diagram showing a multilevel power conversion device according to an eighth embodiment.
  • FIG. FIG. 24 is a circuit diagram showing a multilevel power conversion device according to a thirteenth embodiment.
  • FIG. 24 is a circuit diagram showing a multilevel power conversion device according to a fourteenth embodiment. Schematic which shows the switching pattern of a basic cell.
  • FIG. 21 is a schematic view illustrating a voltage-specific switching pattern of the multilevel power conversion device according to a fourteenth embodiment.
  • FIG. 21 is a circuit diagram showing a multilevel power conversion device according to a fifteenth embodiment.
  • FIG. 21 is a schematic view showing a voltage-specific switching pattern of the multilevel power conversion device according to a fifteenth embodiment;
  • the circuit block diagram which shows the multilevel power converter device in Embodiment 16.
  • FIG. The schematic which shows the switching pattern according to voltage of the multilevel power converter device in Embodiment 16.
  • FIG. Schematic which shows a phase module.
  • the circuit block diagram which shows an example of the conventional multi-level power converter device.
  • the circuit block diagram which shows the other example of the conventional multi-level power converter device.
  • the circuit block diagram which shows the other example of the conventional multi-level power converter device.
  • Schematic which shows the switching pattern of output phase voltage E of the conventional multilevel power converter device, and -E. Schematic which shows the switching pattern which can not be selected.
  • Embodiment 1 An example of a pattern for outputting the phase voltage 0 in the prior art shown in FIG. 29 is shown in FIG.
  • the phase voltage 0 is output using the diode elements Su9 to Su12, but if the phase voltage 0 can be output by other means, these diode elements Su9 to Su12 are It can be omitted.
  • the diode elements Su9 to Su12, Sv9 to Sv12, and Sw9 to Sw12 are omitted, and The number is reduced.
  • the multilevel power conversion device includes DC voltage sources DCC1 and DCC2 and flying capacitors FC1 and FC2 common to the respective phases, and the voltage is selected by the phase modules respectively provided to the respective phases, and the output terminal U is selected. , V, W output.
  • the phase module includes switching elements Su1 to Su8 and a capacitor FC1 u in the U phase.
  • Direct-current voltage sources direct-current capacitors or direct-current power sources
  • DCC1 and DCC2 are connected in series, and a common connection point (neutral point) of the direct-current voltage sources DCC1 and DCC2 is a terminal 0.
  • the negative terminal of the flying capacitor FC1 common to each phase is connected to the negative terminal of the DC voltage source DCC1, and the positive terminal of the flying capacitor FC2 is connected to the positive terminal of the DC voltage source DCC2.
  • the positive electrode terminal and the negative electrode terminal of the flying capacitor FC1, and the positive electrode terminal and the negative electrode terminal of the flying capacitor FC2 are connected as input terminals to the phase module of each phase.
  • each of the switching elements Su1 to Su4 is connected to each input terminal, and the other ends of the adjacent switching elements Su1 and Su2 and Su3 and Su4 are connected to each other.
  • One end of the switching elements Su5a and Su6a is connected to the common connection point between adjacent switching elements Su1 and Su2, Su3 and Su4, and the other end is output via the switching elements Su5b and Su6b between the other ends of the switching elements Su5a and Su6a.
  • the stage switching elements Su7 and Su8 are sequentially connected in series.
  • a capacitor FC1u is connected in parallel to the switching elements Su7 and Su8 of the output stage, and a common connection point of the switching elements Su7 and Su8 of the output stage is an output terminal U.
  • the switching elements Su5b and Su6b are connected in series to the switching elements Su5a and Su6a for withstand voltage.
  • the voltage of the capacitor FC1u is set to the potential of any one of the input terminals or the potential of any one of the input terminals by selectively turning on and off each switching element of this phase module.
  • the potential obtained by addition and subtraction can be output from the output terminal U.
  • the output terminals U, V, W to 2E It can output phase voltages of five levels E, 0, -E and -2E.
  • the reference point of the phase voltage is terminal 0.
  • 30 switching elements and 0 diode elements are used.
  • diode elements Su9-Su12, Sv9-Sv12, Sw9-Sw12 of the prior art can be used. Can be omitted, and the number of diode elements used can be reduced by 12 as compared with the conventional circuit configuration shown in FIG.
  • the number of diode elements can be reduced to zero without changing the number of switching elements.
  • a typical switching pattern of the U phase is shown in Table 1 and FIG.
  • Table 1 A typical switching pattern of the U phase is shown in Table 1 and FIG.
  • Table 1 By switching according to the pattern of Table 1, it is possible to output phase voltages of five levels of 2E, E, 0, -E and -2E through the path shown in FIG.
  • the circle in the figure represents a switching element in conduction.
  • the applied voltage of each flying capacitor will be described.
  • the flying capacitor FC2 is charged in the patterns (2) and (3) of FIG. Further, the capacitor FC1 u is charged in the pattern of (3) of FIG. 3. Furthermore, although not shown in FIG. 3, there is also a pattern in which the flying capacitor FC1 is charged, and a pattern in which the flying capacitors FC1 and FC2 and the capacitor FC1u are discharged. By performing these charging and discharging, the voltages of the flying capacitors FC1 and FC2 and the flying capacitor FC1 u can be controlled to E while outputting the phase voltage.
  • the maximum applied voltage at steady state of each switching element is E. This is the same value as that of the conventional circuit shown in FIG.
  • the number of elements can be reduced in a multiphase multilevel power conversion device, and the cost and size of the device can be reduced.
  • FIG. 4 shows a circuit configuration of the multilevel power conversion device according to the second embodiment.
  • the second embodiment has the same circuit configuration as the first embodiment, but changes the voltage ratio of the DC voltage sources DCC1 and DCC2, the flying capacitors FC1 and FC2, and the capacitors FC1u, FC1v and FC1w.
  • the reference point of the phase voltage is terminal 0.
  • the output terminals U, V It can output phase voltage of six levels of 2.5E, 1.5E, 0.5E, -0.5E, -1.5E, -2.5E from W.
  • An operation example and current paths for each output voltage are shown in FIG.
  • the number of levels can be expanded as compared with the first embodiment by changing the voltage ratio between the DC voltage sources DCC1 and DCC2, the flying capacitors FC1 and FC2, and the capacitors FC1u, FC1v and FC1w.
  • the number of levels can be increased as compared to the first embodiment while keeping the number of switching elements the same, so that harmonics of output voltage and current can be suppressed.
  • FIG. 6 shows the circuit configuration of the multilevel power conversion device according to the third embodiment.
  • the multilevel power conversion device according to the third embodiment includes DC voltage sources DCC1 to DCC4 common to the respective phases, and the voltages are selected by the phase modules respectively provided to the respective phases and output from the output terminals U, V, W Do.
  • the phase module includes switching elements Su1 to Su8 and a capacitor FC1 u in the U phase.
  • DC voltage sources DC capacitors or DC power sources
  • DCC1 to DCC4 are connected in series, and a common connection point (neutral point) of the DC voltage sources DCC2 and DCC3 is a terminal 0.
  • the positive and negative extremes of the DC voltage source DCC1 and the positive and negative extremes of the DC voltage source DCC4 are connected as input terminals to the phase module of each phase.
  • each of the first switching elements Su1 to Su4 is connected to each input terminal, and the other ends of the adjacent switching elements Su1 and Su2 and Su3 and Su4 are connected to each other.
  • One end of the switching elements Su5a and Su6a is connected to the common connection point between adjacent switching elements Su1 and Su2, Su3 and Su4, and the other end is output via the switching elements Su5b and Su6b between the other ends of the switching elements Su5a and Su6a.
  • the stage switching elements Su7 and Su8 are sequentially connected in series.
  • a capacitor FC1u is connected in parallel to the switching elements Su7 and Su8 of the output stage, and a common connection point of the switching elements Su7 and Su8 of the output stage is an output terminal U.
  • the voltage of the capacitor FC1u is set to the potential of any one of the input terminals or the potential of any one of the input terminals by selectively turning on and off each switching element of this phase module.
  • the potential obtained by addition and subtraction can be output from the output terminal U.
  • phase voltages of five levels are output from output terminals U, V, and W. be able to.
  • the reference point of the phase voltage is terminal 0.
  • 0 can be output from the output terminals U, V, W by using the flying capacitors FC1u, FC1v, FC1w as in the first embodiment.
  • the diode elements Su9 to Su12, Sv9 to Sv12, and Sw9 to Sw12 of the prior art (FIG. 18) can be omitted, and the number of diode elements used can be reduced by 12 as compared with the conventional circuit configuration shown in FIG.
  • the maximum applied voltage of each switching element in steady state is E as in the first and second embodiments.
  • the number of levels can be expanded by changing the voltage ratio as in the second embodiment.
  • the voltages of the DC voltage sources DCC1 and DCC4 are controlled to E
  • the voltages of DCC2 and DCC3 to 1.5 E
  • the capacitors Fc1 u, FC1 v and FC1 w to 2 E the respective output terminals U, V and W to 2.5 E
  • And can output phase voltages of six levels, that is, 1.5E, 0.5E, -0.5E, -1.5E, and 2.5E.
  • FIG. 7 shows a circuit configuration of the multilevel power conversion device according to the fourth embodiment.
  • the multilevel power conversion device includes DC voltage sources DCC1 and DCC2 and flying capacitors FC1 and FC2 common to the respective phases, and the voltage is selected by the phase modules respectively provided to the respective phases, and the output terminal U is selected. , V, W output.
  • the phase module includes switching elements Su1 to Su8 and a capacitor FC1 u in the U phase.
  • Direct-current voltage sources direct-current capacitors or direct-current power sources
  • DCC1 and DCC2 are connected in series, and a common connection point (neutral point) of the direct-current voltage sources DCC1 and DCC2 is a terminal 0.
  • the positive terminal of the flying capacitor FC1 and the negative terminal of the flying capacitor FC2 are connected to the common connection point of the DC voltage sources DCC1 and DCC2.
  • the negative terminal of the DC voltage source DCC1, the negative terminal of the flying capacitor FC1, the positive terminal of the DC voltage source DCC2, and the positive terminal of the flying capacitor FC2 are connected as input terminals.
  • each of the first switching elements Su1 to Su4 is connected to each input terminal, and the other ends of the adjacent switching elements Su1 and Su2 and Su3 and Su4 are connected to each other.
  • One end of the switching elements Su5a and Su6a is connected to the common connection point between adjacent switching elements Su1 and Su2, Su3 and Su4, and the other end is output via the switching elements Su5b and Su6b between the other ends of the switching elements Su5a and Su6a.
  • the stage switching elements Su7 and Su8 are sequentially connected in series.
  • a capacitor FC1u is connected in parallel to the switching elements Su7 and Su8 of the output stage, and a common connection point of the switching elements Su7 and Su8 of the output stage is an output terminal U.
  • the voltage of the capacitor FC1u is set to the potential of any one of the input terminals or the potential of any one of the input terminals by selectively turning on and off each switching element of this phase module.
  • the potential obtained by addition and subtraction can be output from the output terminal U.
  • 0 can be output from the output terminals U, V, W by using the capacitors FC1u, FC1v, FC1w, as in the first embodiment.
  • the diode elements Su9 to Su12, Sv9 to Sv12 and Sw9 to Sw12 of the prior art (FIG. 29) can be omitted, and the number of diode elements to be used can be reduced by 12 as compared with the conventional circuit configuration shown in FIG.
  • the maximum applied voltage of each switching element in steady state is E as in the first and second embodiments.
  • the number of levels can be expanded by changing the voltage ratio as in the second embodiment.
  • the voltage of DC voltage sources DCC1 and DCC2 is 2.5E
  • the voltage of flying capacitors FC1 and FC2 is 1.5E
  • the voltages of capacitors Fc1u, FC1v and FC1w are 2E, 2.5E, 1.5E
  • It can output phase voltages of six levels of 0.5E, -0.5E, -1.5E, and -2.5E.
  • FIG. 8 shows a circuit configuration of the multilevel power conversion device according to the fifth embodiment.
  • the multilevel power converter according to the fifth embodiment has two stages of the flying capacitors FC1 and FC2 common to the respective phases in the multilevel power converter according to the first embodiment. That is, a phase module provided with DC voltage sources DCC1 and DCC2 common to each phase, flying capacitors FC1, FC2, FC3 and FC4 and provided for each phase selects a voltage and outputs from output terminals U, V and W Do.
  • the phase module includes switching elements Su1 to Su12 and a flying capacitor FC1u in the U phase.
  • Direct-current voltage sources direct-current capacitors or direct-current power sources
  • DCC1 and DCC2 are connected in series, and a common connection point (neutral point) of the direct-current voltage sources DCC1 and DCC2 is a terminal 0.
  • the negative terminal of the flying capacitor FC1 is connected to the negative terminal of the DC voltage source DCC1.
  • a flying capacitor FC2 is connected in series to the flying capacitor FC1.
  • the positive terminal of the flying capacitor FC4 is connected to the positive terminal of the DC voltage source DCC2.
  • a flying capacitor FC3 is connected in series to the flying capacitor FC4.
  • the positive terminal and the negative terminal of the flying capacitor FC1, the positive terminal of the flying capacitor FC2, the negative terminal of the flying capacitor FC3, and the positive terminal and the negative terminal of the flying capacitor FC4 are connected as input terminals.
  • each of the switching elements Su1 to Su4, Su6 and Su7 is connected to each input terminal, and the other ends of the adjacent switching elements Su1 and Su2 and Su3 and Su4 are connected to each other.
  • One end of each of the switching elements Su5 and Su8 is connected to the common connection point between the adjacent switching elements Su1 and Su2, and Su3 and Su4.
  • the other ends of the adjacent switching elements Su5 and Su6, Su7 and Su8 are connected to each other, and one end of the switching elements Su9a and Su10a is connected to a common connection point of the adjacent switching elements Su5 and Su6, Su7 and Su8.
  • the switching elements Su11 and Su12 of the output stage are sequentially connected in series between the other ends of the switching elements Su9a and Su10a of the final stage via the switching elements Su9b and Su10b.
  • a capacitor FC1u is connected in parallel to the switching elements Su11 and Su12 of the output stage, and a common connection point of the switching elements Su11 and Su12 of the output stage is an output terminal U.
  • the voltage of the capacitor FC1u is set to the potential of any one of the input terminals or the potential of any one of the input terminals by selectively turning on and off each switching element of this phase module.
  • the potential obtained by addition and subtraction can be output from the output terminal U.
  • the output terminals U, V, W are controlled by controlling the voltage of the DC voltage sources DCC1, DCC2 to 3.5 E, the voltages of the flying capacitors FC1, FC2, FC3, FC4 to E, and the voltages of the capacitors FC1 u, FC1 v, FC1 w to 2 E.
  • eight phase voltages of 3.5 E, 2.5 E, 1, 5 E, 0.5 E, -0.5 E, -1.5 E, -2.5 E, and -3.5 E can be output.
  • the reference point of the phase voltage is terminal 0.
  • Table 2 shows representative switching patterns in the fifth embodiment.
  • the maximum applied voltage of each switching element in steady state is E as in the first and second embodiments.
  • the number of phase voltage levels that can be output is increased, and the number of switching elements required is increased.
  • the flying capacitors common to the respective phases of the first embodiment are configured in multiple stages, Compared to the circuit system, the number of diode elements can be reduced without changing the number of switching elements. Further, since the number of levels increases, harmonics of the output voltage and current can be suppressed and the harmonics suppression filter can be miniaturized as compared with the first to third embodiments.
  • FIG. 9 shows a circuit configuration of the multilevel power conversion device according to the sixth embodiment.
  • a phase module provided with DC voltage sources DCC1 and DCC2 common to the respective phases, flying capacitors FC1, FC2, FC3 and FC4 and provided respectively in the respective phases selects voltages and outputs them from the output terminals U, V and W.
  • the phase module includes switching elements Su1 to Su12 and a capacitor FC1 u in the U phase.
  • Direct-current voltage sources direct-current capacitors or direct-current power sources
  • DCC1 and DCC2 are connected in series, and a common connection point (neutral point) of the direct-current voltage sources DCC1 and DCC2 is a terminal 0.
  • the negative terminal of the flying capacitor FC1 is connected to the negative terminal of the DC voltage source DCC1.
  • the positive terminal of the flying capacitor FC2 and the negative terminal of the flying capacitor FC3 are connected to a common connection point of the DC voltage source DCC1 and the DC voltage source DCC2.
  • the positive terminal of the flying capacitor FC4 is connected to the positive terminal of the DC voltage source DCC2.
  • the phase module is connected with the positive terminal and the negative terminal of the flying capacitor FC1, the negative terminal of the flying capacitor FC2, the positive terminal of the flying capacitor FC3, and the positive terminal and the negative terminal of the flying capacitor FC4 as input terminals.
  • each of the switching elements Su1 to Su4, Su6 and Su7 is connected to each input terminal, and the other ends of the adjacent switching elements Su1 and Su2 and Su3 and Su4 are connected to each other.
  • One end of each of the switching elements Su5 and Su8 is connected to the common connection point between the adjacent switching elements Su1 and Su2, and Su3 and Su4.
  • the other ends of the adjacent switching elements Su5 and Su6, Su7 and Su8 are connected to each other, and one end of the switching elements Su9a and Su10a is connected to a common connection point of the adjacent switching elements Su5 and Su6, Su7 and Su8.
  • the switching elements Su11 and Su12 of the output stage are sequentially connected in series between the other ends of the switching elements Su9a and Su10a of the final stage via the switching elements Su9b and Su10b.
  • a capacitor FC1u is connected in parallel to the switching elements Su11 and Su12 of the output stage, and a common connection point of the switching elements Su11 and Su12 of the output stage is an output terminal U.
  • the voltage of the capacitor FC1u is set to the potential of any one of the input terminals or the potential of any one of the input terminals by selectively turning on and off each switching element of this phase module.
  • the potential obtained by addition and subtraction can be output from the output terminal U.
  • Output by controlling the voltage of DC voltage sources DCC1 and DCC2 to 3.5 E, the voltage of flying capacitors FC1 and FC4 to E, the voltage of FC2 and FC3 to 1.5 E, and the voltage of capacitors FC1 u, FC1 v and FC1 w to 2 E Outputs phase voltage of eight levels from terminals U, V, W to 3.5E, 2.5E, 1, 5E, 0.5E, -0.5E, -1.5E, -2.5E, -3.5E. it can.
  • the reference point of the phase voltage is terminal 0.
  • the sixth embodiment increases the number of levels that can be output, and thus the number of switching elements required increases.
  • the flying capacitors common to the respective phases of the first embodiment are multi-staged, the conventional configuration shown in FIG.
  • the number of diode elements can be reduced similarly without changing the number of switching elements, as compared to the case where the number of levels is extended.
  • output voltage and current harmonics can be suppressed and the harmonics suppression filter can be miniaturized as compared with the first to third embodiments.
  • FIG. 10 shows a circuit configuration of the multilevel power conversion device according to the seventh embodiment.
  • the multilevel power conversion device according to the seventh embodiment is the multilevel power conversion device according to the first embodiment in which the flying capacitors FC1 and FC2 common to the respective phases in the multilevel power conversion device are four stages of FC1, FC2, FC3 and FC4. That is, a phase module provided with DC voltage sources DCC1 and DCC2 common to each phase, flying capacitors FC1, FC2, FC3 and FC4 and provided for each phase selects a voltage and outputs from output terminals U, V and W Do.
  • the phase module includes switching elements Su1 to Su16 and a capacitor FC1 u in the U phase.
  • Direct-current voltage sources direct-current capacitors or direct-current power sources
  • DCC1 and DCC2 are connected in series, and a common connection point (neutral point) of the direct-current voltage sources DCC1 and DCC2 is a terminal 0.
  • the negative terminal of the DC voltage source DCC1 is connected to the negative terminal of the flying capacitor FC1, and the positive terminal of the DC voltage source DCC1 is connected to the positive terminal of the flying capacitor FC2.
  • the negative terminal of the flying capacitor FC3 is connected to the negative terminal of the DC voltage source DCC2, and the positive terminal of the flying capacitor FC4 is connected to the positive terminal of the DC voltage source DCC2.
  • the phase module uses the positive and negative ends of the flying capacitors FC1 to FC4 as input terminals.
  • One end of the first switching elements Su1 to Su8 is connected to each input terminal, the other ends of the adjacent switching elements Su1 and Su2, Su3 and Su4, Su5 and Su6, Su7 and Su8 are connected, and the adjacent switching elements Su1 and Su8 One end of each of the switching elements Su9 to Su12 is connected to a common connection point of Su2, Su3 and Su4, Su5 and Su6, and Su7 and Su8.
  • the other ends of the adjacent switching elements Su9 and Su10 and Su11 and Su12 are connected to each other, and the switching elements Su13 and Su14 are connected to the common connection point between the adjacent switching elements Su9 and Su10 and Su11 and Su12.
  • the switching elements Su15 and Su16 of the output stage are sequentially connected in series between the other ends of the switching elements Su13 and Su14 of the final stage.
  • a capacitor FC1 u is connected in parallel to the switching elements Su15 and Su16 of the output stage, and a common connection point of the switching elements Su15 and Su16 of the output stage is an output terminal U.
  • the voltage of the capacitor FC1u is set to the potential of any one of the input terminals or the potential of any one of the input terminals by selectively turning on and off each switching element of this phase module.
  • the potential obtained by addition and subtraction can be output from the output terminal U.
  • phase voltages of nine levels, 3E, 2E, 1E, 0, -1E, -2E, -3E and -4E.
  • the reference point of the phase voltage is terminal 0.
  • Table 3 shows representative switching patterns in the seventh embodiment.
  • the seventh embodiment increases the number of levels that can be output, and thus the number of switching elements required increases.
  • the flying capacitors common to the respective phases of the first embodiment are multi-tiered, the level shown in FIG.
  • the number of diode elements can be reduced without changing the number of switching elements, as compared to the case where the number is expanded.
  • output voltage and current harmonics can be suppressed and the harmonics suppression filter can be miniaturized as compared with the first to third embodiments.
  • FIG. 11 shows a circuit configuration of the multilevel power conversion device according to the eighth embodiment.
  • the multilevel power conversion device includes switching elements Su17, Su18, Su19, Su20 between the switching elements Su9 and Su10 and Su11 and Su12 in the multilevel power conversion apparatus according to the seventh embodiment, and the switching elements
  • a capacitor FC3u is connected in parallel to Su17 and Su18 and a capacitor FC2u is connected in parallel to switching elements Su19 and Su20, and one end of the switching element Su13 and Su14 in the next stage is connected to the common connection point of switching elements Su17 and Su18 and Su19 and Su20. It is connected. That is, in the eighth embodiment, a parallel connection circuit of a switching element and a capacitor is provided in addition to the switching element of the final stage.
  • the capacitors FC1u, FC2u, and FC3u are set to the potential of any one of the input terminals or the potential of any one of the input terminals by selectively turning on and off each switching element.
  • the potential obtained by adding and subtracting the voltage of is output from the output terminal.
  • the voltages of DC voltage sources DCC1 and DCC2 are 5E
  • the voltages of flying capacitors FC1, FC2, FC3 and FC4 are E
  • E By controlling the voltage to E, it is possible to output phase voltages of 11 levels of 5E, 4E, 3E, 2E, E, 0, -E, -2E, -3E, -4E, and -5E.
  • the reference point of the phase voltage is terminal 0.
  • Table 4 shows a typical switching pattern of the U phase.
  • the number of diode elements is zero. Further, since the number of levels increases, output voltage and current harmonics can be suppressed and the harmonics suppression filter can be miniaturized as compared with the seventh embodiment.
  • FIG. 12 shows a multilevel power converter in the ninth embodiment.
  • FIG. 12 is a multilevel power converter device in which the circuit of one phase of the multilevel power converter of Embodiment 1 is expanded to M phases and N stages.
  • the negative terminals of the flying capacitors FC1, FC3, ..., FC2N-1 are connected to the negative terminals of the DC voltage sources DCC1 to DCCN, respectively, and the flying capacitors FC2, FC4, ..., FC2N are connected to the positive terminals of the DC voltage sources DCC1 to DCCN.
  • the positive terminal is connected.
  • FIG. 13 (a) to 13 (d) The structural example of the phase module used for the multilevel power converter of this Embodiment 9 is shown in FIG.
  • FIGS. 13 (a) to 13 (d) in all of (a) to (d), flying capacitors FCM0 of respective phases are provided in parallel with the switching elements of the output stage.
  • 13 (a) and 13 (b) are configuration examples when the number of input terminals of the phase module is a multiple of 4
  • FIGS. 13 (c) and 13 (d) are configuration examples when the number of input terminals of the phase module is an even number other than a multiple of 4 is there.
  • the difference between FIG. 13 (a) and FIG. 13 (b) and the difference between FIG. 13 (c) and FIG. 13 (d) are the capacitors other than the capacitor FCM0 connected in parallel to the switching element of the output stage. It is the presence or absence of FCM1 to FCMN.
  • each input terminal of the phase module is connected to the positive and negative ends of the flying capacitors FC1 to FCN common to each phase.
  • the number of levels of the phase voltage depends on the type of phase module to be applied and the DC voltage sources DCC1 to DCCN, the flying capacitors FC1 to FC2N common to each phase, and the applied voltage of the capacitors FCM0 and FCM1 to FCMN in the phase module.
  • the voltages of the DC voltage sources DCC1 to DCCN of FIG. 12 are 4E
  • the voltages of the flying capacitors FC1 to FC2N are 4E
  • the number of the flying capacitor FCM0 of the phase module of FIG. By controlling to, the number of phase voltage levels becomes (4N + 1).
  • the voltage of DC voltage sources DCC1 to DCCN of FIG. 12 is controlled to 4E
  • the voltage of flying capacitors FC1 to FC2N is controlled to E
  • the DC voltage sources DCC1 to DCCN may be divided in each.
  • FIG. 14 shows a multilevel power converter in the tenth embodiment.
  • the multilevel power conversion device differs from the ninth embodiment in the connection configuration of the flying capacitors FC1 to FC2N.
  • 2N is a series number of DC voltage sources, and DC voltage sources DCC1 to DCC2N are connected in series.
  • the number of flying capacitors FC1 to FC2N is also 2N, and the first flying capacitors FC1, FC3,..., FCn-1 are connected to the common connection point of each DC voltage source DCCn (n: odd) and DCCn + 1 (n + 1: even).
  • the positive ends are connected, and the negative ends of the flying capacitors FC2, FC4,..., FC2N are connected to the common connection point of the DC voltage sources DCCn (n: odd) and DCCn + 1 (n + 1: even).
  • the number of series connected DC voltage sources DCC1 to DCC2N and the number of flying capacitors FCC1 to FCC2N common to each phase are even. Note that M ⁇ 2.
  • the negative terminal of the DC voltage source DCCn (n: odd number), the negative terminal of the flying capacitor FCn, the positive terminal of the DC voltage source DCCn + 1, and the positive terminal of the flying capacitor FCn + 1 are input terminals.
  • the number of levels of the phase voltage depends on the type of phase module to be applied and the DC voltage sources DCC1 to DCCN, the flying capacitors FC1 to FC2N common to each phase, and the applied voltage of the capacitors of each phase in the phase module.
  • the flying capacitors FC1 to FC2N common to each phase, and the voltage of the capacitor FCM0 of the phase module shown in FIG. Is (4N + 1).
  • the DC voltage sources DCC1 to DCC2N may be divided in each.
  • FIG. 15 shows a multilevel power converter in the eleventh embodiment.
  • the DC voltage sources DCC1 and DCC2 are connected in series.
  • the connection configuration of the flying capacitors FC1 to FC4N is different from that of the ninth and tenth embodiments.
  • the negative terminals of the flying capacitors FC1 to FCN are sequentially connected in series to the negative terminal of the DC voltage source DCC1, and the positive terminals of the flying capacitors FC2N to FCN + 1 are sequentially connected in series to the common connection point of the DC voltage sources DCC1 and DCC2.
  • the negative terminals of the flying capacitors FC2N + 1 to FC3N are sequentially connected in series to the common connection point of DCC1 and DCC2, and the positive terminals of the flying capacitors FC4N to FC3N + 1 are sequentially connected in series to the positive terminal of the DC voltage source DCC2.
  • the phase module includes the positive terminal and the negative terminal of the flying capacitor FC1, the positive terminal of the flying capacitors FC2 to FCN, the negative terminal of the flying capacitors FCN + 1 to FC2N, the positive terminal of the flying capacitors FC2N + 1 to FC3N, and the negative terminal of the flying capacitors FC3N + 1 to FC4N-1.
  • the extreme and the positive and negative ends of the flying capacitor FC4N are input terminals.
  • the number of flying capacitors FC1 to FC4N is a multiple of four. Note that M ⁇ 2.
  • the DC voltage sources DCC1 to DCC2 may be divided in each.
  • FIG. 16 shows a multilevel power converter in the twelfth embodiment.
  • the DC voltage sources DCC1 and DCC2 are connected in series.
  • the twelfth embodiment is an M-phase to N-stage multi-level conversion device in which the flying capacitors FC1 to FC2N are shared in the M-phase.
  • the connection configuration of the flying capacitors FC1 to FC2N is different from the ninth to eleventh embodiments.
  • the negative terminals of the flying capacitors FC1 to FCN are sequentially connected in series to the negative terminal of the DC voltage source DCC1, and the positive terminals of the flying capacitors FC2N to FCN + 1 are sequentially connected in series to the positive terminal of the DC voltage source DCC2.
  • 2N is the number of flying capacitors FC1 to FC2N. Therefore, in the present configuration, the number of flying capacitors FC1 to FC2N is an even number. Note that M ⁇ 2.
  • the phase module uses the positive terminal and the negative terminal of the flying capacitor FC1, the positive terminals of the flying capacitors FC2 to FCN, the negative terminals of the flying capacitors FCN + 1 to FC2N-1, and the positive terminal and the negative terminal of the flying capacitor FC2N as input terminals.
  • the number 2N + 2 of input terminals of the phase module may not be a multiple of four.
  • the phase module shown in FIGS. 13A and 13B is applied, and when the number 2N + 2 of input terminals of the phase module is an even multiple of 4, FIG. c) Apply a phase module with the number of input terminals as shown in (d).
  • the number of levels of the phase voltage depends on the type of phase module to be applied and the DC voltage sources DCC1 to DCC2, the flying capacitors FC1 to FC4N, and the applied voltage of each capacitor in the phase module.
  • the voltage of the capacitor FCM0 of the phase module of FIG. 13 is controlled to 2E.
  • the DC voltage sources DCC1 to DCC2 may be divided in each.
  • the DC voltage sources DCC1 and DCC2 may be integrated into one DC voltage source.
  • FIG. 17 shows the multilevel power conversion device in the thirteenth embodiment.
  • Each input terminal of the phase module is connected to DC voltage sources DCC1 to DCC2N + 2.
  • positive terminals and negative terminals of DC voltage sources DCC1 and DCC2N + 2 positive terminals of DC voltage sources DCC2 to DCCN, and negative terminals of DC voltage sources DCCN + 3 to DCC2N + 1 are input terminals. That is, among the common connection points of the DC voltage sources, only the connection point of the DC voltage sources DCCN + 1 and DCCN + 2 is not connected to the phase module. Note that M ⁇ 2.
  • the number 2N + 2 of input terminals of the phase module may not be a multiple of four.
  • the phase module shown in FIGS. 13A and 13B is applied, and when the number 2N + 2 of input terminals of the phase module is an even multiple of 4, FIG. c) Apply a phase module with the number of input terminals as shown in (d).
  • the number of levels of the phase voltage depends on the type of phase module to be applied, the DC voltage sources DCC1 to DCC2N + 2, and the applied voltage of each capacitor in the phase module.
  • the direct current voltage sources DCC1 to DCC2N + 2 may be divided. Also, the DC voltage sources DCCN + 1 and DCCN + 2 may be integrated into one DC voltage source.
  • Embodiment 14 A basic cell used in the multilevel power conversion device in the fourteenth to seventeenth embodiments is shown in FIG.
  • the basic cell includes a flying capacitor FC1 and semiconductor elements (for example, IGBTs) Sf1, Sf2, Sf3 and Sf4 and is shared by M phases.
  • semiconductor elements for example, IGBTs
  • Sf1, Sf2, Sf3 and Sf4 semiconductor elements
  • Terminal 3 is connected to the positive terminal of a DC voltage source (capacitor or DC power supply) of the device, and terminal 1 is connected to the negative terminal of a DC voltage source (capacitor or DC power supply) of the device.
  • Terminal 2 is connected to the phase module of the device. The phase module will be described later.
  • FIG. 19 shows a configuration in which N basic cells of FIG. 18 are connected in series. Here, it is assumed that N ⁇ 2.
  • a DC voltage source (capacitor or DC power supply) is connected to the terminals 2N + 1, 2N-1.
  • the phase module is connected to the terminal 2N.
  • FIG. 19 The circuit configuration of the multilevel power conversion device in the fourteenth embodiment using the basic cell of FIG. 19 is shown in FIG.
  • the multilevel power conversion device according to the fourteenth embodiment includes DC voltage sources DCC1 and DCC2 common to the respective phases and the first and second basic cells 10a and 10b, and the voltage is selected by the phase modules respectively provided in the respective phases. And output from the output terminals U, V, W.
  • Direct-current voltage sources direct-current capacitors or direct-current power sources
  • DCC1 and DCC2 are connected in series, and a common connection point (neutral point) of the direct-current voltage sources DCC1 and DCC2 is a terminal 0.
  • the first and second basic cells 10a and 10b have semiconductor elements Sf1a and Sf1b whose one ends are connected to the positive terminals of the DC voltage sources DCC1 and DCC2, and one ends are connected to the negative terminals of the DC voltage sources DCC1 and DCC2.
  • Flying capacitors FC1 and FC2 connected between the semiconductor elements Sf2a and Sf2b, the other ends of the semiconductor elements Sf1a and Sf1b, and the other ends of the semiconductor elements Sf2a and Sf2b, the semiconductor elements Sf1a and Sf1b, and the flying capacitors FC1 and FC2
  • the semiconductor elements Sf3a, Sf4a, Sf3b, and Sf4b connected in series between the common connection point of FC2 and the common connection point of the semiconductor elements Sf2a and Sf2b and the flying capacitors FC1 and FC2 are provided.
  • the basic cells 10a and 10b output voltages E and -E to the phase module by turning on the semiconductor elements Sf1a and Sf1b and Sf4a and Sf4b, or Sf2a and Sf2b and Sf3a and Sf3b.
  • one end of the semiconductor element Sf2a, the common connection point of the semiconductor elements Sf3a and Sf4a, the common connection point of the semiconductor elements Sf3b and Sf4b, and one end of the semiconductor element Sf1b are connected as input terminals Ru.
  • each of the switching elements Su1 to Su4 is connected to each input terminal, and the other ends of the adjacent switching elements Su1 and Su2 and Su3 and Su4 are connected to each other.
  • One end of the switching elements Su5a and Su6a is connected to the common connection point between adjacent switching elements Su1 and Su2, Su3 and Su4, and the other end is output via the switching elements Su5b and Su6b between the other ends of the switching elements Su5a and Su6a.
  • the stage switching elements Su7 and Su8 are sequentially connected in series.
  • a capacitor FC1u is connected in parallel to the switching elements Su7 and Su8 of the output stage, and a common connection point of the switching elements Su7 and Su8 of the output stage is an output terminal U.
  • the switching elements Su5b and Su6b are connected in series to the switching elements Su5a and Su6a for withstand voltage.
  • the voltage of the capacitor FC1u is set to the potential of any one of the input terminals or the potential of any one of the input terminals by selectively turning on and off each switching element of this phase module.
  • the potential obtained by addition and subtraction can be output from the output terminal U.
  • the output terminals U, V, W to 2E It can output phase voltages of five levels E, 0, -E and -2E.
  • a typical switching pattern of the U phase is shown in FIG. Circles in the figure represent conducting semiconductor elements and switching elements. It is possible to output phase voltages of five levels of 2E, E, 0, -E and -2E through the path shown in FIG.
  • the number of switching elements (including the semiconductor elements Sf1a to Sf4a and Sf1b to Sf4b) to be used can be reduced to 38.
  • the number of switching elements in the conventional circuit in FIG. 30 is 48, and the number of switching elements in the conventional circuit in FIG. 31 is 44.
  • the gate drive circuit for driving the switching elements can be reduced. Therefore, cost reduction can be realized.
  • the voltage levels at the common connection points of switching elements Sf3a and Sf4a, Sf3b and Sf4b of basic cells 10a and 10b are limited to E and -E (the voltage reference point is the negative terminal of each DC voltage source DCC1 to DCCN).
  • the degree of freedom of charge and discharge can be secured, so that the control can be simplified.
  • represents a conducting element.
  • the basic cells 10a and 10b common to each phase perform only two patterns of switching as shown in FIG. Therefore, when outputting any voltage level, semiconductor elements Sf1 and Sf2 are not simultaneously turned on, so that a short circuit does not occur between DC voltage source DCC1 and flying capacitor FC1, and DC voltage source DCC2 and flying capacitor FC2.
  • the connection pattern of the flying capacitors FC1 and FC2 can be switched. Since the current flowing into and out of the flying capacitors FC1 and FC2 can be switched by switching the connection pattern according to the current, charging and discharging can be performed, and it is understood that the freedom of charging and discharging of the flying capacitors FC1 and FC2 can be secured.
  • the circuit configuration of the multilevel power conversion device according to the fifteenth embodiment is shown in FIG.
  • the multilevel power conversion device according to the fifteenth embodiment includes DC voltage sources DCC1 and DCC2 common to the respective phases and the first and second basic cells 10a and 10b, and the voltage is selected by the phase modules respectively provided in the respective phases. And output from the output terminals U, V, W.
  • the phase module of each phase includes one end of the semiconductor element Sf2a, the common connection point of the semiconductor elements Sf3a and Sf4a, the common connection point of the semiconductor elements Sf3b and Sf4b, one end of the semiconductor element Sf1b, and the semiconductor elements Sf1a and Sf2b.
  • the common connection point is connected as an input terminal.
  • one end of the switching element Su1a is connected to one end of the semiconductor element Sf2a, and the switching element Su1b is connected to one end of the semiconductor element Sf1b.
  • One end of the switching element Su2a is connected to the common connection point of the semiconductor elements Sf3a and Sf4a, and the switching element Su2b is connected to the common connection point of the semiconductor elements Sf3b and Sf4b.
  • the other ends of the switching elements Su1a and Su2a, Su1b and Su2b are connected to each other, and one end of the switching elements Su3a and Su3b is connected to a common connection point of the switching elements Su1a and Su2a, Su1b and Su2b.
  • the switching element Su4a is connected to the other end of the switching element Su3a, and the other end of the switching element Su3b is connected to the switching element Su5a.
  • the switching elements Su4a, Su4b, Su5b, and Su5a are connected in series to form a series circuit.
  • the cathode of the diode Du1a and the anode of the diode Du2a are connected to the common connection point of the semiconductor element Sf1a and the semiconductor element Sf2b, and the switching elements Su4a, Su4b, Su5b, Su5a are connected in series in parallel to the diode Du1a and the diode Du2a The circuit is connected.
  • the diodes Du1b and Du2b and the switching elements Su4b and Su5b are connected in series to the diodes Du1a and Du2a and the switching elements Su4a and Su5a for withstand voltage.
  • the common connection point of the switching elements Su4b and Su5b is used as an output terminal, and the switching elements are selectively turned ON and OFF to output the potential of any one of the input terminals from the output terminal.
  • the output terminals U, V, W to 2E, E, 0, -E It can output phase voltage of 5 levels of -2E.
  • a typical switching pattern of the U phase is shown in FIG. Circles in the figure represent conducting semiconductor elements and switching elements. It is possible to output phase voltages of five levels of 2E, E, 0, -E and -2E through the path shown in FIG.
  • the number of switching elements (including semiconductor elements) used can be reduced to 38.
  • the number of switching elements in the conventional circuit in FIG. 30 is 48.
  • the number of switching elements in the conventional circuit in FIG. 31 is 44.
  • the circuit configuration of the multilevel power conversion device according to the sixteenth embodiment is shown in FIG.
  • the multilevel power conversion device according to the sixteenth embodiment includes DC voltage sources DCC1 and DCC2 common to the respective phases and the first and second basic cells 10a and 10b, and the voltage is selected by the phase modules respectively provided in the respective phases. And output from the output terminals U, V, W.
  • the phase module of each phase includes one end of the semiconductor element Sf2a, the common connection point of the semiconductor elements Sf3a and Sf4a, the common connection point of the semiconductor elements Sf3b and Sf4b, one end of the semiconductor element Sf1b, and the semiconductor elements Sf1a and Sf2b.
  • the common connection point is connected as an input terminal.
  • one end of the switching element Su1a is connected to one end of the semiconductor element Sf2a, and the switching element Su1b is connected to one end of the semiconductor element Sf1b.
  • One end of the switching element Su2a is connected to the common connection point of the semiconductor elements Sf3a and Sf4a, and the switching element Su2b is connected to the common connection point of the semiconductor elements Sf3b and Sf4b.
  • the other ends of the switching elements Su1a and Su2a, Su1b and Su2b are connected to each other, and one end of the switching elements Su3a and Su3b is connected to a common connection point of the switching elements Su1a and Su2a, Su1b and Su2b.
  • bidirectional switch One end of the bidirectional switch is connected to the common connection point of the semiconductor element Sf1a and the semiconductor element Sf2b, and the other end of the bidirectional switch is connected to the other end of the switching elements Su3a and Su3b.
  • a bidirectional switch is configured by reversely connecting the switching elements Su4 and Su5.
  • a common connection point between the switching elements Su3a and Su3b and the bi-directional switch is used as an output terminal, and each switching element (including a semiconductor element) is selectively turned on and off to control any one of the input terminals. Output the potential from the output terminal.
  • the output terminals U, V, W to 2E, E, 0, -E It can output phase voltage of 5 levels of -2E.
  • a typical switching pattern of the U phase is shown in FIG. Circles in the figure represent conducting semiconductor elements and switching elements. It is possible to output phase voltages of five levels of 2E, E, 0, -E and -2E through the path shown in FIG.
  • the number of switching elements (including semiconductor elements) to be used can be reduced to 32. Furthermore, since a gate drive circuit or the like for driving the switching element can be reduced, cost reduction can be realized.
  • the degree of freedom of charge and discharge can be secured by limiting the voltage levels output from the basic cells 10a and 10b to E and -E by using the basic cells 10a and 10b, thus simplifying control. Is possible.
  • FIG. 7 The circuit configuration of the multilevel power conversion device according to the seventeenth embodiment is shown in FIG. This circuit shares the flying capacitors FC1 to FCN in three phases.
  • N DC voltage sources DCC1 to DCCN common to each phase are connected in series.
  • One ends of the semiconductor elements Sf1a to Sf1n are connected to positive terminals of the DC voltage sources DCC1 to DCCN, and one ends of the semiconductor elements Sf2a to Sf2n are connected to negative terminals of the DC voltage sources DCC1 to DCCN.
  • the configuration of the basic cells 10a to 10n is the same as that of the fourteenth embodiment.
  • Terminals 1, 2, 3,..., 2N-1, 2N, and 2N + 1 of the basic cells 10a to 10n are input terminals of the phase module.
  • the terminal 3 and the terminal 2N-1 may not necessarily be connected to each phase module.
  • the fourteenth embodiment is an example in which the terminal 3 and the terminal 2N-1 in FIG. 27 are not connected to each phase module.
  • FIG. FIG. 28 (a) is similar to FIG. 13 (c), and FIG. 28 (d) is similar to FIG. 13 (d).
  • one end of the switching element S1a, S2a, S2b, S1b is connected to the terminal 1, 2, 2N, 2N + 1, and the other ends of two adjacent switching elements S1a and S2a, S2b and S1b are connected.
  • one end of the switching elements S3a and S3b is connected to a common connection point between the switching elements S1a and S2a, and S2b and S1b whose other ends are connected to each other.
  • switching element S3a is connected to one end of a series circuit in which switching element S4a and switching element S5a are connected in series
  • switching element S3b is a series circuit in which switching element S4b and switching element S5b are connected in series. Connecting.
  • the cathodes of the diodes D11 and D1 n and the anodes of the diodes D21 and D2 n are connected to the terminals 3 and 2N-1.
  • a series circuit in which switching elements S4a and S5a are connected in series and a series circuit in which S4b and S5b are connected in series are connected to the diodes D11 and D21 and D1n and D2n.
  • One end of the switching elements S8 and S7 is connected to a common connection point between the switching elements S4a and S5a, and S4b and S5b.
  • the other ends of the switching elements S7 and S8 are connected to each other, and a common connection point thereof is used as an output terminal.
  • the terminal 3 and the terminal 2N-1 are one, and the common connection point of the switching elements S4b and S5b is an output terminal U. Further, in order to make the withstand voltage, diodes Du1a and Du1b, Du2a and Du2b, Su4a and Su4b, and Su5a and Su5b are connected in series.
  • one end of the switching elements S1a and S1b is connected to the terminals 1 and 2N + 1
  • one end of the switching elements S2a and S2b is connected to the terminals 2 and 2N
  • others of the switching elements S1a and S2a, S1b and S2b are connected to each other, and one end of the switching elements 3a and 3b is connected to the common connection point of the switching elements S1a and S2a and S1b and S2b.
  • one end of the bidirectional switch is connected to the terminals 3 and 2N-1
  • the other end of the bidirectional switch is connected to the other end of the switching elements S3a and S3b
  • the switching elements S3a and S3b are commonly connected to the bidirectional switch. Let point be an output terminal.
  • the terminals 3 and 2N-1 are one.
  • the phase module has a function of selectively connecting any one of the input terminals 1, 2,..., 2N + 1 to the output terminal OUT by the ON / OFF operation of the switching element therein.
  • the circuit groups that is, DC voltage sources DCC1 to DCCN and basic cells 10a to 10n
  • the circuit groups from the DC voltage sources DCC1 to DCCN to the phase module of each phase are divided into DC voltage groups 1 to Let's say N.
  • the voltage levels input from one DC voltage group 1 to N to the phase module are three levels of 0, E and 2E.
  • the voltage reference point is the negative terminal of the DC voltage source DCC1 to DCCN of the DC voltage group.
  • the voltage level 2E of a certain DC voltage group and the voltage level 0 of the DC voltage group one upper stage thereof become the same phase voltage when viewed from the output terminal of the phase module.
  • the fourteenth embodiment is an example using the phase module of FIG. 28 (d), the fifteenth embodiment is the phase module of FIG. 28 (b), and the sixteenth embodiment is a phase module of FIG. 28 (c). Since the number N of direct current voltage groups in the fourteenth to sixteenth embodiments is 2, the number of output voltage levels is five.

Abstract

 N個(N≧1)直列接続された各相共通の直流電圧源DCC1~DCCNと、各直流電圧源DCC1~DCCNの負極端に一端が接続された各相共通の第1フライングキャパシタFC1,FC3,…,FC2N-1と、各直流電圧源DCC1~DCCNの正極端に一端が接続された各相共通の第2フライングキャパシタFC2,FC4,…,FC2Nと、第1フライングキャパシタFC1,FC3,…,FC2N-1の正極端,負極端,第2フライングキャパシタFC2,FC4,…,FC2Nの正極端,負極端を入力端子とする相モジュールと、を備える。相モジュールには、出力段の2つのスイッチング素子Su7,Su8に対してキャパシタFC1uを並列に接続する。これにより、多相のマルチレベル電力変換装置において、使用する素子の数を減少させ、装置におけるコストの低減,小型化を図る。

Description

マルチレベル電力変換装置
 本発明は、多相のマルチレベル電力変換装置に係り、特に、各相においてフライングキャパシタを共通に用いたマルチレベル電力変換装置に関する。
 図29は、特許文献1におけるマルチレベル電力変換装置を示す回路構成図である。相電圧基準点を端子0とし、直流電圧源DCC1,DCC2を2E,フライングキャパシタFC1,FC2をEに制御することにより、出力端子U,V,Wから2E,E,0,-E,-2Eの5レベルの相電圧を出力できる。
 なお、図29において、各スイッチング素子Su1~Su8,Sv1~Sv8,Sw1~Sw8と各ダイオード素子Su9~Su12,Sv9~Sv12,Sw9~Sw12の定常時の最大印加電圧はEである。この最大印加電圧を全スイッチング素子とダイオード素子で等しくするために、Su6bとSu8は2直列で構成している。スイッチング素子Su7とSu5b,Sv6bとSv8,Sv7とSv5b,Sw6bとSw8,Sw7とSw5b,Su9とSu10,Su11とSu12,Sv9とSv10,Sv11とSv12,Sw9とSw10,Sw11とSw12についても同様である。
 また、図30に示すようなマルチレベル電力変換装置が提案されている。図29,図30に示す回路は使用する直流電圧源DCC1,DCC2,フライングキャパシタFC1,FC2を3相共通にすることで使用するキャパシタの数を削減し、装置の小型化を図っている。
特願2013-132261号
 図29の回路は、5レベルの相電圧を出力でき、1相あたり10個のスイッチング素子と4個のダイオード素子から構成される。図29を三相DC/AC変換器で考えると、使用するスイッチング素子数が30個、ダイオード素子数が12個で、合計数は42個となる。このように、従来のマルチレベル電力変換装置は、使用する素子の数が多く、装置が高コスト,大型化してしまっていた。
 図30に示すマルチレベル電力変換装置は、出力する相電圧レベルに関係なく、共通のフライングキャパシタの充放電パターンを任意に選ぶことが可能である。しかし、直流電圧源DCC1,DCC2,フライングキャパシタFC1,FC2以外を各相で独立して使用しているためスイッチング素子の数が多く、装置が高コスト,大型化してしまっていた。たとえば、図30に示す3相の5レベル電力変換装置では、3相あたり48個もスイッチング素子が必要となる。
 また、図31に示すように、M相共通のスイッチング素子S1,S2を設けることにより、使用するスイッチング素子の総数を削減することができるが、各相共通のフライングキャパシタFC1,FC2の充放電パターンを任意に選ぶことができないという欠点があった。
 図32に出力相電圧レベルE,-Eのスイッチングパターンを示す。また、図33にフライングキャパシタFC2に、任意に選ぶことのできない充放電パターン例を示す。また、図中の○は導通しているスイッチング素子を表す。
 図32に示すように、出力相電圧レベルE,-Eにはそれぞれ2パターンずつの出力方法があり、EのパターンではフライングキャパシタFC2の充電、放電、-EのパターンではフライングキャパシタFC1の充電、放電を行うことが可能である。
 しかし、図33に示すようにU相がE,V相が0,W相が-Eの時に、図32の(b),(d)のパターンを同時に使用すると、スイッチング素子Su4,Su14,S1が同時に導通してしまうため、直流電圧源DCC2とフライングキャパシタFC2が短絡を起こしてしまう。
 したがって、直流電圧源DCC2とフライングキャパシタFC2の短絡を回避してEを出力するためには、図32の(b)の出力パターンは適用できずに図32の(a)の出力パターンに制限されてしまうことがわかる。このように充放電のパターンが制限されてしまうと、フライングキャパシタFC1とFC2の充放電が任意に切り換えることができなくなり、制御方式が複雑になるという問題が発生する。
 以上示したようなことから、多相のマルチレベル電力変換装置において、使用する素子の数を減少させ、装置におけるコストの低減,小型化を図ることが課題となる。
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、直流電圧源、フライングキャパシタ、およびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、N個(N≧2)直列接続された各相共通の直流電圧源と、各直流電圧源の負極端に一端が接続された各相共通の第1フライングキャパシタと、各直流電圧源の正極端に一端が接続された各相共通の第2フライングキャパシタと、第1フライングキャパシタの正極端,負極端,第2フライングキャパシタの正極端,負極端を入力端子とし、各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相(M≧2)の相モジュールと、を備えたことを特徴とする。
 また、別の態様として、直流電圧源、フライングキャパシタおよびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、N個(N≧2)の直列接続された各相共通の直流電圧源と、第n直流電圧源(n:奇数)と第n+1直流電圧源(n+1:偶数)の共通接続点に正極端が接続された第1フライングキャパシタと、各n直流電圧源と第n+1直流電圧源の共通接続点に負極端が接続された第2フライングキャパシタと、第n直流電圧源の負極端,第1フライングキャパシタの負極端,第n+1直流電圧源の正極端,第2フライングキャパシタの正極端を入力端子とし、各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相の相モジュールと、を備えたことを特徴とする。
 また、別の態様として、直流電圧源、フライングキャパシタおよびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、2個直列接続された各相共通の直流電圧源と、第1直流電圧源の負極端に、負極端が順次直列接続された各相共通のN個の第1~第Nフライングキャパシタと、第1直流電圧源と第2直流電圧源の共通接続点に正極端が順次直列接続された各相共通のN個の第2N~第N+1フライングキャパシタと、第1直流電圧源と第2直流電圧源の共通接続点に負極端が順次直列接続された各相共通のN個の第2N+1~第3Nフライングキャパシタと、第2直流電圧源の正極端に、正極端が順次直列接続された各相共通のN個の第4N~第3N+1フライングキャパシタと、第1フライングキャパシタの正極端,負極端,第2~第Nフライングキャパシタの正極端,第N+1~第2Nフライングキャパシタの負極端,第2N+1~第3Nフライングキャパシタの正極端,第3N+1~第4N-1フライングキャパシタの負極端,第4Nフライングキャパシタの正極端,負極端を入力端子とし、各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相の相モジュールと、を備えたことを特徴とする。
 また、別の態様として、直流電圧源、フライングキャパシタおよびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、2個直列接続された各相共通の直流電圧源と、第1直流電圧源の負極側に、負極端が順次直列接続された各相共通のN個の第1~第Nフライングキャパシタと、第2直流電圧源の正極側に、正極端が順次直列接続された各相共通のN個の第N+1~第2Nフライングキャパシタと、第1フライングキャパシタの正,負極端,第2~第Nフライングキャパシタの正極端,第N+1~第2N-1フライングキャパシタの負極端,第2Nフライングキャパシタの正,負極端を入力端子とし、各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相の相モジュールと、を備えたことを特徴とする。
 また、第1直流電圧源と第2直流電圧源を1つの直流電圧源に統合してもよい。
 また、別の態様として、直流電圧源およびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、2N+2個直列接続された各相共通の直流電圧源と、第1,第2N+2直流電圧源の正極端,負極端,第2~第N直流電圧源の正極端,第N+3~第2N+1直流電圧源の負極端を入力端子とし、各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相の相モジュールと、を備えたことを特徴とする。
 また、第N+1直流電圧源と第N+2直流電圧源を1つの直流電圧源に統合しても良い。
 また、別の態様として、直流電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、N個(N≧2)直列接続された各相共通の直流電圧源と、各直流電圧源の正極端に一端が接続された第1半導体素子と、各直流電圧源の負極端に一端が接続された第2半導体素子と、第1半導体素子の他端と、第2半導体素子の他端との間に接続されたフライングキャパシタと、第1半導体素子とフライングキャパシタの共通接続点と第2半導体素子とフライングキャパシタの共通接続点との間に直列接続された第3,第4半導体素子と、を有する各相共通の基本セルと、第1半導体素子の一端と第2半導体素子の一端とのうち少なくとも一方と、第3,第4半導体素子の共通接続点と、を入力端子とし、各入力端子と出力端子間にスイッチング素子を有し、各スイッチング素子を選択的にON,OFF制御するM相(M≧3)の相モジュールと、を備えたことを特徴とする。
 また、その一態様として、前記相モジュールは、各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力することを特徴とする。
 また、別の態様として、前記相モジュールは、第1半導体素子の一端と第2半導体素子の一端とのうち一方に第1スイッチング素子の一端を接続し、第3,第4半導体素子の共通接続点に第2スイッチング素子の一端を接続し、第1,第2スイッチング素子の他端同士を接続し、第1,第2スイッチング素子の共通接続点に第3スイッチング素子の一端を接続し、第3スイッチング素子の他端に、第4スイッチング素子と第5スイッチング素子とを直列接続した直列回路の一端を接続し、第1半導体素子の一端と第2半導体素子の一端のうち他方の共通接続点に、第1ダイオードのカソードと第2ダイオードのアノードを接続し、第1ダイオードと第2ダイオードに対して並列に第4スイッチング素子と第5スイッチング素子とを直列接続した直列回路を接続し、第4,第5スイッチング素子の共通接続点を出力端子とし、または、第4,第5スイッチング素子が複数ある場合は、第4,第5スイッチング素子の共通接続点にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子を接続し、これをスイッチング素子が2つになる出力段まで繰り返し、出力段の2つのスイッチング素子の共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力することを特徴とする。
 また、別の態様として、前記相モジュールは、第1半導体素子の一端と第2半導体素子の一端とのうち一方に第1スイッチング素子の一端を接続し、第3,第4半導体素子の共通接続点に第2スイッチング素子の一端を接続し、第1,第2スイッチング素子の他端同士を接続し、第1,第2スイッチング素子の共通接続点に第3スイッチング素子の一端を接続し、第1半導体素子の一端と第2半導体素子の一端とのうち他方に、双方向スイッチの一端を接続し、双方向スイッチの他端に第3スイッチング素子の他端を接続し、第3スイッチング素子と、双方向スイッチの共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力することを特徴とする。
 また、最終段以外の前記隣り合う2つのスイッチング素子の他端間に2つのスイッチング素子を直列接続し、その直列接続された2つのスイッチング素子にキャパシタを並列接続し、直列接続された2つのスイッチング素子の共通接続点に次段のスイッチング素子の一端を接続し、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位に、出力段のスイッチング素子に並列接続されたキャパシタや、最終段以外の隣り合うスイッチング素子間に直列接続されたスイッチング素子に並列接続されたキャパシタの電圧を加算,減算した電位を出力端子から出力してもよい。
 さらに、各直流電圧源を直列数2以上に分割してもよい。
 また、スイッチング素子の一部または全てを直列数2以上に分割してもよく、スイッチング素子の一部または全てを並列数2以上に分割してもよい。
 本発明によれば、多相のマルチレベル電力変換装置において、使用する素子の数を減少させ、装置におけるコストの低減,小型化を図ることが可能となる。
従来回路の0出力時パターンを示す概略図。 実施形態1におけるマルチレベル電力変換装置を示す回路構成図。 実施形態1における出力電圧別動作例を示す概略図。 実施形態2におけるマルチレベル電力変換装置を示す回路構成図。 実施形態2における出力電圧別動作例を示す概略図。 実施形態3におけるマルチレベル電力変換装置を示す回路構成図。 実施形態4におけるマルチレベル電力変換装置を示す回路構成図。 実施形態5におけるマルチレベル電力変換装置を示す回路構成図。 実施形態6におけるマルチレベル電力変換装置を示す回路構成図。 実施形態7におけるマルチレベル電力変換装置を示す回路構成図。 実施形態8におけるマルチレベル電力変換装置を示す回路構成図。 実施形態9におけるマルチレベル電力変換装置を示す回路構成図。 相モジュールを示す概略図。 実施形態10におけるマルチレベル電力変換装置を示す回路構成図。 実施形態11におけるマルチレベル電力変換装置を示す回路構成図。 実施形態12におけるマルチレベル電力変換装置を示す回路構成図。 実施形態13におけるマルチレベル電力変換装置を示す回路構成図。 基本セルの構成を示す回路構成図。 基本セルを直列接続した回路構成図。 実施形態14におけるマルチレベル電力変換装置を示す回路構成図。 基本セルのスイッチングパターンを示す概略図。 実施形態14におけるマルチレベル電力変換装置の電圧別スイッチングパターンを示す概略図。 実施形態15におけるマルチレベル電力変換装置を示す回路構成図。 実施形態15におけるマルチレベル電力変換装置の電圧別スイッチングパターンを示す概略図。 実施形態16におけるマルチレベル電力変換装置を示す回路構成図。 実施形態16におけるマルチレベル電力変換装置の電圧別スイッチングパターンを示す概略図。 実施形態16におけるマルチレベル電力変換装置を示すブロック図。 相モジュールを示す概略図。 従来のマルチレベル電力変換装置の一例を示す回路構成図。 従来のマルチレベル電力変換装置の他例を示す回路構成図。 従来のマルチレベル電力変換装置の他例を示す回路構成図。 従来のマルチレベル電力変換装置の出力相電圧E,-Eのスイッチングパターンを示す概略図。 選択できないスイッチングパターンを示す概略図。
 以下、本願発明におけるマルチレベル電力変換装置の実施形態1~17を図1~28に基づいて詳細に説明する。
 [実施形態1]
 図29に示す従来技術における相電圧0を出力するパターンの例を、図1に示す。図29に示す従来技術においては、ダイオード素子Su9~Su12を用いて、相電圧0を出力しているが、ほかの手段で相電圧0を出力することができれば、これらのダイオード素子Su9~Su12は省略できる。
 本実施形態1は、図2に示すように、新たなフライングキャパシタFC1u,FC1v,FC1wを各相に接続することにより、ダイオード素子Su9~Su12,Sv9~Sv12,Sw9~Sw12を省略し、素子の数を低減したものである。
 以下、本実施形態1におけるマルチレベル電力変換装置の回路構成を図2に基づいて説明する。本実施形態1におけるマルチレベル電力変換装置は、各相共通の直流電圧源DCC1,DCC2,フライングキャパシタFC1,FC2を備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。相モジュールは、U相において、スイッチング素子Su1~Su8,キャパシタFC1uを備える。
 以下、具体的な回路構成をU相を例にとって説明する。直流電圧源(直流キャパシタまたは直流電源)DCC1,DCC2が直列に接続され、この直流電圧源DCC1,DCC2の共通接続点(中性点)を端子0としている。
 直流電圧源DCC1の負極端に各相共通のフライングキャパシタFC1の負極端が接続され、直流電圧源DCC2の正極端にフライングキャパシタFC2の正極端が接続される。
 各相の相モジュールには、フライングキャパシタFC1の正極端,負極端,フライングキャパシタFC2の正極端,負極端が入力端子として接続される。
 各入力端子にスイッチング素子Su1~Su4の一端を接続し、隣り合うスイッチング素子Su1とSu2,Su3とSu4の他端同士を接続する。隣り合うスイッチング素子Su1とSu2,Su3とSu4の共通接続点にスイッチング素子Su5a,Su6aの一端を接続し、最終段のスイッチング素子Su5a,Su6aの他端間にスイッチング素子Su5b,Su6bを介して、出力段のスイッチング素子Su7,Su8を順次直列接続する。出力段のスイッチング素子Su7,Su8に対してキャパシタFC1uを並列に接続し、出力段のスイッチング素子Su7,Su8の共通接続点を出力端子Uとする。なお、スイッチング素子Su5b,Su6bは耐電圧のためにスイッチング素子Su5a,Su6aに直列接続されたものである。
 この相モジュールの各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタFC1uの電圧を加算,減算した電位を出力端子Uから出力することができる。
 なお、V相,W相についても同様に構成される。
 このような回路構成において、直流電圧源DCC1,DCC2の電圧を2E,フライングキャパシタFC1,FC2,キャパシタFC1u,FC1v,FC1wの電圧をEに制御することにより、出力端子U,V,Wから2E,E,0,-E,-2Eの5レベルの相電圧を出力できる。なお、相電圧の基準点は端子0とする。また、三相DC/AC変換器を考えると、使用するスイッチング素子は30個、ダイオード素子は0個となる。
 キャパシタFC1u,FC1v,FC1wを使用することによって、出力端子U,V,Wから0電圧を出力できるようになるため、従来技術(図1)のダイオード素子Su9~Su12,Sv9~Sv12,Sw9~Sw12を省略でき、図29に示す従来の回路構成よりも使用するダイオード素子の数を12個低減することができる。
 したがって、図29に示す回路構成と比べて、スイッチング素子数を変えずにダイオード素子数を0個に低減できる。
            U相の代表的なスイッチングパターンを表1、図3に示す。表1のパターンでスイッチングすることにより、図3に示した経路で2E,E,0,-E,-2Eの5レベルの相電圧を出力することが可能である。図中の○は導通中のスイッチング素子を表す。
Figure JPOXMLDOC01-appb-T000001
 各フライングキャパシタの印加電圧について説明する。図3の(2)、(3)のパターン時にフライングキャパシタFC2は充電される。また、図3の(3)のパターン時にキャパシタFC1uは充電される。さらに図3には示していないが、フライングキャパシタFC1が充電されるパターン,フライングキャパシタFC1,FC2およびキャパシタFC1uが放電されるパターンもある。これらの充放電を行うことで、相電圧を出力しつつ、フライングキャパシタFC1,FC2およびフライングキャパシタFC1uの電圧をEに制御することができる。
 なお、図2に示す実施形態1において、各スイッチング素子の定常時の最大印加電圧はEである。これは、図29に示す従来回路と同じ値である。
 以上示したように、本実施形態1によれば、多相のマルチレベル電力変換装置において、素子の数を減少させることができ、装置の低コスト化・小型化を図ることが可能となる。
 [実施形態2]
 図4に実施形態2におけるマルチレベル電力変換装置の回路構成を示す。本実施形態2は実施形態1と回路構成は同一であるが、直流電圧源DCC1,DCC2とフライングキャパシタFC1,FC2,キャパシタFC1u,FC1v,FC1wの電圧比を変えたものである。なお、相電圧の基準点は端子0とする。
 本実施形態2では、直流電圧源DCC1,DCC2の電圧を2.5E,フライングキャパシタFC1,FC2の電圧をE,キャパシタFC1u,FC1v,FC1wの電圧を2Eに制御することで出力端子U,V,Wから2.5E,1.5E,0.5E,-0.5E,-1.5E,-2.5Eの6レベルの相電圧を出力できる。各出力電圧別の動作例および電流経路を図5に示す。
 このように、直流電圧源DCC1,DCC2とフライングキャパシタFC1,FC2,キャパシタFC1u,FC1v,FC1wの電圧比を変えることにより、実施形態1と比較して、レベル数を拡張することができる。その結果、スイッチング素子の個数を同一のまま、実施形態1と比べてレベル数を増加できるため、出力電圧・電流の高調波を抑制できる。
 [実施形態3]
 図6に、本実施形態3におけるマルチレベル電力変換装置の回路構成を示す。本実施形態3におけるマルチレベル電力変換装置は、各相共通の直流電圧源DCC1~DCC4を備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。相モジュールは、U相において、スイッチング素子Su1~Su8,キャパシタFC1uを備える。
 以下、具体的な回路構成を、U相を例にとって説明する。直流電圧源(直流キャパシタまたは直流電源)DCC1~DCC4が直列に接続され、直流電圧源DCC2,DCC3の共通接続点(中性点)を端子0としている。
 各相の相モジュールには、直流電圧源DCC1の正負極端,直流電圧源DCC4の正負極端が入力端子として接続される。
 各入力端子に第1スイッチング素子Su1~Su4の一端を接続し、隣り合うスイッチング素子Su1とSu2,Su3とSu4の他端同士を接続する。隣り合うスイッチング素子Su1とSu2,Su3とSu4の共通接続点にスイッチング素子Su5a,Su6aの一端を接続し、最終段のスイッチング素子Su5a,Su6aの他端間にスイッチング素子Su5b,Su6bを介して、出力段のスイッチング素子Su7,Su8を順次直列接続する。出力段のスイッチング素子Su7,Su8に対してキャパシタFC1uを並列に接続し、出力段のスイッチング素子Su7,Su8の共通接続点を出力端子Uとする。
 この相モジュールの各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタFC1uの電圧を加算,減算した電位を出力端子Uから出力することができる。
 なお、V相,W相についても同様に構成される。
 このような回路構成において、直流電圧源DCC1~DCC4の電圧をE,キャパシタFC1u,FC1v,FC1wの電圧をEに制御することにより、出力端子U,V,Wから5レベルの相電圧を出力することができる。なお、相電圧の基準点は端子0とする。
 本実施形態3におけるマルチレベル電力変換装置によれば、実施形態1と同様に、フライングキャパシタFC1u,FC1v,FC1wを使用することによって、出力端子U,V,Wから0を出力できるようになるため、従来技術(図18)のダイオード素子Su9~Su12,Sv9~Sv12,Sw9~Sw12を省略でき、図18に示す従来の回路構成よりも使用するダイオード素子の数を12個低減することができる。
 なお、各スイッチング素子の定常時の最大印加電圧は、実施形態1、実施形態2と同様にEである。
 また、実施形態2と同様に電圧比を変更することにより、レベル数を拡張することができる。例えば、直流電圧源DCC1,DCC4の電圧をE,DCC2,DCC3の電圧を1.5E,キャパシタFc1u,FC1v、FC1wの電圧を2Eに制御する場合、各出力端子U,V,Wから2.5E,1.5E,0.5E,-0.5E,-1.5E,2.5Eの6レベルの相電圧を出力できる。
 [実施形態4]
 図7に、本実施形態4におけるマルチレベル電力変換装置の回路構成を示す。
 以下、本実施形態4におけるマルチレベル電力変換装置の回路構成を説明する。本実施形態4におけるマルチレベル電力変換装置は、各相共通の直流電圧源DCC1,DCC2,フライングキャパシタFC1,FC2を備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。相モジュールは、U相において、スイッチング素子Su1~Su8,キャパシタFC1uを備える。
 以下、具体的な回路構成をU相を例にとって説明する。直流電圧源(直流キャパシタまたは直流電源)DCC1,DCC2が直列に接続され、この直流電圧源DCC1,DCC2の共通接続点(中性点)を端子0としている。
 各直流電圧源DCC1,DCC2の共通接続点にフライングキャパシタFC1の正極端,フライングキャパシタFC2の負極端が接続されている。
 相モジュールには、直流電圧源DCC1の負極端,フライングキャパシタFC1の負極端,直流電圧源DCC2の正極端,フライングキャパシタFC2の正極端が入力端子として接続される。
 各入力端子に第1スイッチング素子Su1~Su4の一端を接続し、隣り合うスイッチング素子Su1とSu2,Su3とSu4の他端同士を接続する。隣り合うスイッチング素子Su1とSu2,Su3とSu4の共通接続点にスイッチング素子Su5a,Su6aの一端を接続し、最終段のスイッチング素子Su5a,Su6aの他端間にスイッチング素子Su5b,Su6bを介して、出力段のスイッチング素子Su7,Su8を順次直列接続する。出力段のスイッチング素子Su7,Su8に対してキャパシタFC1uを並列に接続し、出力段のスイッチング素子Su7,Su8の共通接続点を出力端子Uとする。
 この相モジュールの各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタFC1uの電圧を加算,減算した電位を出力端子Uから出力することができる。
 なお、V相,W相についても同様に構成される。
 直流電圧源DCC1,DCC2を2E、フライングキャパシタFC1,FC2をE、キャパシタFC1u,FC1v,FC1wをEに制御することにより、出力端子U,V,Wから2E,E,0,-E,-2Eの5レベルの相電圧を出力できる。なお、相電圧の基準点は端子0とする。
 本実施形態4におけるマルチレベル電力変換装置によれば、実施形態1と同様に、キャパシタFC1u,FC1v,FC1wを使用することによって、出力端子U,V,Wから0を出力できるようになるため、従来技術(図29)のダイオード素子Su9~Su12,Sv9~Sv12,Sw9~Sw12を省略でき、図29に示す従来の回路構成よりも使用するダイオード素子の数を12個低減することができる。
 なお、各スイッチング素子の定常時の最大印加電圧は、実施形態1、実施形態2と同様にEである。
 また、実施形態2と同様に電圧比を変更することにより、レベル数を拡張することができる。例えば、直流電圧源DCC1,DCC2の電圧を2.5E,フライングキャパシタFC1,FC2の電圧を1.5E,キャパシタFc1u,FC1v、FC1wの電圧を2Eに制御する場合、2.5E,1.5E,0.5E,-0.5E,-1.5E,-2.5Eの6レベルの相電圧を出力できる。
 [実施形態5]
 図8に、本実施形態5におけるマルチレベル電力変換装置の回路構成を示す。
 以下、本実施形態5におけるマルチレベル電力変換装置の回路構成を説明する。本実施形態5におけるマルチレベル電力変換装置は、実施形態1のマルチレベル電力変換装置における各相共通のフライングキャパシタFC1,FC2をそれぞれ2段にしたものである。すなわち、各相共通の直流電圧源DCC1,DCC2,フライングキャパシタFC1,FC2,FC3,FC4を備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。相モジュールは、U相において、スイッチング素子Su1~Su12,フライングキャパシタFC1uを備える。
 以下、具体的な回路構成をU相を例にとって説明する。直流電圧源(直流キャパシタまたは直流電源)DCC1,DCC2が直列に接続され、この直流電圧源DCC1,DCC2の共通接続点(中性点)を端子0としている。
 直流電圧源DCC1の負極端に、フライングキャパシタFC1の負極端が接続される。フライングキャパシタFC1には、フライングキャパシタFC2が直列に接続される。
 直流電圧源DCC2の正極端に、フライングキャパシタFC4の正極端が接続される。フライングキャパシタFC4には、フライングキャパシタFC3が直列接続される。
 相モジュールには、フライングキャパシタFC1の正極端,負極端,フライングキャパシタFC2の正極端,フライングキャパシタFC3の負極端,フライングキャパシタFC4の正極端,負極端が入力端子として接続される。
 各入力端子にスイッチング素子Su1~Su4,Su6,Su7の一端が接続され、隣り合うスイッチング素子Su1とSu2,Su3とSu4の他端同士を接続する。隣り合うスイッチング素子Su1とSu2,Su3とSu4の共通接続点にスイッチング素子Su5,Su8の一端を接続する。隣り合うスイッチング素子Su5とSu6,Su7とSu8の他端同士を接続し、隣り合うスイッチング素子Su5とSu6,Su7とSu8の共通接続点にスイッチング素子Su9a,Su10aの一端が接続される。最終段のスイッチング素子Su9a,Su10aの他端間に、スイッチング素子Su9b,Su10bを介して、出力段のスイッチング素子Su11,Su12を順次直列接続する。出力段のスイッチング素子Su11,Su12に対してキャパシタFC1uを並列に接続し、出力段のスイッチング素子Su11,Su12の共通接続点を出力端子Uとする。
 この相モジュールの各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタFC1uの電圧を加算,減算した電位を出力端子Uから出力することができる。
 なお、V相,W相についても同様に構成される。
 直流電圧源DCC1,DCC2の電圧を3.5E、フライングキャパシタFC1,FC2,FC3,FC4の電圧をE、キャパシタFC1u,FC1v,FC1wの電圧を2Eに制御することにより、出力端子U,V,Wから3.5E,2.5E,1,5E,0.5E,-0.5E,-1.5E,-2.5E,-3.5Eの8レベルの相電圧を出力できる。なお、相電圧の基準点は端子0とする。
 表2に本実施形態5における代表的なスイッチングパターンを示す。
Figure JPOXMLDOC01-appb-T000002
 なお、各スイッチング素子の定常時の最大印加電圧は、実施形態1、実施形態2と同様にEである。
 本実施形態5は出力できる相電圧レベル数が増加するため、必要なスイッチング素子数は増加するが、実施形態1の各相共通のフライングキャパシタを多段化した構成なので、同じ相電圧レベル数の従来回路方式と比較して、スイッチング素子数を変えずにダイオード素子の数を低減できる。また、レベル数が増加することから、実施形態1~3と比較して、出力電圧・電流の高調波を抑制でき高調波抑制フィルタを小型化できる。
 [実施形態6]
 図9に、本実施形態6におけるマルチレベル電力変換装置の回路構成を示す。
 以下、本実施形態6におけるマルチレベル電力変換装置の回路構成を説明する。各相共通の直流電圧源DCC1,DCC2,フライングキャパシタFC1,FC2,FC3,FC4を備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。相モジュールは、U相において、スイッチング素子Su1~Su12,キャパシタFC1uを備える。
 以下、具体的な回路構成をU相を例にとって説明する。直流電圧源(直流キャパシタまたは直流電源)DCC1,DCC2が直列に接続され、この直流電圧源DCC1,DCC2の共通接続点(中性点)を端子0としている。
 直流電圧源DCC1の負極端に、フライングキャパシタFC1の負極端が接続される。直流電圧源DCC1と直流電圧源DCC2の共通接続点にフライングキャパシタFC2の正極端とフライングキャパシタFC3の負極端が接続される。直流電圧源DCC2の正極端に、フライングキャパシタFC4の正極端が接続される。
 相モジュールには、フライングキャパシタFC1の正極端,負極端,フライングキャパシタFC2の負極端,フライングキャパシタFC3の正極端,フライングキャパシタFC4の正極端,負極端が入力端子として接続される。
 各入力端子にスイッチング素子Su1~Su4,Su6,Su7の一端が接続され、隣り合うスイッチング素子Su1とSu2,Su3とSu4の他端同士を接続する。隣り合うスイッチング素子Su1とSu2,Su3とSu4の共通接続点にスイッチング素子Su5,Su8の一端を接続する。隣り合うスイッチング素子Su5とSu6,Su7とSu8の他端同士を接続し、隣り合うスイッチング素子Su5とSu6,Su7とSu8の共通接続点にスイッチング素子Su9a,Su10aの一端が接続される。最終段のスイッチング素子Su9a,Su10aの他端間に、スイッチング素子Su9b,Su10bを介して、出力段のスイッチング素子Su11,Su12を順次直列接続する。出力段のスイッチング素子Su11,Su12に対してキャパシタFC1uを並列に接続し、出力段のスイッチング素子Su11,Su12の共通接続点を出力端子Uとする。
 この相モジュールの各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタFC1uの電圧を加算,減算した電位を出力端子Uから出力することができる。
 なお、V相,W相についても同様に構成される。
 直流電圧源DCC1,DCC2の電圧を3.5E、フライングキャパシタFC1,FC4の電圧をE,FC2,FC3の電圧を1.5E、キャパシタFC1u,FC1v,FC1wの電圧を2Eに制御することにより、出力端子U,V,Wから3.5E,2.5E,1,5E,0.5E,-0.5E,-1.5E,-2.5E,-3.5Eの8レベルの相電圧を出力できる。なお、相電圧の基準点は端子0とする。
 本実施形態6は出力できるレベル数が増加するため、必要なスイッチング素子数は増加するが、実施形態1の各相共通のフライングキャパシタを多段化した構成であるので従来構成の図29を同等のレベル数まで拡張した場合と比較すると、同様にスイッチング素子数を変えずにダイオード素子の数を低減できる。また、レベル数が増加することから、実施形態1~3と比較すると、出力電圧・電流高調波を抑制でき、高調波抑制フィルタを小型化できる。
 [実施形態7]
 図10に、本実施形態7におけるマルチレベル電力変換装置の回路構成を示す。
 以下、本実施形態7におけるマルチレベル電力変換装置の回路構成を説明する。本実施形態7におけるマルチレベル電力変換装置は、実施形態1のマルチレベル電力変換装置における各相共通のフライングキャパシタFC1,FC2をFC1,FC2,FC3,FC4の4段にしたものである。すなわち、各相共通の直流電圧源DCC1,DCC2,フライングキャパシタFC1,FC2,FC3,FC4を備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。相モジュールは、U相において、スイッチング素子Su1~Su16,キャパシタFC1uを備える。
 以下、具体的な回路構成をU相を例にとって説明する。直流電圧源(直流キャパシタまたは直流電源)DCC1,DCC2が直列に接続され、この直流電圧源DCC1,DCC2の共通接続点(中性点)を端子0としている。
 直流電圧源DCC1の負極端にフライングキャパシタFC1の負極が接続され、直流電圧源DCC1の正極端にフライングキャパシタFC2の正極端が接続される。直流電圧源DCC2の負極端にフライングキャパシタFC3の負極端が接続され、直流電圧源DCC2の正極端に、フライングキャパシタFC4の正極端が接続される。
 相モジュールは、フライングキャパシタFC1~FC4の正極端,負極端を入力端子とする。
 各入力端子に第1スイッチング素子Su1~Su8の一端を接続し、隣り合うスイッチング素子Su1とSu2,Su3とSu4,Su5とSu6,Su7とSu8の他端同士を接続し、隣り合うスイッチング素子Su1とSu2,Su3とSu4,Su5とSu6,Su7とSu8の共通接続点にスイッチング素子Su9~Su12の一端が接続される。隣り合うスイッチング素子Su9とSu10,Su11とSu12の他端同士を接続し、隣り合うスイッチング素子Su9とSu10,Su11とSu12の共通接続点にスイッチング素子Su13,Su14が接続される。最終段のスイッチング素子Su13,Su14の他端間に、出力段のスイッチング素子Su15,Su16を順次直列接続する。出力段のスイッチング素子Su15,Su16に対してキャパシタFC1uを並列に接続し、出力段のスイッチング素子Su15,Su16の共通接続点を出力端子Uとする。
 この相モジュールの各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタFC1uの電圧を加算,減算した電位を出力端子Uから出力することができる。
 なお、V相,W相についても同様に構成される。
 直流電圧源DCC1,DCC2の電圧を4E、フライングキャパシタFC1,FC2,FC3,FC4の電圧をE、キャパシタFC1u,FC1v,FC1wの電圧をEに制御することにより、出力端子U,V,Wから4E,3E,2E,1E,0,-1E,-2E,-3E,-4Eの9レベルの相電圧を出力できる。なお、相電圧の基準点は端子0とする。
 表3に本実施形態7における代表的なスイッチングパターンを示す。
Figure JPOXMLDOC01-appb-T000003
 実施形態7は出力できるレベル数が増加するため、必要なスイッチング素子数は増加するが、実施形態1の各相共通のフライングキャパシタを多段化した構成であるので従来構成の図29を同等のレベル数まで拡張した場合と比較すると、同様にスイッチング素子数を変えずにダイオード素子の数を低減できる。また、レベル数が増加することから、実施例1~3と比較すると、出力電圧・電流高調波を抑制でき、高調波抑制フィルタを小型化できる。
 [実施形態8]
 図11に、本実施形態8におけるマルチレベル電力変換装置の回路構成を示す。
 以下、本実施形態8におけるマルチレベル電力変換装置の回路構成を説明する。本実施形態8におけるマルチレベル電力変換装置は、実施形態7のマルチレベル電力変換装置におけるスイッチング素子Su9とSu10,Su11とSu12との間にスイッチング素子Su17,Su18,Su19,Su20を介挿し、スイッチング素子Su17,Su18に対してキャパシタFC3u,スイッチング素子Su19,Su20に対してキャパシタFC2uを並列に接続し、スイッチング素子Su17とSu18,Su19とSu20の共通接続点に次段のスイッチング素子Su13,Su14の一端を接続したものである。すなわち、本実施形態8は最終段のスイッチング素子以外にもスイッチング素子とキャパシタの並列接続回路を設けたものである。
 相モジュールにおいて、各スイッチング素子を選択的にON,OFF制御することにより、入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタFC1u,FC2u,FC3uの電圧を加算,減算した電位を出力端子から出力する。
 なお、V相,W相についても同様に構成される。
 本実施形態8では、直流電圧源DCC1,DCC2の電圧を5E、フライングキャパシタFC1,FC2,FC3,FC4の電圧をE、キャパシタFC1u,FC2u,FC3u,FC1v,FC2v,FC3v,FC1w,FC2w,FC3wの電圧をEに制御することで5E,4E,3E,2E,E,0,-E,-2E,-3E,-4E,-5Eの11レベルの相電圧を出力できる。なお、相電圧の基準点は端子0とする。U相の代表的なスイッチングパターンを表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本実施形態8は、実施形態7と同様にダイオード素子数が0である。
また、レベル数が増加することから、実施形態7と比較すると、出力電圧・電流高調波を抑制でき、高調波抑制フィルタを小型化できる。
 [実施形態9]
 図12に本実施形態9におけるマルチレベル電力変換装置を示す。
 図12は、実施形態1のマルチレベル電力変換装置の一相分の回路を、M相N段に拡張したマルチレベル電力変換器装置である。段数N(N=1,2,3…)は、直流電圧源の直列数であり、直流電圧源DCC1~DCCNは直列に接続されている。
 この直流電圧源DCC1~DCCNの負極端にフライングキャパシタFC1,FC3,…,FC2N-1の負極端がそれぞれ接続され、直流電圧源DCC1~DCCNの正極端にフライングキャパシタFC2,FC4,…,FC2Nの正極端が接続される。
 本実施形態9のマルチレベル電力変換装置に使用する相モジュールの構成例を図13に示す。図13(a)~(d)に示すように、(a)~(d)の全てにおいて、出力段のスイッチング素子に対して並列に各相のフライングキャパシタFCM0が設けられている。図13(a),(b)は相モジュールの入力端子数が4の倍数、図13(c),(d)は相モジュールの入力端子数が4の倍数以外の偶数の場合の構成例である。図13(a)と図13(b)との差異、および、図13(c)と図13(d)との差異は、出力段のスイッチング素子に対して並列接続されたキャパシタFCM0以外のキャパシタFCM1~FCMNの有無である。
 本実施形態9の回路は、図12に示すように、相モジュールの入力端子数は4Nで4の倍数であるため、図13(a)または図13(b)が選択される。相モジュールの各入力端子は、各相共通のフライングキャパシタFC1~FCNの正負極端に接続される。
 また、相電圧のレベル数は、適用する相モジュールの種類および直流電圧源DCC1~DCCN,各相共通のフライングキャパシタFC1~FC2N,および相モジュール内の各キャパシタFCM0,FCM1~FCMNの印加電圧による。図13(b)の相モジュールを用いた場合では、図12の直流電圧源DCC1~DCCNの電圧を4E、フライングキャパシタFC1~FC2Nおよび図13(b)の相モジュールのフライングキャパシタFCM0の電圧をEに制御することにより、相電圧レベル数は(4N+1)となる。
 実施形態1は本実施形態9をN=1,M=3として、図13の(b)の相モジュールを適用した場合、実施形態7は本実施形態9をN=2,N=3として、図13(b)の相モジュールを適用し、図12の直流電圧源DCC1~DCCNの電圧を4E、フライングキャパシタFC1~FC2Nの電圧をE、図13の相モジュールのキャパシタFCM0の電圧をEに制御した場合である。実施形態2は、本実施形態9をN=1,M=3として、図13(b)の相モジュールを適用し、図12の直流電圧源DCC1~DCCNの電圧を5E、フライングキャパシタFC1~FC2Nの電圧をE、図13の相モジュールのキャパシタFCM0の電圧を2Eに制御した場合である。実施形態8は本実施形態9をN=2,N=3として、図13の(a)の相モジュールを適用した場合において、図12の直流電圧源DCC1~DCCNの電圧を5E、図12のフライングキャパシタFC1~FCNの電圧をE、図13(a)の相モジュールのキャパシタFCM0,FCM1~FCMNの電圧をEに制御した場合である。
 なお、直流電圧源DCC1~DCCNは、各々において分割してもよい。
 [実施形態10]
 図14に本実施形態10におけるマルチレベル電力変換装置を示す。
 本実施形態10におけるマルチレベル電力変換装置は、フライングキャパシタFC1~FC2Nの接続構成が、実施形態9と異なっている。
 2Nは、直流電圧源の直列数であり、直流電圧源DCC1~DCC2Nが直列に接続されている。また、フライングキャパシタFC1~FC2Nの個数も2Nであり、各直流電圧源DCCn(n:奇数)とDCCn+1(n+1:偶数)の共通接続点に第1フライングキャパシタFC1,FC3,…,FCn-1の正極端が接続され、各直流電圧源DCCn(n:奇数)とDCCn+1(n+1:偶数)の共通接続点にフライングキャパシタFC2,FC4,…,FC2Nの負極端が接続される。
 したがって、本実施形態10では直流電圧源DCC1~DCC2Nの直列数および各相共通のフライングキャパシタFCC1~FCC2Nの個数は偶数となる。なお、M≧2である。
 相モジュールは、直流電圧源DCCn(n:奇数)の負極端,フライングキャパシタFCnの負極端,直流電圧源DCCn+1の正極端,フライングキャパシタFCn+1の正極端を入力端子とする。
 また、相電圧のレベル数は、適用する相モジュールの種類および直流電圧源DCC1~DCCN,各相共通のフライングキャパシタFC1~FC2N、および相モジュール内の各相のキャパシタの印加電圧による。図14における直流電圧源DCC1~DCC2Nの電圧を2E、各相共通のフライングキャパシタFC1~FC2Nおよび図13(b)に示す相モジュールのキャパシタFCM0の電圧をEに制御することにより、相電圧レベル数は(4N+1)となる。
 実施形態4は、本実施形態9をN=1,M=3とし、図13(b)の相モジュールを選択し、図14の直流電圧源DCC1~DCCNの電圧を2E、フライングキャパシタFC1~FC2Nの電圧をE、図13の相モジュールのキャパシタFCM0の電圧をEに制御したものである。
 なお、直流電圧源DCC1~DCC2Nは、各々において分割してもよい。
 [実施形態11]
 図15に、本実施形態11におけるマルチレベル電力変換装置を示す。
 直流電圧源DCC1,DCC2が直列に接続されている。
 フライングキャパシタFC1~FC4Nの接続構成が、実施形態9,10と異なっている。直流電圧源DCC1の負極端にフライングキャパシタFC1~FCNの負極端が順次直列接続され、直流電圧源DCC1とDCC2の共通接続点にフライングキャパシタFC2N~FCN+1の正極端が順次直列接続され、直流電圧源DCC1とDCC2の共通接続点にフライングキャパシタFC2N+1~FC3Nの負極端が順次直列接続され、直流電圧源DCC2の正極端に、フライングキャパシタFC4N~FC3N+1の正極端が順次直列接続される。
 相モジュールは、フライングキャパシタFC1の正極端,負極端,フライングキャパシタFC2~FCNの正極端,フライングキャパシタFCN+1~FC2Nの負極端,フライングキャパシタFC2N+1~FC3Nの正極端,フライングキャパシタFC3N+1~FC4N-1の負極端と、フライングキャパシタFC4Nの正極端,負極端を入力端子とする。
 4Nは、フライングキャパシタの個数である。したがって、本実施形態11ではフライングキャパシタFC1~FC4Nの個数は4の倍数となる。なお、M≧2である。
 本実施形態11の場合、相モジュールの入力端子数4N+2が4の倍数とならない偶数であるため、図13(c),(d)に示す相モジュールを適用する。
 また、出力相電圧のレベル数は、適用する相モジュールの種類および直流電圧源DCC1~DCC2、各相共通のフライングキャパシタFC1~FC4N、および相モジュール内の各キャパシタFCM0,FCM1~FCMNの印加電圧による
 実施形態6は、本実施形態11をN=1,M=3とし、図13(d)の相モジュールを使用し、図15の直流電圧源DCC1~DCCNの電圧を3.5E、フライングキャパシタFC1、FC4Nの電圧をE、フライングキャパシタFC2N、FC2N+1の電圧を1.5E、図13の相モジュールのキャパシタFCM0の電圧を2Eに制御した場合の例である。
 なお、直流電圧源DCC1~DCC2は、各々において分割してもよい。
 [実施形態12]
 図16に、本実施形態12におけるマルチレベル電力変換装置を示す。
 直流電圧源DCC1,DCC2が直列に接続されている。
 本実施形態12は、M相でフライングキャパシタFC1~FC2Nを共通にしたM相N段マルチレベル変換装置である。実施形態9~実施形態11とは、フライングキャパシタFC1~FC2Nの接続構成が異なっている。
 直流電圧源DCC1の負極端に、フライングキャパシタFC1~FCNの負極端が順次直列接続され、直流電圧源DCC2の正極端に、フライングキャパシタFC2N~FCN+1の正極端が順次直列接続される。
 2Nは、フライングキャパシタFC1~FC2Nの個数である。したがって、本構成ではフライングキャパシタFC1~FC2Nの個数は偶数となる。なお、M≧2である。
 相モジュールは、フライングキャパシタFC1の正極端,負極端,フライングキャパシタFC2~FCNの正極端,フライングキャパシタFCN+1~FC2N-1の負極端,フライングキャパシタFC2Nの正極端,負極端を入力端子とする。
 本実施形態12の場合、相モジュールの入力端子数2N+2が4の倍数とならない場合がある。相モジュールの入力端子数2N+2が4の倍数の場合、図13(a),(b)に示す相モジュールを適用し、相モジュールの入力端子数2N+2が4の倍数でない偶数の場合、図13(c),(d)に示すような入力端子数が適合している相モジュールを適用する。
 また、相電圧のレベル数は、適用する相モジュールの種類および直流電圧源DCC1~DCC2,フライングキャパシタFC1~FC4N、および相モジュール内の各キャパシタの印加電圧による。
 実施形態5は、図16をN=2、M=3とし、図13(d)の相モジュールを使用し、図15の直流電圧源DCC1~DCCNの電圧を3.5E、フライングキャパシタFC1~FC2Nの電圧をE、図13の相モジュールのキャパシタFCM0の電圧を2Eに制御した場合の例である。
 なお、直流電圧源DCC1~DCC2は、各々において分割してもよい。なお、直流電圧源DCC1とDCC2を1つの直流電圧源に統合してもよい。
 [実施形態13]
 図17に、本実施形態13におけるマルチレベル電力変換装置を示す。
 図17は、M相共通の直流電圧源を(2N+2)個に分割したマルチレベル変換装置である(N=1,2,3,…)。すなわち、直流電圧源DCC1~DCC2N+2が直列接続されている。
 相モジュールの各入力端子は、直流電圧源DCC1~DCC2N+2と接続する。具体的には、直流電圧源DCC1,DCC2N+2の正極端,負極端,直流電圧源DCC2~DCCNの正極端,直流電圧源DCCN+3~DCC2N+1の負極端を入力端子とする。すなわち、直流電圧源同士の共通接続点の中で、直流電圧源DCCN+1とDCCN+2との接続点のみは相モジュールと接続しない。なお、M≧2である。
 本実施形態13の場合、相モジュールの入力端子数2N+2が4の倍数とならない場合がある。相モジュールの入力端子数2N+2が4の倍数の場合、図13(a),(b)に示す相モジュールを適用し、相モジュールの入力端子数2N+2が4の倍数でない偶数の場合、図13(c),(d)に示すような入力端子数が適合している相モジュールを適用する。
 また、相電圧のレベル数は、適用する相モジュールの種類および直流電圧源DCC1~DCC2N+2、および相モジュール内の各キャパシタの印加電圧による。
 実施形態3は、図17をN=1、M=3とし、図13(b)の相モジュールを使用し、図17の直流電圧源DCC1~DCC2N+2の電圧をE、図13の相モジュールのキャパシタFCM0の電圧をEに制御した場合の例である。
 なお、直流電圧源DCC1~DCC2N+2は、各々分割してもよい。また、直流電圧源DCCN+1とDCCN+2を1つの直流電圧源に統合してもよい。
 [実施形態14]
 実施形態14~17におけるマルチレベル電力変換装置で用いる基本セルを図18に示す。基本セルはフライングキャパシタFC1と半導体素子(例えば、IGBT)Sf1,Sf2,Sf3,Sf4とを備え、M相で共通化する。以上のように、各相共通の基本セルを設けることで、使用するスイッチング素子(半導体素子含む)数を低減することが可能となる。
 端子3は装置の直流電圧源(キャパシタまたは直流電源)の正極と接続し、端子1は装置の直流電圧源(キャパシタまたは直流電源)の負極と接続する。端子2は装置の相モジュールと接続する。相モジュールに関しては、後述する。
 図18の基本セルをN個直列に接続した構成が図19である。ここで、N≧2とする。端子2N+1,2N-1には直流電圧源(キャパシタまたは直流電源)を接続する。端子2Nには相モジュールを接続する。
 図19の基本セルを使用した実施形態14におけるマルチレベル電力変換装置の回路構成を図20に示す。
 以下、本実施形態14におけるマルチレベル電力変換装置の回路構成を図20に基づいて説明する。本実施形態14におけるマルチレベル電力変換装置は、各相共通の直流電圧源DCC1,DCC2,第1,第2基本セル10a,10bを備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。
 以下、具体的な回路構成をU相を例にとって説明する。直流電圧源(直流キャパシタまたは直流電源)DCC1,DCC2が直列に接続され、この直流電圧源DCC1,DCC2の共通接続点(中性点)を端子0としている。
 第1,第2基本セル10a,10bは、各直流電圧源DCC1,DCC2の正極端に一端が接続された半導体素子Sf1a,Sf1bと、各直流電圧源DCC1,DCC2の負極端に一端が接続された半導体素子Sf2a,Sf2bと、半導体素子Sf1a,Sf1bの他端と、半導体素子Sf2a,Sf2bの他端との間に接続されたフライングキャパシタFC1,FC2と、半導体素子Sf1a,Sf1bとフライングキャパシタFC1,FC2の共通接続点と、半導体素子Sf2a,Sf2bとフライングキャパシタFC1,FC2の共通接続点と、の間に直列接続された半導体素子Sf3a,Sf4a,Sf3b,Sf4bと、を備えている。基本セル10a,10bは、半導体素子Sf1a,Sf1bとSf4a,Sf4b、または、Sf2a,Sf2bとSf3a,Sf3bをONすることにより、E,-Eレベルの電圧を相モジュールに出力する。
 各相の相モジュールには、半導体素子Sf2aの一端と、半導体素子Sf3a,Sf4aの共通接続点と、半導体素子Sf3b,Sf4bの共通接続点と、半導体素子Sf1bの一端と、が入力端子として接続される。
 各入力端子にスイッチング素子Su1~Su4の一端を接続し、隣り合うスイッチング素子Su1とSu2,Su3とSu4の他端同士を接続する。隣り合うスイッチング素子Su1とSu2,Su3とSu4の共通接続点にスイッチング素子Su5a,Su6aの一端を接続し、最終段のスイッチング素子Su5a,Su6aの他端間にスイッチング素子Su5b,Su6bを介して、出力段のスイッチング素子Su7,Su8を順次直列接続する。出力段のスイッチング素子Su7,Su8に対してキャパシタFC1uを並列に接続し、出力段のスイッチング素子Su7,Su8の共通接続点を出力端子Uとする。なお、スイッチング素子Su5b,Su6bは耐電圧のためにスイッチング素子Su5a,Su6aに直列接続されたものである。
 この相モジュールの各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタFC1uの電圧を加算,減算した電位を出力端子Uから出力することができる。
 なお、V相,W相についても同様に構成される。
 このような回路構成において、直流電圧源DCC1,DCC2の電圧を2E,フライングキャパシタFC1,FC2,キャパシタFC1u,FC1v,FC1wの電圧をEに制御することにより、出力端子U,V,Wから2E,E,0,-E,-2Eの5レベルの相電圧を出力できる。 U相の代表的なスイッチングパターンを図21に示す。図中の○は導通している半導体素子,スイッチング素子を表す。図21に示した経路で2E,E,0,-E,-2Eの5レベルの相電圧を出力することが可能である。
 本実施形態14では、使用するスイッチング素子(半導体素子Sf1a~Sf4a,Sf1b~Sf4b含む)の数を38個に削減できる。(図30の従来回路のスイッチング素子の数は48個であり、図31の従来回路のスイッチング素子の数は44個である。)さらに、スイッチング素子を駆動するためのゲート駆動回路などを削減できるため、低コスト化を実現できる。
 また、基本セル10a,10bのスイッチング素子Sf3aとSf4a,Sf3bとSf4bの共通接続点の電圧レベルをE,-E(電圧基準点は各直流電圧源DCC1~DCCNの負極端子とする)に限定することにより、充放電の自由度を確保できるため、制御の簡易化を図ることが可能となる。
 先行技術である図31の回路はスイッチングパターンの中に、直流電圧源DCC1とフライングキャパシタFC1,直流電圧源DCC2とフライングキャパシタFC2を短絡してしまう組み合わせがあったが、本実施形態14の構成では短絡するパターンが存在しない。
 その理由について図22を用いて説明する。図中の○は導通している素子を表す。各相共通の基本セル10a,10bは、図22のように2パターンのスイッチングしか行わない。したがって、どのような電圧レベルを出力する場合でも半導体素子Sf1,Sf2を同時にONすることがないため、直流電圧源DCC1とフライングキャパシタFC1,直流電圧源DCC2とフライングキャパシタFC2の短絡が発生せずにフライングキャパシタFC1,FC2の接続パターンを切り換えることができる。電流に応じて接続パターンを切り換えることでフライングキャパシタFC1,FC2に流出入する電流を切り換え充放電が行えることから、フライングキャパシタFC1,FC2の充放電の自由度が確保できていることがわかる。
 [実施形態15]
 本実施形態15におけるマルチレベル電力変換装置の回路構成を図23に示す。以下、本実施形態15におけるマルチレベル電力変換装置の回路構成を図23に基づいて説明する。本実施形態15におけるマルチレベル電力変換装置は、各相共通の直流電圧源DCC1,DCC2,第1,第2基本セル10a,10bを備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。
 以下、具体的な回路構成をU相を例にとって説明する。直流電圧源DCC1,DCC2と基本セル10a,10bとの接続については、実施形態14と同様である。
 各相の相モジュールには、半導体素子Sf2aの一端と、半導体素子Sf3a,Sf4aの共通接続点と、半導体素子Sf3b,Sf4bの共通接続点と、半導体素子Sf1bの一端と、半導体素子Sf1a,Sf2bの共通接続点と、が入力端子として接続される。
 前記相モジュールは、半導体素子Sf2aの一端にスイッチング素子Su1aの一端を接続、半導体素子Sf1bの一端にスイッチング素子Su1bを接続する。半導体素子Sf3a,Sf4aの共通接続点にスイッチング素子Su2aの一端を接続し、半導体素子Sf3b,Sf4bの共通接続点にスイッチング素子Su2bを接続する。
 スイッチング素子Su1aとSu2a,Su1bとSu2bの他端同士を接続し、スイッチング素子Su1aとSu2a,Su1bとSu2bの共通接続点にスイッチング素子Su3a,Su3bの一端を接続する。
 スイッチング素子Su3aの他端に、スイッチング素子Su4aを接続し、スイッチング素子Su3bの他端とスイッチング素子Su5aを接続する。ここで、スイッチング素子Su4a,Su4b,Su5b,Su5aを直列接続して直列回路を構成している。
 半導体素子Sf1aと半導体素子Sf2bの共通接続点に、ダイオードDu1aのカソードとダイオードDu2aのアノードを接続し、ダイオードDu1aとダイオードDu2aに対して並列にスイッチング素子Su4a,Su4b,Su5b,Su5aを直列接続した直列回路が接続される。なお、ダイオードDu1a,Du2a,スイッチング素子Su4a,Su5aには、耐電圧のために、ダイオードDu1b,Du2b,スイッチング素子Su4b,Su5bが直列接続される。
 スイッチング素子Su4b,Su5bの共通接続点を出力端子とし、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力する。
 なお、V相,W相についても同様に構成される。
 このような回路構成において、直流電圧源DCC1,DCC2の電圧を2E,フライングキャパシタFC1,FC2の電圧をEに制御することにより、出力端子U,V,Wから2E,E,0,-E,-2Eの5レベルの相電圧を出力できる。U相の代表的なスイッチングパターンを図24に示す。図中の○は導通している半導体素子,スイッチング素子を表す。図24に示した経路で2E,E,0,-E,-2Eの5レベルの相電圧を出力することが可能である。
 本実施形態14では、使用するスイッチング素子(半導体素子を含む)の数を38個に削減できる。(図30の従来回路のスイッチング素子の数は48個である。図31の従来回路のスイッチング素子の数は44個である。)さらに、スイッチング素子を駆動するためのゲート駆動回路などを削減できるため、低コスト化を実現できる。
 また、基本セル10a,10bを使用し基本セル10a,10bから出力される電圧レベルをE,-Eに限定することにより、充放電の自由度を確保できるため、制御の簡易化を図ることが可能となる。
 また、図33の回路と比較して共通部の損失低減が見込まれる。
 [実施形態16]
 本実施形態16におけるマルチレベル電力変換装置の回路構成を図25に示す。以下、本実施形態16におけるマルチレベル電力変換装置の回路構成を図25に基づいて説明する。本実施形態16におけるマルチレベル電力変換装置は、各相共通の直流電圧源DCC1,DCC2,第1,第2基本セル10a,10bを備え、各相にそれぞれ設けられた相モジュールにより、電圧を選択して出力端子U,V,Wから出力する。
 以下、具体的な回路構成をU相を例にとって説明する。直流電圧源DCC1,DCC2と基本セル10a,10bとの接続については、実施形態14,15と同様である。
 各相の相モジュールには、半導体素子Sf2aの一端と、半導体素子Sf3a,Sf4aの共通接続点と、半導体素子Sf3b,Sf4bの共通接続点と、半導体素子Sf1bの一端と、半導体素子Sf1a,Sf2bの共通接続点と、が入力端子として接続される。
 前記相モジュールは、半導体素子Sf2aの一端にスイッチング素子Su1aの一端を接続し、半導体素子Sf1bの一端にスイッチング素子Su1bを接続する。半導体素子Sf3a,Sf4aの共通接続点にスイッチング素子Su2aの一端を接続し、半導体素子Sf3b,Sf4bの共通接続点にスイッチング素子Su2bを接続する。
 スイッチング素子Su1aとSu2a,Su1bとSu2bの他端同士を接続し、スイッチング素子Su1aとSu2a,Su1bとSu2bの共通接続点にスイッチング素子Su3a,Su3bの一端を接続する。
 半導体素子Sf1aと半導体素子Sf2bの共通接続点に双方向スイッチの一端を接続し、双方向スイッチの他端とスイッチング素子Su3a,Su3bの他端を接続する。本実施形態16では、スイッチング素子Su4,Su5を逆接続することにより、双方向スイッチが構成されている。スイッチング素子Su3a,Su3bと、双方向スイッチの共通接続点を出力端子とし、各スイッチング素子(半導体素子を含む)を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力する。
 なお、V相,W相についても同様に構成される。
 このような回路構成において、直流電圧源DCC1,DCC2の電圧を2E,フライングキャパシタFC1,FC2の電圧をEに制御することにより、出力端子U,V,Wから2E,E,0,-E,-2Eの5レベルの相電圧を出力できる。U相の代表的なスイッチングパターンを図26に示す。図中の○は導通している半導体素子,スイッチング素子を表す。図26に示した経路で2E,E,0,-E,-2Eの5レベルの相電圧を出力することが可能である。
 本実施形態16では、使用するスイッチング素子(半導体素子を含む)の数を32個に削減できる。さらに、スイッチング素子を駆動するためのゲート駆動回路などを削減できるため、低コスト化を実現できる。
 また、基本セル10a,10bを使用し、基本セル10a,10bから出力される電圧レベルをE,-Eに限定することにより、充放電の自由度を確保できるため、制御の簡易化を図ることが可能となる。
 [実施形態17]
 本実施形態17におけるマルチレベル電力変換装置の回路構成を図27示す。この回路は、フライングキャパシタFC1~FCNを三相で共通化している。
 図27のマルチレベル電力変換装置は、直流電圧源DCC1~DCCNと、図18の基本セルをN段に拡張した回路と、M相の相モジュールを用いてM相N段に構成している。なお、N≧2,M≧3である。また、実施形態14,15,16は図27の回路においてN=2、M=3としたものである。
 各相共通のN個の直流電圧源DCC1~DCCNを直列に接続する。直流電圧源DCC1~DCCNの正極端に半導体素子Sf1a~Sf1nの一端が接続され、直流電圧源DCC1~DCCNの負極端に半導体素子Sf2a~Sf2nの一端が接続される。基本セル10a~10nの構成は実施形態14と同様である。
 基本セル10a~10nの端子1,2,3,…,2N-1,2N,2N+1を相モジュールの入力端子とする。なお、端子3,端子2N-1は必ずしも各相モジュールに接続しなくてもよい。実施形態14は、図27の端子3および端子2N-1を各相モジュールに接続していない例である。
 ここで、直流電圧源DCC1~DCCNの電圧を2Eとし、フライングキャパシタFC1~FCNの電圧をEに制御すると、2N+1レベルの相電圧を出力することができる。
 相モジュールの例を図28に示す。図28(a)は図13(c)と同様であり、図28(d)は図13(d)と同様である。
 図28(b)は、端子1,2,2N,2N+1にスイッチング素子S1a,S2a,S2b,S1bの一端を接続し、隣り合う2つのスイッチング素子S1aとS2a,S2bとS1bの他端同士を接続し、他端同士を接続したスイッチング素子S1aとS2a,S2bとS1bの共通接続点にスイッチング素子S3a,S3bの一端を接続する。
 スイッチング素子S3aの他端に、スイッチング素子S4aとスイッチング素子S5aを直列接続した直列回路の一端を接続し、スイッチング素子S3bの他端に、スイッチング素子S4bとスイッチング素子S5bとを直列接続した直列回路を接続する。
 端子3,2N-1には、ダイオードD11,D1nのカソードとダイオードD21,D2nのアノードが接続される。ダイオードD11とD21,D1nとD2nには、並列にスイッチング素子S4aとS5aとを直列接続した直列回路,S4bとS5bとを直列接続した直列回路が接続される。スイッチング素子S4aとS5a,S4bとS5bの共通接続点にスイッチング素子S8,S7の一端が接続される。スイッチング素子S7,S8の他端同士を接続し、その共通接続点を出力端子とする。
 実施形態15では、端子3と端子2N-1を一つとし、スイッチング素子S4b,S5bの共通接続点を出力端子Uとしている。また、耐電圧化のために、ダイオードDu1aとDu1b,Du2aとDu2b,Su4aとSu4b,Su5aとSu5bを直列接続している。
 図28(c)は、端子1,2N+1にスイッチング素子S1a,S1bの一端を接続し、端子2,2Nにスイッチング素子S2a,S2bの一端を接続し、スイッチング素子S1aとS2a,S1bとS2bの他端同士を接続し、スイッチング素子S1aとS2a,S1bとS2bの共通接続点にスイッチング素子3a,3bの一端を接続する。
 また、端子3,2N-1に双方向スイッチの一端を接続し、双方向スイッチの他端とスイッチング素子S3a,S3bの他端を接続し、スイッチング素子S3a,S3bと、双方向スイッチの共通接続点を出力端子とする。なお、実施形態16では、端子3と2N-1を1つとしている。
 相モジュールは、その内部のスイッチング素子のON/OFF動作によって、入力端子1,2,…,2N+1のいずれかを出力端子OUTに選択接続する機能を持つ。
 また、図27に示すように直流電圧源DCC1~DCCNから各相の相モジュールへ入力するまでの回路群(すなわち、直流電圧源DCC1~DCCNと基本セル10a~10n)を、直流電圧群1~Nとする。図27において、1つの直流電圧群1~Nから相モジュールへ入力される電圧レベルは、0,E,2Eの3レベルである。(電圧基準点は、直流電圧群の直流電圧源DCC1~DCCNの負極端子とする。)
 また、ある直流電圧群の電圧レベル2Eと、その1つ上段の直流電圧群の電圧レベル0は、相モジュールの出力端子から見ると同じ相電圧となる。直流電圧群がN段ある構成では、上記のように電圧レベルが重なる部位が(N-1)箇所ある。したがって、図27において、出力端子OUT1~OUTMには、(3N-(N-1))=(2N+1)レベルの電圧を出力できる。
 実施形態14は図28(d)の相モジュール、実施形態15は図28(b)の相モジュール、実施形態16は図28(c)の相モジュールを使用した場合の例である。実施形態14~16の直流電圧群数N=2なので、出力電圧のレベル数は5レベルとなっている。

Claims (15)

  1.  直流電圧源、フライングキャパシタ、およびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     N個(N≧1)直列接続された各相共通の直流電圧源と、
     各直流電圧源の負極端に一端が接続された各相共通の第1フライングキャパシタと、
     各直流電圧源の正極端に一端が接続された各相共通の第2フライングキャパシタと、
     第1フライングキャパシタの正極端,負極端,第2フライングキャパシタの正極端,負極端を入力端子とし、
    各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、
    各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相(M≧2)の相モジュールと、
     を備えたマルチレベル電力変換装置。
  2.  直流電圧源、フライングキャパシタおよびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     N個(N≧2)の直列接続された各相共通の直流電圧源と、
     第n直流電圧源(n:奇数)と第n+1直流電圧源(n+1:偶数)の共通接続点に正極端が接続された第1フライングキャパシタと、
     各n直流電圧源と第n+1直流電圧源の共通接続点に負極端が接続された第2フライングキャパシタと、
     第n直流電圧源の負極端,第1フライングキャパシタの負極端,第n+1直流電圧源の正極端,第2フライングキャパシタの正極端を入力端子とし、
    各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、
    各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相(M≧2)の相モジュールと、
     を備えたマルチレベル電力変換装置。
  3.  直流電圧源、フライングキャパシタおよびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     2個直列接続された各相共通の直流電圧源と、
     第1直流電圧源の負極端に、負極端が順次直列接続された各相共通のN個の第1~第Nフライングキャパシタと、
     第1直流電圧源と第2直流電圧源の共通接続点に正極端が順次直列接続された各相共通のN個の第2N~第N+1フライングキャパシタと、
     第1直流電圧源と第2直流電圧源の共通接続点に負極端が順次直列接続された各相共通のN個の第2N+1~第3Nフライングキャパシタと、
     第2直流電圧源の正極端に、正極端が順次直列接続された各相共通のN個の第4N~第3N+1フライングキャパシタと、
     第1フライングキャパシタの正極端,負極端,第2~第Nフライングキャパシタの正極端,第N+1~第2Nフライングキャパシタの負極端,第2N+1~第3Nフライングキャパシタの正極端,第3N+1~第4N-1フライングキャパシタの負極端,第4Nフライングキャパシタの正極端,負極端を入力端子とし、
    各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、
    各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相(M≧2)の相モジュールと、
     を備えたマルチレベル電力変換装置。
  4.  直流電圧源、フライングキャパシタおよびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     2個直列接続された各相共通の直流電圧源と、
     第1直流電圧源の負極側に、負極端が順次直列接続された各相共通のN個の第1~第Nフライングキャパシタと、
     第2直流電圧源の正極側に、正極端が順次直列接続された各相共通のN個の第N+1~第2Nフライングキャパシタと、
     第1フライングキャパシタの正,負極端,第2~第Nフライングキャパシタの正極端,第N+1~第2N-1フライングキャパシタの負極端,第2Nフライングキャパシタの正,負極端を入力端子とし、
    各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、
    各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相(M≧2)の相モジュールと、
     を備えたマルチレベル電力変換装置。
  5.  第1直流電圧源と第2直流電圧源を1つの直流電圧源に統合した請求項4に記載のマルチレベル電力変換装置。
  6.  直流電圧源およびキャパシタの電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     2N+2個(N≧1)直列接続された各相共通の直流電圧源と、
     第1,第2N+2直流電圧源の正極端,負極端,第2~第N直流電圧源の正極端,第N+3~第2N+1直流電圧源の負極端を入力端子とし、
    各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、
    各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力するM相(M≧2)の相モジュールと、
     を備えたマルチレベル電力変換装置。
  7.  第N+1直流電圧源と第N+2直流電圧源を1つの直流電圧源に統合した請求項6に記載のマルチレベル電力変換装置。
  8.  直流電圧から複数の電圧レベルに変換した交流出力を生成するマルチレベル電力変換装置であって、
     N個(N≧2)直列接続された各相共通の直流電圧源と、
     各直流電圧源の正極端に一端が接続された第1半導体素子と、各直流電圧源の負極端に一端が接続された第2半導体素子と、第1半導体素子の他端と、第2半導体素子の他端との間に接続されたフライングキャパシタと、第1半導体素子とフライングキャパシタの共通接続点と第2半導体素子とフライングキャパシタの共通接続点との間に直列接続された第3,第4半導体素子と、を有する各相共通の基本セルと、
     第1半導体素子の一端と第2半導体素子の一端とのうち少なくとも一方と、第3,第4半導体素子の共通接続点と、を入力端子とし、各入力端子と出力端子間にスイッチング素子を有し、各スイッチング素子を選択的にON,OFF制御するM相(M≧3)の相モジュールと、
     を備えたマルチレベル電力変換装置。
  9.  前記相モジュールは、
    各入力端子にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子の一端を接続し、これをスイッチング素子が2つになる最終段まで繰り返し、最終段の2つのスイッチング素子の他端間に2つの出力段のスイッチング素子を直列接続し、出力段の2つのスイッチング素子に対してキャパシタを並列に接続し、出力段のスイッチング素子の共通接続点を出力端子とし、
    各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位にキャパシタの電圧を加算,減算した電位を出力端子から出力する請求項8記載のマルチレベル電力変換装置。
  10.  前記相モジュールは、
     第1半導体素子の一端と第2半導体素子の一端とのうち一方に第1スイッチング素子の一端を接続し、第3,第4半導体素子の共通接続点に第2スイッチング素子の一端を接続し、第1,第2スイッチング素子の他端同士を接続し、第1,第2スイッチング素子の共通接続点に第3スイッチング素子の一端を接続し、
     第3スイッチング素子の他端に、第4スイッチング素子と第5スイッチング素子とを直列接続した直列回路の一端を接続し、
     第1半導体素子の一端と第2半導体素子の一端のうち他方の共通接続点に、第1ダイオードのカソードと第2ダイオードのアノードを接続し、第1ダイオードと第2ダイオードに対して並列に第4スイッチング素子と第5スイッチング素子とを直列接続した直列回路を接続し、
     第4,第5スイッチング素子の共通接続点を出力端子とし、または、第4,第5スイッチング素子が複数ある場合は、第4,第5スイッチング素子の共通接続点にスイッチング素子の一端を接続し、隣り合う2つのスイッチング素子の他端同士を接続し、他端同士を接続したスイッチング素子の共通接続点にスイッチング素子を接続し、これをスイッチング素子が2つになる出力段まで繰り返し、出力段の2つのスイッチング素子の共通接続点を出力端子とし、
     各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力する請求項8記載のマルチレベル電力変換装置。
  11.  前記相モジュールは、
     第1半導体素子の一端と第2半導体素子の一端とのうち一方に第1スイッチング素子の一端を接続し、第3,第4半導体素子の共通接続点に第2スイッチング素子の一端を接続し、第1,第2スイッチング素子の他端同士を接続し、第1,第2スイッチング素子の共通接続点に第3スイッチング素子の一端を接続し、
     第1半導体素子の一端と第2半導体素子の一端のうち他方の共通接続点に、双方向スイッチの一端を接続し、双方向スイッチの他端に第3スイッチング素子の他端を接続し、
     第3スイッチング素子と、双方向スイッチの共通接続点を出力端子とし、
     各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位を出力端子から出力する請求項8記載のマルチレベル電力変換装置。
  12.  最終段以外の隣り合う2つのスイッチング素子の他端間に2つのスイッチング素子を直列接続し、その直列接続された2つのスイッチング素子にキャパシタを並列接続し、直列接続された2つのスイッチング素子の共通接続点に次段のスイッチング素子の一端を接続し、各スイッチング素子を選択的にON,OFF制御することにより、前記入力端子のうち何れかの端子の電位、または、前記入力端子のうち何れかの端子の電位に、出力段のスイッチング素子に並列接続されたキャパシタや、最終段以外の隣り合うスイッチング素子間に直列接続されたスイッチング素子に並列接続されたキャパシタの電圧を加算,減算した電位を出力端子から出力する請求項1~7,9のうち何れかに記載のマルチレベル電力変換装置。
  13.  各直流電圧源を直列数2以上に分割した請求項1~12のうち何れかに記載のマルチレベル電力変換装置。
  14.  スイッチング素子および半導体素子の一部または全てを直列数2以上に分割した請求項1~13のうち何れかに記載のマルチレベル電力変換装置。
  15.  スイッチング素子および半導体素子の一部または全てを並列数2以上に分割した請求項1~14のうち何れかに記載のマルチレベル電力変換装置。
PCT/JP2014/064105 2013-08-02 2014-05-28 マルチレベル電力変換装置 WO2015015885A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14832709.1A EP3029824A4 (en) 2013-08-02 2014-05-28 Multilevel power conversion device
RU2016105213A RU2634910C2 (ru) 2013-08-02 2014-05-28 Многоуровневое силовое преобразовательное устройство
US14/908,884 US9948206B2 (en) 2013-08-02 2014-05-28 Multilevel power conversion device with flying capacitor
CA2920079A CA2920079C (en) 2013-08-02 2014-05-28 Multilevel power conversion device
CN201480043665.9A CN105453406B (zh) 2013-08-02 2014-05-28 多电平电力变换装置
SG11201600761VA SG11201600761VA (en) 2013-08-02 2014-05-28 Multilevel power conversion device
BR112016002128-2A BR112016002128B1 (pt) 2013-08-02 2014-05-28 Dispositivo de conversão de energia de múltiplos níveis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-160999 2013-08-02
JP2013160999 2013-08-02
JP2013240681A JP6206118B2 (ja) 2013-08-02 2013-11-21 マルチレベル電力変換装置
JP2013-240681 2013-11-21

Publications (1)

Publication Number Publication Date
WO2015015885A1 true WO2015015885A1 (ja) 2015-02-05

Family

ID=52431430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064105 WO2015015885A1 (ja) 2013-08-02 2014-05-28 マルチレベル電力変換装置

Country Status (9)

Country Link
US (1) US9948206B2 (ja)
EP (1) EP3029824A4 (ja)
JP (1) JP6206118B2 (ja)
CN (1) CN105453406B (ja)
BR (1) BR112016002128B1 (ja)
CA (1) CA2920079C (ja)
RU (1) RU2634910C2 (ja)
SG (1) SG11201600761VA (ja)
WO (1) WO2015015885A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174454A1 (ja) * 2014-05-14 2015-11-19 株式会社明電舎 5レベル電力変換器の制御方法
TWI721818B (zh) * 2019-03-14 2021-03-11 大陸商台達電子企業管理(上海)有限公司 直流轉換系統以及直流轉換系統控制方法
US11223285B2 (en) 2019-03-14 2022-01-11 Delta Electronics (Shanghai) Co., Ltd. DC-DC conversion system and control method of DC-DC conversion system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101689824B1 (ko) * 2014-11-20 2016-12-27 한국전기연구원 모듈라 멀티레벨 컨버터 및 그 서브모듈
FR3036237B1 (fr) * 2015-05-11 2018-06-01 Schneider Toshiba Inverter Europe Sas Dispositif de conversion de puissance moyenne tension multiniveaux a sortie alternative
JP6728789B2 (ja) * 2016-03-07 2020-07-22 株式会社明電舎 マルチレベル電力変換器の制御方法およびマルチレベル電力変換器
JP6900759B2 (ja) * 2017-04-17 2021-07-07 株式会社明電舎 電力変換回路の制御装置
JP6428859B1 (ja) * 2017-06-16 2018-11-28 株式会社明電舎 マルチレベル電力変換装置
JP6439835B1 (ja) * 2017-08-24 2018-12-19 株式会社明電舎 マルチレベル電力変換装置およびその制御方法
JP6962081B2 (ja) * 2017-09-06 2021-11-05 株式会社明電舎 マルチレベル電力変換装置
EP3694095A4 (en) * 2017-10-06 2020-12-09 Panasonic Intellectual Property Management Co., Ltd. POWER CONVERSION DEVICE
CN108667327B (zh) 2018-05-03 2020-03-20 华为数字技术(苏州)有限公司 多电平逆变器
CN110113012B (zh) * 2019-05-05 2022-02-01 武汉大学 一种提高线性功率放大器效率的电路拓扑及方法
JP7153878B2 (ja) * 2019-05-21 2022-10-17 パナソニックIpマネジメント株式会社 電力変換装置
CN112737387A (zh) * 2019-10-14 2021-04-30 台达电子工业股份有限公司 电力系统
CN112003490B (zh) * 2020-07-31 2021-06-04 北京金风科创风电设备有限公司 三电平变流器的功率组件及三电平变流器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168240A (ja) * 2003-12-04 2005-06-23 Toshiba Corp 電気車制御装置におけるコンバータ回路
JP2006087257A (ja) * 2004-09-17 2006-03-30 Fuji Electric Holdings Co Ltd マルチレベルコンバータ及びその制御方法
JP2010093978A (ja) * 2008-10-09 2010-04-22 Toshiba Corp 電力変換装置
JP2013078204A (ja) * 2011-09-30 2013-04-25 Toshiba Corp 電力変換装置
JP2013085358A (ja) * 2011-10-07 2013-05-09 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2013132261A (ja) 2011-12-27 2013-07-08 Imuraya Group Co Ltd 小豆飲料の製造方法
JP2013146117A (ja) * 2012-01-13 2013-07-25 Fuji Electric Co Ltd マルチレベル電力変換回路

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041087A1 (de) * 2005-08-30 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
WO2009086927A1 (en) * 2008-01-08 2009-07-16 Abb Technology Ag A method for controlling a voltage source converter and a voltage converting apparatus
CN101494425A (zh) * 2009-01-19 2009-07-29 上海海事大学 三相混合多电平逆变电路
US8611120B2 (en) * 2009-06-19 2013-12-17 Mitsubishi Electric Corporation Power conversion apparatus
WO2012040257A1 (en) * 2010-09-21 2012-03-29 Curtiss-Wright Electro-Mechanical Corporation Two terminal multilevel converter
US9768683B2 (en) * 2011-01-18 2017-09-19 Peregrine Semiconductor Corporation Differential charge pump
JP2013215043A (ja) * 2012-04-02 2013-10-17 Fuji Electric Co Ltd マルチレベル電力変換装置
JP2013223274A (ja) * 2012-04-13 2013-10-28 Fuji Electric Co Ltd マルチレベル電力変換装置
JP6040582B2 (ja) * 2012-06-14 2016-12-07 富士電機株式会社 マルチレベル電力変換回路の保護制御方式
JP5598513B2 (ja) * 2012-08-29 2014-10-01 株式会社村田製作所 電力系統連系インバータ装置
JP5626293B2 (ja) * 2012-08-29 2014-11-19 株式会社村田製作所 インバータ装置
WO2014042118A1 (ja) * 2012-09-13 2014-03-20 独立行政法人産業技術総合研究所 マルチレベル電力変換回路および装置
JP5949932B2 (ja) * 2012-10-17 2016-07-13 株式会社村田製作所 インバータ装置
US9660553B2 (en) * 2012-11-30 2017-05-23 Ingeteam Power Technology, S.A. Switching stage, energy conversion circuit, and conversion stage for wind turbines comprising the energy conversion circuit
JP2014135799A (ja) * 2013-01-08 2014-07-24 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP5957594B2 (ja) * 2013-02-20 2016-07-27 株式会社日立製作所 電力変換器
US9246407B2 (en) * 2013-03-29 2016-01-26 General Electric Company Voltage balancing system and method for multilevel converters
MX2015013984A (es) * 2013-04-05 2016-02-05 Toshiba Mitsubishi Elec Inc Dispositivo de conversion de energia.
JP6146130B2 (ja) * 2013-05-21 2017-06-14 富士電機株式会社 電力変換装置のゲート駆動電源供給回路
JP6075224B2 (ja) 2013-06-25 2017-02-08 株式会社明電舎 マルチレベル電力変換装置
JP5955470B2 (ja) * 2013-10-30 2016-07-20 三菱電機株式会社 直流/直流変換装置および負荷駆動制御システム
US9413221B1 (en) * 2013-12-04 2016-08-09 Google Inc. Power conversion using a series of power converters
US9318974B2 (en) * 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105337521A (zh) * 2014-08-11 2016-02-17 通用电气能源电能变换科技有限公司 多电平转换器
JP6102872B2 (ja) * 2014-09-25 2017-03-29 株式会社豊田中央研究所 電力変換装置
US9467065B2 (en) * 2014-12-30 2016-10-11 General Electric Company Method and apparatus for controlling a multilevel soft switching power converter
US9641098B2 (en) * 2015-03-12 2017-05-02 Futurewei Technologies, Inc. Multi-level inverter apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005168240A (ja) * 2003-12-04 2005-06-23 Toshiba Corp 電気車制御装置におけるコンバータ回路
JP2006087257A (ja) * 2004-09-17 2006-03-30 Fuji Electric Holdings Co Ltd マルチレベルコンバータ及びその制御方法
JP2010093978A (ja) * 2008-10-09 2010-04-22 Toshiba Corp 電力変換装置
JP2013078204A (ja) * 2011-09-30 2013-04-25 Toshiba Corp 電力変換装置
JP2013085358A (ja) * 2011-10-07 2013-05-09 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2013132261A (ja) 2011-12-27 2013-07-08 Imuraya Group Co Ltd 小豆飲料の製造方法
JP2013146117A (ja) * 2012-01-13 2013-07-25 Fuji Electric Co Ltd マルチレベル電力変換回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3029824A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174454A1 (ja) * 2014-05-14 2015-11-19 株式会社明電舎 5レベル電力変換器の制御方法
TWI721818B (zh) * 2019-03-14 2021-03-11 大陸商台達電子企業管理(上海)有限公司 直流轉換系統以及直流轉換系統控制方法
US11223285B2 (en) 2019-03-14 2022-01-11 Delta Electronics (Shanghai) Co., Ltd. DC-DC conversion system and control method of DC-DC conversion system

Also Published As

Publication number Publication date
CN105453406A (zh) 2016-03-30
JP6206118B2 (ja) 2017-10-04
SG11201600761VA (en) 2016-02-26
EP3029824A1 (en) 2016-06-08
CN105453406B (zh) 2018-09-11
JP2015047056A (ja) 2015-03-12
US20160181949A1 (en) 2016-06-23
RU2016105213A (ru) 2017-09-07
BR112016002128B1 (pt) 2022-05-10
US9948206B2 (en) 2018-04-17
CA2920079C (en) 2018-08-07
CA2920079A1 (en) 2015-02-05
BR112016002128A2 (pt) 2017-08-01
EP3029824A4 (en) 2017-06-21
RU2634910C2 (ru) 2017-11-08

Similar Documents

Publication Publication Date Title
WO2015015885A1 (ja) マルチレベル電力変換装置
RU2614051C1 (ru) Многоуровневый силовой преобразователь
US9748862B2 (en) Sparse matrix multilevel actively clamped power converter
EP2651024B1 (en) Multilevel power converter
JP6123219B2 (ja) マルチレベル電力変換器
JP2014064431A (ja) マルチレベル電力変換装置
EP3046246B1 (en) Multilevel active rectifiers
EP2822164B1 (en) Multi-level medium-voltage inverter
WO2019069654A1 (ja) 電力変換装置
JP2011050159A (ja) 単相/三相直接変換装置の制御方法
Ponkumar et al. Realization of cascaded multilevel inverter
WO2014162591A1 (ja) 電力変換装置
US20140292089A1 (en) Power converter capable of outputting a plurality of different levels of voltages
EP3082238B1 (en) Switch module and converter with at least one switch module
US20150214830A1 (en) System and method of power conversion
Raj et al. A modified charge balancing scheme for cascaded H-bridge multilevel inverter
JP6428859B1 (ja) マルチレベル電力変換装置
JP2013085358A (ja) 電力変換装置
JP2013017262A (ja) インバータおよびそれを搭載した電力変換装置
JP7165923B2 (ja) 電力変換装置
Dhal et al. A Low Voltage Stress Switched-Capacitor Based 7-Level Boost Multilevel Inverter Check for updates
Mamilla et al. A new generalized cascaded multilevel structure for single phase H bridge inverter
KR101942381B1 (ko) 인버터의 효율 향상 회로
EP3820040A1 (en) Multiphase current-fed modular multilevel converter
Shajana et al. A Novel Cascaded Multilevel Inverter Structure using Reduced Power Electronic Elements.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043665.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832709

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908884

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2920079

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016002128

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: IDP00201601035

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 2014832709

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016105213

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016002128

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160129